

Well Venting and Completion Emission Estimation

2009 Natural Gas Star Annual Workshop

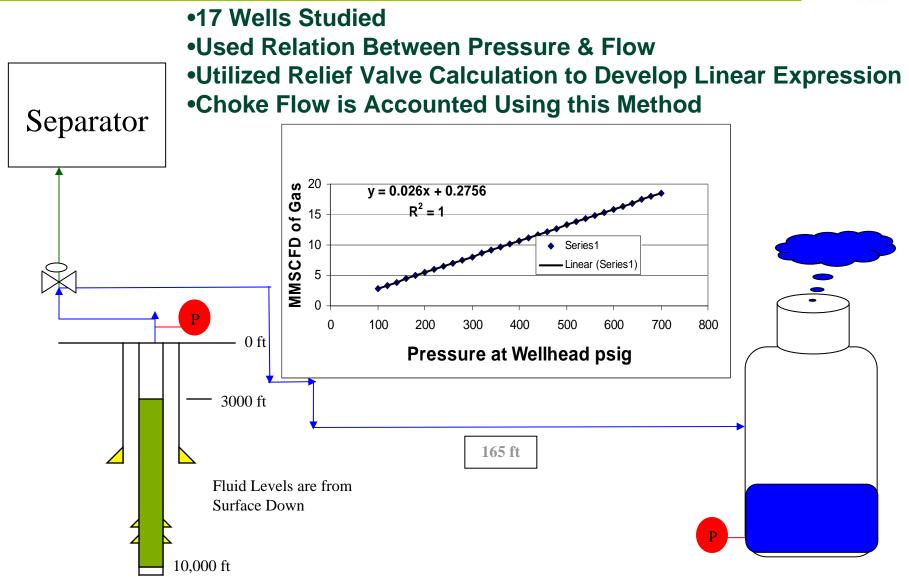
Emission Estimation Well Venting and Completion

- Difficult Sources to Characterize with Multiple Variables and Complex Physics
- Well Venting
 - Calculation Methodology
 - Pressure Transient Analysis
 - Orifice Measurement of Three Phase Flow
- Completion Flow-back
 - Pressure Drop Across Choke Flow Model
- None of These are "Accurate" in an Absolute Sense
- All of These are Accurate Enough to Enable Management

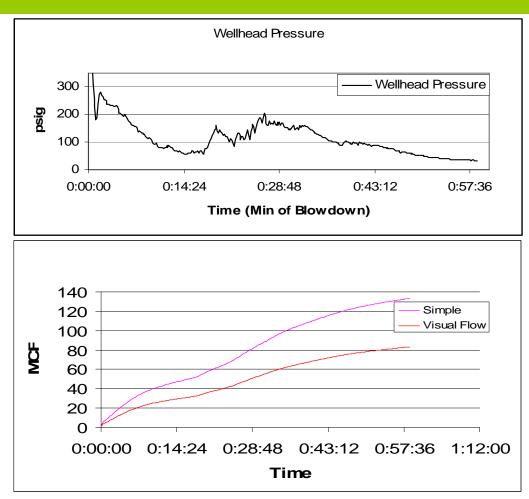
Well Venting - Calculation

- Vent Volume = ((Vent Time 30 min)*(1/1410)*MCFD) + (Well Blowdown Volume)
 - Function of Vent Time, Normal Production Rate, and a Blow-Down Value
 - Limitations of Method
 - Post Blow-Down Value is Under the Assumption of Line Pressure
 - Does Not Account for Well-bore Fluid Column Weight or Volume
- Well Blowdown Volume

VOLUME Calculation


altitude (feet above sea level)=	7000
site atmospheric pressure (psia)=	11.3
shut-in tubing pressure (psig)=	500
temperature of gas in pipeline (F)=	75
well depth (ft)=	10000
diameter of production casing (inches)=	7
diameter of vessel (ft)=	0.58
compressibility (z)=	0.87
corrected volume (mscf)=	103.9

(depth*3.1416*(diameter/2*diameter/2))*((tubing pressure+atmospheric pressure)/14.7)*(520/(temp+460))/B19/1000 (Please note: "z" factor changes with composition, pressure & temperature)



Venting Estimation Pressure Analysis

Follow-up Pressure Analysis

Limitations

- Population Size and Representativeness
- Does Not Account for Reservoir Influx

- Same Pressure Data
- Evaluated Using "Visual Flow" and "Flarenet" Model Systems
- Results:
- Flow up pipes
 ≤1.875" diameter:

Vent volume (MCF) = 0.49 * time + 8.5

 Flow up pipes with >1.875" diameter:

