Cover Sheet for Analytical Method

Pyriofenone in Soil - MRID 49256126

Posted July, 2017
This document is part of an analytical method validation report submitted by a pesticide registrant to support product registration. EPA makes no claim of validity by posting this method, but recognizes that it may be of some utility to state, tribal, and local authorities. Not all analytical methods submitted to EPA are independently validated or reviewed by EPA. Additional information and analytical method documents are available at: https://www.epa.gov/pesticide-analytical-methods/environmental-chemistry-methods-ecm.

2 PURPOSE

The purpose of the study was to validate a residus analytical method for the determination of IKF-309 in agricultural soil.

For IKF-309 in agricultural soil a limit of quantification (LOQ) of $0.001 \mathrm{mg} / \mathrm{kg}$ and a working range from $0.001 \mathrm{mg} / \mathrm{kg}$ to $0.300 \mathrm{mg} / \mathrm{kg}$ were successfully validated.

3 MATERIALS AND METHODS

3.1 TEST ITEM

3.1.1 IKF-309

The test item will be used as reference item (analytical standard) and was provided by the Sponsor. All information concerning the test item was provided by the Sponsor.

Product name:
Chemical name:

CAS registry no.:

Chemical structure:
IKF-309
(5-chloro-2-methoxy-4-methyl-3-pyridinyl)
(2,3,4-trimethoxy-6-methylphenyl)methanone (CA)
688046-61-9

Molectular formula:
Molecular mass:
Batch number:
Punty:
Expiry date:
Storage conditions:

0608
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{CINO}_{5}$
$365.8 \mathrm{~g} / \mathrm{mol}$
99.19\% (w/w)

September 21, 2008
Keep frozen (approximately $-20^{\circ} \mathrm{C}$)

3.2 TEST SYSTEMS

The test systems (four agricultural soils) were selected by the Sponsor in accordance with the quoted guidelines. The following agricultural soils were used:

Action	Agricultural soil from (location)	Country
Full validation	Worcester	United Kingdom
Cross validation	Muhlhouse	France
	Stolpe	Germany
	Asti	Italy

3.2.1 Sample preparation

The soil specimens were sieved through a 2 mm sieve and kept at approximately $-20^{\circ} \mathrm{C}$ (in a deep freezer).

The water content of each sample was determined prior to analysis. For this procedure, 10.0 g of the wet soil was weighed into a glass container and dried over night at approximately $100-120^{\circ} \mathrm{C}$ after which the soil sample was re-weighed and the soil moisture determined. The residues in treated samples were measured on dry soil weight basis. The calculation used for initial weight for analysis corresponding to 10 g dry weight is shown below:
$X=(a \times c) / b$
$x=$ weight of wet soil corresponding to 10 g dry soil
$\mathbf{a}=$ weight of dry soil for analysis (10 g)
b = weight of dry soil after drying
c = initial weight of wet soil for moisture determination (10 g)

3.2.2 Soil characteristics

The soil parameters were determined by AgroLab Swiss GmbH; Oberfeld 3;6037 Root, Switzerland.

Parameters	Worcester (United Kingdom)
pH-Value (CaCl 2)	6.57
Organic carton (\%)	1.90
Cation exchange capacity (mmoV/100 g soil)	22.63
Water Holding Capacity, pF 1.0 (\%)	55.65
Soil classification (USDA)	clay loam
$<2 \mu \mathrm{~m}(\%)$	34.17
$2 \mu \mathrm{~m}-50 \mu \mathrm{~m}(\%)$	31.08
$50 \mu \mathrm{~m}-2000 \mu \mathrm{~m}(\%)$	34.75

Parameters	Muhlhouse (France)
pH-Value $\left(\mathrm{CaCl}_{2}\right.$)	6.98
Organic carbon (\%)	1.66
Cation exchange capacity (mmol/100 g soil)	16.28
Water Holding Capacity, pF 1.0 (\%)	58.61
Soil classification (USDA)	silt loam
$<2 \mu \mathrm{~m}(\%)$	22.22
$2 \mu \mathrm{~m}-50 \mu \mathrm{~m}(\%)$	51.97
$50 \mu \mathrm{~m}-2000 \mu \mathrm{~m}(\%)$	25.81

Parameters	Asti (Italy)
pH-Value (CaCl 2)	7.39
Organic carbon (\%)	1.06
Cation exchange capacity (mmol/100 g soil)	15.15
Water Holding Capacity, pF 1.0 (\%)	67.84
Soil classification (USDA)	$10 a \mathrm{~m}$
$<2 \mu \mathrm{~m}(\%)$	24.98
$2 \mu \mathrm{~m}-50 \mu \mathrm{~m}(\%)$	47.25
$50 \mu \mathrm{~m}-2000 \mu \mathrm{~m}(\%)$	27.78

