

Midstream Dehydrator Emission Reductions and BMP's

CMP Operations

Opportunities & Challenges - STAR

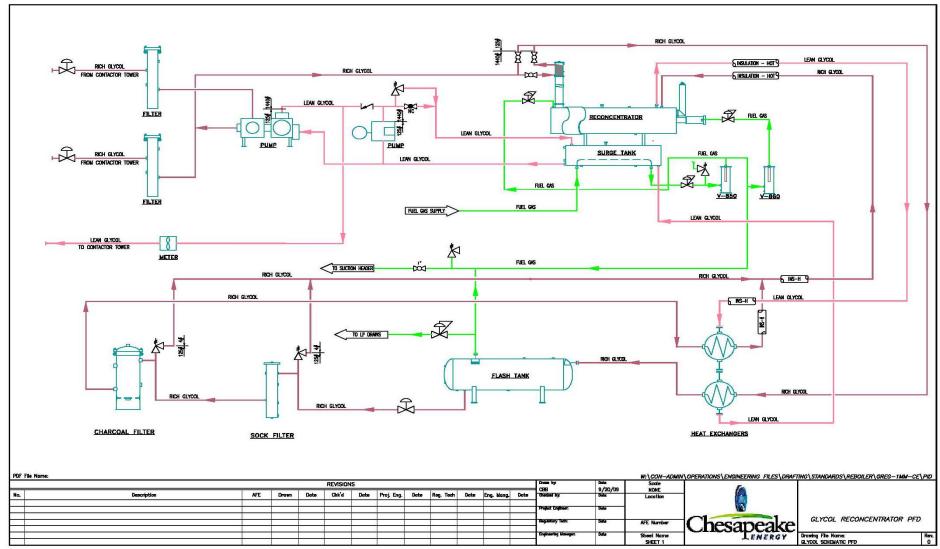
Adopted BMPs

- Dehy BMPs (as discussed)
- Low-Bleed Pneumatics on all New Equipment
- Solar/Electric/Zero-Exhaust Chemical Injection Pumps
- Instrument Air
- Pipeline Hot Taps
- Leak Repairs
- VRU on Tanks

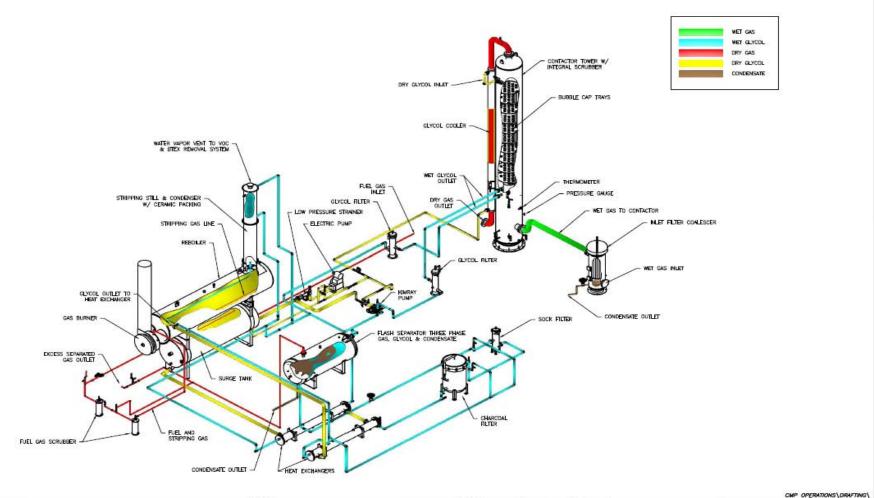
Opportunities

- Documenting what is already being done!
- Pipeline blow-downs using compressors
- Replacing/ Retrofitting/ Upgrading older equipment

Emission Reductions


CMP STAR Reductions For 2008 Mid-Continent

ВМР	Reduction (MCF)
Blow Down to Sales	282
Install Elec Glycol Pump	39,288
Flir Camera Leak Repair	596
Pipeline Hot Tap	1,121
Low Bleed Pressure Controllers	7,851
No-Bleed Chem Pump	19,195
Optimize Glycol Circ Rate	238,694
Low Bleed Pneumatic Level Controllers	42,496
Recover Dehy Flash Gas	761,071
Recover Dehy FG to Suction	7,226
TOTAL	1,117,820