Vent volume (MCF) =

1.5 * time + 21

 Enabled Funding for Automation Approach bn

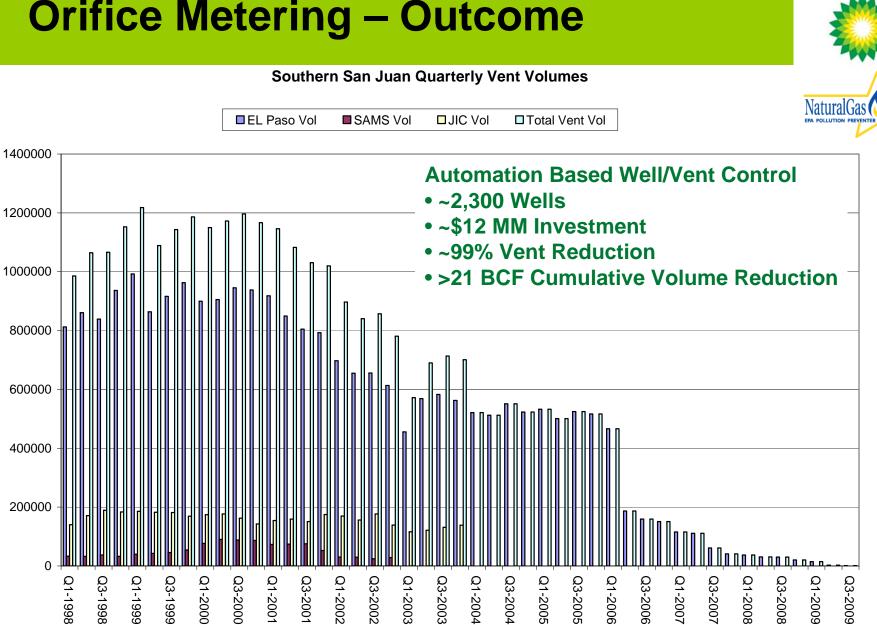
Orifice Metering of Blowdown

- Quite Depleted Reservoir Energy Area
- 4 Distinct Production Horizons
 - Picture Cliff (Sand)
 - Mesa Verde (Sand)
 - Dakota (Sand)
 - Fruitland (Coal)
 - Dual Completed Comingled Wells
- Approximately 30 Wells In Study Population
 - Split Between Formation/Well Types
 - Orifice Meter Installed on Vent Line
 - Multiple Blowdown Runs per Well
 - 3 Phase Flow
- Limitations
 - 3 Phase Flow Accuracy
 - Representativeness of Study Population

Orifice Metering Results

• Formation Specific Vent Volume per Minute

Vent Rates					
Dakota	0.26	mcf/minute			
Mesa Verde	0.4	mcf/minute			
Fruitland	0.26	mcf/minute			
Picture Cliff	0.18	mcf/minute			
Cmgl	0.275	mcf/minute			



Agreement With Other Data

Company X Vent Rate Comparison			BP Vent Emissions Methodology					
Well	Vent time	Measured Volume	Co. X Calculation	Dakota	Mesa Verde	Fruitland	Picture Cliff	Cmgl
1	30	4.6	0.6	7.8	12.0	7.8	5.4	8.3
2	6.8	2.6	1.1	1.8	2.7	1.8	1.2	1.9
	7.7	2.7	1.1	2.0	3.1	2.0	1.4	2.1
3	5.3	1.5	1	1.4	2.1	1.4	1.0	1.5
	5.3	1.5	1	1.4	2.1	1.4	1.0	1.5
	7	1.62	1.2	1.8	2.8	1.8	1.3	1.9
4	6	3	1.3	1.6	2.4	1.6	1.1	1.7
	13	4.5	1.3	3.4	5.2	3.4	2.3	3.6
5	7	3	1.02	1.8	2.8	1.8	1.3	1.9

Orifice Metering – Outcome

bp

Completion Flow-back Estimation

- Post Frac Well Clean-up
 - Flared or Vented
- Volume Calculated Based on Pressure Drop Across Choke
- Very Complex Calculations
 - Subcritical and Critical Velocity Handling
 - Fluid Properties and Z Factor Handling
 - Thermodynamics Handling
- Various Models are Available; HySys; AspenTech; Etc. Type Models Include Modules for Choke Flow
- Conservation of Mass is the Fundamental Principle
- Limitations
 - "Slugging" Flow
 - Variable Composition Fluids
 - 2 Phase Flow w/Sand
 - Amount and Frequency of Data Capture and Handling

10

Completion Flow-back - Simple

Rawlins – Schellhardt Approach

- Dependent On Only Upstream Conditions

 $Q_g = Gas$ Flow Rate $C_f = Choke$ Flow Coefficient $P_{sc} = Standard$ Pressure $P_I = Upstream$ Pressure; psia

 $q_{g} = \frac{C_{f} (14.4/P_{sc})P_{1}}{1000\sqrt{\gamma_{g} z_{1} T_{1}}}$

- T_1 = Upstream Temperature, degrees Rankin Y_g = Gas Specific Gravity; (air=1.0)
- Z_{I}° = Gas Compressibility Factor at Upstream Conditions

- Limitations
 - Simplifying Assumptions