Determination of soil from Stolpe is still running

Parameters	Stolpe (Germany)
pH-Value (CaCl ${ }_{2}$)	5.00
Organic carbon (\%)	0.59
Cation exchange capacity (mmol/100 g soil)	5.12
Water Holding Capacity, pF 1.0 (\%)	30.75
Soil classification (USDA)	sand
$<2 \mu \mathrm{~m}(\%)$	3.78
$2 \mu \mathrm{~m}-50 \mu \mathrm{~m}(\%)$	4.14
$50 \mu \mathrm{~m}-2000 \mu \mathrm{~m}(\%)$	92.08

3.3 REAGENTS AND APPARATUS

All reagents were of analytical, residue analytical or HPLC grade.

REAGENTS \& APPARATUS	SUPPLIER	ARTICLE NO.
Acetonitrile	Baker	9017
Methanol	Baker	8402
Hydrochloric acid (32\%)	Baker	6070
Formic acid (98\%)	Baker	6037
Water (ELGA ultra purified)	RCC	
SPE Cartridge: Oasis HLB VAC RC (60 mg)	Waters	188000381
Volumetric pipettes	various sizes	
Measuring pipettes	various sizes	
Measuring cylinders	various sizes	
Volumetric flasks	various sizes	
Glass flasks with screw tops	various sizes	
Centrifuge tubes (50 mL , plastic)	Sarstedt	62.548.004
Test tubes	various sizes	
Beakers	various sizes	
SPE manifold	Waters	7208-00
Pasteur pipettes	Volac	various sizes
μ L-Pipettes	Gilson	various sizes
Syringes (2 mL)	Becton Dickinson	$\begin{aligned} & \text { BD Discardit } \\ & 300928 \end{aligned}$
$0.45 \mu \mathrm{mPTFE}$ filter	BGB	F 2504-2
HPLC vials (2 mL)	BGB	080401
Screw tops for HPLC vials	BGB	11030201
Centrifuge	Heraeus (Kendro)	Cryofuge 6000i
Laboratory shaker	B. Braun	Certomat U
Ultra sonic bath	Branson	2510
Analytical balance	Mettler	UMT-2
Laboratory balance	Satorius	L2200P
Oven (drying cupboard)	Memmert	

3.3.1 PREPARATIONS

Acetonitrile / water / hydrochloric acid $(800+200+5)$:
Acetonitrile (800 mL), ELGA water (200 mL) and hydrochloric acid (32%) were mixed.
Acetonitrile / water ($1+1$):
Acetonitrile (500 mL) and ELGA water (500 mL) were mixed.
HPLC wash solven 1 [water / methanol / formic acid ($80+20+0.5$)]:
ELGA water (80 mL), methanol (20 mL) and formic acid (0.5 mL) were mixed.
HPLC wash solvent 2 [water / acetonitrile / methanol ($10+45+45$)]:
ELGA water (10 mL), acetonitrile (45 mL) and methanol (45 mL) were mixed.
HPLC eluent A: [water / acetonitrile / formic acid (95+5+0.1)]:
ELGA water (950 mL), acetonitrile (50 mL) and formic acid (1 mL) were mixed.
HPLC eluent B: [water / acetonitrile / formic acid ($5+95+0.1$)]:
ELGA water (50 mL), acetonitrile (950 mL) and formic acid (1 mL) were mixed.

3.4 STANDARD SOLUTIONS

3.4.1 STOCK SOLUTION

The test item (13.51 mg of a 99.19% analytical standard) was weighed into a 20 mL sealable test tube. Acetonitrile (13.40 mL) was added and the mixture was treated for approximately 5 minutes in an ultra sonic bath to obtain a stock solution of $1000 \mu \mathrm{~g} / \mathrm{mL}$ IKF-309 (100\%).

The solution was kept at approximately $-20^{\circ} \mathrm{C}$ (in a deep freezer).

3.4.2 FORTIFICATION SOLUTIONS

A defined volume ($1000 \mu \mathrm{~L}$) of the stock solution of $1000 \mu \mathrm{~g} / \mathrm{mL} / \mathrm{KF}-309$ was diluted to 10 mL using acetonitrile to obtain a solution with a concentration of $100 \mu \mathrm{~g} / \mathrm{mL}$ IKF-309.