Glycol Reboiler Flow Diagram

Dehy Schematic Flow Diagram

					REVISION	IS						- 3	CBB	0./10./no	Scale	6	
No.	Description	AFE	Drawn	Date	CHK,q	Date	Proj. Erg.	Date	Des. Coord.	Date	Eng. Mang.	Date	Checked by:	Sets	Leortien	1 6	
													Project Enghanc	Sales		No.	SCHEMATIC FLOW DIAGRAM
													Design Commission:	Sala	AFE Number	Chesaneake	GLYCOL DEHYDRATION UNIT
													Digbeerby waters	340	Sheet Name	LENERGY	Drawing File Name: S SCHEMATIC FLOW DIAGRAM

Electric/Energy Exchange Pumps

New Reductions Technology

- Flash Tanks/Separators
- BTEX Destruction
- Pneumatic Thermostat Elimination

Flash Tanks/Separators (a.k.a. Pump Gas Separators)

Flash Tank Installations

Year	Number
2004	3
2005	17
2006	24
2007	24
2008	38

Flash Separator

Eclipse Compound Injected Burner

Burner Standards

FLAMECO INDUSTRIES, INCORPORATED P.O. BOX 4303 TULSA, OKLAHOMA 74159 (918) 832-1100 Fax: (918) 832-8100

October 3, 2008

Chesapeake Energy Ok City, Ok Attn: Danny Ford

Reference: Burner Assembly Standards

350,000 btu/hr net duty (500,000 gross release)
 For a 8" firetube x approximately 20' overall length (8,000 flux)

Model No. SB16-8, O-Type, Burner Assembly
One piece design (no hinge), aluminum construction
Includes: (1) 2" H-80 Compound Injector,
w/ 1-1/2" HO-6 Air/Gas Mixer
w/ HO rod assembly (external primary air adjustment)
w/ MTD 26 orifice @ 8 psi (469 scfh)

- (1) 2" Bell Nozzle (this assembly extends 13" past the mating flange using a 2" x close nipple)
- (1) 16" OD x 4" thk. Aluminum Flame Cell w/ 6" hand hole, cover plate with a 1" peep sight & CGB194 fitting for the external primary air adjusting rod

Couplings:

- (1) 1/4" @ 90 (1-1/4" from flange)
- (1) 1" @ 90 (4" from flange)
- (1) 3/4" @ 115-3" flat (2-1/2" from flange)
- (2) 1" @ 0 (2-1/2" & 5" from flange)
- 2. 500,000 550,000 btu/hr net duty (714,00 785,000 gross release)
 For a 12" firetube x approximately 20' overall length (8,000 flux)

Model No. SB18-12, O-Type, Burner Assembly
One piece design (no hinge), aluminum construction
Includes: (1) 2-1/2" H-10 Compound Injector,
w/ 2" HO-8 Air/Gas Mixer
w/ HO rod assembly (external primary air adjustment)
w/ MTD 14 orifice @ 8 psi (749 scfh)

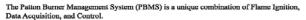
500 MBTU Orifice Chart

Standard 500k BTU Reboiler will have a MTD 14 Orifice that will consume about 526 cfh at 4psi Constant. Normal Run operation of Our burners is Constant at about 60-70%.

