Economic Analysis of Non-CO2 GHG Mitigation Technologies

Jameel Alsalam U.S. Environmental Protection Agency October 17, 2009

Outline

- Introduction
- EPA Non-CO2 Mitigation Analysis
 - Methodology
 - Overall Results
- Gas and Oil System Results
- Non-CO2 in legislative analysis
- Resources

Introduction

- EPA Climate Economics Branch does economic analysis of climate bills such as Waxman-Markey
- Historically, climate modelers focused only on CO2
- EPA has led in integrating non-CO2 analysis into climate modeling
 - Methane (CH4), Nitrous Oxide (N2O), Hydrofluorocarbons (HFCs), Perfluorocarbons (PFCs), and Sulfur Hexafluoride (SF6)
 - Black carbon and ozone-depleting substances
- → Non-CO2 GHG mitigation is often very cost-effective

Global Mitigation of Non-CO₂ Greenhouse Gases

- U.S. Environmental Protection Agency's (USEPA's) comprehensive global mitigation analysis for non-CO₂ greenhouse gases
- Report has undergone an external peer review consistent with the guidelines of the USEPA Peer Review Policy
- Final report and data available on USEPA's website

http:/www.epa.gov/nonco2/econinv/international.html

Objective – Focus of Report

- Recent focus on multi-gas strategies calls for
 - improved understanding of mitigation potential
 - incorporation of non-CO $_2$ greenhouse gas mitigation estimates in climate economic analyses
- USEPA has developed a comprehensive mitigation analysis covering
 - all non-CO $_2$ greenhouse gases (methane, nitrous oxide, and gases with high global warming potential)
 - all emitting economic sectors (energy, waste, agriculture, and industrial processes)
 - all regions of the world

Methodology

- Build on previous work
 - Stanford EMF-21
- Paired with study of non-CO2 emissions globally
 - Global Non-CO2 GHG Projections: 1990-2020
- Applies mitigation options to emissions baseline in each sector
- Cost/benefit analysis for each mitigation option (detailed on next slides)
 - Technical abatement potential calculated
 - Breakeven price calculated

Methodology – Option Abatement Potential

Technical applicability	X	Implied adoption rate	X	Reduction efficiency	=	Abatement potential
(%)		(%)		(%)		(%)
Percentage of the total baseline emissions from a parlicular emissions source to which a given option can be potentially applied.		Percentage of baseline emissions to which a given option is applied; avoids double counting among overlapping options and fixes penetration rate of options relative to each other. ^a		Percentage of technically achievable emissions abatement for an option after it is applied to a given emission stream.		Percentage of baseline emissions that can be reduced at the national or regional level by a given option. Product of technical applicability, implied adoption rate, and reduction efficiency of the option.

Methodology - MACs

- Marginal abatement curves (MACs) are determined by the series of breakeven price calculations for the suite of available options for each sector and region.
- Each point along the curve indicates the abatement potential given the economically feasible mitigation technologies at a given carbon price.
- The result of this analysis are a series of MACs that reflect aggregated breakeven prices for implementing mitigation options in a given sector and region.

Aggregate Results – Global MAC

- Mitigation of non-CO₂ gases can play an important role in climate strategies.
- Worldwide, the potential for cost-effective non-CO₂ greenhouse gas abatement is significant (> 500 MtCO₂eq).
- As the breakeven price rises, the mitigation potential grows. The global mitigation potential at a price of \$10/tCO₂eq is approximately 2,000 MtCO₂eq.
- In the higher range of breakeven prices, the MAC becomes steeper, and less mitigation potential exists for each additional increase in price.

Non-CO₂ Reduction (MtCO₂ eq.)

NG&Oil – Baseline Emissions

- Activity driver data by country
 - Natural gas and oil production and consumption Number of wells, miles of transmission, etc
- Emissions factors
 - Estimated based on region (default factors supplied by IPCC)
 - Age and quality of infrastructure
 - Factors likely to change based on new research
- →Estimated global emissions:>1,000 MMT CO2-eq or >3.5 trillion cubic feet methane

NG & Oil Systems- Overview of Technologies

Natural Gas Systems

- Replacement and upgrade of equipment
 - Pneumatic devices and controls
 - Replace wet seals with dry seals
 - Flash tank separators
 - Reciprocating engines
 - Compressor rod packing systems
- Changes in practices
 - Pumpdown technique before maintenance
 - Optimization of component functioning such as glycol circulation rates
 - Electronic monitoring
- Directed Inspection and Maintenance (DI&M)

Oil Systems

- Flaring in place of venting
 On-shore and off-shore
- Direct use of CH4
- Reinjection of CH4

NG&Oil - Results

• On a global scale, approximately 30% reduction possible at a cost of about \$30 per ton CO2-eq

Source: USEPA, 2003a.

Note: This table was constructed using percentage reductions from USEPA (2003), with baselines from USEPA (2005).

NG&Oil - Results

• Significant mitigation options where conserved natural gas value outweighs labor and other costs

Source: USEPA, 2003a.

Note: This table was constructed using percentage reductions from USEPA (2003), with baselines from USEPA (2005).

NG&Oil – Tech Change

- Natural gas production and consumption expanding globally, leading to more emissions if EFs constant
- Technology improvement will allow lower cost mitigation
- As low-cost mitigation opportunities are taken up, additional mitigation is more expensive
- New installations using latest technology likely to experience less leakage
- As infrastructure and equipment ages, the need to address leaks will increase

Non-CO2 in Models

- Results from EPA non-CO2 analysis have been incorporated into multiple models and datasets including:
 - MiniCAM, ADAGE, MIT-EPPA, World Energy Outlook, Global Trade Analysis Project, Energy Information Administration
- Legislative modeling of House and Senate bills
 - Understanding of non-CO2 mitigation technologies and costs is crucial to analyzing climate bills
 - In different bills, some large non-CO2 sources either covered by cap, eligible to provide offsets or could be regulated under NSPS

Further Resources

• For more information, please see the publications on our website:

http://www.epa.gov/climatechange/economics/international.html

Jameel Alsalam US EPA, Climate Change Division <u>alsalam.jameel@epa.gov</u>