A defined volume ($1000 \mu \mathrm{~L}$) of the solution of $100 \mu \mathrm{~g} / \mathrm{mL}$ IKF-309 was diluted to 10 mL using acetonitrile to obtain a fortification solution with a concentration of $10 \mu \mathrm{~g} / \mathrm{mL}$ IKF-309.

A defined volume ($1000 \mu \mathrm{~L}$) of the fortification solution of $10 \mu \mathrm{~g} / \mathrm{mL}$ IKF- 309 was diluted to 10 mL . using acetonitrile to obtain a solution with a concentration of $1 \mu \mathrm{~g} / \mathrm{mL}$. IKF-309.

A defined volume ($1000 \mu \mathrm{~L}$) of the solution of $1 \mu \mathrm{~g} / \mathrm{mL}$ IKF-309 was diluted to 10 mL using acetonitrile to obtain a further fortification solution with a concentration of $0.1 \mu \mathrm{~g} / \mathrm{mL}$ IKF-309.

This solutions were kept at approximately $4^{\circ} \mathrm{C}$ (in a refrigerator).

3.4.3 CALIBRATION SOLUTIONS

For example:
A defined volume ($500 \mu \mathrm{~L}$) of the fortification solution of $0.1 \mu \mathrm{~g} / \mathrm{mL}$ IKF-309 was diluted to 10 mL using acetonitrile/ ELGA water (1+1) to obtain a calibration solution with a concentration of $5 \mathrm{ng} / \mathrm{mL}$ IKF-309.

A defined volume ($200 \mu \mathrm{~L}$) of the fortification solution of $0.1 \mu \mathrm{~g} / \mathrm{mL}$ IKF-309 was diluted to 10 mL using acetonitrile/ ELGA water (1+1) to obtain a calibration solution with a concentration of $2 \mathrm{ng} / \mathrm{mL}$ IKF-309.

A defined volume ($100 \mu \mathrm{~L}$) of the fortification solution of $0.1 \mu \mathrm{~g} / \mathrm{mL}$ IKF-309 was diluted to 10 mL using acetonitrile/ ELGA water (1+1) to obtain a calibration solution with a concentration of $1 \mathrm{ng} / \mathrm{mL}$ IKF-309.

A defined volume ($1000 \mu \mathrm{~L}$) of the callbration solution of $5 \mathrm{ng} / \mathrm{mL}$ IKF-309 was diluted to 10 mL using acetonitrile/ ELGA water (1+1) to obtain a calibration solution with a concentration of $0.5 \mathrm{ng} / \mathrm{mL}$ IKF-309.

A defined volume ($1000 \mu \mathrm{~L}$) of the calibration solution of $2 \mathrm{ng} / \mathrm{mL}$ IKF-309 was diluted to 10 mL using acetonitrile/ ELGA water (1+1) to obtain a calibration solution with a concentration of $0.2 \mathrm{ng} / \mathrm{mL}$ IKF-309.

A defined volume ($1000 \mu \mathrm{~L}$) of the calibration solution of $1 \mathrm{ng} / \mathrm{mL}$ IKF-309 was diluted to 10 mL using acetonitrilel ELGA water (1+1) to obtain a calibration solution with a concentration of $0.1 \mathrm{ng} / \mathrm{mL}$ IKF-309.

A defined volume ($1000 \mu \mathrm{~L}$) of the calibration solution of $0.5 \mathrm{ng} / \mathrm{mL}$ IKF-309 was diluted to 10 mL using acetonitrie/ ELGA water (1+1) to obtain a calibration solution with a concentration of $0.05 \mathrm{ng} / \mathrm{mL}$ IKF-309.

These solutions were kept at approximately $4^{\circ} \mathrm{C}$ (in a refrigerator).
Quantification was performed using a HPLC-MS/MS.
IKF-309 calibration standards were injected concurrently with IKF-309 specimen injections for the determination of the retention time and for preparing the standard calibration curve. Each analytical run was started and ended with a IKF-309 calibration standard injection. A maximum of two specimen injections were made between JKF-309 calibration standard injections.

3.5 FORTIFICATION

To demonstrate the validity of the method used, untreated specimens were fortified with different amounts of IKF-309.

Fortification levels for soil:

$0.001 \mathrm{mg} / \mathrm{kg}: \quad 100 \mu \mathrm{~L}$ of the fortification solution ($0.1 \mu \mathrm{~g} / \mathrm{mL}$.) were added to 10 g (dry mass) soil.
$0.300 \mathrm{mg} / \mathrm{kg}: \quad 300 \mu \mathrm{~L}$ of the fortification solution ($10 \mu \mathrm{~g} / \mathrm{mL} \mathrm{L}^{*}$) were added to 10 g (dry mass) soil.
*: $10 \mu \mathrm{~g} / \mathrm{mL}$ and $0.1 \mu \mathrm{~g} / \mathrm{mL}$ fortification solution dissolved in acetonitrile, see section 3.4.2.

