Technical Support Document (TSD)

for the Transport Rule

Docket ID No. EPA-HQ-OAR-2009-0491

Power Sector Variability

U.S. Environmental Protection Agency

Office of Air and Radiation

July 2010

Power Sector Variability

This Technical Support Document (TSD) provides information in support of section IV.F, "Emission Reduction Requirements Including Variability", in the preamble to the proposed Transport Rule. This TSD is organized as follows:

- 1. Introduction
- 2. Estimating year-to-year variability in emissions
- 3. Estimating variability over a multi-year time period
- 4. Results of an analysis done using the air quality assessment tool

1. Introduction.

Section IV in the preamble of the proposed Transport Rule discusses EPA's approach to define "significant contribution" and "interference with maintenance" with respect to the 1997 8-hour ozone and annual fine particle ($PM_{2.5}$) National Ambient Air Quality Standards (NAAQS) and the 2006 24-hour $PM_{2.5}$ NAAQS. As discussed in preamble section IV, the EPA has identified the emissions that must be prohibited by each state to eliminate the state's significant contribution and interference with maintenance. To facilitate implementation of the requirement that these emissions be eliminated, the EPA also developed SO₂, annual NO_X, and ozone season NO_X state emissions budgets based on its projections of state-by-state power sector emissions in an average year after the elimination of the prohibited emissions.¹

However, because of the unavoidable variability in baseline emissions – resulting from the inherent variability in power system operations – state-level emissions may vary somewhat from year to year after all significant contribution and interference with maintenance that EPA has identified in the Transport Rule proposal are eliminated. This variability in emissions occurs even when the emission rates of the units within the state do not change. For this reason, as discussed in preamble section IV.F, the EPA has determined that it is appropriate to develop variability limits for each state budget. These

¹ EPA developed annual SO₂ and NO_X budgets for each state covered for the annual and/or 24-hour PM_{2.5} NAAQS. Additionally, the EPA developed ozone season NO_X budgets for each state covered for the ozone NAAQS. Table III.A-1 in preamble section III lists the states that would be covered for the PM_{2.5} and/or ozone NAAQS.

limits are used to identify the range of emissions that EPA believes may occur in each state following the elimination of all significant contribution and interference with maintenance. This TSD describes the analyses that EPA performed to estimate the inherent variability in emissions from the power sector and to determine variability limits based on that inherent variability.

Preamble section IV.D discusses EPA's proposed approach to quantify for each upwind state the emissions that significantly contribute to nonattainment or interfere with maintenance downwind for the existing ozone and $PM_{2.5}$ NAAQS. Preamble section IV.E discusses the development of state emissions budgets for SO₂, annual NO_X, and ozone season NO_X. Preamble section IV.F discusses the inherent variability in electric power system operations and proposes variability limits on emissions for each state covered by the proposed Transport Rule. As explained in section IV.F, the EPA proposes to calculate variability limits for each state and to use those variability limits in conjunction with the state budgets (which are based on expected average conditions) to provide limited emissions flexibility. The Agency believes that because baseline emissions are variable, emissions after the elimination of all significant contribution and interference with maintenance are also variable and thus it is appropriate to take this variability into account.

As discussed in preamble section IV.F, the EPA proposes to use two variability limits: First, a "1-year" limit, based on the year-to-year variability in emissions relative to the proposed budgets. Second, a "3-year" limit, based on the variability in a three (consecutive) year average relative to the proposed budgets. The EPA determined 1-year variability limits that would apply to a state's emissions annually (or seasonally, for the ozone season) and 3-year variability limits that would apply to a state's annual (or ozone season) emissions on a 3-year rolling average basis.² Preamble section IV.F discusses EPA's rationale for implementing 1-year and 3-year variability limits. Section IV.F also describes EPA's proposed approach to calculating the proposed 1- and 3-year limits and an alternative calculation approach. This TSD describes these approaches in more detail.

Preamble section V.D describes the proposed remedy and two alternative remedies. In that section, EPA describes how the remedies would use variability limits in the

 $^{^2}$ As discussed in the preamble, for purposes of emissions reductions requirements in the Transport Rule the EPA proposes to define the ozone season as May through September.

implementation of assurance provisions designed to ensure that the necessary emissions reductions occur within each covered state. As discussed in preamble section V.D, the EPA proposes to apply assurance provisions and variability limits starting in 2014 and, as further discussed in the preamble, is also taking comment on whether to apply them starting in 2012.

Preamble section IV.F presents proposed 1- and 3-year variability limits for each state and alternative 1- and 3-year limits calculated using the alternative approach. Table IV.F-1 in the preamble presents proposed and alternative 1- and 3-year variability limits on SO₂ emissions for each state. Table IV.F-2 presents proposed and alternative 1- and 3-year variability limits on annual NO_x emissions. Table IV.F-3 presents proposed and alternative 1- and 3-year variability limits on annual NO_x emissions.

For the alternative where the limits would apply starting in 2012 instead of 2014, Table IV.F-4 in the preamble presents proposed and alternative 1- and 2-year variability limits. Preamble section IV.F explains that, for this alternative, EPA considered both 3year average and 2-year average variability limits and determined the 2-year limits are preferable.

Preamble section IV.F describes EPA's proposed approach to determine 1-year variability limits. As discussed in the preamble, the approach would determine 1-year limits based on the expected annual (or ozone season) variation in power sector emissions derived from historical variation in annual (or ozone season) power sector heat input in combination with projected controlled emissions rates. The preamble discusses two approaches to determine 1-year limits based on expected variation in power sector emissions. Section 2 in this TSD, titled "Estimating year-to-year variability in annual emissions", describes in greater detail the method EPA used to estimate expected variation in year-to-year power sector emissions and the proposed and alternative approaches to determine 1-year limits based on that expected variation.

As discussed in preamble section IV.F, after determining 1-year variability limits, EPA used statistical methods to estimate multi-year (3-year and 2-year) average variability limits for covered states based on each state's 1-year variability. Section 3 in this TSD, titled "Estimating variability over a multi-year time period", describes the approach in greater detail than that provided in the preamble. As discussed in the preamble and in

4

section 3 in this TSD, the average variability of a multi-year-average is the average variability of a single year divided by the square root of the number of years in the multi-year average. Thus, the variability of a 3-year average is equal to the annual variability divided by the square root of three.

As discussed above and in preamble section IV.F, for the alternative where the limits would apply starting in 2012 instead of 2014, the EPA determined 1- and 2-year variability limits. For this alternative EPA also considered 3-year variability limits instead of 2-year limits. Section 3 in this TSD compares the 3- and 2-year limits and discusses why EPA determined that the 2-year limits are preferable. Like the 3-year average variability discussed above, the variability of a 2-year average is equal to the annual variability divided by the square root of two (see section 3, below).

Section 4 in this TSD presents the results of an analysis using the air quality assessment tool (AQAT).

2. Estimating year-to-year variability in emissions.

This section describes the method that the Agency used to estimate the year-to-year ("1-year") variability in annual SO₂, annual NO_X and ozone season NO_X emissions. The method uses variation in heat input as a proxy for emissions. For an electric generating unit (EGU) fleet equipped with a constant set of control technologies and consistently using specific fuel types, the variability in heat input would be directly related to variability in emissions. This section in the TSD provides information on:

- The historical data set EPA established on a state-by-state basis of yearly heat input values applicable to each of the pollutants regulated in the Transport Rule (annual SO₂, annual NO_x, and ozone season NO_x). These historical heat input values are used to estimate the inherent variability in emissions due to power system operation.
- The method EPA developed (as well as an alternative method) to estimate the yearto-year variability in the heat input values. The year-to-year variability in heat input is estimated on a state-by-state basis.
- The approach EPA used to link heat input variability with projected pollutant emission rates to estimate the inherent variation in pollutant emissions.

5

• The method EPA developed to identify a single set of variability parameters that could be applied to all states in the program.

(a) Establishing a historical data set for use in estimating inherent variability in emissions.

The objective of this section is to describe the inherent year-to-year (1-year) variability in emissions by characterizing the year-to-year variance in total annual heat input for each state in the Transport Rule. EPA is concerned with variation in total emissions from year-to-year (or the variation in total emissions from one ozone season to the next), not variation from day to day or month to month within a given year (or ozone season). Thus, EPA used total yearly heat input values equaling the sum of heat input from all units operating in each state during a particular year.

EPA estimated the expected variation in power sector emissions for a yearly time period based on the "standard deviation" of yearly power sector heat input (HI) assessed over a 7-year time frame (2002 through 2008). As described in section IV.F.1.a of the preamble, EPA chose to examine historical variability in heat input rather than emissions because emissions have changed over time due to controllable factors such as fuel switching and installing new emissions controls. EPA is interested in describing inherent variation in emissions due to factors such as variation in power demand, timing of maintenance activities, and unexpected shutdown of units. These factors are strongly correlated with heat input and variation in electric generation.

EPA chose the time period 2002 through 2008 for the analysis of variation in heat input because it represents a time period where there was substantial reporting of heat input and emissions data across many states and EGU source types for units in the Acid Rain Program (ARP). When the analysis began in 2009, the last complete year of data available was for 2008. A starting year of 2002 was selected for this analysis because in prior years (2000 and 2001) there had been large, uneven changes in annual heat input from fossil units for some states due, in part, to increased electricity demand and changes in composition of the power sector fleet. (Note, for instance, that all EGUs in the US affected by the ARP came under Phase 2 of the program starting in 2000). Consequently, incorporating data from years prior to 2002 in the analysis would lead to the inclusion of a single year where there is large change in heat input that is not representative of typical year-to-year variability, thereby leading to overestimates of variability. Since the objective is to estimate the inherent variability in heat input during time-periods of relative constancy in the fleet composition, including time-periods where there is uneven growth in electrical demand in the analysis would skew the variability estimates. Consequently, EPA chose 2002 for the start of the analysis to minimize that effect while still balancing the need to estimate the variance in heat input over as long a time period as possible.

For each year of the 7-year time period, EPA estimated total power sector heat input on a state-by-state basis using the sum of historical heat input for all units within each of three general categories of EGUs: (1) coal-fired units; (2) combined cycle turbines; and (3) a combination of oil- and gas-fired boilers and simple-cycle combustion turbines. Total annual heat input values (in million mmbtu) for the coal-fired EGU source category and for the total of all EGU source categories can be found in Table 1 and Table 2, respectively. Ozone-season heat input values for the total of all three EGU categories can be found in Table 3. For each state, EPA assessed the inherent year-to-year variability in annual and ozone season NO_x emissions using the total yearly heat inputs summed across all three general EGU source types (Tables 2 and 3, respectively), while the Agency assessed year-to-year variability in annual SO₂ emissions using the yearly heat inputs from just the coal-fired EGUs (Table 1).

EGUs built prior to 2002 that reported heat input and emissions data between 2002 and 2008 and new EGUs were included for this analysis. EGUs that were built prior to 2002 but that did not start reporting until after 2002 were excluded from the assessment.

State	2002	2003	2004	2005	2006	2007	2008	Average HI	Max. Difference from Average
AL	779.0	822.6	784.5	828.3	813.0	818.8	768.9	802.1	26.1
СТ	18.1	28.3	30.9	30.2	31.5	26.1	30.5	27.9	3.5
DE	42.6	45.4	50.8	52.1	50.1	58.3	53.7	50.4	7.8
FL	700.6	735.9	659.3	697.0	711.4	707.3	660.8	696.0	39.9
GA	781.2	787.4	808.8	871.6	872.5	910.6	861.1	841.9	68.7
IA	393.1	389.6	386.7	384.5	378.9	415.9	431.2	397.1	34.1
IL	930.9	961.9	1,027.1	1,002.1	1,002.1	1,030.5	1,032.9	998.2	34.7
IN	1,231.4	1,236.3	1,266.0	1,281.2	1,269.9	1,256.9	1,243.6	1,255.0	26.1
KS	427.5	427.5	411.9	405.2	377.6	405.4	373.5	404.1	23.4
KY	946.5	931.1	938.1	970.3	987.0	977.9	978.5	961.3	25.7
LA	120.9	122.1	128.1	134.6	128.7	116.1	118.5	124.1	10.4
MA	108.9	103.9	101.7	115.2	107.2	114.8	101.7	107.6	7.5
MD	276.9	278.0	269.9	273.7	274.7	277.1	256.0	272.3	5.7
MI	700.1	706.9	709.7	721.1	699.7	736.0	714.4	712.5	23.4
MN	389.2	411.0	386.7	380.1	370.3	362.9	349.8	378.6	32.5
MO	724.5	769.6	770.8	783.6	783.5	762.0	732.8	761.0	22.6
NC	693.3	689.1	696.5	719.7	699.1	726.4	713.2	705.3	21.1
NE	227.0	238.3	231.2	238.3	234.0	222.4	233.8	232.1	6.2
NJ	80.0	75.3	79.6	92.2	81.9	77.8	62.8	78.5	13.7
NY	234.1	235.9	226.7	213.4	211.2	211.0	181.0	216.2	19.8
OH	1,290.2	1,316.3	1,247.3	1,315.1	1,294.0	1,319.7	1,290.0	1,296.1	23.6
PA	1,026.9	1,050.1	1,078.6	1,090.2	1,090.5	1,105.2	1,065.1	1,072.4	32.8
SC	381.5	384.7	401.4	407.7	410.4	422.6	417.1	403.7	19.0
TN	624.7	574.9	589.4	586.3	606.9	617.2	578.0	596.8	27.9
VA	340.5	312.5	296.7	298.4	288.0	298.9	264.2	299.9	40.6
WI	457.1	475.9	482.9	473.2	451.2	447.5	450.8	462.6	20.3
WV	898.8	898.5	851.0	861.2	852.4	883.3	851.6	871.0	27.8

Table 1: Heat Input* (million mmbtu) from Coal-Fired Units for Each Year.

*Source: EPA, March 2010. All relevant ARP units in the Transport Rule region. These data are available at http://www.epa.gov/airmarkets/ through Data and Maps.

State	2002	2003	2004	2005	2006	2007	2008	Average HI	Max. Difference from Average
AL	901.0	916.0	904.6	936.6	964.1	1,000.0	938.9	937.3	62.7
СТ	69.9	67.5	87.5	91.2	101.1	93.9	84.9	85.2	16.0
DE	52.6	53.3	59.1	60.9	55.6	66.4	60.5	58.3	8.0
FL	1,134.5	1,197.8	1,198.8	1,283.1	1,361.0	1,398.3	1,360.2	1,276.2	122.0
GA	841.9	822.4	853.4	948.0	968.5	1,033.0	958.2	917.9	115.1
IA	393.2	390.3	391.2	401.3	396.3	438.0	446.5	408.1	38.4
IL	976.1	982.7	1,046.2	1,053.8	1,038.2	1,086.2	1,059.9	1,034.7	51.5
IN	1,256.8	1,257.5	1,283.6	1,315.1	1,300.4	1,301.2	1,282.2	1,285.3	29.8
KS	429.2	429.4	412.5	406.8	381.2	410.0	378.6	406.8	22.6
KY	962.4	935.1	942.4	988.3	999.0	997.2	987.8	973.2	25.8
LA	193.6	266.6	312.7	332.2	336.2	322.5	326.2	298.6	37.6
MA	159.8	221.4	221.5	244.4	262.4	276.4	242.9	232.7	43.7
MD	288.2	290.6	280.8	287.8	282.6	286.0	263.7	282.8	7.8
MI	726.9	725.1	727.3	760.5	730.7	776.5	743.8	741.5	34.9
MN	399.0	423.1	396.4	401.8	391.7	394.6	371.6	396.9	26.2
MO	752.1	788.7	792.2	813.6	812.5	800.6	770.3	790.0	23.6
NC	718.8	706.3	718.4	747.2	727.1	767.7	749.7	733.6	34.1
NE	228.4	240.5	233.5	245.3	240.7	231.9	240.3	237.2	8.1
NJ	139.3	132.9	151.5	154.9	158.8	172.7	172.8	154.7	18.1
NY	288.3	297.3	309.9	322.9	380.6	393.1	366.6	337.0	56.1
OH	1,309.6	1,330.3	1,258.3	1,340.0	1,313.6	1,354.5	1,310.4	1,316.7	37.9
PA	1,060.2	1,090.0	1,155.1	1,172.4	1,185.4	1,240.9	1,200.0	1,157.7	83.2
SC	418.2	402.7	442.1	454.9	461.5	474.0	464.4	445.4	28.7
TN	635.7	580.5	592.1	592.6	613.2	623.8	582.3	602.9	32.8
VA	356.6	333.6	329.5	339.5	324.0	354.8	312.3	335.7	20.8
WI	475.3	494.1	498.4	528.5	492.3	497.4	490.0	496.6	31.9
WV	900.5	899.9	852.0	863.3	855.8	887.1	853.3	873.1	27.3

Table 2: Total Heat Input* (million mmbtu) from All Three EGU Categories for Units Greater Than or Equal to 25 MW for Each Year.

*Source: EPA, March 2010. All relevant ARP units in the Transport Rule region. These data are available at http://www.epa.gov/airmarkets/ through Data and Maps.

Table 3: Total Heat Input* (million mmbtu) from All Three EGU Categories for Units
Greater Than or Equal to 25 MW for Ozone Season.

State	2002	2003	2004	2005	2006	2007	2008	Average HI	Max. Difference from Average
AL	427.4	428.8	423.6	427.2	456.9	469.9	432.5	438.1	31.9
AR	124.0	152.5	149.2	142.0	173.6	170.4	150.5	151.7	21.8
СТ	33.3	28.7	43.5	42.8	46.3	44.4	38.4	39.6	6.7
DE	27.9	24.2	25.4	29.0	23.6	30.3	24.9	26.5	3.8
FL	548.6	554.9	563.3	615.1	639.0	656.3	646.0	603.3	53.0
GA	403.8	382.9	407.1	461.8	469.5	489.6	449.9	437.8	51.8
IL	454.9	430.2	449.6	478.0	460.8	474.6	452.6	457.2	20.8
IN	557.2	545.4	540.7	578.4	566.4	559.8	550.5	556.9	21.5
KS	183.2	180.9	176.8	180.6	172.2	177.1	160.7	175.9	7.3
KY	433.3	400.1	401.0	434.4	435.3	436.1	417.8	422.6	13.6
LA	94.7	121.7	144.9	149.9	161.8	150.7	152.2	139.4	22.3
MD	134.8	118.8	121.8	131.5	123.3	126.8	117.1	124.9	9.9
MI	331.0	312.1	304.6	339.9	328.5	344.5	321.1	326.0	18.6
MS	117.8	116.2	129.5	137.3	147.7	155.9	143.2	135.4	20.6
NC	332.9	308.5	314.0	341.5	340.4	351.5	344.8	333.4	18.1
NJ	68.7	59.9	73.9	76.1	79.9	86.1	86.6	75.9	10.8
NY	126.1	121.4	136.3	152.5	174.7	170.5	158.9	148.6	26.1
OH	583.7	562.8	538.4	574.4	562.0	596.7	553.3	567.3	29.3
OK	204.5	223.4	220.0	248.4	244.6	241.1	247.9	232.8	15.6
PA	465.4	468.7	494.6	529.3	530.6	550.8	515.5	507.8	42.9
SC	203.1	178.4	204.8	214.1	215.8	222.7	222.0	208.7	14.0
TN	291.2	244.3	256.2	270.1	273.2	278.9	261.2	267.9	23.3
TX	1,031.9	1,089.9	1,170.0	1,229.1	1,255.4	1,262.8	1,252.7	1,184.6	78.2
VA	160.0	146.9	150.9	154.3	151.5	167.9	144.5	153.7	14.2
WV	379.5	384.5	361.0	375.4	373.1	390.3	366.9	375.8	14.5

*Source: EPA, March 2010; All relevant ARP units in the Transport Rule region. These data are available at http://www.epa.gov/airmarkets/ through Data and Maps.

