Air Quality Division

Flash Emissions Model Evaluation

Quantifying Volatile Organic Compound Emissions from Upstream Oil and Gas Storage Tanks

> EPA Natural Gas STAR Conference San Antonio, TX

TCEQ: Danielle Nesvacil, John Jolly, Russ Nettles **Hy-Bon Engineering**: Butch Gidney, Stephen Pena

October 20, 2009

Outline

- Project Overview
- Direct Measurement of Storage Tanks
- Project Status
- Project Results and Conclusions

- Study purpose: to evaluate methods and models for estimating volatile organic compound (VOC) flashing emissions from upstream oil and gas storage tank batteries
- TCEQ partnered with Eastern Research Group, Inc., and Hy-Bon Engineering
- Evaluation performed by comparing <u>measured</u> VOC flash emissions to VOC flash emissions determined by <u>conventional emissions estimation</u> <u>methods</u>

Project Background

- Houston Advanced Research Center (HARC) Project 51C completed in 2006
 - Collaborative project between HARC, TCEQ, and Texas Environmental Research Consortium
 - Determined emissions factors for upstream oil and condensate storage tanks
 - Significant emissions from upstream oil and gas tanks
 - <u>http://projects.tercairquality.org/AQR/H051C</u>
- Project results indicated potential for subsequent research to improve emissions inventory estimates

Project Design

Two phases:

- Directly measured VOC emissions from 36 upstream oil and condensate storage tank batteries
 - HARC 51C provided project template for direct measurement
- Quantified VOC emissions using traditional methods and models
 - Process and operational data obtained directly from site
 - Site identifying data was anonymous except for county location
- Additional objective:
 - Evaluated images of hydrocarbon plumes from storage tank batteries taken from various standardized distances using passive infrared (IR) GasFindIR cameras

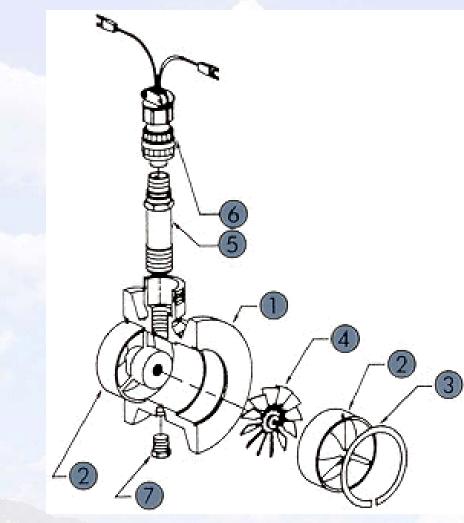
- Measurement Procedure
 - Daniel's 2" turbine meter secured to thief hatch or vent system for 24 hours
 - Obtained daily flow rate
 - High resolution meter
 - High repeatability
 - GasFindIR camera monitoring
 - Image tank(s) before and after flow meter installation to ensure all emissions captured
 - Leaking components addressed and repaired, if necessary

Example of Metering Equipment Installed in Thief Hatch

Air Quality Division • Flash Emissions Model Evaluation; DMN et al.: October 20, 2009 • Page 7

- Measurement Procedure
 - Sample collection
 - Pressurized liquid
 - Separator gas
 - Tank vapor
 - Pressurized to 60 pounds per square inch
 - Tank liquid
 - Liquid samples stored below 50 degrees Fahrenheit
 - Samples performed using 300 cubic centimeter evacuated stainless steel canisters
 - Constant volume and pressure cylinders investigated, but not used
 - API gravity determined on-site using hydrometers
 - Sample analysis performed using Gas Processor's Association Method 2286
 - Compounds included C2 through C12 alkanes, benzene, toluene, ethylbenzene, isomers of xylene

- Measurement challenges
 - Securing site participation
 - Majority of sites tested had low vent volumes
 - Impact on study



- Lack of standardized measurement protocol for fixed roof storage tanks
 - No EPA protocol exists
 - TCEQ rule for Houston-Galveston-Brazoria ozone nonattainment area, <u>30 Texas Administrative Code</u>, <u>Section 115.115(c)</u>

- Measurement challenges
 - Selection of flow meter
 - Design: thermal mass flow meter
 - Actual: Daniels 2" Model 3000 gas turbine meter
 - Rated for minimum flow of 593 standard cubic feet (SCF) per hour or 14,200 SCF (14.2 MSCF) per day
 - Confidence in flow measurements
 - Concerns existed regarding accuracy and/or performance limitations of available flow meters
 - Adequate characterization of flashed tank gases
 - Sampling
 - Selection of analytical procedure for gas analysis
 - Design and actual: Gas Processor's Association Method 2286
 - Focus on gas component of samples

ITEM	DESCRIPTION			
1	Meter Body			
2	Flow Diffuser			
3	Retaining Ring			
4	Rotor Shaft Ass'y			
5	Pickup Coil			
6	6 Coil Cable Ass'y			
7	Pipe Plug			

Metering Equipment: Exploded View

Air Quality Division • Flash Emissions Model Evaluation; DMN et al.: October 20, 2009 • Page 11

- Hy-Bon collected process and operational data necessary to estimate emissions using various methods and models
 - 30 of 36 sites provided sufficient data inputs
 - Data gathered from sites included:
 - Liquid and vapor samples
 - API gravity
 - Production data
 - Temperature
 - Separator pressure and temperature
 - Tank capacity
 - Samples analyzed to determine VOC composition