3.6 ANALYTICAL METHOD

3.6.1 Extraction

Before the preparation of samples, the water content of the soils were determined as described in section 3.2.1. Ten gram dry weight equivalent of the untreated soil sample was weighed into a 50 mL centrifuge tube with screw top. The specimen was fortified at this stage of the procedure as described in section 3.5. A defined volume of acefonitrile / water / hydrochloric acid $(800+200+5)$ was added to the soil sample to give a extraction volume of 40 mL .

Agricultural soil from (location)	Weight of wet soil, corresponding to 10.0 g dry mass	Acetonitrile $/$ water / hydrochloric acid$800+200+5)$ added to a final volume of 40 mL Worcester, United Kingdom 12.25 g
Muhlhouse, France	11.88 g	37.75 mL
Stolpe, Germany	10.55 g	38.12 mL
Asti, Italy	10.85 g	39.45 mL

The specimer was shaken for approximately 30 minutes using a laboratory shaker at approximately 150 rpm . Afterwards the mixture was centrifuged for 10 minutes at 3000 rpm .

3.6.2 Sample clean up on SPE

A SPE cartridge (Oasis HLB VAC, 60 mg) was placed onto a SPE vacuum manifold and conditioned using methanol (5 mL) followed by ELGA water (5 mL). An aliquot of 4 mL of the clear extract from section 3.6 . (corresponding to 1.0 g dry soil) was transferred into a 50 mL centrifuge tube. ELGA water (20 mL) was added and the sample was mixed. The aqueous sample solution was transferred into the SPE cartridge and sucked through the column. After there, the cartridge was sucked to dryness for a few seconds. All elutes were discarded. IKF309 was eluted with acetonitrile (5 mL). The fraction was collected into a 10 mL volumetric flask and the cartridge was sucked to dryness for a few seconds. The volumetric flask was filled up to the mark with ELGA water and the sample was mixed.

3.6.3 PREPARATION FOR THE HPLC-MS/MS-ANALYSIS

An aliquot of the extract from section 3.6 .2 was filtered through a $0.45 \mu \mathrm{~m}$ PTFE filter into a 2 mL HPLC vial and capped immediately for injection. Soll samples, fortified with $0.3 \mathrm{mg} / \mathrm{kg}$ IKF-309 were 1+19 diluted with acetonitrile / ELGA water (1+1). The concentration of IKF-309 in soil specimen was determined after HPLC separation using a MS/MS detector.

3.7 HPLC-MS/MS CONDITIONS

3.7.1 Part A: HPLC

Instrumentation:

Autosampler:
Pumps:

CTC PAL
High pressure gradient system consisting of 2 Shimadzu LC-10AD pumps and a Shimadzu SCL System Controller

Injector Washing Procedure:
Wash Solvent 1: $\quad 80$ vol. water +20 vol, methanol +0.5 vol. formic acid
Wash Solvent 2: $\quad 10$ vol. water +45 vol, acetonitrile +45 vol. methanol
Wash Sequence: $1 \times$ pre clean with sample
$2 \times$ syringe and $2 \times$ injection port with each wash solvent
Injection Volume: $\quad 10 \mu \mathrm{~L}$ (typical value)
Mobile Phase:
Eluent A: $\quad 95$ vol. water +5 vol. acetonitrile +0.1 vol. formic acid
Eluent B: $\quad 5$ vol. water +95 vol. acetonitrile +0.1 vol. formic acid

Time [minutes]	0	2.0	2.5	2.6	4.0
$\mathrm{~A}[\%]$	50	0	0	50	50
$\mathrm{~B}[\%]$	50	100	100	50	50
Flow $[\mathrm{L} /$ /minutes $]$	300	300	300	300	300

Column:

Stationary Phase: GL. Sciences; Inertsil ODS-3; Particie size: $3 \mu \mathrm{~m}$

Dimension:
Backpressure:
$2.1 \mathrm{~mm} \times 50 \mathrm{~mm}$ approximately 70 bar at $t=0$ minutes

Flow split to MS:
no
Divert Vsive setting: LC-flow to MS: Back-up flow:
1.7 minutes - 3.1 minutes $50 \mu \mathrm{~L} /$ minute of Eluent B

Retention Time (typical value):