(b) Estimating the state-by-state variability in heat input using historical heat input data sets.

This subsection describes the method used by EPA to estimate the variability in heat input for each state in the Transport Rule region. EPA assessed the year-to-year variability over the 7-year time period of the yearly total heat input values (or ozone season heat input values) using the "standard deviation" while accounting for overall growth or decline in heat input over that time period. This method is described in detail in this and the following subsections and was selected for three reasons: First, it accounted for growth or decline in heat input over time. Second, a statistical approach (i.e., using the standard deviation) is less sensitive to data anomalies present in finite data sets. Third, a statistical approach also provides options for different levels of variability (i.e., different confidence levels). An alternative method was also examined, where the variability was defined as the difference between the maximum yearly value and the average heat input values over the time period.

Both the preferred and alternative methods were applied on a state-by-state basis. The majority of this section focuses on the analysis for the preferred method using the standard deviation, while accounting for growth. Where appropriate, differences between the preferred and alternative method are described.

In the preferred method, for each state, it was important to account for trends (growth or decline) in heat input over the 7-year time period. After accounting for growth in heat input over time, the year-to-year variation in heat input was assessed, as the differences between the actual yearly heat input values and the "yearly" average heat input values estimated according to the trend. For each state, to account for trends, a simple least-squares linear regression equation was fit to the heat input data as a function of time. This process fits a straight line to the data points using an equation of the form (y = mx+b). In this equation, "y" is the estimated heat input (million mmbtu) for a particular year "x", m is the slope of the line (with units of million mmbtu/year), and b is the "y-intercept" (the heat input value when the line is extrapolated to x = 0). The value of r^2 describes how well the data fit that line. Large r^2 values are important for states where there was substantial growth or decline in heat input over the time period (i.e., for states that have slopes for the

regression line that are substantially different than zero). For states with relatively constant heat input values, low r^2 values are strongly correlated with small values for the slope of the regression line. For these states, low r^2 values are indicators of large year-to-year variability (relative to small amounts of growth over time). For example, for Delaware (Table 6), the slope of the linear regression is small, and the r^2 value is also very small. The conclusion is that for Delaware and other states with similar slopes and r^2 values, the year-to-year variation could likely have been adequately characterized without using the regression equation (which would account for growth in heat input over time).

For each state, the slopes of the regression equations, y-intercepts, and r^2 values, as well as the heat input estimated using the regression equations, can be found in Tables 4, 5, and 6. Using the regression equation for each state, yearly heat input values were estimated for each state for each year (between 2002 and 2008) in Tables 4, 5, and 6. Year-to-year variation was assessed for each year or for each ozone season as the difference between the actual heat input (from Tables 1-3) and the heat input estimated using the regression equation (Tables 4-6).

	Linear		r ²							
State	Regression (million	Intercept	Value	2002	2003	2004	2005	2006	2007	2008
	mmbtu/year)									
AL	-0.34	1,492	0.00	803.2	802.8	802.5	802.1	801.8	801.5	801.1
СТ	1.19	-2,365	0.30	24.4	25.6	26.7	27.9	29.1	30.3	31.5
DE	2.08	-4,126	0.75	44.2	46.3	48.3	50.4	52.5	54.6	56.7
FL	-4.44	9,600	0.12	709.4	704.9	700.5	696.0	691.6	687.2	682.7
GA	19.64	-38,527	0.74	783.0	802.6	822.3	841.9	861.5	881.2	900.8
IA	5.69	-11,002	0.41	380.1	385.8	391.4	397.1	402.8	408.5	414.2
IL	14.94	-28,960	0.70	953.4	968.3	983.3	998.2	1,013.2	1,028.1	1,043.0
IN	2.92	-4,592	0.12	1,246.3	1,249.2	1,252.1	1,255.0	1,257.9	1,260.9	1,263.8
KS	-8.59	17,633	0.74	429.9	421.3	412.7	404.1	395.5	386.9	378.3
KY	8.52	-16,113	0.68	935.8	944.3	952.8	961.3	969.9	978.4	986.9
LA	-0.67	1,468	0.05	126.2	125.5	124.8	124.1	123.5	122.8	122.1
MA	0.20	-290	0.01	107.0	107.2	107.4	107.6	107.8	108.0	108.2
MD	-2.13	4,545	0.36	278.7	276.6	274.5	272.3	270.2	268.1	265.9
MI	3.26	-5,825	0.30	702.8	706.0	709.3	712.5	715.8	719.1	722.3
MN	-8.25	16,915	0.80	403.3	395.1	386.8	378.6	370.3	362.1	353.8
MO	0.80	-836	0.01	758.6	759.4	760.2	761.0	761.8	762.6	763.4
NC	4.90	-9,111	0.54	690.6	695.5	700.4	705.3	710.2	715.1	720.0
NE	-0.32	869	0.01	233.1	232.8	232.5	232.1	231.8	231.5	231.2
NJ	-1.58	3,241	0.15	83.2	81.7	80.1	78.5	76.9	75.4	73.8
NY	-8.01	16,282	0.85	240.2	232.2	224.2	216.2	208.2	200.2	192.2
OH	1.88	-2,480	0.03	1,290.4	1,292.3	1,294.2	1,296.1	1,298.0	1,299.8	1,301.7
PA	8.46	-15,880	0.46	1,047.0	1,055.5	1,063.9	1,072.4	1,080.8	1,089.3	1,097.7
SC	6.84	-13,312	0.90	383.1	390.0	396.8	403.7	410.5	417.3	424.2
TN	-1.36	3,314	0.02	600.8	599.5	598.1	596.8	595.4	594.1	592.7
VA	-9.45	19,252	0.77	328.2	318.8	309.3	299.9	290.4	281.0	271.5
WI	-3.84	8,161	0.34	474.2	470.3	466.5	462.6	458.8	455.0	451.1
WV	-6.09	13,082	0.36	889.2	883.2	877.1	871.0	864.9	858.8	852.7

Table 4: Heat Input (million mmbtu) from Coal-Fired Units for Each Year Estimated Using the Regression Equation.

Slope of

State	Linear Regression (million mmbtu/year)	Intercept	r ² Value	2002	2003	2004	2005	2006	2007	2008
AL	12.18	-23,490	0.55	900.8	913.0	925.1	937.3	949.5	961.7	973.9
СТ	3.98	-7,895	0.48	73.2	77.2	81.2	85.2	89.1	93.1	97.1
DE	1.65	-3,256	0.54	53.4	55.0	56.7	58.3	60.0	61.6	63.3
FL	44.30	-87,543	0.89	1,143.3	1,187.6	1,231.9	1,276.2	1,320.5	1,364.8	1,409.1
GA	31.61	-62,466	0.75	823.1	854.7	886.3	917.9	949.5	981.1	1,012.8
IA	9.30	-18,233	0.72	380.2	389.5	398.8	408.1	417.4	426.7	436.0
IL	16.09	-31,231	0.73	986.5	1,002.5	1,018.6	1,034.7	1,050.8	1,066.9	1,083.0
IN	6.44	-11,635	0.39	1,265.9	1,272.4	1,278.8	1,285.3	1,291.7	1,298.2	1,304.6
KS	-7.92	16,295	0.70	430.6	422.7	414.8	406.8	398.9	391.0	383.1
KY	9.17	-17,418	0.56	945.7	954.8	964.0	973.2	982.3	991.5	1,000.7
LA	19.04	-37,877	0.63	241.4	260.5	279.5	298.6	317.6	336.6	355.7
MA	14.29	-28,415	0.67	189.8	204.1	218.4	232.7	247.0	261.3	275.6
MD	-2.89	6,080	0.47	291.5	288.6	285.7	282.8	279.9	277.0	274.1
MI	5.60	-10,480	0.37	724.7	730.3	735.9	741.5	747.1	752.7	758.3
MN	-5.14	10,702	0.53	412.3	407.2	402.0	396.9	391.7	386.6	381.5
MO	3.53	-6,280	0.12	779.4	782.9	786.5	790.0	793.5	797.0	800.6
NC	8.00	-15,302	0.63	709.6	717.6	725.6	733.6	741.6	749.6	757.6
NE	0.92	-1,612	0.11	234.4	235.4	236.3	237.2	238.1	239.1	240.0
NJ	6.69	-13,250	0.90	134.6	141.3	148.0	154.7	161.4	168.1	174.8
NY	17.76	-35,264	0.82	283.7	301.4	319.2	337.0	354.7	372.5	390.2
OH	3.79	-6,281	0.07	1,305.3	1,309.1	1,312.9	1,316.7	1,320.5	1,324.3	1,328.1
PA	26.84	-52,648	0.85	1,077.2	1,104.0	1,130.9	1,157.7	1,184.5	1,211.4	1,238.2
SC	10.75	-21,104	0.79	413.2	423.9	434.6	445.4	456.1	466.9	477.6
TN	-1.88	4,376	0.04	608.5	606.6	604.8	602.9	601.0	599.1	597.2
VA	-3.42	7,203	0.21	346.0	342.6	339.2	335.7	332.3	328.9	325.5
WI	1.60	-2,711	0.05	491.8	493.4	495.0	496.6	498.2	499.8	501.4
WV	-5.83	12,568	0.33	890.6	884.8	879.0	873.1	867.3	861.5	855.6

Table 5: Total Heat Input (million mmbtu) from All Three EGU Categories for Each Year Estimated Using the Regression Equation.

Slope of

State	Slope of Linear Regression (million mmbtu/year)	Intercept	r ² Value	2002	2003	2004	2005	2006	2007	2008
AL	4.68	-8,936	0.32	424.0	428.7	433.4	438.1	442.7	447.4	452.1
AR	4.99	-9,850	0.41	136.8	141.8	146.8	151.7	156.7	161.7	166.7
СТ	1.77	-3,507	0.35	34.3	36.1	37.8	39.6	41.4	43.2	44.9
DE	0.04	-54	0.00	26.4	26.4	26.4	26.5	26.5	26.6	26.6
FL	20.38	-40,256	0.90	542.2	562.5	582.9	603.3	623.7	644.1	664.4
GA	14.80	-29,231	0.64	393.4	408.2	423.0	437.8	452.6	467.4	482.2
IL	3.33	-6,214	0.20	447.3	450.6	453.9	457.2	460.6	463.9	467.2
IN	1.23	-1,911	0.04	553.2	554.4	555.7	556.9	558.1	559.4	560.6
KS	-2.84	5,880	0.65	184.5	181.6	178.8	175.9	173.1	170.3	167.4
KY	2.15	-3,883	0.08	416.1	418.3	420.4	422.6	424.7	426.9	429.0
LA	8.84	-17,590	0.67	112.9	121.7	130.6	139.4	148.3	157.1	166.0
MD	-1.27	2,671	0.18	128.7	127.4	126.1	124.9	123.6	122.3	121.1
MI	2.10	-3,891	0.10	319.7	321.8	323.9	326.0	328.1	330.2	332.3
MS	6.21	-12,325	0.80	116.7	122.9	129.1	135.4	141.6	147.8	154.0
NC	5.29	-10,265	0.50	317.5	322.8	328.1	333.4	338.7	343.9	349.2
NJ	4.01	-7,956	0.82	63.9	67.9	71.9	75.9	79.9	83.9	87.9
NY	8.39	-16,679	0.74	123.4	131.8	140.2	148.6	157.0	165.4	173.8
OH	0.01	552	0.00	567.3	567.3	567.3	567.3	567.3	567.3	567.3
OK	6.80	-13,402	0.75	212.4	219.2	226.0	232.8	239.6	246.4	253.2
PA	12.52	-24,588	0.69	470.3	482.8	495.3	507.8	520.4	532.9	545.4
SC	5.58	-10,974	0.62	192.0	197.5	203.1	208.7	214.3	219.8	225.4
TN	-0.12	517	0.00	268.2	268.1	268.0	267.9	267.7	267.6	267.5
TX	39.05	-77,113	0.85	1,067.4	1,106.5	1,145.5	1,184.6	1,223.6	1,262.7	1,301.7
VA	-0.14	434	0.00	154.1	154.0	153.9	153.7	153.6	153.4	153.3
WV	-0.50	1,387	0.01	377.3	376.8	376.3	375.8	375.3	374.8	374.3

Table 6: Heat Input (million mmbtu) from All Three EGU Categories for Ozone Season Estimated Using the Regression Equation.

On a state-by-state basis, the difference between the actual heat input and the estimated heat input using the regression equation was calculated for each year. The differences for SO_2 , annual NO_x , and ozone season NO_x can be found in Tables 7, 8, and 9, respectively. Some of these yearly differences are positive, while others are negative. Assessing the differences between actual and estimated heat input across all years for each state (and pollutant), a representative difference was estimated using the "standard deviation".

The standard deviation is defined as the square root of the variance (the sum of the square of the differences³ divided by the number of samples minus one). The state- and pollutant-specific representative differences defined using the standard deviation were used for the remaining steps in the variability analyses for the preferred method. In using the standard deviation as a representative difference, we assume that: (1) differences between the actual and modeled heat inputs are "normally" distributed; (2) yearly mean values are independent; and, (3) distribution of hourly values is the same (i.e., the "within-year" variance is the same for each year).

For each state, the standard deviation of the differences is a measure of the year-toyear (1-year) variance in heat input. In essence, it suggests that, on average, 68% of all the year-specific heat input values could be expected to be within one standard deviation from the expected value (either higher or lower). The standard deviation in the heat input in million mmbtu rounded to three significant digits (as well as a percentage of the average heat input value) can be found in Tables 7, 8, and 9.

³ On a state-by-state basis, the standard deviation was calculated from the set of yearly difference values. As described, the yearly values were the difference between the actual heat input and the estimated heat input (using the regression equation) for each year.

State	2002	2003	2004	2005	2006	2007	2008	Standard Deviation of Heat Input (million mmbtu)	Average Heat Input (2002- 2008 (from Table 1)	Standard Deviation as a Fraction of Average HI	95% Confidence Level Variability in HI (million mmbtu)	95% Confidence Level Variability in HI (as a Fraction of Avg. HI)
AL	-24.1	19.7	-18.0	26.1	11.2	17.3	-32.2	24.0	802.1	0.03	47.0	0.059
СТ	-6.2	2.7	4.1	2.3	2.3	-4.2	-1.0	3.9	27.9	0.141	7.7	0.276
DE	-1.6	-0.8	2.5	1.6	-2.4	3.7	-2.9	2.6	50.4	0.051	5.1	0.100
FL	-8.8	31.0	-41.2	1.0	19.8	20.1	-21.9	25.9	696.0	0.037	50.7	0.073
GA	-1.8	-15.2	-13.5	29.7	11.0	29.4	-39.7	25.4	841.9	0.03	49.7	0.059
IA	13.0	3.9	-4.8	-12.7	-23.9	7.4	17.0	14.6	397.1	0.037	28.7	0.073
IL	-22.5	-6.4	43.8	3.8	-11.0	2.4	-10.1	21.3	998.2	0.021	41.7	0.041
IN	-14.9	-12.9	13.9	26.1	11.9	-4.0	-20.2	17.5	1,255.0	0.014	34.3	0.027
KS	-2.4	6.3	-0.8	1.1	-17.9	18.4	-4.8	11.0	404.1	0.027	21.6	0.053
KY	10.7	-13.2	-14.8	9.0	17.2	-0.5	-8.4	12.6	961.3	0.013	24.7	0.025
LA	-5.2	-3.4	3.3	10.4	5.2	-6.7	-3.6	6.4	124.1	0.051	12.5	0.100
MA	1.9	-3.3	-5.7	7.5	-0.6	6.7	-6.5	5.7	107.6	0.053	11.1	0.104
MD	-1.8	1.4	-4.6	1.4	4.5	9.0	-10.0	6.2	272.3	0.023	12.1	0.045
MI	-2.7	0.8	0.5	8.5	-16.1	16.9	-7.9	10.7	712.5	0.015	21.0	0.029
MN	-14.1	16.0	-0.2	1.6	0.0	0.8	-4.0	8.9	378.6	0.023	17.4	0.045
MO	-34.0	10.2	10.7	22.6	21.7	-0.6	-30.6	23.4	761.0	0.031	45.9	0.061
NC	2.7	-6.5	-4.0	14.3	-11.1	11.3	-6.8	9.7	705.3	0.014	19.1	0.027
NE	-6.1	5.6	-1.3	6.2	2.2	-9.1	2.6	5.8	232.1	0.025	11.4	0.049
NJ	-3.3	-6.4	-0.5	13.7	5.0	2.4	-11.0	8.1	78.5	0.103	15.8	0.202
NY	-6.2	3.7	2.5	-2.8	3.1	10.8	-11.1	7.3	216.2	0.034	14.2	0.067
OH	-0.2	24.0	-46.9	19.0	-4.0	19.8	-11.8	24.8	1,296.1	0.019	48.5	0.037
PA	-20.1	-5.4	14.7	17.8	9.7	15.9	-32.7	19.9	1,072.4	0.019	39.1	0.037
SC	-1.6	-5.3	4.6	4.1	-0.1	5.3	-7.1	4.9	403.7	0.012	9.7	0.024
TN	23.8	-24.6	-8.7	-10.4	11.5	23.1	-14.7	19.3	596.8	0.032	37.8	0.063
VA	12.3	-6.3	-12.7	-1.5	-2.4	17.9	-7.3	11.1	299.9	0.037	21.7	0.073
WI	-17.1	5.6	16.4	10.5	-7.7	-7.5	-0.3	11.7	462.6	0.025	22.9	0.049
WV	9.5	15.4	-26.1	-9.7	-12.5	24.5	-1.1	17.6	871.0	0.02	34.5	0.039

Table 7: Difference Between Heat Input (million mmbtu) Measured and Estimated for Coal-Fired Units for Each Year Using the Regression Equation.

Table 8: Difference Between Total Heat Input (million mmbtu) Measured and Estimated from All Three EGU Categories for Each Year Using the Regression Equation.

State	2002	2003	2004	2005	2006	2007	2008	Standard Deviation of Heat Input (million mmbtu)	Average Heat Input (2002- 2008 (from Table 2)	Standard Deviation as a Fraction of Average HI	95% Confidence Level Variability in HI (million mmbtu)	95% Confidence Level Variability in HI (as a Fraction of Avg. HI)
AL	0.2	3.0	-20.5	-0.7	14.6	38.3	-35.0	23.6	937.3	0.025	46.2	0.049
СТ	-3.3	-9.7	6.3	6.1	12.0	0.8	-12.2	8.9	85.2	0.105	17.5	0.206
DE	-0.7	-1.8	2.4	2.6	-4.4	4.7	-2.8	3.3	58.3	0.056	6.5	0.110
FL	-8.8	10.1	-33.1	6.9	40.5	33.4	-48.9	32.8	1,276.2	0.026	64.4	0.051
GA	18.8	-32.3	-32.9	30.1	18.9	51.8	-54.5	39.6	917.9	0.043	77.6	0.084
IA	13.0	0.8	-7.7	-6.8	-21.2	11.3	10.5	12.6	408.1	0.031	24.8	0.061
IL	-10.4	-19.8	27.5	19.1	-12.6	19.3	-23.1	21.2	1,034.7	0.020	41.5	0.039
IN	-9.2	-14.8	4.8	29.8	8.7	3.0	-22.3	17.3	1,285.3	0.013	33.9	0.025
KS	-1.4	6.7	-2.3	-0.1	-17.7	19.1	-4.4	11.2	406.8	0.027	21.9	0.053
KY	16.8	-19.7	-21.6	15.1	16.6	5.7	-12.9	17.5	973.2	0.018	34.3	0.035
LA	-47.8	6.1	33.2	33.6	18.6	-14.1	-29.5	31.5	298.6	0.106	61.8	0.208
MA	-30.0	17.3	3.1	11.7	15.5	15.1	-32.7	21.9	232.7	0.094	42.9	0.184
MD	-3.3	2.0	-4.9	5.0	2.7	8.9	-10.4	6.6	282.8	0.023	12.9	0.045
MI	2.2	-5.3	-8.7	19.0	-16.5	23.7	-14.5	15.9	741.5	0.021	31.1	0.041
MN	-13.3	15.9	-5.6	4.9	-0.1	8.0	-9.8	10.4	396.9	0.026	20.4	0.051
MO	-27.3	5.7	5.8	23.6	19.0	3.6	-30.3	21.1	790.0	0.027	41.3	0.053
NC	9.2	-11.3	-7.2	13.6	-14.5	18.1	-7.9	13.2	733.6	0.018	25.9	0.035
NE	-6.1	5.1	-2.7	8.1	2.5	-7.2	0.3	5.7	237.2	0.024	11.2	0.047
NJ	4.7	-8.4	3.5	0.2	-2.6	4.6	-1.9	4.8	154.7	0.031	9.4	0.061
NY	4.6	-4.1	-9.3	-14.1	25.9	20.6	-23.6	18.1	337.0	0.054	35.5	0.106
OH	4.3	21.2	-54.6	23.3	-6.9	30.3	-17.6	29.6	1,316.7	0.023	58.1	0.045
PA	-17.0	-14.0	24.2	14.7	0.8	29.5	-38.3	24.6	1,157.7	0.021	48.2	0.041
SC	5.0	-21.2	7.4	9.5	5.3	7.2	-13.2	12.1	445.4	0.027	23.7	0.053
TN	27.2	-26.1	-12.7	-10.3	12.2	24.7	-15.0	21.1	602.9	0.035	41.3	0.069
VA	10.5	-9.0	-9.7	3.8	-8.3	25.9	-13.2	14.2	335.7	0.042	27.9	0.082
WI	-16.5	0.7	3.4	31.9	-5.9	-2.3	-11.3	15.7	496.6	0.032	30.7	0.063
WV	9.8	15.1	-26.9	-9.8	-11.5	25.7	-2.4	18.0	873.1	0.021	35.2	0.041

Table 9: Difference Between Total Heat Input Measured and Estimated (million mmbtu) from All Three EGU Categories for Ozone Season Using the Regression Equation.

State	2002	2003	2004	2005	2006	2007	2008	Standard Deviation of Heat Input (million mmbtu)	Average Heat Input (2002- 2008 (from Table 3)	Standard Deviation as a Fraction of Average HI	95% Confidence Level Variability in HI (million mmbtu)	95% Confidence Level Variability in HI (as a Fraction of Avg. HI)
AL	3.4	0.1	-9.8	-10.8	14.1	22.5	-19.5	14.8	438.1	0.034	29.0	0.067
AR	-12.7	10.7	2.5	-9.7	16.8	8.6	-16.2	12.9	151.7	0.085	25.3	0.167
CT	-1.0	-7.4	5.6	3.2	4.9	1.2	-6.6	5.3	39.6	0.133	10.3	0.261
DE	1.6	-2.2	-1.0	2.5	-3.0	3.7	-1.7	2.6	26.5	0.097	5.0	0.190
FL	6.4	-7.6	-19.6	11.8	15.3	12.2	-18.5	15.0	603.3	0.025	29.4	0.049
GA	10.4	-25.3	-15.9	24.0	16.9	22.2	-32.3	23.8	437.8	0.054	46.7	0.106
IL	7.6	-20.4	-4.3	20.8	0.3	10.7	-14.6	14.5	457.2	0.032	28.3	0.063
IN	4.0	-9.1	-15.0	21.5	8.3	0.5	-10.1	12.6	556.9	0.023	24.7	0.045
KS	-1.3	-0.7	-2.0	4.7	-0.9	6.9	-6.7	4.5	175.9	0.026	8.8	0.051
KY	17.1	-18.2	-19.4	11.8	10.5	9.3	-11.2	15.6	422.6	0.037	30.6	0.073
LA	-18.2	-0.1	14.4	10.5	13.5	-6.4	-13.7	13.3	139.4	0.095	26.1	0.186
MD	6.1	-8.6	-4.4	6.6	-0.3	4.5	-4.0	5.9	124.9	0.047	11.6	0.092
MI	11.4	-9.7	-19.2	13.9	0.4	14.4	-11.2	13.7	326.0	0.042	26.8	0.082
MS	1.1	-6.8	0.3	1.9	6.1	8.1	-10.8	6.7	135.4	0.050	13.2	0.098
NC	15.3	-14.3	-14.0	8.2	1.7	7.5	-4.4	11.4	333.4	0.034	22.4	0.067
NJ	4.8	-7.9	2.1	0.2	0.0	2.2	-1.3	4.0	75.9	0.053	7.9	0.104
NY	2.6	-10.5	-3.9	3.9	17.7	5.1	-14.9	10.8	148.6	0.073	21.3	0.143
OH	16.4	-4.5	-28.9	7.1	-5.4	29.3	-14.0	19.4	567.3	0.034	38.0	0.067
OK	-8.0	4.1	-6.0	15.6	4.9	-5.3	-5.3	8.6	232.8	0.037	16.8	0.073
PA	-4.9	-14.1	-0.8	21.5	10.2	17.9	-29.9	18.3	507.8	0.036	35.8	0.071
SC	11.1	-19.1	1.7	5.5	1.5	2.8	-3.4	9.5	208.7	0.046	18.6	0.090
TN	22.9	-23.9	-11.8	2.2	5.5	11.3	-6.3	15.5	267.9	0.058	30.3	0.114
TX	-35.5	-16.5	24.5	44.5	31.8	0.1	-49.0	35.4	1,184.6	0.030	69.4	0.059
VA	5.8	-7.1	-3.0	0.6	-2.1	14.5	-8.8	8.0	153.7	0.052	15.7	0.102
WV	2.2	7.6	-15.3	-0.4	-2.2	15.5	-7.4	10.0	375.8	0.027	19.5	0.053

The standard deviation can also be used to estimate, on average, the probability of larger variations in heat input (for example a difference that we would expect less than 1% of the time). Using the standard deviation, "confidence levels" representing the variability difference in heat input that could be expected at different probabilities were found for each state (for each pollutant). Several different levels were examined (notably the 95th and 99th percent confidence levels). As an illustrative example, the two-tailed 95th percent confidence levels). As an illustrative example, the total heat input for a particular year for a particular state will be within 1.960 standard deviations of the variation from its mean value 95 percent of the time. For this analysis, we focus on results for the two-tailed 95th percent confidence level⁴ was the appropriate confidence level. EPA believes that using the 95th percent confidence level provides a high degree of confidence that sources subject to the rule will be able to operate within the constraints of the variability limits and without electric reliability problems arising.

When the alternative method for calculating variability (the maximum difference over the time period) was applied, the results for many states were comparable to the results using the 95th confidence level, showing that the proposed variation was similar to the maximum measured historical values. The major differences were for states that had growth (or decline) in heat input over the time period. The 95% upper confidence level heat inputs and percentages (the 95% heat input difference divided by the average heat input over the 2002-2008 time period) can be found in Tables 7, 8, and 9. The results from the alternative method using the maximum difference in heat input from the 7-year average heat input can be found in Tables 1, 2, and 3.

For states where there were differences between the proposed and alternative approaches, the difference was often a result of substantial growth in heat input over the 7-year time period. For example, as seen in Table 1, for Virginia, the heat input in 2002 is 340.5 million mmbtu. By 2008, the heat input had decreased to 264.2 million mmbtu. The average heat input over this time period was 299.9 million mmbtu. Consequently, the

⁴ The two-tailed 95th percent confidence level is the equivalent of the 97.5th upper (single-tailed) confidence level. Hereafter in this TSD, the "95th" percent confidence level refers to the two-tailed 95th percent confidence level.

maximum difference from the average was 40.6 million mmbtu (Table 1). Using the proposed approach (the 95% confidence level) and accounting for decline in heat input over time using the regression equation, the estimated variability in heat input is substantially reduced (21.7 million mmbtu, as seen in Table 7).

(c) Estimation of the emission rates projected in 2014 used to estimate variability in emissions from the year-to-year variability in historical heat input.

The final step in estimating state-by-state year-to-year (1-year) variability in emissions is to convert the year-to-year variability in heat input into variability in pollutant emissions. This was done by multiplying the estimated variability in heat input by a representative pollutant emission rate. For each state, the state-specific 95th percent confidence level heat input variability value (converted to mmbtu) was multiplied by a state-specific emission rate (tons of pollutant per mmbtu). The resulting value is the 95th percent confidence level variability emission value (in tons of pollutant).

State-specific modeled emission rates were used in the calculation. The rates were based on IPM emissions and heat inputs projected to occur in 2014 when levels of controls similar to that for the proposed remedy are applied to each state. Modeled emission rates were used, rather than historical emission rates, because EPA wanted to estimate year-toyear variability in emissions within the same time and conditions as those of the proposed transport rule when new emissions controls could potentially be in operation.

Using IPM estimates for 2014, the emission rates for annual SO₂ were calculated using modeled estimates of total heat input and total emissions from coal-fired units, while annual and ozone season NO_x were calculated using modeled estimates of total heat input and total emissions from all three EGU categories. EPA derived the state-specific emission rates from IPM projections parsed for 2014; the state-specific emission rates for annual SO₂, annual NO_x and ozone season NO_x are from IPM runs that required controls at \$1,600/ton for SO₂, \$500/ton for annual NO_x, and \$500/ton for ozone season NO_x, respectively.⁵ Tables 10 through 14 list, for each state and the three EGU sectors defined

⁵ EPA developed the proposed variability limits in parallel with developing the overall control requirements. As such, while these IPM runs used to develop the variability limits assumed reasonable levels of emissions

above, the modeled emissions, the modeled fuel usage (the sum of the heat input), and the emission rates. For each state, the state-specific 95^{th} percent confidence level heat input variability value was multiplied by the state-specific emission rate. The resulting 95% confidence level emission variability value, in units of tons of emissions, can be found in Tables 10, 12, and 14 for annual SO₂, annual NO_x, and ozone season NO_x, respectively (see the columns labeled "95% confidence level variability value").⁶ The 95% confidence level emission variability value was normalized by dividing by each state's emissions, resulting in a "coefficient of variation" value. In this TSD, the value is referred to as the "percentage" variability value.

The 95% confidence level emission variability value can be compared to the difference between the emissions for a particular year and the emissions budget. We expect the difference to be less than the 95% emissions variability value, on average, 95 percent of the time. Consequently, the 95% emissions variability value represents a year-to-year variability that is sufficient, most of the time, to encompass the inherent variability in power sector generation. That is, sources within a state should not exceed the state's budget if variability is the only reason for emissions increases above the budget.

Subsequent sections in this TSD discuss how the 95% confidence level variability values were used to construct the variability limits applied in the proposed Transport Rule assurance provisions.

control, they are not identical to the final control strategy chosen for the proposed rule. Whereas IPM output files report aggregated results for "model" plants (i.e., aggregates of generating units with similar operating characteristics), parsed files show IPM results at the generating unit level. The IPM runs that are the bases for the 2014 parsed files used to derive the state-specific rates are designated "TR_SO₂_1600",

[&]quot;TR_NO_X_500", and "TR_NO_X_OS_500" for SO₂, annual NO_X, and ozone season NO_X rates, respectively. The IPM runs and parsed files can be found in the docket; Docket ID No. EPA-HQ-OAR-2009-0491.

⁶ Tables 10, 12, and 14 also show resulting estimated emission variability values based on the alternative approach (see columns labeled "Alternative approach value").

Table 10. State-by-State SO_2 Emissions (thousand short tons), Fuel Use (million mmbtu), and Emission Rate Estimated in IPM for Units Greater Than or Equal to 25 MW. Also Shown are the Estimated 95th Percent Confidence SO_2 Tonnage and Percentage Values as well as the Alternative Approach SO_2 Tonnage and Percentage Values.

State	Annual SO ₂ Emissions From Coal- Fired Boilers (thousand tons)	Annual fuel use from coal-fired boilers (million mmbtu)	SO ₂ Emission Rate (lbs/mmbtu)	95% Confidence Level Variability Value (tons)	95% Confidence Level Variability Value (percentage)	Alternative Approach Value (tons)	Alternative Approach Value (percentage)
AL	103.38	852.69	0.242	5,693	5.9%	3,170	3.3%
СТ	2.72	42.05	0.129	498	27.6%	228	12.6%
DE	7.38	62.66	0.236	595	10.0%	923	15.6%
FL	80.73	1,084.86	0.149	3,775	7.3%	2,968	5.7%
GA	94.39	977.67	0.193	4,801	5.9%	6,631	8.2%
IL	159.15	1,140.91	0.279	5,816	4.1%	4,840	3.5%
IN	231.11	1,380.68	0.335	5,733	2.7%	4,375	2.1%
IA	87.27	466.65	0.374	5,363	7.3%	6,378	8.6%
KS	44.99	380.57	0.236	2,555	5.3%	2,771	5.8%
KY	158.93	1,083.19	0.293	3,628	2.5%	3,767	2.7%
LA	92.78	387.40	0.479	2,992	10.0%	2,500	8.4%
MD	42.67	436.37	0.196	1,186	4.5%	557	2.1%
MA	8.44	111.12	0.152	844	10.4%	572	7.0%
MI	196.34	770.31	0.510	5,359	2.9%	5,975	3.3%
MN	40.10	386.00	0.208	1,807	4.5%	3,371	8.6%
MO	185.27	823.10	0.450	10,337	6.1%	5,087	3.0%
NE	68.91	287.50	0.479	2,730	4.9%	1,489	2.7%
NJ	14.23	155.23	0.183	1,449	20.2%	1,255	17.4%
NY	45.11	261.98	0.344	2,450	6.7%	3,401	9.1%
NC	88.43	931.48	0.190	1,809	2.7%	2,001	3.0%
OH	200.28	1,433.48	0.279	6,781	3.7%	3,299	1.8%
PA	150.88	1,362.73	0.221	4,325	3.7%	3,636	3.1%
SC	73.44	487.02	0.302	1,457	2.4%	2,858	4.7%
TN	109.09	617.16	0.354	6,688	6.3%	4,927	4.7%
VA	60.60	407.67	0.297	3,222	7.3%	6,039	13.5%
WV	138.89	1,029.88	0.270	4,652	3.9%	3,748	3.2%
WI	78.48	495.03	0.317	3,630	4.9%	3,215	4.4%

Table 11. Annual NO_x Emissions (thousand short tons) and Fuel Use (million mmbtu) Estimated in IPM, for Units Greater Than or Equal to 25 MW.

			NO _x Emission	15		Annual Fuel Usage				
	Coal-	Combined				Coal-	Combined			
State	Fired	Cycle	Simple	Oil & Gas		Fired	Cycle	Simple	Oil & Gas	
State	Boilers (thousand	Turbines (thousand	Cycle CT (thousand	Boilers (thousand	All Units (thousand	Boilers (million	Turbines (million	Cycle CT (million	Boilers (million	All Units (million
	(thousand tons)	(inousand tons)	(inousand tons)	(thousand tons)	(thousand tons)	(minion mmbtu)	(minion mmbtu)	(minion mmbtu)	(minion mmbtu)	(minion mmbtu)
AL	60.805	0.888	0.030	tons)	61.724	856.091	122.084	1.449	minotaj	979.624
СТ	2.051	0.716	0.043	0.000	2.809	42.050	103.449	1.986	0.000	147.485
DE	3.725	0.584	0.017	0.000	4.327	60.215	26.258	0.685	0.000	87.158
FL	98.493	7.814	2.839	12.350	121.496	1,057.478	645.095	56.530	107.598	1,866.701
GA	44.781	0.437	0.128	0.000	45.346	984.344	57.183	6.240	0.000	1,047.766
IL	55.470	0.123	0.203	0.000	55.796	1,134.540	9.555	7.355	0.000	1,151.449
IN	111.365	0.058	0.047	0.000	111.470	1,392.974	7.880	1.393	0.000	1,402.248
IA	50.717	0.034	0.140		50.891	480.860	3.991	1.687		486.539
KS	37.399		0.000	0.000	37.399	377.821		0.000	0.000	377.821
KY	72.244		0.011		72.256	1,085.560		0.289		1,085.849
LA	34.268	0.754	0.090	1.197	36.310	384.835	75.389	3.188	11.737	475.149
MD	19.643	0.026	0.105	0.000	19.774	428.182	2.058	5.361	0.000	435.601
MA	5.584	1.171	0.019	0.000	6.774	111.117	204.806	0.742	0.000	316.666
MI	63.816	0.575	0.171	0.000	64.562	812.765	23.096	5.095	0.000	840.956
MN	32.037	0.069	0.075	0.000	32.181	373.950	10.424	3.089	0.000	387.463
MO	78.419	0.018	0.000		78.437	843.016	2.056	0.000		845.071
NE	32.967	0.010	0.151	0.000	33.128	298.044	1.494	1.887	0.000	301.425
NJ	10.622	0.952	0.517	0.000	12.091	155.481	112.882	7.173	0.000	275.536
NY	13.240	2.356	0.651	7.561	23.808	261.921	239.245	9.342	202.341	712.849
NC	59.417	0.112	0.145		59.674	914.612	3.404	6.215		924.231
OH	99.323	0.159	0.145		99.627	1,450.382	18.752	4.609		1,473.743
PA	112.489	0.657	0.074	0.000	113.220	1,353.586	105.537	2.365	0.000	1,461.488
SC	34.301	0.201	0.030	0.000	34.532	491.149	18.015	1.338	0.000	510.501
TN	28.272		0.403		28.675	616.230		6.243		622.473
VA	27.524	0.491	0.189	0.000	28.204	399.917	46.858	5.747	0.000	452.522
WV	54.084		0.000		54.084	1,010.968		0.000		1,010.968
WI	39.771	0.031	0.152	0.000	39.953	521.020	4.279	0.608	0.000	525.908

Table 12. State-by-State Annual NO_x Emission Rate Calculated Using the IPM Estimates Presented in Table 11. Also Shown Are the Estimated 95th Percent Confidence NO_x Tonnage and Percentage Values as well as the Alternative Approach NO_x Tonnage and Percentage Values.

State	Annual NO _x Emission Rate (lb/mmbtu)	95% Confidence Level Variability Value (tons)	95% Confidence Level Variability Value (percentage)	Alternative Approach Value (tons)	Alternative Approach Value (percentage)
AL	0.126	2,912	4.9%	3,951	6.7%
СТ	0.038	333	20.6%	305	18.8%
DE	0.099	321	11.0%	398	13.7%
FL	0.130	4,190	5.1%	7,941	9.6%
GA	0.087	3,359	8.4%	4,980	12.5%
IL	0.097	2,010	3.9%	2,496	5.0%
IN	0.159	2,699	2.5%	2,369	2.3%
IA	0.209	2,591	6.1%	4,015	9.4%
KS	0.198	2,166	5.3%	2,237	5.6%
KY	0.133	2,283	3.5%	1,716	2.6%
LA	0.153	4,723	20.8%	2,873	12.6%
MD	0.091	586	4.5%	353	2.8%
MA	0.043	918	18.4%	934	18.8%
MI	0.154	2,390	4.1%	2,682	4.7%
MN	0.166	1,691	5.1%	2,178	6.6%
MO	0.186	3,832	5.3%	2,191	3.0%
NE	0.220	1,226	4.7%	889	3.4%
NJ	0.088	412	6.1%	795	11.7%
NY	0.067	1,187	10.6%	1,874	16.7%
NC	0.129	1,673	3.5%	2,199	4.6%
OH	0.135	3,928	4.5%	2,559	2.9%
PA	0.155	3,732	4.1%	6,447	7.2%
SC	0.135	1,603	5.3%	1,938	6.4%
TN	0.092	1,904	6.9%	1,512	5.4%
VA	0.125	1,738	8.2%	1,297	6.2%
WV	0.107	1,886	4.1%	1,463	3.1%
WI	0.152	2,333	6.3%	2,426	6.4%

Table 13. Ozone Season NO_x Emissions (thousand short tons) and Fuel Use (million mmbtu) Estimated in IPM for Units Greater Than or Equal to 25 MW.

	Ozone Season NO _x Emissions						Ozone Season Fuel Usage				
	Coal-	Combined	~ .			Coal-	Combined	~ .			
State	Fired	Cycle	Simple	Oil & Gas		Fired	Cycle	Simple	Oil & Gas	A 11 TT - 14	
	Boilers (thousand	Turbines (thousand	Cycle CT (thousand	Boilers (thousand	All Units (thousand	Boilers (million	Turbines (million	Cycle CT (million	Boilers (million	All Units (million	
	tons)	tons)	tons)	tons)	tons)	(mmbtu)	(mmbtu)	(mmbtu)	(mmbtu)	(mmbtu)	
AL	26.193	0.615	0.030	(olio)	26.838	370.7	85.0	1.4		457.1	
AR	10.730	1.021	0.036	0.000	11.787	169.1	60.5	1.0	0.0	230.6	
СТ	0.894	0.292	0.017	0.000	1.203	18.3	42.4	0.6	0.0	61.3	
DE	1.564	0.255	0.016	0.000	1.835	25.3	11.4	0.6	0.0	37.3	
FL	46.385	3.962	1.367	12.580	64.294	465.6	321.2	30.4	110.1	927.3	
GA	19.583	0.344	0.128	0.000	20.055	431.9	43.0	6.2	0.0	481.2	
IL	23.649	0.106	0.203	0.000	23.958	485.2	8.1	7.3	0.0	500.6	
IN	47.093	0.049	0.047	0.000	47.188	589.4	6.2	1.4	0.0	597.1	
KS	16.200		0.000	0.000	16.200	163.5		0.0	0.0	163.5	
KY	29.843		0.011		29.855	450.2		0.3		450.5	
LA	14.992	0.638	0.090	1.197	16.918	168.3	55.2	3.2	11.7	238.5	
MD	8.217	0.016	0.095	0.000	8.328	178.3	1.1	4.0	0.0	183.4	
MI	27.539	0.498	0.175	0.000	28.212	352.6	16.6	5.2	0.0	374.4	
MS	7.651	0.167	0.049	0.000	7.866	67.5	26.4	2.5	0.0	96.4	
NJ	4.522	0.537	0.446	0.000	5.506	65.2	56.3	5.4	0.0	126.9	
NY	5.759	1.168	0.641	3.946	11.514	114.1	113.2	7.4	95.6	330.3	
NC	25.468	0.084	0.132		25.684	390.7	2.4	5.3		398.4	
OH	42.052	0.110	0.145		42.308	608.8	13.0	4.6		626.4	
OK	19.566	1.895	0.165	2.378	24.003	257.2	75.4	2.0	16.0	350.7	
PA	48.089	0.310	0.074	0.000	48.474	579.1	50.5	2.4	0.0	631.9	
SC	14.729	0.164	0.030	0.000	14.922	211.6	14.8	1.3	0.0	227.8	
TN	11.542		0.423		11.965	251.4		6.4		257.8	
ΤX	56.728	6.237	0.645	4.824	68.434	1,022.3	375.3	14.2	118.7	1,530.5	
VA	11.927	0.308	0.125	0.000	12.360	172.2	26.3	3.6	0.0	202.0	
WV	24.235		0.000		24.235	429.9		0.0		429.9	
WI	17.104	0.027	0.152	0.000	17.283	223.8	3.7	0.6	0.0	228.1	

Table 14. State-by-State Ozone Season NO_x Emission Rates Calculated Using the IPM Estimates Presented in Table 13. Also Shown Are the Estimated 95th Percent Confidence NO_x Tonnage and Percentage Values as well as the Alternative Approach NO_x Tonnage and Percentage Values for Ozone Season.

State	Ozone Season NO _x Emission Rate (lb/mmbtu)	95% Confidence Level Variability Value (tons)	95% Confidence Level Variability Value (percentage)	Alternative Approach Value (tons)	Alternative Approach Value (percentage)
AL	0.117	1,702	6.7%	1,871	7.3%
AR	0.102	1,292	16.7%	1,116	14.4%
СТ	0.039	203	26.1%	131	16.9%
DE	0.098	248	19.0%	187	14.3%
FL	0.139	2,037	4.9%	3,674	8.8%
GA	0.083	1,945	10.6%	2,159	11.8%
IL	0.096	1,355	6.3%	994	4.5%
IN	0.158	1,952	4.5%	1,697	3.9%
KS	0.198	873	5.1%	721	4.1%
KY	0.133	2,028	7.3%	900	3.2%
LA	0.142	1,849	18.6%	1,585	16.0%
MD	0.091	527	9.2%	451	8.0%
MI	0.151	2,016	8.2%	1,400	5.7%
MS	0.163	1,073	9.8%	1,679	15.2%
NJ	0.087	341	10.4%	466	14.2%
NY	0.070	741	14.3%	909	17.5%
NC	0.129	1,443	6.7%	1,166	5.4%
OH	0.135	2,569	6.7%	1,982	5.2%
OK	0.137	1,150	7.3%	1,068	6.7%
PA	0.153	2,747	7.1%	3,293	8.5%
SC	0.131	1,221	9.0%	915	6.7%
TN	0.093	1,408	11.4%	1,082	8.7%
TX	0.089	3,104	5.9%	3,498	6.6%
VA	0.122	960	10.2%	868	9.2%
WV	0.113	1,102	5.3%	816	3.8%

(d) Procedure for identifying a single set of variability parameters (a tonnage and a percentage limit) to uniformly apply to all states in the program.

From the state-by-state 1-year 95th confidence level tonnage and percentage emission variability values in Tables 10, 12, and 14, EPA identified a single set of variability limits (i.e., a tonnage and a percentage) for each pollutant (i.e., SO₂, annual NO_X, and ozone season NO_X) to apply to all covered states. For this analysis, EPA assumes that, on average, each state is meeting its proposed budget, but is also subject to inherent year-to-year variability in electric power system operations that could lead to short-term increases (or decreases) in emissions up to the variability limits. In identifying a single set of percentage and tonnage variability limits to apply across all states, EPA assumes that for some future year, each state would experience conditions such that it would need to utilize (but not exceed) its 1-year 95% confidence level emissions variability tonnage value . Thus, EPA has identified a set of minimum variability limits (a tonnage and a percentage) that when compared against the 95% confidence level tonnage and percentage values for each state, all states could (and would be required to) meet at least one of the two limits (the tonnage or the percentage).

Preamble section IV.F provides EPA's rationale for identifying a single tonnage and percentage combination to apply to all covered states. Preamble section IV.F also provides EPA's rationale for identifying both a tonnage limit and a percentage limit. As explained in section IV.F, the effect of identifying both a tonnage and percentage is to ensure that each state is allowed adequate inherent variability while minimizing the total amount of emissions allowed; this approach addresses the difficulty that smaller states with fewer units could face if only percentages were used to set the limits (or that larger states with many units could face if only tonnages were used). Most of the details of EPA's approach to determine the 1-year variability limits are provided in section IV.F in the preamble. This TSD presents some additional information.

To identify the 1-year tonnage and percentage limits, EPA looked at a wide range of percentage and tonnage combinations, and chose for further investigation combinations that provided states sufficient variability (based on historic variability) while minimizing the total allowed emissions. For annual SO₂ and ozone season NO_x, the tonnage limit criteria were examined in 300 ton increments, while the percentage criteria were applied in

28

2% increments. For annual NO_X, the tonnage limit criteria were applied in 500 ton increments, while the percentage criteria were applied in 5% increments. All combinations of these criteria were considered. For each pairing of percentage and tonnage limits, the first step is to determine, based on the estimates of each state's historical variability values, whether any of the states would exceed both of the limits (i.e., both the tonnage and the percentage). If more than four states were not able to meet one of the limits, this number of states was recorded (this can be seen in grayed squares in Tables 15, 16, and 17 for annual SO_2 , annual NO_x and ozone season NO_x , respectively). If four or fewer states were not able to meet one of the limits, the state abbreviations are listed in Tables 15, 16, and 17 (the cells are also grayed). If one of the percentage and tonnage limits could be met by each state (and thereby the combination of limits would be applicable to all states), both limits were applied to the state, and the larger of the two limits was chosen. This would then be the emission variability limit used for that state. The combinations of limits that were applicable (i.e., where the 95% confidence level variability values for all states was below at least one of the two limits) are shown in Tables 15, 16, and 17 by the white shading of cells, while combinations of limits where the 95% confidence level variability value for at least one state exceeds both limits are shown by the gray shading of cells.

The difference between the emission variability limit and the state-specific 95% confidence level emissions variability value (from Tables 10, 12, and 14) for each state was calculated, and, for each percentage and tonnage pairing, the total difference for all states was summed. The total differences for all states for each combination of tonnage and percentage limits can be seen in white cells in Tables 15, 16, and 17 for annual SO₂, annual NO_x and ozone season NO_x, respectively.⁷ In these tables, white cells represent possible combinations of percentage and tonnage limits that could successfully be met by all states included in the proposed rule. The optimal solution (marked in yellow in the table) was one where: (a) all states included in the proposed rule are able to meet at least one of the criteria, and (b) the sum of the total emissions was minimized.

⁷ Similar tables based on the alternative approach (where the max. heat input over the time period was found relative to the average value over the period) are in Appendix A.

100	Notes Below). Percentage Limit											
Tonnage Limit	2	4	6	8	10	12	14	16	18	20		
1,000	24	16	8	LA, NJ,	NJ,	NJ,	NJ,	NJ,	NJ,	NJ,		
1,300	23	15	8	LA, NJ,	NJ,	NJ,	NJ,	NJ,	NJ,	NJ,		
1,600	21	14	7	LA,	121,876	165,006	208,135	251,265	294,395	337,549		
1,900	19	13	7	LA,	123,076	166,206	209,335	252,465	295,595	338,725		
2,200	19	13	7	LA,	124,276	167,406	210,535	253,665	296,795	339,925		
2,500	18	12	6	LA,	125,476	168,606	211,735	254,865	297,995	341,125		
2,800	16	10	6	LA,	126,845	169,806	212,935	256,065	299,195	342,325		
3,100	15	9	5	86,605	128,452	171,006	214,135	257,265	300,395	343,525		
3,400	14	8	FL, IA, MO, TN,	88,897	130,252	172,449	215,335	258,465	301,595	344,725		
3,700	12	7	FL, IA, MO, TN,	91,444	132,074	174,056	216,552	259,665	302,795	345,925		
4,000	11	6	IA, MO, TN,	94,281	134,174	175,856	218,052	260,865	303,995	347,125		
4,300	11	6	IA, MO, TN,	97,417	136,565	177,656	219,661	262,156	305,195	348,325		
4,600	10	6	IA, MO, TN,	100,861	139,123	179,644	221,461	263,656	306,395	349,525		
4,900	8	5	IA, MO, TN,	104,461	141,895	181,833	223,261	265,266	307,760	350,725		
5,200	8	5	IA, MO, TN,	108,304	144,895	184,233	225,113	267,066	309,260	351,925		
5,500	6	AL, IL, MO, TN,	MO, TN,	112,429	148,190	186,802	227,213	268,866	310,871	353,363		
5,800	IL, MO, OH, TN,	IL, MO, TN,	MO, TN,	116,629	151,719	189,509	229,500	270,666	312,671	354,863		
6,100	MO, OH, TN,	MO, TN,	MO, TN,	121,187	155,319	192,509	231,900	272,683	314,471	356,476		
6,400	MO, OH, TN,	MO, TN,	MO, TN,	125,987	159,123	195,662	234,481	274,783	316,271	358,276		
6,700	MO, OH,	MO,	MO,	130,956	163,129	198,977	237,181	277,168	318,152	360,076		
7,000	MO,	MO,	MO,	136,056	167,329	202,577	240,122	279,568	320,252	361,876		
7,300	MO,	MO,	MO,	141,156	171,529	206,177	243,135	282,160	322,435	363,676		
7,600	MO,	MO,	MO,	146,256	176,127	209,942	246,435	284,860	324,835	365,722		
7,900	MO,	MO,	MO,	151,511	180,927	213,842	249,836	287,736	327,235	367,822		
8,200	MO,	MO,	MO,	156,911	185,763	218,029	253,436	290,736	329,839	370,103		
8,500	MO,	MO,	MO,	162,311	190,863	222,229	257,036	293,907	332,539	372,503		
8,800	MO,	MO,	MO,	167,980	195,963	226,429	260,762	297,207	335,349	374,903		
9,100	MO,	MO,	MO,	173,680	201,063	231,067	264,662	300,694	338,349	377,518		
9,400	MO,	MO,	MO,	179,489	206,163	235,867	268,730	304,294	341,380	380,218		
9,700	MO,	MO,	MO,	185,696	211,282	240,667	272,930	307,894	344,680	382,963		
10,000	MO,	MO,	MO,	191,996	216,682	245,670	277,130	311,581	347,980	385,963		
10,300	MO,	MO,	MO,	198,296	222,082	250,770	281,330	315,481	351,553	388,963		
10,600	186,027	186,027	188,625	204,596	227,482	255,870	286,007	319,430	355,153	392,152		
10,900	194,127	194,127	195,825	210,896	233,118	260,970	290,807	323,630	358,753	395,452		
11,200	202,227	202,227	203,564	217,196	238,818	266,070	295,607	327,830	362,400	398,811		
11,500	210,327	210,327	211,364	223,801	244,518	271,170	300,477	332,030	366,300	402,411		
11,800	218,427	218,427	219,164	230,701	250,404	276,452	305,577	336,230	370,200	406,011		
12,100	226,527	226,527	226,964	237,601	256,638	281,852	310,677	340,947	374,330	409,611		
12,400	234,627	234,627	234,764	244,501	262,938	287,252	315,777	345,747	378,530	413,219		
12,700	242,727	242,727	242,727	251,401	269,238	292,652	320,877	350,547	382,730	417,119		
13,000	250,827	250,827	250,827	258,301	275,538	298,256	325,977	355,347	386,930	421,019		
13,300	258,927	258,927	258,927	265,201	281,838	303,956	331,077	360,384	391,130	425,031		
13,600	267,027	267,027	267,027	272,101	288,138	309,656	336,223	365,484	395,887	429,231		

Table 15. The Effects of Various Combinations of the Proposed Upper 95% Confidence Level Tonnage and Percentage Variability Limits on Annual EGU SO₂ Emissions (See Notes Below).

*Numbers in white cells represent the sum (across all states) of the differences in emissions between the state-specific 95% confidence level variability values and the state-specific variability limit (in tons); the variability limit selected for each state is the larger of either the percentage limit or the tonnage limit.

** If the cell is grey, it means that there is a state or several states whose state-specific 95% confidence level variability values exceed both the tonnage and percentage limits. The cell either lists the states that could exceed the limits, or lists the number of states. *** If the cell is yellow, this is the combination tonnage and percentage limits that minimize the sum of the differences between the state-specific 95% confidence level variability values and the state-specific variability limit (in tons).

Percentage Limit										
Tonnage Limit	5	10	15	20	25	30	35	40	45	50
1,000	12	LA, NY,	LA,	LA,	224,069	280,207	336,368	392,653	448,937	505,222
1,500	11	LA,	LA,	LA,	225,323	281,212	337,346	393,484	449,622	505,761
2,000	7	LA,	LA,	LA,	227,129	282,712	338,601	394,490	450,622	506,761
2,500	5	LA,	LA,	LA,	229,129	284,680	340,230	395,990	451,879	507,768
3,000	FL, GA, LA, MO,	LA,	LA,	LA,	231,326	286,680	342,230	397,781	453,379	509,268
3,500	FL, LA, MO,	LA,	LA,	LA,	234,079	288,816	344,230	399,781	455,331	510,881
4,000	FL, LA,	LA,	LA,	LA,	237,079	291,420	346,306	401,781	457,331	512,881
4,500	LA,	LA,	LA,	LA,	240,079	294,420	348,806	403,796	459,331	514,881
5,000	76,672	98,561	140,230	189,970	243,079	297,420	351,760	406,296	461,331	516,881
5,500	89,877	107,933	146,230	194,258	246,302	300,420	354,760	409,101	463,786	518,881
6,000	103,377	117,683	152,673	199,208	250,118	303,420	357,760	412,101	466,441	521,276
6,500	116,877	128,211	160,138	204,649	254,118	306,587	360,760	415,101	469,441	523,781
7,000	130,377	139,211	168,266	210,514	258,666	310,267	363,760	418,101	472,441	526,781
7,500	143,877	150,471	177,153	216,576	263,666	314,267	366,872	421,101	475,441	529,781
8,000	157,377	161,971	186,461	223,105	269,092	318,448	370,415	424,101	478,441	532,781
8,500	170,877	173,748	195,961	230,420	274,798	323,123	374,415	427,157	481,441	535,781
9,000	184,377	186,036	205,836	238,391	280,798	328,123	378,415	430,657	484,441	538,781
9,500	197,877	198,968	216,336	246,745	287,001	333,535	382,793	434,563	487,442	541,781
10,000	211,377	211,968	227,128	255,745	293,537	339,083	387,581	438,563	490,942	544,781
10,500	224,877	224,968	238,128	264,989	300,806	345,083	392,581	442,638	494,712	547,781
11,000	238,377	238,377	249,267	274,489	308,645	351,083	397,978	447,138	498,712	551,228
11,500	251,877	251,877	260,767	283,989	316,692	357,426	403,478	452,039	502,712	554,860
12,000	265,377	265,377	272,267	293,989	325,337	363,969	409,367	457,039	506,983	558,860
12,500	278,877	278,877	283,934	304,489	334,337	371,192	415,367	462,421	511,496	562,860
13,000	292,377	292,377	295,934	315,045	343,517	378,898	421,367	467,921	516,496	566,860
13,500	305,877	305,877	308,365	326,045	353,017	386,898	427,851	473,651	521,496	571,328
14,000	319,377	319,377	321,263	337,045	362,517	395,155	434,401	479,651	526,864	575,954
14,500	332,877	332,877	334,263	348,064	372,017	403,929	441,578	485,651	532,364	580,954
15,000	346,377	346,377	347,263	359,564	382,142	412,929	449,152	491,776	537,936	585,954
15,500	359,877	359,877	360,263	371,064	392,642	422,045	457,152	498,276	543,936	591,307
16,000	373,377	373,377	373,377	382,564	403,142	431,545	465,152	504,833	549,936	596,807
16,500	386,877	386,877	386,877	394,120	413,961	441,045	473,618	511,964	555,936	602,307
17,000	400,377	400,377	400,377	406,120	424,961	450,545	482,521	519,464	562,200	608,220
17,500	413,877	413,877	413,877	418,194	435,961	460,127	491,521	527,405	568,700	614,220
18,000	427,377	427,377	427,377	430,694	446,961	470,296	500,574	535,405	575,265	620,220
18,500	440,877	440,877	440,877	443,558	458,361	480,796	510,074	543,581	582,349	626,220
19,000	454,377	454,377	454,377	456,558	469,861	491,296	519,574	552,113	589,849	632,625
19,500	467,877	467,877	467,877	469,558	481,361	501,878	529,074	561,113	597,659	639,125
20,000	481,377	481,377	481,377	482,558	492,861	512,878	538,574	570,113	605,659	645,697
20,500	494,877	494,877	494,877	495,558	504,361	523,878	548,252	579,113	613,659	652,735
21,000	508,377	508,377	508,377	508,558	516,305	534,878	558,449	588,602	622,044	660,235
21,500	521,877	521,877	521,877	521,877	528,305	545,878	568,949	598,102	630,706	667,912
22,000	535,377	535,377	535,377	535,377	540,523	557,158	579,449	607,602	639,706	675,912

Table 16. The Effects of Various Combinations of the Proposed Upper 95% Confidence Level Tonnage and Percentage Variability Limits on Annual EGU NO_x Emissions (See Notes Below).

*Numbers in white cells represent the sum (across all states) of the differences in emissions between the state-specific 95% confidence level variability values and the state-specific variability limit (in tons); the variability limit selected for each state is the larger of either the percentage limit or the tonnage limit.

** If the cell is grey, it means that there is a state or several states whose state-specific 95% confidence level variability values exceed both the tonnage and percentage limits. The cell either lists the states that could exceed the limits, or lists the number of states. *** If the cell is yellow, this is the combination tonnage and percentage limits that minimize the sum of the differences between the state-specific 95% confidence level variability values and the state-specific variability limit (in tons).

	Percentage Limit									
Tonnage Limit	0	2	4	6	8	10	12	14	16	18
000	20	20	20	1.5	0		AR,	AR,	AR,	T 4
800	20	20	20	15	8	5	LA,	LA,	LA,	LA,
1 100	17	17	17	13	6	AR, GA, LA, TN,	AR, LA,	AR, LA,	AR, LA,	LA,
1,100	1 /	17	1/	15	GA, LA,	GA, LA,	LA,	LA,	LA,	LA,
1,400	12	12	12	9	MI, TN,	TN,	LA,	LA,	LA,	LA,
1,400	12	12	12	9	GA, LA,	111,	LA,	LA,	LA,	LA,
1,700	10	10	10	7	MI,	GA, LA,	LA,	LA,	LA,	LA,
1,700	10	10	10	KY, MI,		Ori, Eri,	L/1,	Ln 1 ,	Ln 1,	L' 1 ,
2.000	6	6	6	OH, PA,	MI,	27,836	35,240	43,315	51,653	60,326
	OH, PA,	OH, PA,	OH, PA,	- , ,	7	.,	, -	-)	- ,	,
2,300	TX,	TX,	TX,	OH, PA,	27,326	32,529	39,180	46,694	54,787	63,096
2,600	PA, TX,	PA, TX,	PA, TX,	PA,	33,326	37,824	43,491	50,524	58,149	66,258
2,900	TX,	TX,	TX,	36,882	39,326	43,628	48,591	54,724	61,909	69,603
3,200	44,115	44,115	44,115	44,115	45,528	49,628	54,086	59,554	66,069	73,320
3,500	51,615	51,615	51,615	51,615	52,338	55,628	59,931	64,725	70,517	77,413
3,800	59,115	59,115	59,115	59,115	59,538	61,628	65,931	70,348	75,617	81,666
4,100	66,615	66,615	66,615	66,615	66,738	68,081	71,931	76,234	80,910	86,580
4,400	74,115	74,115	74,115	74,115	74,115	74,993	77,931	82,234	86,610	91,680
4,700	81,615	81,615	81,615	81,615	81,615	82,193	84,034	88,234	92,536	97,172
5,000	89,115	89,115	89,115	89,115	89,115	89,393	90,645	94,234	98,536	102,872
5,300	96,615	96,615	96,615	96,615	96,615	96,615	97,649	100,234	104,536	108,839
5,600	104,115	104,115	104,115	104,115	104,115	104,115	104,849	106,588	110,536	114,839
5,900	111,615	111,615	111,615	111,615	111,615	111,615	112,049	113,267	116,536	120,839
6,200	119,115	119,115	119,115	119,115	119,115	119,115	119,249	120,305	122,569	126,839
6,500	126,615	126,615	126,615	126,615	126,615	126,615	126,615	127,505	129,141	132,839
6,800	134,115	134,115	134,115	134,115	134,115	134,115	134,115	134,705	135,889	138,839
7,100	141,615	141,615	141,615	141,615	141,615	141,615	141,615	141,905	142,960	145,094
7,400	149,115	149,115	149,115	149,115	149,115	149,115	149,115	149,115	150,160	151,694
7,700	156,615	156,615	156,615	156,615	156,615	156,615	156,615	156,615	157,360	158,510
8,000	164,115 171,615	164,115 171,615	164,115 171,615	164,115 171,615	164,115 171,615	164,115 171,615	164,115	164,115	164,560 171,760	165,616
8,300 8,600	179,115	179,115	179,115	179,115	179,115	171,615	171,615 179,115	171,615 179,115	179,115	172,816
8,900	186,615	179,115	179,115	186,615	186,615	1/9,115	186,615	186,615	186,615	180,016 187,216
9,200	194,115	194,115	194,115	194,115	194,115	194,115	194,115	194,115	194,115	194,416
9,500	201,615	201,615	201,615	201,615	201,615	201,615	201,615	201,615	201,615	201,616
9,800	201,015	201,015	201,015	209,115	201,015	201,015	201,015	201,015	201,015	209,115
10,100	216,615	216,615	216,615	216,615	216,615	216,615	216,615	216,615	216,615	216,615
10,100	224,115	210,015	210,015	210,015	210,015	224,115	224,115	224,115	224,115	224,115
10,700	231,615	231,615	231,615	231,615	231,615	231,615	231,615	231,615	231,615	231,615
11,000	239,115	239,115	239,115	239,115	239,115	239,115	239,115	239,115	239,115	239,115
11,300	246,615	246,615	246,615	246,615	246,615	246,615	246,615	246,615	246,615	246,615
11,600	254,115	254,115	254,115	254,115	254,115	254,115	254,115	254,115	254,115	254,115
11,900	261,615	261,615	261,615	261,615	261,615	261,615	261,615	261,615	261,615	261,615
12,200	269,115	269,115	269,115	269,115	269,115	269,115	269,115	269,115	269,115	269,115
12,500	276,615	276,615	276,615	276,615	276,615	276,615	276,615	276,615	276,615	276,615
12,800	284,115	284,115	284,115	284,115	284,115	284,115	284,115	284,115	284,115	284,115
13,100	291,615	291,615	291,615	291,615	291,615	291,615	291,615	291,615	291,615	291,615
13,400	299,115	299,115	299,115	299,115	299,115	299,115	299,115	299,115	299,115	299,115

Table 17. The Effects of Various Combinations of the Proposed Upper 95% Confidence Level Tonnage and Percentage Variability Limits on Ozone Season EGU NO_x Emissions (See Notes Below).

*Numbers in white cells represent the sum (across all states) of the differences in emissions between the state-specific 95% confidence level variability values and the state-specific variability limit (in tons); the variability limit selected for each state is the larger of either the percentage limit or the tonnage limit.

** If the cell is grey, it means that there is a state or several states whose state-specific 95% confidence level variability values exceed both the tonnage and percentage limits. The cell either lists the states that could exceed the limits, or lists the number of states. *** If the cell is yellow, this is the combination tonnage and percentage limits that minimize the sum of the differences between the state-specific 95% confidence level variability values and the state-specific variability limit (in tons). From the tables above, EPA determined that a number of tonnage and percentage combinations resulted in fairly similar total emissions. For each pollutant, a percentage limit of 10 percent coupled with a tonnage limit specific to the pollutant was a combination amongst those that would result in the lowest total emissions, so EPA chose 10 percent. The tonnage limits for each pollutant, as shown below, were established⁸. The procedure used to identify these tonnage and percentage limits ensures that every state is able to meet at least one of the limits, while minimizing total EGU emissions. The resulting 1-year tonnage and percentage limits (which are also presented in the preamble) are as follows:

- $SO_2 1,700$ tons or 10 percent of state's budget
- Annual $NO_X 5,000$ tons or 10 percent of state's budget
- Ozone season $NO_X 2,100$ tons or 10 percent of state's budget

As described in the preamble, after determining for each pollutant a 1-year tonnage and 1-year percentage limit, EPA assigned each state one of these values – either the tonnage limit or the percentage limit, whichever was <u>greater</u> for that state. In other words, for SO₂, every state has a 1-year variability limit of 1,700 tons or 10 percent of the state's SO₂ budget, whichever is greater. For annual NO_X, every state has 1-year variability limit of 5,000 tons or 10 percent of the state's annual NO_X budget, whichever is greater. And, for ozone season NO_X, every state has a 1-year variability limit of 2,100 tons or 10 percent of the state's ozone season NO_X budget, whichever is greater.

For example, Connecticut's annual SO₂ budget is 3,059 tons, and 10 percent (the percentage limit for SO₂) of 3,059 tons is 306 tons. Because 1,700 tons (the tonnage limit for SO₂) is <u>greater</u> than 306 tons, Connecticut's 1-year SO₂ variability limit is 1,700 tons. The 1-year variability limits for SO₂, annual NO_X, and ozone season NO_X emissions for each covered state that result from this approach are presented in section IV.F in the preamble.

As discussed in preamble section IV.F, the EPA also requests comment on an alternative calculation method for determining 1-year variability limits. The alternative

⁸ EPA developed the proposed variability limits in parallel with developing the overall control requirements. As such, while the particular "optimal" 1-year tonnage and percentage limits presented here are close to the optimal values (presented in Tables 15, 16, and 17), they are not exact because during the development of the limits, changes were made in the states covered by the proposed rule. The IPM modeling and CAMx air quality modeling for the proposed rule used these values. As discussed in the preamble, EPA requests comment on the variability limits.

method would use the results of the proposed method but add a "ceiling percentage" equal to the maximum 95% confidence level percentage of variability among all covered states as observed in the historic heat input data described previously. The percentage variability limits for all states are shown in Tables 10, 12, and 14 for annual SO₂, annual NO_x and ozone season NO_x, respectively. The alternative 1-year variability limits resulting from this calculation method are presented in preamble section IV.F. EPA explained in the preamble its rationale for considering this alternative calculation method.

The ceiling percentages for each pollutant, based on the historic data, are as follows:

- SO₂ 28 percent of state's budget (equal to the value for Connecticut)
- Annual NO_X 21 percent of state's budget (equal to the value for Louisiana)
- Ozone season NO_X 27 percent of state's budget (equal to the value for Connecticut)

Under this alternative calculation method, for SO_2 emissions, a state's 1-year variability limit would be 1,700 tons as long as 1,700 tons is between 10 and 28 percent of the state's SO_2 emissions budget. If 1,700 tons is greater than 28 percent of the state's SO_2 budget, then the state's 1-year variability limit is set at 28 percent of the state's SO_2 budget. If 1,700 tons is less than 10 percent of the state's SO_2 budget, then the state's 1-year variability limit is set at 28 percent. The alternative calculation method would be applied to determine annual and ozone season NO_X 1-year variability limits in the same manner as for the SO_2 limits.

Tables 18, 19, and 20 demonstrate application of this alternative method to determining 1-year variability limits for SO₂ emissions, annual NO_X emissions, and ozone season NO_X emissions, respectively. In Table 18, the first column lists the state and the second column lists the state's 2014 SO₂ emissions budget. The third column lists, for each state, 10 percent (the percentage limit for SO₂) of the state's SO₂ budget. The fourth column lists the tonnage limit for SO₂ emissions, which is 1,700 tons for all states, as discussed above. The fifth column lists, for each state, 28 percent (the percentage ceiling for SO₂) of the state's SO₂ budget. And finally, the sixth column lists the state's

alternative 1-year variability limit. The columns in Tables 19 and 20 follow the same pattern but for annual NO_X and ozone season NO_X emissions, respectively.

Again, using Connecticut's 1-year SO₂ variability limit as an example, Connecticut's annual SO₂ budget is 3,059 tons. Ten percent (the percentage limit for SO₂) of 3,059 tons is 306 tons. Twenty-eight percent (the percentage ceiling for SO₂) of 3,059 tons is 857 tons. Because 1,700 tons (the tonnage limit for SO₂) is <u>greater</u> than 857 tons, Connecticut's 1-year SO₂ variability limit is set at 857 tons, as shown in Table 18. In contrast, using the proposed approach would result in a 1-year SO₂ variability limit of 1,700 tons for Connecticut, as discussed above and in preamble section V.F.

State	2014 SO ₂ Annual Emissions Budget (tons)	10 Percent of SO ₂ Budget (tons)	SO ₂ Tonnage Limit (tons)	28 Percent of SO ₂ Budget (tons)	Alternative 1-Year Limit (tons)
Alabama	161,871	16,187	1,700	45,324	16,187
Connecticut	3,059	306	1,700	857	857
Delaware	7,784	778	1,700	2,180	1,700
District of Columbia	337	34	1,700	94	94
Florida	161,739	16,174	1,700	45,287	16,174
Georgia	85,717	8,572	1,700	24,001	8,572
Illinois	151,530	15,153	1,700	42,428	15,153
Indiana	201,412	20,141	1,700	56,395	20,141
Iowa	86,088	8,609	1,700	24,105	8,609
Kansas	57,275	5,728	1,700	16,037	5,728
Kentucky	113,844	11,384	1,700	31,876	11,384
Louisiana	90,477	9,048	1,700	25,334	9,048
Maryland	39,665	3,967	1,700	11,106	3,967
Massachusetts	7,902	790	1,700	2,213	1,700
Michigan	155,675	15,568	1,700	43,589	15,568
Minnesota	47,101	4,710	1,700	13,188	4,710
Missouri	158,764	15,876	1,700	44,454	15,876
Nebraska	71,598	7,160	1,700	20,047	7,160
New Jersey	11,291	1,129	1,700	3,161	1,700
New York	42,041	4,204	1,700	11,771	4,204
North Carolina	81,859	8,186	1,700	22,921	8,186
Ohio	178,307	17,831	1,700	49,926	17,831
Pennsylvania	141,693	14,169	1,700	39,674	14,169
South Carolina	116,483	11,648	1,700	32,615	11,648
Tennessee	100,007	10,001	1,700	28,002	10,001
Virginia	40,785	4,079	1,700	11,420	4,079
West Virginia	119,016	11,902	1,700	33,324	11,902
Wisconsin	66,683	6,668	1,700	18,671	6,668

Table 18. Application of Alternative Calculation Method for Determining 1-Year Variability Limits on SO₂ Emissions for 2014 and Later.

Table 19. Application of Alternative Calculation Method for Determining 1-Year Variability Limits on NO_X Annual Emissions for 2014 and Later.

State	2014 NO _X Annual Emissions Budget (tons)	10 Percent of NO _X Annual Budget (tons)	NO _X Annual Tonnage Limit (tons)	21 Percent of NO _X Annual Budget (tons)	Alternative 1-Year Limit (tons)
Alabama	69,169	6,917	5,000	14,525	6,917
Connecticut	2,775	278	5,000	583	583
Delaware	6,206	621	5,000	1,303	1,303
District of Columbia	170	17	5,000	36	36
Florida	120,001	12,000	5,000	25,200	12,000
Georgia	73,801	7,380	5,000	15,498	7,380
Illinois	56,040	5,604	5,000	11,768	5,604
Indiana	115,687	11,569	5,000	24,294	11,569
Iowa	46,068	4,607	5,000	9,674	5,000
Kansas	51,321	5,132	5,000	10,777	5,132
Kentucky	74,117	7,412	5,000	15,565	7,412
Louisiana	43,946	4,395	5,000	9,229	5,000
Maryland	17,044	1,704	5,000	3,579	3,579
Massachusetts	5,960	596	5,000	1,252	1,252
Michigan	64,932	6,493	5,000	13,636	6,493
Minnesota	41,322	4,132	5,000	8,678	5,000
Missouri	57,681	5,768	5,000	12,113	5,768
Nebraska	43,228	4,323	5,000	9,078	5,000
New Jersey	11,826	1,183	5,000	2,483	2,483
New York	23,341	2,334	5,000	4,902	4,902
North Carolina	51,800	5,180	5,000	10,878	5,180
Ohio	97,313	9,731	5,000	20,436	9,731
Pennsylvania	113,903	11,390	5,000	23,920	11,390
South Carolina	33,882	3,388	5,000	7,115	5,000
Tennessee	28,362	2,836	5,000	5,956	5,000
Virginia	29,581	2,958	5,000	6,212	5,000
West Virginia	51,990	5,199	5,000	10,918	5,199
Wisconsin	44,846	4,485	5,000	9,418	5,000

Table 20. Application of Alternative Calculation Method for Determining 1-Year Variability Limits on NO_X Ozone Season Emissions for 2014 and Later.