		Т				_							
	IFICE SIZE			CAPA	CITY IN	CFH AT	VARIOUS	GAS P	RESSURE	S (PSIG			
DIA. IN. N	ATD AREA	1	2	3	4	5	6	7	8	9	10	12	14
9/64	.01560	158	225	275	317	354	388	420	449	475	502	549	593
	27 .01630	165	235	287	331	370	406	439	469	496	525	574	619
	26 .01740	177	251	306	353	395	433	471	501	530	560	612	661
	24 .01810	184	261	319	367	411	451	487	521	251	583	637	688
	23 .01460	189	268	327	378	422	463	500	536	266	599	655	707
5/17	.01920	195	276	338	390	436	478	516	553	585	618	676	730
	22 .01930	196	278	340	392	438	481	519	556	588	621	679	733
	21 .01980	201	285	348	402	449	493	533	570	603	638	697	752
	20 .02030	219	311	357	412	461	538	546	585	618	654	715	771
	18 .02760	229	325	398	459	513	563	608	651	688	728	796	821
11/64	.02320	235	334	408	471	527	578	624	668	706	747	817	882
	17 .02350	239	338	414	477	533	585	632	677	716	757	827	893
	16 .02460	250	354	413	499	558	613	662	708	749	792	866	935
	15 .02540	258	366	447	516	577	632	683	732	773	818	894	965
	14 .02600	264	374	458	528	590	670	724	749	819	837	915	988
3/16	.02690	280	397	486	560	627	687	742	795	840	889	972	1049
17 10	12 .02805	285	404	494	569	637	698	755	808	854	903	987	1066
-	11 .02865	291	413	504	582	650	713	771	625	872	923	1008	1089
	10 .02940	298	423	517	597	667	732	791	847	895	947	1035	1117
	9 .03020	307	435	532	613	686	752	812	870	920	972	1063	1148
	8 .03110	316	448	556	631	706	774	837	910	947	1001	1095	1182
13/64	7 .03160	129	467	570	658	735	807	872	933	987	1043	1112	1201
,	6 .03270	332	471	576	664	742	814	883	942	996	1053	1151	1243
	5 .03120	337	478	584	674	754	827	893	956	1011	1069	1169	1262
	4 .03430	348	494	604	696	779	854	923	988	1044	1104	1207	1303
7/32	3 .03560	361	513	627	723	808	936	958	1025	1145	1211	1324	1353
1/32	2 .03840	390	553	676	780	872	956	1033	1106	1169	1236	1352	1459
	1 .04090	415	589	720	830	928	1018	1100	1178	1245	1317	1440	1554
	A .04300	436	619	757	873	976	1071	1157	1238	1309	1385	1514	1634
15/64	.04310	437	621	759	875	978	1073	1159	1241	1312	1388	1517	1638
	8 .04440	451	639	781	901	1008	1106	1194	1279	1352	1430	1563	1687
	0 .04750	467	667	836	934	1044	1145	1237	1325	1401	1481	1619	1748
1/4	E .04910	498	707	864	997	1115	1223	1321	1414	1495	1581	1728	1866
	F .05190	527	747	913	1054	1176	1292	1396	1495	1580	1671	1827	1972
	6 .05350	543	770	942	1086	1214	1332	1439	1541	1629	1723	1883	2033
17/64	.05540	562	798	975	1125	1258	1379	1490	1596	1693	1784	1950	2105
	1 .05800	564	835	1021	1129	1262	1384	1560	1601	1766	1868	2042	2113
	1.06010	610	865	1058	1220	1364	1496	1617	1731	1830	1935	2116	2284
	K .06200	629	893	1091	1259	1407	1544	1668	1780	1888	1996	2182	2356
9/32	.06210	630	894	1093	1261	1410	1546	1670	1788	1891	2000	2186	2360
	L .06600	670	950	1162	1340	1498	1643	1775	1901	2010	2125	2323	2508 2595
19/64	.06920	702	996	1218	1405	1571	1723	1861	1993	2107	2228	2436	2630
. 77 64	N .07160	727	1031	1260	1453	1625	1783	1925	2062	2180	2306	2520	2721
5/16	.07670	779	1104	1350	1557	1741	1910	2063	2209	2336	2470	2700	2915
	0 .07840	796	1129	1380	1592	1760	1952	2109	2258	2347	2524	2760	2979
	P .08200	837	1181	1443	1665	1861	2042	2205	2362	2497	2640	2886	3116
21/64	.08460	859	1218	1489	1717	1920	2107	2376	2436	2576	2789	2978	3215
	0.08660	915	1297	1574	1758	2045	2156	2474	2595	2744	2901	3172	3424
11/32	.09280	942	1336	1633	1884	2107	2311	2446	2673	2826	2988	3267	3526
	5 .09500	964	1368	1677	1979	2157	2366	2556	2736	2893	3059	3344	3610
	T .10050	1020	1447	1769	2040	2281	2502	2703	2894	3060	3236	3538	3819

Kimray 210-15 Glycol Pump will exhaust 1050cf / Hr of gas Maximum.