IKF-309: 2.3 minutes

3.7.2 Part B: API-MS/MS

Instrumentation:

Mass spectrometer: API 4000; triple stage quadrupole mass spectrometer MDS Sciex, Toronto, Canada;
Ionization mode: Pneumatically and thermally assisted electrospray iontzation (ESI) Ion Source: Sciex Tubo-V-Source
Gases: \quad Nebulizer Gas ('Gas1'): Air; Heater Gas ('Gas2'): Air; Curtain Gas: Nitrogen; Collision Gas: Nitrogen
Software: Analyst (Applied Biosystems/MDS Sciex)
MS Parameters:
Ion Source: \quad Heater Gas Temperature: $550^{\circ} \mathrm{C}$; Spray Voltage: 3500 V , Interface heater: on
Sprayer position: Vertical: 2.3 mm , Lateral/Right: 7.8 mm
Gas flow settings: Gas 1: 20, Gas2: 25; CUR: 25; CAD: 6 (settings in arb. units)
Scan Mode: Multiple Reaction Monitoring (MRM)
Mass Resolution: Q1: unit resolution; Q3: unit resolution
lon energies: $\quad \operatorname{IE} 1=1.0 \mathrm{eV} ; \mathrm{IE} 3=-0.5 \mathrm{eV}$
Multiplier settings: DF: $-100 \mathrm{~V}, \mathrm{CEM}: 2000 \mathrm{~V}$
Primary method:

Analyte	Ion Polarity	Precursor ton	Product Ion	Collision. Energie (eV)	Dwell Time (ms)
$\mathrm{IKF}-309$	pos. $\{\mathrm{M}+\mathrm{H}]^{\dagger}$	$m / 2366.0$	$\mathrm{~m} / \mathrm{z} 184.3$	32	200

Confirmatory method:

Analyte	Ion Polarity	Precursor Ion	Product Ion	Collision. Energie (eV)	Dwell IIme (ms)
$\mathrm{IKF}-309$	pos. $[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{m} / \mathrm{z} 366.0$	mz 209.3	37	200

Ion Path Parameters:

Analyte	DP (V)	EP(V)	IQ1(V)	ST(V)	IQ2(V)	CXP (V)
IKF-309	75	10	-11	-17	-20	17

Abbraviatons: NEB; nebulizer gas; CUR: curtain gas; CAD; collision gas; DP; declusterng potentia; FP: focusing potental; EP; entrance potential; IQ1: focusing (interquadrupal) lens; ST: prefiler (stubbies); CXP: collision cell exit potential; CE: collision energy, IE1: ion energy at Q1; IE3: ion energy at Q3; DF; deflector potential; CEM: electron multiplier voltage

3.8 EVALUATION OF RESULTS

3.8.1 Concentration of residues

Injected specimens were quantified by peak area with reference to the calibration curve. The latter was obtained by correlation of the peak area of the analytical standards with their corresponding concentration in ng/mL. The calibration was performed using standards in the range of $0.05-5.0 \mathrm{ng} / \mathrm{mL}$ (corresponding to $0.5 \mu \mathrm{~g} / \mathrm{kg}-50.0 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{KF}-309$ in a 10 g soil sample).

The correlation was performed using a least squares fit of a linear function (equation 1).
\quad Regression Model: $y=a+b$
$w h e r e$
$y=$ Peak area of injected specimen [counts]
$x \quad=$ IKF-309 in injected specimen [ng/mL]
$a \quad=$ y-axis intercept
$b=$ Slope

The residue of $I \mathrm{KF}$-309 in the specimen is calculated according to equation 2.

$$
\begin{equation*}
R=\frac{X \cdot V_{F} \cdot D}{W \cdot 1000} \tag{2}
\end{equation*}
$$

where
$R \quad=$ Residue of IKF-309 in specimen material [mg/kg]
$X=$ Concentration of injected specimen $[\mathrm{ng} / \mathrm{mL}]$ calculated from equation 1
$V_{F}=$ Final volume [10 mL]
D = Dilution Factor [if applicable]
$\mathrm{W}=$ Aliquot of specimen [1.0 g (dry mass)]
$1000=$ Conversion factor from ng to $\mu \mathrm{g}$

The recovery of IKF-309 in the specimen is calculated according to equation 3.
$\operatorname{Rec}=\frac{R \cdot 100}{F}$
where
Rec $=$ Recovery of IKF-309 [\%]
$R \quad=$ Residue of $1 \mathrm{KF}-309$ in specimen material [mg/kg]
$F=$ Fortification level [mg/kg]