	2014	10 Percent	NO _X	27 Percent	
	$NO_X Ozone$	of NO _X	Ozone	of NO _X	Alternative
	Season	Ozone	Season	Ozone	1-Year
State	Emissions	Season	Tonnage	Season	Limit
	Budget	Budget	Limit	Budget	(tons)
	(tons)	(tons)	(tons)	(tons)	()
Alabama	29,738	2,974	2,100	8,029	2,974
Arkansas	16,660	1,666	2,100	4,498	2,100
Connecticut	1,315	132	2,100	355	355
Delaware	2,450	245	2,100	662	662
District of Columbia	105	11	2,100	28	28
Florida	56,939	5,694	2,100	15,374	5,694
Georgia	32,144	3,214	2,100	8,679	3,214
Illinois	23,570	2,357	2,100	6,364	2,357
Indiana	49,987	4,999	2,100	13,496	4,999
Kansas	21,433	2,143	2,100	5,787	2,143
Kentucky	30,908	3,091	2,100	8,345	3,091
Louisiana	21,220	2,122	2,100	5,729	2,122
Maryland	7,232	723	2,100	1,953	1,953
Michigan	28,253	2,825	2,100	7,628	2,825
Mississippi	16,530	1,653	2,100	4,463	2,100
New Jersey	5,269	527	2,100	1,423	1,423
New York	11,090	1,109	2,100	2,994	2,100
North Carolina	23,539	2,354	2,100	6,356	2,354
Ohio	40,661	4,066	2,100	10,978	4,066
Oklahoma	37,087	3,709	2,100	10,013	3,709
Pennsylvania	48,271	4,827	2,100	13,033	4,827
South Carolina	15,222	1,522	2,100	4,110	2,100
Tennessee	11,575	1,158	2,100	3,125	2,100
Texas	75,574	7,557	2,100	20,405	7,557
Virginia	12,608	1,261	2,100	3,404	2,100
West Virginia	22,234	2,223	2,100	6,003	2,223

3. Estimating variability over a multi-year time period.

As described in section 2, for each state, EPA estimated the inherent year-to-year (1-year) variability in emissions at the 95% confidence level using the historical year-to-year standard deviation in heat input along with a modeled emission rate. From these values EPA identified a set of variability limits (a percentage and tonnage) and assigned a particular proposed "1-year" variability tonnage limit to each state for each year under the proposed Transport Rule. As described in section IV.F.1 of the preamble, for each state, EPA proposes to also assess the difference between each state's emissions budget and a 3-year rolling average of its emissions, comparing it against a "3-year" variability limit. This

section of the TSD describes the method EPA used to determine each state's 3-year variability limit.

EPA used a standard statistical method to estimate the variability that could be expected (on average) in a 3-year average of a state's yearly emissions, assuming that the emissions for each year are independent of the following year. For this analysis, we assume that, for each state, the year-to-year variability in emissions is described using the 1-year values in section 2 of this TSD.

What is our expectation for how a 3-year average of emissions would compare to the emissions for a single year? We would expect that the emissions for a single year could be higher or lower than the budget. What happens if we begin to average the emissions from multiple years? We would expect that we would average some years that are higher than the budget with some years that are lower than budget. The resulting average would be relatively close to the budget. Some variation from the budget value is expected, though, when multiple 3-year time periods are examined. How variable could we expect the 3-year average to be relative to the variability for a single year? The answer to these questions can be estimated with the standard deviation of the annual emissions (i.e., the year-to-year variability) and the number of years that are being averaged together (using some standard statistics equations along with some basic assumptions about normality and independence of the yearly emission values).

The average variability of a multi-year-average is the average variability of a single year divided by the square root of the number of years in the multi-year average.⁹ Thus, the variability of a 3-year average is equal to the annual variability divided by the square root of three. EPA used this approach to determine 3-year variability limits based on the 1-year limits.

Most general introductory statistics textbooks state the general equation, and some describe a basic derivation. Derivation of the equation is found in those textbooks and the statistics literature. However, a rudimentary outline of some of the principles is described here. Usually, the problem is cast as combining the variances for either three different random samples of a variable, or alternatively, averaging three independent "variables"

⁹ Moore, David S. and George P. McCabe. <u>Introduction to the Practice of Statistics</u>. 2nd ed. New York: W.H. Freeman and Company, 1993. p.395.

(where each year in the three sequential years that are going to be averaged together would be a different "variable"). For this example, we will describe three independent yearly "variables" of the emissions. These yearly variables are called Y₁, Y₂, and Y₃. Each of these yearly variables could assume a particular emissions value for a particular year. It is assumed that the individual realized yearly values are uncorrelated and independent from each other, that their average and variability can be described with a normal distribution classified by a mean value (i.e., the budget value) and a standard deviation (i.e., the yearto-year standard deviation). For explanatory purposes, it will first be assumed without loss of generality that the distributions of hourly emissions values from year-to-year is identical (i.e., the "within-year" variation is the same) and that all three years have the same mean value and expected variation.

The expected variance of the average of the three years of emissions can be estimated. If the years are assumed to be uncorrelated, and random samples are drawn independently from each of the year-specific distributions, the variance in the resulting estimate of the sample mean can be written as follows¹⁰:

$$Var(\overline{X}) = \frac{1}{3^2} (\sigma_{Y_1}^2 + \sigma_{Y_2}^2 + \sigma_{Y_3}^2)$$

where,

Var (\overline{X}) = the variance of the mean of yearly emission values from each of three independent years, Y_i, where i =1 to 3;

 $\overline{X} = (1/3) * (X_1 + X_2 + X_3)$

 $\sigma_{Y_i}^2$ = the year-specific variance of three independent years, Y_i, where i = 1 to 3

If the variance from each of the three years is equal (as would be the case if the state budget is not changing over the three-year time period), the variance in the sample mean can be reduced to the following equation, σ^2/n (where n, is the number of years in the average and is equal to 3). This form of the equation is used by EPA in the proposed approach to calculate the 3-year variance in the sample mean from the year-to-year variance.

¹⁰ http://en.wikipedia.org/wiki/Variance

Applying these equations on a state-by-state basis using the state-specific 1-year emission variability limits and the mean values (the state emissions budgets), EPA calculated the 3-year variability limits that are presented in section IV.F in the preamble. These limits are the 1-year limits divided by the square root of three. The 3-year limits can be derived from the state-specific standard deviations and 95% confidence level variability values. The method for identifying a set of limits is identical (where all the values have been divided by the square root of 3). The results are identical (except all values are divided by the square root of three). Consequently, EPA elected to simply divide the proposed 1-year limits by the square root of three.

Similarly, EPA applied the equations above to define variability for the 2-year variability limits presented as an alternative in preamble section IV.F. These limits are the 1-year limits divided by the square root of two (since we are interested in the variance of just two years, rather than three). As discussed in the preamble, the 2-year variability limits would be applied for the 15 SO₂ group 1 states, i.e., the more stringent SO₂ tier, if EPA were to finalize an alternative remedy that uses variability limits for the years 2012 and 2013 (the Transport Rule's first phase).

As discussed in the preamble, EPA also considered, instead of 2-year average limits for the 15 SO₂ group 1 states in 2012 and 2013, 3-year average limits for these states starting in 2014 (for Phase 1). EPA considered the alternative of 3-year average limits starting in 2014 for these states because this is the approach EPA would apply to SO₂ group 2 states (and all states for NO_X emissions) in the event EPA were to finalize a remedy that uses variability limits in the first phase. The group 1 states have different SO₂ budgets in 2012 and 2013 than in 2014 and beyond.

The equations described above can be applied to determine 3-year average limits for the case of the group 1 states whose SO₂ emission budgets change in 2014, in other words the situation where the mean value and the standard deviation changes in the third year. As an illustrative example, consider a state with emission budgets of 1000, 1000, and 700 thousand tons of SO₂ in 2012, 2013, and 2014, respectively. The 1-year 95th percent upper confidence variability limit for this state is 10% of its yearly budgets (or, 100, 100, and 70 for each of the three years). The 1-year standard deviation variability for each year is the 95th percent upper confidence variability limit divided by 1.960. The values are 51,

51, and 35.7 thousand tons for each of the three years, respectively. For a 3-year limit in 2014, the situation is a little complicated because the expected mean value for the three years is changing (because the base budgets are not constant for the three-year time period). First, the calculation of the 3-year variance uses the equation described above (for Var (\overline{X})). In this case, the year-specific variances, $\sigma_{Y_i}^2$, are not identical. Putting the values into the equation, the expected variance of the 3-year average is

Var
$$(\overline{X}) = (1/3)^{2*}(51^{2}+51^{2}+35.7^{2}) = 6481.7/3^{2} = 720.2$$

Thus, the standard deviation is the square root of the variance, or 26.8 thousand tons. The 95% confidence level is 1.960 multiplied by the standard deviation (26.8) which equals 52.6 thousand tons of SO₂. Thus, this is the variability that we would expect from the "average" value for the three years (2012, 2013, and 2014). An estimate of the mean value for the three years, \overline{X} , is simply the mean of the budgets for the three years, which is calculated as: $\overline{X} = (1/3)^*(1000+1000+700)=2700/3=900$ thousand tons of SO₂.

EPA calculated the 3-year average of the 95th percent confidence level limits for 2014 for the group 1 states using these equations and compared these to the 2-year average of the 95th percent confidence level limits that are presented in the preamble. These 3-year and 2-year limits are shown in Table 21. As discussed in the preamble, EPA believes that the 2-year average limit approach is reasonable (and preferable if the alternative approach is chosen where variability limits are applied during the first phase). EPA's proposed remedy does not use variability limits during the first phase (2012 and 2013), however, as explained in the preamble, EPA is also taking comment on an alternative approach that would use variability limits in Phase 1. The 2-year average limits presented in the preamble and shown in Table 21 are calculated based on the Phase 1 SO₂ emissions budgets and are intended for use in 2013. In contrast, the alternative 3-year average limits shown in Table 21, while intended to limit SO₂ emissions in Phase 1, are impacted (reduced) by the tighter Phase 2 SO₂ budgets that apply to these states starting in 2014. If it is ultimately decided to use variability limits in Phase 1, EPA believes it is more appropriate to base the multi-year average limits for Phase 1 on the stringency of the Phase

1 emissions budgets, not the stringency of the Phase 2 budgets, thus it is preferable to use the 2-year limits.

Table 21. Phase 1 Variability Limits for SO₂ Group 1 States: Comparison of 2-Year Average to Alternative 3-Year Average Limits of the 95th Percent Confidence Level.

SO ₂ Group 1 State	SO ₂ Annual Budge (tons	ets	Phase 1 M Variabilit (toı	y Limits
	2012	2014	2-Year Limits*	3-Year Limits**
Georgia	233,260	85,717	16,494	11,361
Illinois	208,957	151,530	14,775	11,070
Indiana	400,378	201,412	28,311	20,033
Iowa	94,052	86,088	6,651	5,281
Kentucky	219,549	113 844	15 524	11,023
Kentucky	219,549	113,844	15,524	11,023
Michigan	251,337	155,675	17,772	12,935
Missouri	203,689	158,764	14,403	10,964
New York	66,542	42,041	4,705	3,436
North Carolina	111,485	81,859	7,883	5,922
Ohio	464,964	178,307	32,878	22,710
Pennsylvania	388,612	141,693	27,479	18,918
Tennessee	100,007	100,007	7,072	5,774
Virginia	72,595	40,785	5,133	3,682
West Virginia	205,422	119,016	14,526	10,465
Wisconsin	96,439	66,683	6,819	5,060

* 2-year average limits on 2012-2013 emissions for SO_2 group 1 states for the alternative where variability limits would be used in the first phase (as presented in preamble section IV.F).

** Alternative approach of 3-year average limits on 2012-2014 emissions for SO_2 group 1 states for the alternative where variability limits would be used in the first phase.

4. Results of an analysis done using the air quality assessment tool

The objective of this section is to estimate the possible effects on air quality of the variability in emissions. This analysis was done using the air quality assessment tool, or AQAT, and uses state-by-state emissions to estimate downwind state-by-state air quality contributions at various nonattainment and maintenance monitors (See the Analysis for Significant Contribution TSD for details on the construction and use of the AQAT as well as the estimated downwind air quality concentrations resulting from the proposed remedy). See preamble section IV.C and the Air Quality Modeling TSD for a list of the nonattainment and maintenance monitors.

For this analysis, EPA varied the SO₂ emissions of each upwind state included in the proposed Transport Rule¹¹ around the proposed budgets, simulating the effects of variation in emissions resulting from the proposed allowed variability under the variability limits, and estimated the resulting variability in air quality (daily PM_{2.5} concentrations). This analysis focused on variability in emissions related to the daily PM_{2.5} concentrations for several reasons. First, the number of monitors classified as nonattainment and/or maintenance was larger than for the other standards. Second, generally, sites required larger emissions reductions and larger relative air quality improvements (under the daily PM_{2.5} NAAQS, compared with the annual PM_{2.5} NAAQS). Lastly, the SO₂ emissions reductions from EGUs relative to total SO₂ emissions for daily PM_{2.5} standard is proportionally larger than NO_x emissions reductions from EGUs relative to total NO_x emissions. Consequently, the variability in estimated daily PM_{2.5} concentrations relative to variation in SO₂ emissions is larger than variability in estimated ozone concentrations relative to variation in NO_x emissions.

Two approaches were taken to estimate the variation in downwind air quality at each monitor for daily $PM_{2.5}$ allowed under the Transport Rule in 2014 due to the inherent variability in SO₂ emissions. Each of these approaches will be described, in turn, in the following paragraphs. To summarize the two approaches: The first approach examined the 1-year variability effects on daily $PM_{2.5}$ concentration when variations in emissions

¹¹ The states included in this analysis were Alabama, Connecticut, Delaware, District of Columbia, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maryland, Massachusetts, Michigan, Minnesota, Missouri, Nebraska, New Jersey, New York, North Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, Virginia, West Virginia, and Wisconsin.

from different states are independent from each other. This is intended to represent "typical" random variations in emissions and the resulting typical variations in air quality that might be seen under the Transport Rule. The second approach examined the "worst" case 1-year scenario for each monitor, when the upwind states with the largest impacts per ton emit at the upper end of the variability limit, while upwind states with the lowest impacts per ton emit below their budgets. This is intended to estimate an upper bound for the effects of emissions variability on air quality. For both approaches, the effects of the inherent variation in emissions on daily $PM_{2.5}$ concentrations were estimated to be small.

For the first approach, the SO₂ emissions for each state included in the proposed control region were allowed to randomly vary around the level of the budgets. That is, by chance, one state may increase its emissions, while another state may decrease its emissions. This random variation is intended to represent the inherent "random" variations in heat input (and emissions) that were characterized in section 2. As with the analysis in section 2, variations were assumed to be "normally" distributed and characterized by a standard deviation equal to 5.1% of the state's budget. This standard deviation is derived from the two-tailed 95% confidence level 1-year variability limit (equal to 10% of a state's budget for many states). (Note that this process did not account for the fact that the proposed 1-year variability limits for some of the smaller states are larger than 10% of the budgets.) This process also did not account for banking due to early reductions. The reader should keep in mind that for this approach, when the state-by-state variations in emissions are assessed across all states included in the proposed Transport Rule region, the emissions from states that emit over their budgets largely cancel out with emissions from states that emit below their budgets, with the result that total region-wide emissions are relatively constant.

As described in section 2b of this TSD when determining the state-by-state year-toyear variability in emissions, we assume, on a state-by-state basis that: (1) from year-toyear, the differences between the budget and modeled emissions are "normally" distributed; (2) the yearly emissions are independent from each other and are independent from the emissions of any other state; and, (3) the distribution of hourly emissions values is the same from year to year (i.e., the "within-year" variance is the same each year).

Consequently, for a particular downwind monitor, it is possible to estimate the 1year variance in air quality concentration as a function of the variance in emissions for each of the upwind states. Specifically, the variance in air quality concentration at the downwind monitor due to a particular upwind state would equal the square of the product of the air quality impact per ton of emissions multiplied by the standard deviation of the variation in emissions. The total variance in air quality impact at the downwind monitor is the sum of the variances resulting from each individual upwind state. The square root of this value is the estimated variability in air quality impact (in μ g/m³).

For an individual monitor, the air quality impact per ton of emissions can be estimated using the daily $PM_{2.5}$ 2012 base case air quality sulfate contributions from the CAMx source-apportionment modeling results and the 2012 base case emissions inventory also used in the modeling (see the Air Quality Modeling TSD and section IV.C of the preamble for details on both of these data sets). For each individual upwind state contributing to a particular monitor, the estimated impact per ton of sulfate is the air quality contribution of sulfate from that state to the particular monitor, divided by the state's total 2012 base case emission inventory of SO₂. The standard deviation in emissions (in tons) for each state can be found by multiplying the proposed 2014 state budget by 0.1 (10%) and dividing by 1.960 (to convert the variability limit in emissions at the 95% confidence level back to the standard deviation level). The state-by-state SO₂ budgets in 2014 (and the budgets multiplied by 0.1) can be found in Table 18.

For each combination of upwind state and downwind monitor, the impact per ton is then multiplied by the standard deviation of emissions (in tons). This product is then squared, becoming the variance. The variances from states that were modeled in IPM as well as in the CAMx source-apportionment air quality modeling, but were not included in the proposed remedy, were assumed to be equal to zero (i.e., they were assumed to have no variability in their emissions).

For a downwind monitor, the total 1-year variance in air quality contribution was found by adding the variances from all states together. This was done for all states (including the state containing the monitor) as well as, separately, for just upwind states (where the state containing the monitor was excluded). Following this, the square root of the total variance was taken, resulting in the standard deviation of the variability in air

quality. The standard deviation of the total variance from all states as well as just from upwind states can be found in Table 22. These standard deviation values represent the year-to-year (1-year) variability in air quality impact (μ g/m³) that we would expect to see, on average, at each monitor location due to the year-to-year variability in emissions (Table 22). The estimated variations in air quality are quite small (a fraction of a percent) relative to the 2012 base case design values. The locations in Table 22 are in order of decreasing 2012 base case average design value.

To assess more unusual variations in air quality air quality (i.e., those that, on average, will occur with a lower probability), we calculated the two-tailed 95% confidence level 1-year variability in air quality ($\mu g/m^3$) by multiplying the standard deviations in air quality by 1.960. The resulting 95% confidence variability values can be found in Table 22. Assessed across all monitoring locations, the average and maximum estimated 95% confidence level variability values are 0.14 μ g/m³ and 0.26 μ g/m³, respectively. When just variability due to the upwind states is examined, the average and maximum 95% confidence level variability values are 0.10 μ g/m³ and 0.22 μ g/m³, respectively. All of the values (the standard deviation values and the 95% confidence level values in Table 22) are usually substantially smaller than the differences between the average and maximum design values (with the maximum still less than 1% of the level of the NAAQS standard). Assessed across all the daily PM_{2.5} monitors shown in Table 22, the average difference between the 2012 base case average and maximum design values is $1.4 \,\mu\text{g/m}^3$. Recall that, from section 3 of this TSD, that a 3-year variability is less than the 1-year variability. Since the design values are found on a 3-year rolling basis, we expect that the variability in the 1-year values used to create the 3-year design values would be substantially larger than is seen based on the difference between the maximum and average design values. Consequently, we expect the year-to-year differences between the average design value and a yearly value to be substantially larger than 1.4 μ g/m³.

