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Background

• Approached by Garvin and Adam, interested in 

heavy tails.

• Aim of Study:  Identify, screen, re-classify and 

analyze existing datasets, investigate statistical 

approaches

– 18 studies or datasets over 15 years

– ~15,000 individual measurements

– Device and facility level

– Varied quantification methods: direct measurement, 

plume estimates and reported emissions

Brandt, Heath, Cooley (2016). Methane leaks from 
natural gas systems follow extreme distributions. 
Environmental Science & Technology. 
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Grouping results by components (single-study)

Sample guide
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(1) GHGRP 2015 - Recip. BDV

(2) GHGRP 2015 - Recip. RPV

(3) GHGRP 2015 - Recip. IV

(4) NGML 2006 - Tanks

(5) ERG 2011 - Connectors

(6) Allen 2014a - Pneumatics

(7) Zimmerle 2015 - Blowdowns

(8) Zimmerle 2015 - BDV

(9) Allen 2013 - Pneumatics

(10) Allen 2013 - Equip. leaks

(11) Lamb 2015 TDTS-D

(12) Zimmerle 2015 - Connectors

(13) Zimmerle 2015 - Recip. IV

(14) Zummerle 2015 - Valve

(15) Zimmerle 2015 - Non-comp. conn.

(16) NGML 2006 - Gate valve

(17) Lamb 2015 - Regulating

(18) Zimmerle 2015 - Pneumatics

(19) Yakovitch 2015 - Well pad

(20) Lamb 2015 - Pipe
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Compared to other natural and social phenomena
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More extremely distributed

than things commonly

known to be “heavy tailed”

Only observed dataset

more extremely distributed

is flood insurance claims.



Quantifying the tail: ξ

• A parameter which describes a distribution's tail.

• ξ < 0: distribution has an upper bound

• ξ = 0: unbounded decreasing exponentially
– normal, gamma, lognormal

• ξ > 0: heavy-tailed, decays like a power function
– ξ > .5 implies infinite variance, usual stat methods don’t work
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Data Source ξ n 95% CI

GHGRP BDV 0.77 2100 (0.46, 1.20)

GHGRP IV 0.25 1416 (-0.01,0.68)

GHGRP RPV 0.49 1532 (0.23, 0.88)

• point estimates for ξ are really large.
• ξ is hard to estimate, large uncertainty, small n
• Take away message 1:  tails are really heavy



Uncertainty Quantification

Methods for confidence intervals:

1. T-based confidence intervals (assumes normal or CLT).

2. parametric bootstrap (requires distributional assumption).

3. nonparametric bootstrap (done by resampling).
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Pitfalls of Parametric Bootstrap
1. Any distributional assumption 

is wrong.
2. Data in tail has limited “voice”.

Findings:
Fitted lognormal distributions 
underestimated the tail.
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Bootstrap methods

• Nonparametric bootstrap

– No distributional assumption

– Performed by resampling (very simple)

– However if ξ > 0.5, usual convergence doesn’t hold

• GHGRP Blow-down-valve (BDV) data: 

– Mean estimate:  25.9 kg/day

– Lognormal parametric bootstrap 95% CI:

(20.3, 35.2) or (-22%, +36%)

– Nonparametric bootstrap 95% CI:

(18.89, 43.55) or (-27%, +68%) 

• Take Away Message 2:  Heavy tails lead to greater 
uncertainty in mean estimates and have implications about 
how UQ should be performed.

7



Super-emitters

• Term “super-emitter” 
is becoming widely 
used, but its definition 
is not universal.

• Our paper’s 
definition:  top 5% of 
emitters (also: 
Mitchell et al 2015).

• Key finding: Top 5% 
of sources with 
highest emissions 
contribute roughly 
50% of emissions.

• Behavior seen 
universally across 
studies we analyzed.
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Results: Super-emitters are not always large emitters 

• 4+ orders of 

magnitude in range

• Median source in one 

category larger than 

super-emitter in 

others

• Take away message 

3: Two-pronged 

strategy for mitigation

– Focus on sources 

which are large 

emitters

– Identify super-emitters 
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Sampling to estimate emissions factors

• Inventory approach: 

Emissions estimate = AF x EF

• EF should be obtained by taking sample mean of 
devices from a representative sample.

• Consider sampling frame for national emissions 
estimate:  a (hypothetical) list of all the devices.

• Simple random sample would be obtained by 
random selection.  Obviously this is impossible.
– Expensive

– Not all producers would allow measurements.

• Two further challenges:
1. Combining data from different studies.

2. Temporal behavior.
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Can you combine different studies’ data?

Kuo`12 NGML`06 Allen`13 Sub.`15 Zim.`15 Lamb`15

ERG 2011 0.000 0.000 0.005 0.000 0.000 0.000

Kuo 2012 -- 0.000 0.000 0.000 0.000 0.000

NGML 2006 -- -- 0.010 0.000 0.000 0.000

Allen 2013 -- -- -- 0.000 0.001 0.002

Subram. 2015 -- -- -- -- 0.000 0.000

Zimmerle 2015 -- -- -- -- -- 0.000

Lamb 2015 -- -- -- -- -- --
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A:  No.  Or at least not easily.

KS tests of seven studies’ “threaded connections” show all come 
from significantly different distributions.  P-values all < 0.01.

Similar results across 5 device categories:  only 3 of 28 
pairwise comparisons failed to reject at p = 0.05 level.



Temporal aspects and sampling

• There is a mismatch between what is sampled and 
desired quantity to estimate.

• Sample:  Instantaneous methane leakage rates.

• Estimate: Methane leakage amount (annual).

• What if rate isn’t constant?

• Hypothesized some “superemitters” may be to planned 
maintainance.  

• Contributing factor to top-down vs bottom up mismatch?  
(Emissions during work day.)

• How do you conduct sampling to account for temporal 
aspects?  Think of sampling frame.
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Take away message 4:  Obtaining a representative sample for 
the purpose of estimating EFs is really hard.