- For each method or model, emissions determined using site process, operational, and sample analysis data
- Models or methods evaluated included:
 - HYSYS process simulator
 - Exploration and Production TANK model (E&P Tank)
 - Gas-to-oil (GOR) ratio
 - Vasquez-Beggs correlation, including Gas Research Institute's Hazardous Air Pollutant (HAP)-Calc program
 - Valko-McCain correlation
 - Environmental Consultants and Research (EC/R) equation
 - Note: When necessary, the TANKS 4.09d was used to estimate working and breathing losses

- For each method, results compared as set to direct measurements to assess:
 - Accuracy
 - Whether a method or model would predictably under- or over-estimate emissions
- Vasquez-Beggs (VB) correlation presented unique challenge
 - Most sites' separator pressures fell outside the correlation constraints
 - Due to numerous requests received to use VB correlation in similar circumstances, performed analysis to assess accuracy in these cases

- TCEQ performed additional statistical analysis to correlate measured emissions to predicted emissions
 - Ordinary least squares (OLS) regression analysis
 - Square of correlation coefficient (R²): degree of correlation between variables
 - Trend line slope: indicates how well model/method predicted emissions
- Only GOR method had strong correlation to measured values for sites measuring below 200 tons/year
 - R² = 0.90; GOR slightly overestimates emissions in these cases
- All other models had weaker correlation
 - Slope values indicate these models predicted emissions with less accuracy

Summary of Regression Analysis Measured Emissions Versus Modeled Emissions*

*Outlier Values Removed Courtesy John Jolly, TCEQ

					Equation for estimating direct measurement (DM)
Emissions Model	Ν	R ²	Slope	Intercept	(tons/yr)
Vasquez-Beggs Correlation + 4.09	25	.11	0.13	15	VBE = .13(DM) + 15
Gas-Oil Ratio + 4.09	25	.90	1.13**	15	GOR =1 .13(DM) + 15
Valko-McCain + 4.09	25	.02	0.11	31	VM = .11(DM) + 31
Hysys	22	.03	0.74	94	Hysys = .74(DM) + 94
E&P Tank – RVP	22	.10	2.8	218	EP_RVP = 2.8(DM) + 218
E&P Tank – GEO/RVP	24	0	0	33	Not possible to estimate
E&P Tank – AP-42	22	.15	2.3*	112	AP42 = 2.3(DM) + 112

N represents number of tanks used in statistical analysis. R² is correlation coefficient. "Slope" is the slope of the linear regression estimate, when modeled emissions are plotted against measured emissions. One asterisk after slope indicates correlation is statistically significant at alpha=.10 (90% confidence interval); two asterisks, significant at alpha=.05 (95% C.I.). Note caveats in these estimates in Discussion section in Final Report.

Passive Infrared Camera Imaging

- Hy-Bon imaged hydrocarbon vapors from tank batteries using GasFindIR cameras
 - Image types obtained include (distances are approximate):
 - Close range view
 - Mid-range view
 - Long range view
 - Images were informally evaluated to determine whether image intensity correlated to VOC emissions rate
 - Although informal, no correlation appears to exist

Project Status

- TCEQ report being finalized; will be published at: <u>http://www.tceq.state.tx.us/implementation/air/airm</u> <u>od/project/pj_report_ei.html</u>
- Study results were posted on Web for six weeks for informal comment
 - Comments received by deadline will be posted on same TCEQ website with final report
 - No formal TCEQ response will be published
 - However, technical comments will be addressed within the report itself

Project Status

- Final report will be revised to address technical comments as well as study limitations
 - Corrections
 - Additional statistical analysis will be published
 - Quality assurance project plan will be included
- Goal: transparency
 - All data will be published
- Anticipate posting finalized version of report by December 2009
- Will distribute notification

- Study results indicate emissions predictions from methods and models vary considerably, based upon inputs
- No one method correlates well to direct measurements under all test conditions
 - Site sample for study could influence
 - However, complex models or methods based upon measurements appear to over-predict emissions compared to direct measurements
 - Simpler equations or models using default data appear to under-predict emissions compared to direct measurements
 - Design
 - Assumptions

Air Quality Division • Flash Emissions Model Evaluation; DMN et al.: October 20, 2009 • Page 20

- Based upon study results, certain methods have questionable value as flash emissions determination methods for storage tanks
 - EC/R equation appears invalid
 - VB correlation designed to estimate emissions from separator, not storage tanks
- Hysys model exhibited weak correlation, but reasonable slope
 - Not generally used to estimate vent gas volumes in low separator pressure conditions

- E&P TANK exhibited weak correlation and slope values greater than 2, indicating emissions overprediction
 - Estimates using defaults in geographic database have questionable value as flash emissions determination methods for storage tanks
- GOR method did correlate well for sites where measured emissions were less than 200 tons/year
 - No regulatory procedure for GOR method
 - GOR methods are established, but variability does occur

- TCEQ considering revising emissions inventory guidance based upon study results
- Wealth of data collected
 - Encourage additional analysis and interpretation of results
- Additional research appears warranted
 - Challenges presented in study may impact feasibility of additional research
- Protocol and standardization necessary
 - Tank testing
 - GOR method

Contact Information

Danielle Nesvacil Air Quality Division

Phone: (512) 239-2102 E-mail: dnesvaci@tceq.state.tx.us

Air Quality Division • Flash Emissions Model Evaluation; DMN et al.: October 20, 2009 • Page 24