In conclusion, we found that, even while allowing each state's emissions to randomly vary up to 10% of its budget (the 2-tailed 95% confidence variability level prescribed for many states in the Transport Rule), the combined downwind air quality impacts were essentially negligible.

In the second approach, EPA examined the "worst" case scenario for each monitor location. This approach is intended to simulate a situation where all of the states in the region surrounding a monitor increase their SO₂ emissions to the maximum amount possible (the 1-year variability limit for each state), while states far away make all of the emissions reductions to compensate. In this scenario, the covered upwind states with the largest air quality impacts per ton of emissions were modeled to increase their SO₂ emissions up to their proposed 2014 SO₂ budget variability limit (Table 18). The upwind states with the lowest air quality impacts per ton of emissions were modeled to reduce their emissions by the number of tons equal to the variability limit (Table 18). This was done such that the total emissions (i.e., the sum of the budgets with variability changes) remained exactly at the total emissions level for the proposed region (i.e., the sum of all the state budgets). In other words, for this approach, on a monitor-by-monitor basis, emissions increases in the upwind states that have the largest air quality impacts per ton are paired with equivalent emissions decreases in states that are having the lowest air quality impacts per ton. A result of this approach is that overall regional emissions do not change at all from the sum of the budgets.

The state containing the monitor was included in this analysis (unless the state was not included in the proposed Transport Rule region). For the "middle" state (i.e., the state whose impact per ton value was such that the total emissions from states with higher impacts per ton equaled the total emissions from states with lower impacts per ton), the emissions were set at an intermediate level. States that were not included in the proposed Transport Rule region had their variability in emissions set to zero. The results of this analysis, seen in Table 22 in the "worst" case columns, show the cumulative air quality impact from all states and from just the upwind states. The average values were 0.30 $\mu g/m^3$ for just the upwind states, while the maximum values were 0.66 $\mu g/m^3$ and 0.35 $\mu g/m^3$, respectively. Again, the air quality impacts, while larger than for the random variability approaches, are still substantially less than the difference between the average and maximum design values. These results suggest that even under a "worst case" scenario, where nearby states minimize reductions in emissions, while states far away maximize reduction, the resulting increases in air quality are small relative to other factors (i.e., weather).

Collectively, by assessing these two approaches, it appears that the magnitude of the variability in air quality resulting from the proposed levels of variability in emissions is likely to be smaller than other factors impacting air quality. These results suggest that the estimated variations in air quality resulting from the small variations in emissions (even under "worst-case" scenarios) are not substantial. The variations are much smaller than documented year-to-year variability in air quality (as measured at the monitors and expressed as the difference between the average and maximum design values). Consequently, allowing variation in emissions under the proposed variability limits in the Transport Rule, while allowing flexibility for the power sector to address inherent fluctuations in electric generation, does not overly affect air quality. Table 22. Using AQAT, the Estimates of the Effects of Variability in Emissions of SO₂ (Using the Proposed Budgets) on Downwind Sulfate Concentrations (μ g/m³) in 2014 are Shown for Each Downwind Monitor for Daily PM2.5. The 2012 Base Case Average and Maximum Design Values as well as the Estimated Standard Deviation, the 95% Confidence Level, and the Worst Case Variability Estimates Are Shown.

Monitor Identification Number	Receptor State	Receptor County	2012 Base Case Average DV (μg/m ³)	2012 Base Case Maximum DV (μg/m ³)	Difference Between Average and Maximum 2012 Base DVs (µg/m ³)	Standard Deviation (All States)	Standard Deviation (Upwind States)	95% Confidence Level (All States)	95% Confidence Level (Upwind States)	Worst Case (All States)	Worst Case (Upwind States)
420030064	Pennsylvania	Allegheny	58.8	62.3	3.5	0.047	0.038	0.092	0.074	0.195	0.141
261630033	Michigan	Wayne	42.1	42.6	0.5	0.104	0.043	0.205	0.085	0.345	0.159
390350038	Ohio	Cuyahoga	41.2	44.0	2.8	0.086	0.048	0.168	0.094	0.342	0.202
420030093	Pennsylvania	Allegheny	41.1	46.2	5.1	0.060	0.052	0.117	0.102	0.253	0.196
170311016	Illinois	Cook	41.0	44.1	3.1	0.050	0.039	0.098	0.076	0.218	0.156
261630016	Michigan	Wayne	40.6	43.0	2.4	0.093	0.033	0.182	0.065	0.307	0.138
180970043	Indiana	Marion	40.5	42.0	1.5	0.126	0.057	0.248	0.112	0.458	0.237
390170003	Ohio	Butler	40.3	42.3	2.0	0.109	0.089	0.214	0.174	0.472	0.348
180970066	Indiana	Marion	40.3	41.8	1.5	0.132	0.058	0.258	0.113	0.480	0.247
420210011	Pennsylvania	Cambria	40.3	40.7	0.4	0.102	0.055	0.200	0.107	0.389	0.220
180970081	Indiana	Marion	40.1	41.1	1.0	0.117	0.054	0.228	0.106	0.425	0.223
010730023	Alabama	Jefferson	40.0	40.7	0.7	0.132	0.020	0.259	0.040	0.324	0.068
171191007	Illinois	Madison	40.0	40.6	0.6	0.067	0.055	0.132	0.108	0.282	0.208
540090011	West Virginia	Brooke	39.9	40.8	0.9	0.050	0.047	0.097	0.091	0.219	0.187
390618001	Ohio	Hamilton	39.6	40.3	0.7	0.071	0.051	0.140	0.100	0.286	0.188
390350060	Ohio	Cuyahoga	39.4	42.8	3.4	0.072	0.034	0.142	0.066	0.266	0.140
171190023	Illinois	Madison	39.4	40.2	0.8	0.105	0.084	0.206	0.164	0.422	0.298
180970083	Indiana	Marion	39.0	39.3	0.3	0.132	0.059	0.259	0.115	0.485	0.253
550790043	Wisconsin	Milwaukee	38.8	39.7	0.9	0.070	0.060	0.137	0.117	0.318	0.248
180970078	Indiana	Marion	38.7	39.7	1.0	0.126	0.057	0.246	0.111	0.455	0.236
261630019	Michigan	Wayne	38.6	39.1	0.5	0.063	0.032	0.124	0.062	0.235	0.128
170310052	Illinois	Cook	38.5	39.7	1.2	0.049	0.033	0.096	0.064	0.196	0.125
261630015	Michigan	Wayne	38.5	39.1	0.6	0.105	0.050	0.206	0.098	0.365	0.184
390170017	Ohio	Butler	38.5	38.5	0.0	0.090	0.073	0.176	0.144	0.390	0.287
261470005	Michigan	St. Clair	38.4	39.4	1.0	0.059	0.035	0.115	0.068	0.233	0.141
170313301	Illinois	Cook	38.2	41.0	2.8	0.059	0.043	0.115	0.084	0.252	0.173
340172002	New Jersey	Hudson	38.2	38.2	0.0	0.035	0.030	0.069	0.059	0.186	0.132
180190006	Indiana	Clark	38.1	40.2	2.1	0.081	0.055	0.159	0.107	0.341	0.223
261610008	Michigan	Washtenaw	38.1	39.8	1.7	0.067	0.046	0.130	0.090	0.261	0.166
010732003	Alabama	Jefferson	38.1	38.9	0.8	0.083	0.017	0.163	0.034	0.226	0.066

170313103	Illinois	Cook	38.1	38.7	0.6	0.046	0.028	0.090	0.055	0.189	0.118
420031008	Pennsylvania	Allegheny	38.0	39.3	1.3	0.070	0.058	0.137	0.114	0.291	0.215
390610006	Ohio	Hamilton	38.0	38.0	0.0	0.091	0.074	0.179	0.146	0.385	0.281
261250001	Michigan	Oakland	37.9	38.4	0.5	0.082	0.052	0.160	0.102	0.325	0.201
390171004	Ohio	Butler	37.8	38.6	0.8	0.089	0.071	0.175	0.139	0.381	0.274
420710007	Pennsylvania	Lancaster	37.7	40.1	2.4	0.033	0.012	0.066	0.024	0.135	0.074
420070014	Pennsylvania	Beaver	37.7	39.1	1.4	0.057	0.051	0.111	0.100	0.242	0.195
550790010	Wisconsin	Milwaukee	37.7	39.0	1.3	0.049	0.037	0.095	0.072	0.241	0.178
390617001	Ohio	Hamilton	37.7	38.1	0.4	0.085	0.064	0.166	0.126	0.367	0.259
390610014	Ohio	Hamilton	37.5	38.5	1.0	0.081	0.059	0.159	0.116	0.330	0.221
390170016	Ohio	Butler	37.5	37.8	0.3	0.086	0.075	0.169	0.146	0.378	0.293
170316005	Illinois	Cook	37.4	39.8	2.4	0.048	0.031	0.094	0.060	0.193	0.121
180890022	Indiana	Lake	37.3	42.1	4.8	0.058	0.028	0.114	0.054	0.218	0.121
180970079	Indiana	Marion	37.2	38.3	1.1	0.030	0.061	0.234	0.034	0.456	0.255
171192009	Illinois	Madison	37.2	38.2	1.1	0.095	0.076	0.234	0.119	0.450	0.255
390610042	Ohio		37.2	38.0	0.8	0.095	0.058	0.163	0.149	0.360	0.278
360610042	New York	Hamilton New York	37.2 37.1	38.0 38.0	0.8 0.9	0.083	0.016	0.078	0.032	0.342	0.225
420030116	Pennsylvania	Allegheny	37.1	37.1	0.0	0.060	0.051	0.117	0.100	0.259	0.198
261150005	Michigan	Monroe	37.0	38.0	1.0	0.074	0.063	0.145	0.123	0.321	0.243
210590005	Kentucky	Daviess	37.0	37.0	0.0	0.133	0.110	0.260	0.215	0.494	0.347
550790099	Wisconsin	Milwaukee	36.8	37.7	0.9	0.053	0.044	0.104	0.086	0.260	0.201
191630019	lowa	Scott	36.8	36.8	0.0	0.083	0.073	0.162	0.143	0.407	0.330
340390004	New Jersey	Union	36.7	37.2	0.5	0.030	0.026	0.059	0.050	0.173	0.127
420031301	Pennsylvania	Allegheny	36.6	38.6	2.0	0.062	0.052	0.121	0.101	0.266	0.199
471251009	Tennessee	Montgomery	36.6	37.9	1.3	0.068	0.058	0.133	0.113	0.320	0.249
390490024	Ohio	Franklin	36.6	37.6	1.0	0.064	0.040	0.126	0.078	0.267	0.168
390811001	Ohio	Jefferson	36.5	39.9	3.4	0.065	0.043	0.126	0.084	0.261	0.166
390350065	Ohio	Cuyahoga	36.5	38.9	2.4	0.072	0.035	0.142	0.070	0.274	0.151
180372001	Indiana	Dubois	36.5	38.0	1.5	0.102	0.055	0.200	0.109	0.380	0.212
171193007	Illinois	Madison	36.5	37.3	0.8	0.103	0.083	0.202	0.163	0.420	0.300
		St. Louis									
295100087	Missouri	City	36.4	36.9	0.5	0.097	0.071	0.191	0.139	0.395	0.264
550790026	Wisconsin	Milwaukee	36.3	40.1	3.8	0.046	0.036	0.091	0.071	0.226	0.170
180890026	Indiana	Lake	36.3	39.3	3.0	0.051	0.036	0.101	0.070	0.218	0.145
391130032	Ohio	Montgomery	36.3	38.5	2.2	0.090	0.068	0.177	0.134	0.393	0.277
		Baltimore									
245100040	Maryland	(City)	36.3	38.3	2.0	0.068	0.013	0.133	0.026	0.187	0.057
170310076	Illinois	Cook	36.3	37.3	1.0	0.066	0.051	0.130	0.099	0.278	0.195
180970042	Indiana	Marion	36.3	37.2	0.9	0.129	0.060	0.252	0.118	0.480	0.257
261630036	Michigan	Wayne	36.3	36.9	0.6	0.069	0.042	0.136	0.083	0.256	0.149
360610128	New York	New York	36.2	38.0	1.8	0.042	0.032	0.083	0.062	0.221	0.167
390490025	Ohio	Franklin	36.1	36.4	0.3	0.062	0.039	0.122	0.077	0.253	0.157
390350045	Ohio	Cuyahoga	36.0	39.0	3.0	0.078	0.040	0.153	0.078	0.302	0.170
211110044	Kentucky	Jefferson	36.0	36.5	0.5	0.094	0.076	0.184	0.149	0.359	0.252
390610043	Ohio	Hamilton	36.0	36.4	0.4	0.091	0.078	0.179	0.154	0.395	0.304
		St. Louis									
295100007	Missouri	City	36.0	36.3	0.3	0.133	0.075	0.261	0.147	0.497	0.282
		,									

421330008	Pennsylvania	York	35.9	38.8	2.9	0.058	0.025	0.113	0.049	0.215	0.113
181570008	Indiana		35.9	36.9	1.0	0.080	0.050	0.156	0.099	0.345	0.225
		Tippecanoe									
180830004	Indiana	Knox	35.9	36.5	0.6	0.093	0.049	0.182	0.096	0.355	0.200
420030008	Pennsylvania	Allegheny	35.9	36.3	0.4	0.052	0.042	0.102	0.081	0.217	0.155
360050080	New York	Bronx	35.9	36.2	0.3	0.041	0.023	0.081	0.045	0.201	0.133
390610040	Ohio	Hamilton	35.8	36.8	1.0	0.084	0.065	0.166	0.128	0.377	0.272
211110043	Kentucky	Jefferson	35.8	36.4	0.6	0.101	0.087	0.197	0.170	0.382	0.282
420430401	Pennsylvania	Dauphin	35.7	37.1	1.4	0.038	0.017	0.074	0.034	0.160	0.095
170310057	Illinois	Cook	35.7	37.0	1.3	0.050	0.032	0.097	0.063	0.210	0.136
090091123				36.6	0.9	0.031	0.030		0.059	0.223	0.162
	Connecticut	New Haven	35.7					0.060			
290990012	Missouri	Jefferson	35.7	36.5	0.8	0.122	0.074	0.239	0.144	0.474	0.284
340171003	New Jersey	Hudson	35.7	36.1	0.4	0.038	0.029	0.075	0.057	0.217	0.143
170312001	Illinois	Cook	35.6	38.2	2.6	0.064	0.059	0.125	0.116	0.258	0.211
391530017	Ohio	Summit	35.6	37.2	1.6	0.069	0.040	0.135	0.078	0.274	0.164
211110048	Kentucky	Jefferson	35.6	36.4	0.8	0.084	0.068	0.165	0.134	0.331	0.234
		Saint									
291831002	Missouri	Charles	35.5	37.1	1.6	0.107	0.072	0.209	0.141	0.435	0.281
		Baltimore									
045400040	Manulanal		25.5	0F F	0.0	0.000	0.040	0.400	0.005	0.400	0.050
245100049	Maryland	(City)	35.5	35.5	0.0	0.066	0.013	0.130	0.025	0.180	0.052
261630001	Michigan	Wayne	35.4	37.8	2.4	0.085	0.056	0.166	0.111	0.345	0.221
360610062	New York	New York	35.3	37.0	1.7	0.033	0.025	0.064	0.050	0.180	0.140
420410101	Pennsylvania	Cumberland	35.3	37.0	1.7	0.033	0.018	0.065	0.035	0.142	0.087
390810017	Ohio	Jefferson	35.3	36.8	1.5	0.062	0.042	0.121	0.082	0.256	0.167
171630010	Illinois	Saint Clair	35.3	35.9	0.6	0.099	0.080	0.195	0.157	0.402	0.288
		St. Louis									
295100085	Missouri	City	35.3	35.7	0.4	0.128	0.073	0.251	0.143	0.484	0.278
181670023	Indiana	Vigo	35.1	36.5	1.4	0.099	0.048	0.195	0.093	0.384	0.212
		•	35.1	36.1	1.0	0.056	0.040	0.109	0.078	0.254	0.179
550250047	Wisconsin	Dane									
471650007	Tennessee	Sumner	35.1	36.0	0.9	0.081	0.067	0.159	0.131	0.376	0.285
171971002	Illinois	Will	35.1	35.8	0.7	0.052	0.040	0.101	0.079	0.222	0.158
210290006	Kentucky	Bullitt	35.0	36.3	1.3	0.090	0.073	0.176	0.143	0.377	0.273
170310022	Illinois	Cook	34.9	36.6	1.7	0.070	0.069	0.138	0.134	0.214	0.184
551330027	Wisconsin	Waukesha	34.9	35.6	0.7	0.048	0.042	0.094	0.081	0.225	0.178
550790059	Wisconsin	Milwaukee	34.8	36.3	1.5	0.056	0.047	0.111	0.093	0.261	0.202
		Baltimore									
245100035	Maryland	(City)	34.7	35.5	0.8	0.065	0.012	0.127	0.023	0.171	0.046
390350027	Ohio	,	34.5	36.6	2.1	0.065	0.027	0.128	0.053	0.231	0.115
		Cuyahoga									
191390015	lowa	Muscatine	34.5	36.0	1.5	0.038	0.026	0.074	0.050	0.158	0.104
211451004	Kentucky	McCracken	34.4	36.8	2.4	0.087	0.079	0.171	0.155	0.362	0.289
420030095	Pennsylvania	Allegheny	34.3	36.6	2.3	0.052	0.043	0.102	0.083	0.223	0.165
180431004	Indiana	Floyd	34.3	35.7	1.4	0.097	0.062	0.191	0.121	0.388	0.240
					1.7						0.240
391130031	Ohio	Montgomery	34.3	35.6	1.3	0.065	0.048	0.127	0.094	0.275	
391351001	Ohio	Preble	34.3	35.5	1.2	0.087	0.073	0.170	0.143	0.376	0.284
390950024	Ohio	Lucas	34.2	36.5	2.3	0.058	0.047	0.113	0.093	0.240	0.176
360610079	New York	New York	34.2	36.4	2.2	0.050	0.027	0.099	0.054	0.244	0.161
390990014	Ohio		34.2	35.8	1.6	0.053	0.030	0.103	0.059	0.211	0.127
		Mahoning									
170310050	Illinois	Cook	34.1	35.8	1.7	0.063	0.055	0.123	0.108	0.273	0.214