Pneumatic Thermostat Elimination


CMP Standard

Patton Burner Management System

Unique combination of Flame Ignition, Data Acquisition and Control

* U. S. Patent Pending *

Ignition

The PBMS is designed for users to easily set parameters for ignition sequence. The number of ignition retries, delay to sense flame, time for ignition delay to open the fuel valve, and flame sense intensity are all configurable from the easy to use menu on the controller screens.

POD - Pilot on Demand allows the pilot to remain off until it is needed based on pre-set temerature or pressure settings allowing you to save money and fuel gas.

Power

The standard unit is powered by 12 Volts DC, making solar charging an easy option for remote, or non powered applications. Other power combinations are also readily available.

Control

With on board inputs and outputs, the PBMS can be easily configured for a variety of control sequences and shutdowns. Examples of alarm conditions would be high stack or reboiler temperature, reboiler and flash tank levels, and remote input shutdowns (based on external conditions; example-compressor shutdown). Control examples would be automated valve or drive control to maintain temperature.

Modbus

Control and Logging

Call 806-358-7993 12V Low Draw DC

Solar Panel

Multi language Modbus

4 Gig SD Card

Flexible Data Graphs

12V DC Control Valve

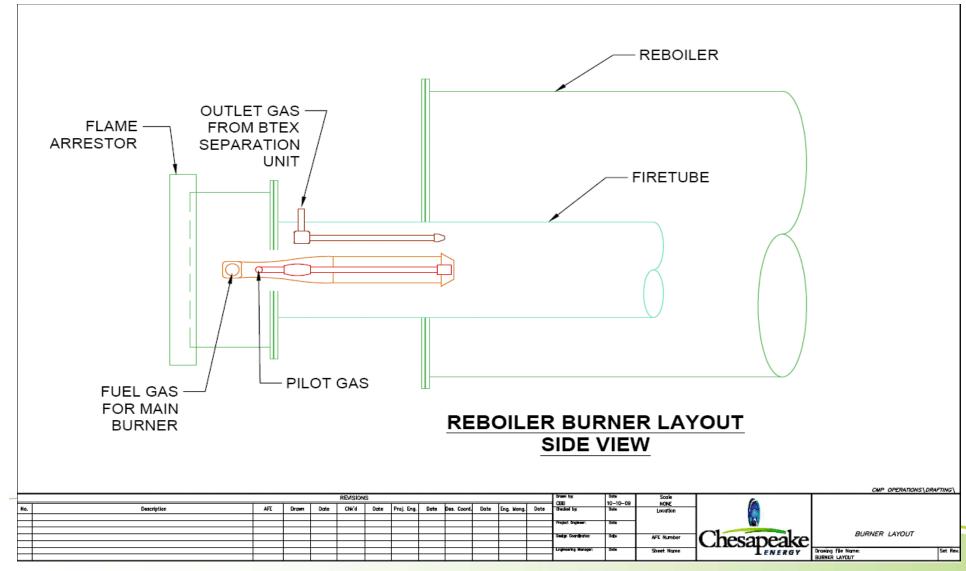
BTEX Destruction

VOC's from BTEX Unit are sent to BTEX Burner through SST Piping

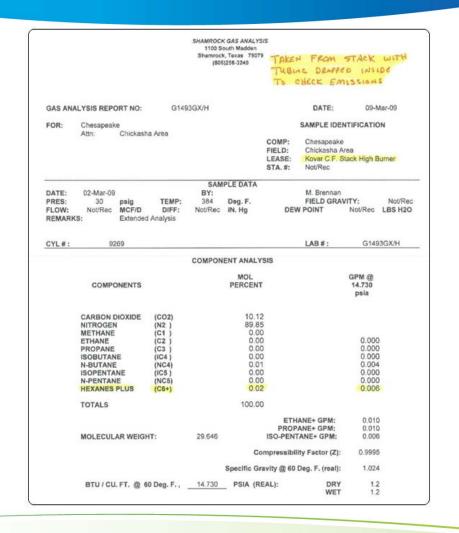
Emission Abatement Component Overview

BTEX Coils

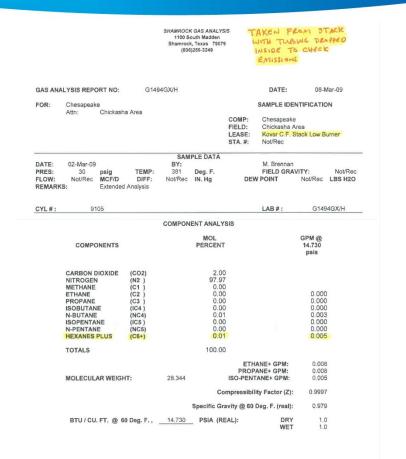
B-TEX Burner



Reboiler Burner Layout


BTEX to Burner Analysis

