

Revising Start/Soak Relationships for Light-Duty Gaseous Emissions

James Warila, Carl Fulper, Erin

McCurry

June 7, 2017

MOVES Review Work Group #4 Meeting

Outline

- Intro: how MOVES currently does starts
 - Define "soak"
 - Defined in terms of Federal Test Procedure
 - "Cold start" "Hot start" i.e., "Bag 1 Bag 3"
 - Define operating modes for starts
- Goal: update start/soak curves
 - Using PEMS
 - How to estimate "start" using PEMS
- Test Program
 - Design, execution
- Results
 - Catalyst, coolant temperatures, emissions
 - Development of revised curves

Intro: Emission processes

"Running emissions"

- a.k.a., "Hot-running emissions," "Hot-stabilized emissions"
- Emissions occurring while:
 - the engine is at operating temperature,
 - with the emissions-control system operating
- Expressed as mass rate (g/hr)
- Operating modes defined in terms of:
 - Speed, acceleration, power

"Start emissions"

- "Excess" Emissions occurring
 - During a "brief" period following engine start
 - At warm ambient temperature (> 65F)
 - While engine temperature is between ambient and operating temperatures
- Expressed as mass (g/start)
- Operating modes defined in terms of time since key-off,
 - i.e., "soak time"

How MOVES estimates LD start emissions

- Based on Federal Test Procedure
 - "Bag 1" Phase 1 (505 sec), following 12-hour soak
 - "Bag 2" Phase 2 (864 Sec), immediately
 - "Bag 3" Phase 1 (505 sec), following 10-min soak
- "Cold start" defined as
 - Bag 1 Bag 3
- "Warm" and "hot" starts defined in relation to cold starts
- Operating modes defined as soak periods
 - Using "soak curves"
 - Sets of ratios that modify "cold start"

Operating Modes for Start Emissions

OpmodeID Code	Operating Mode Description Soak Time < 6 minutes		
101			
102	6 minutes ≤ Soak Time < 30 minutes		
103	30 minutes ≤ Soak Time < 60 minutes		
104	60 minutes ≤ Soak Time < 90 minutes		
105	90 minutes ≤ Soak Time < 120 minutes		
106	120 minutes ≤ Soak Time < 360 minutes		
107	360 minutes ≤ Soak Time < 720 minutes		
108	720 minutes ≤ Soak Time		

Soak Curves used to develop MOVES rates

Fractions for each operating mode were adapted from a piecewise regression for "conventional catalysts," used in MOBILE6. The regression equation was evaluated at the center-point of each operating mode.

Source: Sabate, S. *Methodology for Calculating and Redefining Cold and Hot Start Emissions*. California Air Resources Board, El Monte, CA. March 1996. *Cited IN*: Glover, E.; Carey, P. *Determination of Start Emissions as a Function of Mileage and Soak time for 1981-1993 Model-year Light-Duty Vehicles*. EPA 420-R-01-058. November, 2001.

The Test Program

- Goal: update soak curves in MOVES
 - For Tier-2 vehicles
- Method: using portable emissions measurement systems (PEMS)
 - With multiple drives on same route
 - Starting and ending at the EPA Ann Arbor laboratory
 - Instrument: Sensors SEMTECH-D
- Emissions
 - HC, CO, NOx
- All measurements at "warm ambient" temperature
 T > 60°F

The Vehicles

Model Year	Make	Model	Displacement	Standard
2009	Saturn	Outlook	3.6 L	Bin 5 (ULEV)
2009	Toyota	Camry	2.4 L	Bin 5 (ULEV)
2009	Ford	Explorer	4.0 L	Bin 4
2011	Ford	F150	3.5 L	Bin 4

The Route Starting and ending at Lab

Procedure and Drive sequence

- Soak indoors at ambient temperature
 - For periods of time equal to MOVES soak operating modes
- Install, warm up instrument
- Key on
- Idle for about 10-30 sec
- Leave laboratory building
- Drive the route
- Repeat

Results

- Verify appropriateness of drive route
 - Ensuring complete start period is captured
 - Catalyst temperature
 - Oil temperature
 - Cumulative emissions
- Emissions results
 - Cumulative trends
 - Averaged by soak period
 - By vehicle
 - Across vehicles

Catalyst Temperature: 2009 Toyota Camry

Catalyst Temperature: 2009 Ford Explorer

Toyota Camry: Coolant Temperature

Ford Explorer: Coolant Temperature

Saturn Outlook: Cumulative HC Emissions

Saturn Outlook: Cumulative NOx Emissions

Saturn Outlook: Cumulative CO Emissions

Developing soak curves

- Average results, by vehicle
 - Within MOVES soak periods
 - Subtract 3-min soak values from all others
 - Analog to subtracting "hot-start" from "cold-start"
- Average across vehicles
 - By MOVES soak period
 - As emissions
- Normalize to cold start
 - Interpolate 3-min soak
 - Interpolate 540 min soak
 - Measuring 9-hour soak not feasible
- Show application to emission rates
 - For cars

THC: Soak Curves by vehicle

THC: Proposed Soak Curve

California Air Resources Board: Update to EMFAC2017

STATES STATES

Source: Kamboures, M.A.; Hancock, B.; Pournazeri, S.; Long, J. *In-Use Emissions from LEVII Certified Vehicles*. California Air Resources Board. Presented at: 27th Real World Emissions Workshop, Long Beach, CA. March 29, 2017.

NOx: Soak Curves by Vehicle

NOx: Proposed Curve

California Air Resources Board: Update to EMFAC2017

Source: Kamboures, M.A.; Hancock, B.; Pournazeri, S.; Long, J. *In-Use Emissions from LEVII Certified Vehicles*. California Air Resources Board. Presented at: 27th Real World Emissions Workshop, Long Beach, CA. March 29, 2017.

CO: Soak Curves by vehicle

CO: Proposed Soak Curve

Summary and Conclusions

- Practical to measure start emissions using PEMS
 - Can emulate "FTP-based" approach
- Start/soak relationships differ from older results
 - Corroborated by other findings
 - HC, NOx, emissions highest at shorter soak periods
 - Catalyst quick warm-up strategies not operative
- We propose to update MOVES rates
 - For model years 2004 and later
 - Using revised soak curves
 - For HC, CO, NOx
 - Use HC curve for Particulate matter (PM) rates
 - For "warm" to "hot" starts only (opmodes 101-107)
 - NOT updating Cold-start rates themselves (opmode 108)
 - Still based on FTP