	District Of	District Of									
110010041	Columbia	Columbia	34.0	35.6	1.6	0.043	0.043	0.085	0.085	0.655	0.193
540090005	West Virginia	Brooke	33.9	36.1	2.2	0.055	0.049	0.107	0.096	0.226	0.178
391550007	Ohio	Trumbull	33.9	35.6	1.7	0.051	0.033	0.100	0.064	0.217	0.141
421255001	Pennsylvania	Washington	33.9	35.5	1.6	0.071	0.068	0.139	0.132	0.288	0.245
420033007	Pennsylvania	Allegheny	33.8	38.5	4.7	0.066	0.056	0.130	0.109	0.281	0.210
	-	Anne									
240031003	Maryland	Arundel	33.8	36.7	2.9	0.057	0.027	0.112	0.053	0.225	0.126
180390003	Indiana	Elkhart	33.8	35.6	1.8	0.056	0.030	0.110	0.059	0.197	0.104
212270007	Kentucky	Warren	33.7	36.3	2.6	0.086	0.079	0.169	0.154	0.385	0.315
390350034	Ohio	Cuyahoga	33.7	35.7	2.0	0.061	0.036	0.120	0.070	0.246	0.149
170314007	Illinois	Cook	33.6	35.7	2.1	0.065	0.047	0.128	0.093	0.268	0.180
390950026	Ohio	Lucas	33.6	35.6	2.0	0.068	0.050	0.134	0.098	0.299	0.208
	District Of	District Of									
110010042	Columbia	Columbia	33.0	35.6	2.6	0.034	0.034	0.067	0.067	0.606	0.159

Appendix A:

Alternative Method for Identifying 1-Year Tonnage and Percentage Limits

				Percentage	Limit				-	
Tonnage Limit	2	4	6	8	10	12	14	16	18	20
0					NJ,	NJ,				
1,000	22	12	7	7	VA,	VA,	NJ,	NJ,	302,343	345,824
1,300	21	11	6	6	VA,	VA,	216,599	259,662	302,879	346,236
1,600	20	11	6	6	VA,	VA,	217,799	260,853	303,907	346,997
1,900	20	11	6	6	VA,	VA,	218,999	262,053	305,107	348,162
2,200	19	11	6	6	VA,	VA,	220,199	263,253	306,307	349,362
2,500	18	10	5	5	VA,	VA,	221,399	264,453	307,507	350,562
2,800	17	9	5	5	VA,	VA,	222,599	265,653	308,707	351,762
3,100	15	7	5	5	VA,	VA,	223,799	266,853	309,907	352,962
			GA, IA, NY,	GA, IA, NY,						
3,400	12	5	VA,	VA,	VA,	VA,	224,999	268,053	311,107	354,162
3,700	10	GA, IA, TN, VA,	GA, IA, VA,	GA, IA, VA,	VA,	VA,	226,199	269,253	312,307	355,362
4,000	8	GA, IA, TN, VA,	GA, IA, VA,	GA, IA, VA,	VA,	VA,	227,671	270,453	313,507	356,562
4,300	8	GA, IA, TN, VA,	GA, IA, VA,	GA, IA, VA,	VA,	VA,	229,308	271,692	314,707	357,762
4,600	7	GA, IA, TN, VA,	GA, IA, VA,	GA, IA, VA,	VA,	VA,	231,108	273,192	315,907	358,962
4,900	6	GA, IA, TN, VA,	GA, IA, VA,	GA, IA, VA,	VA,	VA,	232,908	274,835	317,214	360,162
5 300	GA, IA,				T/A	X7.4	224 700	276 625	210 714	2(1.2(2
5,200	MI, VA,	GA, IA, VA,	GA, IA, VA,	GA, IA, VA,	VA,	VA,	234,708	276,635	318,714	361,362
5,500	GA, IA, MI, VA,	GA, IA, VA,	GA, IA, VA,	GA, IA, VA,	VA,	VA,	236,797	278,435	320,362	362,736
	GA, IA,	UA, IA, VA,	UA, IA, VA,		vA,	v /1,	230,797	270,435	320,302	302,730
5,800	MI, VA,	GA, IA, VA,	GA, IA, VA,	GA, IA, VA,	VA,	VA,	239,191	280,235	322,162	364,236
6,100	GA, IA,	GA, IA,	GA, IA,	GA, IA,	165,234	202,313	241,591	282,179	323,962	365,889
6,400	GA,	GA,	GA,	GA,	169,134	205,498	244,151	284,387	325,762	367,689
6,700	90,919	93,882	112,952	140,982	173,038	208,821	246,862	286,787	327,562	369,489
7,000	99,019	100,931	118,652	146,082	177,238	212,421	249,862	289,187	329,662	371,289
7,300	107,119	108,222	124,781	151,182	181,438	216,021	252,911	291,755	331,983	373,089
7,600	115,219	116,022	131,081	156,282	186,077	219,916	256,211	294,455	334,383	375,044
7,900	123,319	123,822	137,381	161,502	190,877	223,816	259,621	297,411	336,783	377,179
8,200	131,419	131,622	143,681	166,902	195,748	227,881	263,221	300,411	339,360	379,579
8,500	139,519	139,519	150,163	172,363	200,848	232,081	266,821	303,624	342,060	381,979
8,800	147,619	147,619	157,063	178,063	205,948	236,281	270,699	306,924	344,960	384,379
9,100	155,719	155,719	163,963	183,763	211,048	240,968	274,599	310,421	347,960	386,964
9,400	163,819	163,819	170,863	189,466	216,148	245,768	278,525	314,021	351,037	389,664
9,700	171,919	171,919	177,763	195,668	221,248	250,568	282,725	317,621	354,337	392,509
10,000	180,019	180,019	184,663	201,968	226,623	255,614	286,925	321,482	357,637	395,509
10,300	188,119	188,119	191,586	208,268	232,023	260,714	291,157	325,382	361,221	398,509
10,600	196,219	196,219	198,786	214,568	237,474	265,814	295,859	329,282	364,821	401,750
10,900	204,319	204,319	206,024	220,868	243,174	270,914	300,659	333,369	368,421	405,050
11,200	212,419	212,419	213,824	227,228	248,874	276,014	305,459	337,569	372,265	408,422
11,500	220,519	220,519	221,624	234,045	254,574	281,114	310,380	341,769	376,165	412,022
11,800	228,619	228,619	229,424	240,945	260,328	286,343	315,480	346,034	380,065	415,622
12,100	236,719	236,719	237,224	247,845	266,555	291,743	320,580	350,751	384,012	419,222
12,400	244,819	244,819	245,024	254,745	272,855	297,143	325,680	355,551	388,212	423,048
12,700	252,919	252,919	252,919	261,645	279,155	302,585	330,780	360,351	392,412	426,948
13,000	261,019	261,019	261,019	268,545	285,455	308,285	335,880	365,151	396,612	430,848
13,300	269,119	269,119	269,119	275,445	291,755	313,985	340,980	370,245	400,911	434,748
13,600	277,219	277,219	277,219	282,345	298,055	319,685	346,080	375,345	405,642	438,856

Table A-1. The Effects of Various Combinations of the Alternative Method Tonnage and Percentage Variability Limits on Annual EGU SO₂ Emissions (See Notes Below).

*Numbers in white cells represent the sum (across all states) of the differences in emissions between the state-specific "alternative approach" variability values and the state-specific variability limit (in tons); the variability limit selected for each state is the larger of either the percentage limit or the tonnage limit.

** If the cell is grey, it means that there is a state or there are several states whose "alternative approach" level variability values exceed both the tonnage and percentage limits. The cell either lists the states that could exceed the limits, or lists the number of states.

*** If the cell is yellow, this is the combination tonnage and percentage limits that minimizes the sum of the differences between the state-specific "alternative approach" variability values and the state-specific variability limit (in tons).

Table A-2. The Effects of Various Combinations of the Alternative Method Tonnage and Percentage Variability Limits on Annual EGU NO_x Emissions (See Notes Below).

				Per	centage Lir	nit				
Tonnage Limit	5	10	15	20	25	30	35	40	45	50
1,000	13	GA, LA, NY,	NY,	160,818	216,772	272,730	328,701	384,804	440,907	497,010
1,500	12	GA, LA, NY,	NY,	162,461	218,027	273,737	329,688	385,646	441,604	497,562
2,000	9	GA, LA,	109,477	164,461	219,830	275,237	330,946	386,655	442,604	498,562
2,500	6	GA, LA,	112,477	166,710	221,830	277,200	332,570	388,155	443,864	499,573
3,000	5	GA,	115,477	169,642	224,017	279,200	334,570	389,939	445,364	501,073
3,500	5	GA,	118,916	172,642	226,807	281,324	336,570	391,939	447,309	502,678
	FL, GA, IA,									
4,000	PA,	GA,	123,005	175,642	229,807	283,972	338,631	393,939	449,309	504,678
4,500	FL, GA, PA,	GA,	127,840	178,957	232,807	286,972	341,137	395,939	451,309	506,678
5,000	FL, PA,	91,796	133,376	182,894	235,807	289,972	344,137	398,438	453,309	508,678
5,500	FL, PA,	101,282	139,376	187,180	239,076	292,972	347,137	401,303	455,745	510,678
6,000	FL, PA,	111,184	145,758	192,125	242,872	295,972	350,137	404,303	458,468	513,052
6,500	FL,	121,708	153,315	197,600	246,872	299,195	353,137	407,303	461,468	515,633
7,000	FL,	132,708	161,315	203,507	251,411	302,850	356,137	410,303	464,468	518,633
7,500	FL,	143,875	170,203	209,507	256,411	306,850	359,313	413,303	467,468	521,633
8,000	150,982	155,375	179,682	216,017	261,879	311,029	362,828	416,303	470,468	524,633
8,500	164,482	167,069	189,182	223,463	267,639	315,697	366,828	419,432	473,468	527,633
9,000	177,982	179,199	199,284	231,426	273,639	320,697	370,828	422,932	476,468	530,633
9,500	191,482	192,199	209,784	239,610	279,708	326,159	375,203	426,806	479,551	533,633
10,000	204,982	205,199	220,571	248,610	286,276	331,770	379,983	430,806	483,051	536,633
10,500	218,482	218,482	231,571	258,082	293,708	337,770	384,983	434,878	486,784	539,670
11,000	231,982	231,982	242,572	267,582	301,536	343,770	390,438	439,378	490,784	543,170
11,500	245,482	245,482	254,072	277,197	309,536	349,953	395,938	444,269	494,784	546,762
12,000	258,982	258,982	265,572	287,385	318,018	356,535	401,901	449,269	499,052	550,762
12,500	272,482	272,482	277,112	297,885	327,018	363,954	407,901	454,718	503,555	554,762
13,000	285,982	285,982	289,112	308,433	336,482	371,647	413,901	460,218	508,555	558,762
13,500	299,482	299,482	301,308	319,433	345,982	379,647	420,198	466,033	513,555	563,227
14,000	312,982	312,982	314,308	330,433	355,482	387,647	426,794	472,033	518,997	567,841
14,500	326,482	326,482	327,308	341,433	365,250	396,425	434,199	478,033	524,497	572,841
15,000	339,982	339,982	340,308	352,769	375,486	405,425	441,758	484,033	530,164	577,841
15,500	353,482	353,482	353,482	364,269	385,986	414,883	449,758	490,443	536,164	583,277
16,000	366,982	366,982	366,982	375,769	396,486	424,383	457,758	497,052	542,164	588,777
16,500	380,482	380,482	380,482	387,269	407,296	433,883	465,910	504,444	548,164	594,295
17,000	393,982	393,982	393,982	399,156	418,296	443,383	474,832	511,944	554,188	600,295
17,500	407,482	407,482	407,482	411,156	429,296	453,304	483,832	519,869	560,688	606,295
18,000	420,982	420,982	420,982	423,416	440,296	463,586	493,283	527,869	567,311	612,295
18,500	434,482	434,482	434,482	436,416	451,465	474,086	502,783	535,869	574,689	618,295
19,000	447,982	447,982	447,982	449,416	462,965	484,586	512,283	544,239	582,189	624,433
19,500	461,482	461,482	461,482	462,416	474,465	495,159	521,783	553,239	589,980	630,933
20,000	474,982	474,982	474,982	475,416	485,965	506,159	531,358	562,239	597,980	637,570
20,500	488,482	488,482	488,482	488,482	497,465	517,159	541,358	571,683	605,980	644,935
21,000	501,982	501,982	501,982	501,982	509,199	528,159	551,687	581,183	613,980	652,435
21,500	515,482	515,482	515,482	515,482	521,199	539,159	562,187	590,683	622,646	660,091
22,000	528,982	528,982	528,982	528,982	533,199	550,162	572,687	600,183	631,646	668,091

*Numbers in white cells represent the sum (across all states) of the differences in emissions between the state-specific "alternative approach" variability values and the state-specific variability limit (in tons); the variability limit selected for each state is the larger of either the percentage limit or the tonnage limit.

** If the cell is grey, it means that there is a state or there are several states whose "alternative approach" level variability values exceed both the tonnage and percentage limits. The cell either lists the states that could exceed the limits, or lists the number of states.

*** If the cell is yellow, this is the combination tonnage and percentage limits that minimizes the sum of the differences between the state-specific "alternative approach" variability values and the state-specific variability limit (in tons).

Table A-3. The Effects of Various Combinations of the Alternative Method Tonnage and Percentage
Variability Limits on Ozone Season EGU NO _x Emissions (See Notes Below).

				P	ercentage Limit	· · · · · · · · · · · · · · · · · · ·				
Tonnage Limit	0	2	4	6	8	10	12	14	16	18
800	20	20	17	13	9	5	AR, LA, MS, NY,	AR, LA, MS, NY,	LA, NY,	55,182
1,100	12	12	11	8	6	AR, GA, LA, MS,	AR, LA, MS,	AR, LA, MS,	LA,	56,328
1,400	9	9	8	7	5	GA, LA, MS,	LA, MS,	LA, MS,	LA,	57,832
1,700	6	6	6	5	FL, GA, PA,	GA,	33,340	41,805	50,605	59,639
• • • • •	FL, GA,	FL, GA,	FL, GA,	FL, GA,				44.051	52.040	(1.051
2,000	PA, TX,	PA, TX,	PA, TX,	PA, TX,	FL, GA, PA,	GA,	36,727	44,851	53,249	61,971
2,300	FL, PA, TX,	FL, PA, TX,	FL, PA, TX,	FL, PA, TX,	FL, PA,	33,911	40,645	48,219	56,362	64,733
2,600	FL, PA, TX,	FL, PA, TX,	FL, PA, TX,	FL, PA, TX,	FL, PA,	39,183	44,923	52,023	59,711	67,872
2,900	FL, PA, TX,	FL, PA, TX,	FL, PA, TX,	FL, PA, TX,	FL, PA,	44,982	49,998	56,223	63,421	71,203
3,200	FL, PA, TX,	FL, PA, TX,	FL, PA, TX,	FL, PA, TX,	FL, PA,	50,982	55,464	60,985	67,602	74,865
3,500	FL,	FL,	FL,	FL,	FL,	56,982	61,304	66,146	71,973	78,980
3,800	60,374	60,374	60,374	60,374	60,812	62,982	67,304	71,746	77,072	83,180
4,100	67,874	67,874	67,874	67,874	68,012	69,455	73,304	77,625	82,342	88,059
4,400	75,374	75,374	75,374	75,374	75,374	76,272	79,304	83,625	88,027	93,159
4,700	82,874	82,874	82,874	82,874	82,874	83,471	85,431	89,625	93,947	98,609
5,000	90,374	90,374	90,374	90,374	90,374	90,671	92,031	95,625	99,947	104,309
5,300	97,874	97,874	97,874	97,874	97,874	97,874	98,930	101,625	105,947	110,269
5,600	105,374	105,374	105,374	105,374	105,374	105,374	106,130	108,007	111,947	116,269
5,900	112,874	112,874	112,874	112,874	112,874	112,874	113,330	114,651	117,947	122,269
6,200	120,374	120,374	120,374	120,374	120,374	120,374	120,530	121,589	124,016	128,269
6,500	127,874	127,874	127,874	127,874	127,874	127,874	127,874	128,789	130,583	134,269
6,800	135,374	135,374	135,374	135,374	135,374	135,374	135,374	135,989	137,291	140,269
7,100	142,874	142,874	142,874	142,874	142,874	142,874	142,874	143,189	144,249	146,560
7,400	150,374	150,374	150,374	150,374	150,374	150,374	150,374	150,389	151,449	153,160
7,700	157,874	157,874	157,874	157,874	157,874	157,874	157,874	157,874	158,649	159,931
8,000	165,374	165,374	165,374	165,374	165,374	165,374	165,374	165,374	165,849	166,908
8,300	172,874	172,874	172,874	172,874	172,874	172,874	172,874	172,874	173,049	174,108
8,600	180,374	180,374	180,374	180,374	180,374	180,374	180,374	180,374	180,374	181,308
8,900	187,874	187,874	187,874	187,874	187,874	187,874	187,874	187,874	187,874	188,508
9,200	195,374	195,374	195,374	195,374	195,374	195,374	195,374	195,374	195,374	195,708
9,500	202,874	202,874	202,874	202,874	202,874	202,874	202,874	202,874	202,874	202,908
9,800	210,374	210,374	210,374	210,374	210,374	210,374	210,374	210,374	210,374	210,374
10,100	217,874	217,874	217,874	217,874	217,874	217,874	217,874	217,874	217,874	217,874
10,400	225,374	225,374	225,374	225,374	225,374	225,374	225,374	225,374	225,374	225,374
10,700	232,874	232,874	232,874	232,874	232,874	232,874	232,874	232,874	232,874	232,874
11,000	240,374	240,374	240,374	240,374	240,374	240,374	240,374	240,374	240,374	240,374
11,300	247,874	247,874	247,874	247,874	247,874	247,874	247,874	247,874	247,874	247,874
11,600	255,374	255,374	255,374	255,374	255,374	255,374	255,374	255,374	255,374	255,374
11,900	262,874	262,874	262,874	262,874	262,874	262,874	262,874	262,874	262,874	262,874
12,200	270,374	270,374	270,374	270,374	270,374	270,374	270,374	270,374	270,374	270,374
12,500	277,874	277,874	277,874	277,874	277,874	277,874	277,874	277,874	277,874	277,874
12,800	285,374	285,374	285,374	285,374	285,374	285,374	285,374	285,374	285,374	285,374
13,100	292,874	292,874	292,874	292,874	292,874	292,874	292,874	292,874	292,874	292,874
13,400	300,374	300,374	300,374	300,374	300,374	300,374	300,374	300,374	300,374	300,374

*Numbers in white cells represent the sum (across all states) of the differences in emissions between the state-specific "alternative approach" variability values and the state-specific variability limit (in tons); the variability limit selected for each state is the larger of either the percentage limit or the tonnage limit.

** If the cell is grey, it means that there is a state or there are several states whose "alternative approach" level variability values exceed both the tonnage and percentage limits. The cell either lists the states that could exceed the limits, or lists the number of states.

*** If the cell is yellow, this is the combination tonnage and percentage limits that minimizes the sum of the differences between the state-specific "alternative approach" variability values and the state-specific variability limit (in tons).