				1100 S Shamrock	CGAS ANALYSI outh Madden k, Texas 79079 ()256-3249	u	MEN AFT	INE GO	
GAS ANAI	YSIS REPO	BT NO:	G149	19GX/H			DATE:	08-M	lar-09
FOR:	Chesapeak Attn:	e Chickash	a Area			COMP: FIELD: LEASE: STA. #:	Chesapeake Chickasha Ar Kovar C.F. at Not/Rec	rea	
				SAM	PLE DATA				
DATE: PRES: FLOW: REMARKS	02-Mar-09 30 Not/Rec	psig MCF/D Temp At Extended	TEMP: DIFF: Reboiler Analysis	BY: 383 Not/Rec	Deg. F. IN. Hg	DEV	M. Brennan FIELD GRAV V POINT	/ITY: Not/Rec	Not/Rec LBS H2O
CYL#:	92	61					LAB#:	G149	9GX/H
				COMPON	ENT ANALYS	iis			
	COMPO	NENTS			MOL PERCENT			GPM @ 14.730 psia	
	CARBON D NITROGEN METHANE ETHANE PROPANE ISOBUTAN N-BUTANE ISOPENTAN N-PENTAN HEXANES	E NE E	(CO2) (N2) (C1) (C2) (C3) (IC4) (NC4) (IC5) (NC5) (C6+)		3.70 44.73 7.90 10.80 14.88 2.75 7.55 2.11 2.18 3.39			2.887 4.098 0.901 2.380 0.773 0.788 1.261	
	TOTALS				100.00				
	MOLECUL	AR WEIGH	IT:	37.253		PROP ISO-PENT	ANE+ GPM: ANE+ GPM: (ANE+ GPM;	13.088 10.201 2.822	
							ity Factor (Z):	0.9932	
					Specific Gra	vity @ 60	Deg. F. (real):	1.286	
	BTU / CU.	FT. @ 6	0 Deg. F.,	14.730	PSIA (RE	AL):	DRY	1320.7 1297.7	



FLUE GAS ANALYSIS ON HIGH BURNER @

FLUE GAS ANALYSIS ON LOW BURNER

Contact Information

Danny Ford

Manager - Project Coordination

CMP - Operations

Work- 405.935.9390

Cell- 405.239.0923

Email- danny.ford@chk.com

Rodger Settle

Supervisor - Midstream Equip. Operations

CMP - Operations

Work- 405.935.4185

Cell- 405.618.0390

Email- rodger.settle@chk.com

Rick Patton

Patton Energy Services

Work - 1.806.358.7993

Cell - 1.806.420.9689

Email - rpatton@pattonenergyservices.com

Doug Lee

Flameco

Work - 1.918.832.1100

Fax - 1.918.832.8100

Email - flamecoind@sbcglobal.net

