Quantification and Measurement Panel

San Antonio, TX October 21, 2009

epa.gov/gasstar

NaturalGas

Methane Emissions Quantification Challenges

- Gas well drilling completion venting
- Gas well liquids unloading venting
- Crude oil & gas condensate stock tank venting
 - Scrubber dump valve leaks
- Glycol dehydrator vent
- Acid gas removal vent
- Compressor seal vent
- Fugitives
- Sequipment blow-down venting
- Gas gathering/processing plant emissions
- Cross-country pipeline leaks

Quantification and Measurement of Fugitive and Vented Methane Emissions

Panel

- Include Section Sec
- Material Balance: *Bob Berry, DCP Midstream*
- In Direct Measurement: John Cordaway, El Paso
- Methode States Control Cont
- Remote Quantification: Leanne Meyer, NNG
- Questions & Answers

Engineering Calculation Approaches

- Reid Smith, BP
 - Senior Climate Advisor
- Volume and Composition are the only information needed
- What are "Engineering Approaches"?
 - Approaches that use physical fluid behaviors, chemical behaviors, and physical data to determine emissions
 - Not: Activity X Factor or Direct Measurement (CEM)
 - 6 Can be used to generate factors for specific conditions, areas, sites, fields
 - Includes various modeling suites/approaches

Engineering Calculation Approaches

- Sources types where engineering approaches are robust
 - Combustion Emissions
 - Acid gas (amine) vents; Equipment/system blow-down; Dehydrator overheads; Gas driven pneumatic pumps; Gas actuated pneumatic valves; Pneumatic controllers; Tanks
- Source types where engineering approaches are useful
 - Flare stacks.
- Source types where engineering approaches are not very useful
 - Component fugitives; Compressor seal fugitives; Pump fugitives;

Emission Estimation Pneumatic Pump Example

Pneumatic Pumps

- Amount of fluid pumped
- Gas inlet pressure
- V Pump discharge pressure
- Mechanical inefficiency

Gallons of Fluid Pumped =	1	
Pneumatic Gas Pressure =	40	psig
Pneumatic Gas Temperature =	75	degrees F
Discharge Pressure =	600	psig
Mechanical Inefficiency =	30%	
Gas Volume	8.83	scf

Q=((Pg+11.2)/14.7)*(520/(460+T))*(V/7.48)*Pd/Pg*(1+I)

Where:

- P_{a} = Pneumatic Gas Pressure
- T = Pneumatic Gas Temperature
- V = Gallons Fluid Pumped

- P_d = Pump Discharge Pressure
- I = Mechanical Inefficiency
- Q= Gas SCF

Emission Estimation Acid Gas (Amine) Vent Example

Acid Gas Vents

- Gas Volume to Contactor
- CO2 Mole % In
- CO2 Mole % Out
- CH4 in Vent Stream

Gas Flow to Contactor	100	MMSCF
Inlet Gas CO2 Content	4%	Mole Percent
Outlet Gas CO2 Content	0.20%	Mole Percent
Vent Methane Content	1%	Mole Percent
CO2 Metric Tonnes	200	
Methane Metric Tonnes	0.73	

CO2= Vinlet*100000*(CO2 In-CO2Out)/379.48*44/2204 Methane= Vinlet*100000*(CO2In-CO2Out)/379.48*CH4Vent*16/2204 **Where**

> Vinlet= Volume of Gas into Amine Contactor CO2in= Mole % CO2 in Contactor Inlet CO2out= Mole % CO2 in Contactor Outlet CH4vent= Mole % CH4 in Regenerator Vent Stream

Material Balance Approach

- Sob Berry, DCP Midstream
 - **& BTU Efficiency Manager**

Direct Measurement Approach

- John Cordaway, El Paso
 - A Principal Reliability Engineer

Emissions Modeling Approach

- Danielle Nesvacil, TCEQ
 - Team Leader, Emissions Assessment Section
- A Russ Nettles, TCEQ

Remote Quantification Approach

- Leanne Meyer, Northern Natural Gas
 - Senior Director, Right of Way, Environmental, Safety and Pipeline Integrity Groups

QUESTIONS????