

Reducing Methane Emissions from Underground Natural Gas Storage Operations

Gazprom – EPA Technical Seminar on Methane Emission Mitigation

28 – 30 October, 2008

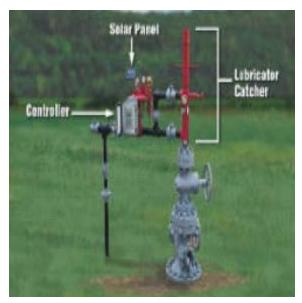
Reducing Methane Emissions from Underground Storage: Agenda

- Methane Losses from Underground Storage
 - Fugitive Emissions
 - Vented Emissions
- Methane Emission Mitigation Options
- Discussion

Overview: Methane Emissions from Underground Storage

- Based on Natural Gas STAR experience, underground storage is not a major source of methane emissions compared to emissions from natural gas transmission pipelines and compressor stations.
 - Based on Partner experience, the majority of emissions from underground storage facilities are primarily from equipment leaks
- The information presented here is based on analogues and some company experiences

Natural Gas Storage Emissions and Reduction Opportunities


- 70% of methane emissions from U.S. underground natural gas storage operations are estimated to come from fugitives
 - Primarily from compressor related components
 - Few Natural Gas STAR Partners have reported comprehensive emission reduction projects at storage facilities alone
 - Storage facilities are sometimes screened under larger directed inspection and maintenance programs
- Operation of Russian underground storage facilities may favor different emission reduction opportunities than at U.S. facilities
 - Evaluate many opportunities to determine which are most cost-effective at your facility

Methane Emissions from Underground Storage: Fugitives

- Fugitive emissions sources include:
 - Unintentional leaks caused by mechanical and thermal stresses in piping, valves, compressor seals, flanges, fittings, and other components
 - Methane leakage from improperly plugged and abandoned wells (and to a lesser extent from the geologic formation due to over-pressurizing)

Source: Weatherford

Methane Emissions from Underground Storage: Venting

- Natural gas storage facilities have both continuous and intermittent venting sources.
 - Vents from pneumatic devices
 - compressor startup
 - compressor shutdown
 - gas dehydration
 - condensate storage tank venting
 - equipment depressurization

Underground Storage: Opportunities to Reduce Fugitives

- Increase deliveries and recover methane losses by
 - Performing periodic leak inspection and repair work
 - Compressor components and wellhead components
 - Reduce emissions from compressor seals
 - Selecting reservoirs best suited for natural gas storage and ensure proper well construction

Source: Chevron

Operate existing storage wells below fracture pressure;
 verify proper shutdown and abandonment of old wells

Underground Storage: Opportunities to Reduce Venting

- Using work practices and new equipment types to minimize venting
 - Low bleed pneumatic devices
 - Capture gas from offline compressors
- Replace
 bi-directional
 orifice meters with
 ultrasonic meters

Glycol Dehydrator Unit Source: GasTech

Replace Bi-Directional Orifice Meters with Ultrasonic Flow Meters

- What is the problem?
 - Removing the orifice for inspection requires the meter run to be closed and vented to the atmosphere
- Partner solution
 - Replace orifice meters with ultrasonic meters to reduce methane emissions and operating and maintenance costs
- Methane savings
 - Based on reports from US transmission and storage companies
- Applicability
 - Applies to all flow measurements, but particularly for bi-direction flow metering

Methane Savings

570 m³/year

Project Economics

Project Cost	> \$10,000
Annual O&M Costs	< \$100
Payback	1 – 3 years

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits