

Heavy-Duty Start Emission Rates

<u>Angela Cullen</u>, Carl Fulper, Connie Hart, Erin McCurry, James Warila 06/07/2017

MOVES Review Work Group #4 Meeting

Background & Objectives

<u>Background</u>: MOVES includes start emissions for heavy-duty vehicles. The emission rate varies by the amount of soak time preceding the start.

<u>Objectives</u>: Focus on MY 2010 and newer heavy-duty diesel and gasoline vehicles

- 1. Update the cold start emissions (>720 minute soak time)
- Update start emissions for starts with soak times ranging between 3 minutes and >720 minutes (MOVES OpModes 101-108)

COLD START EMISSIONS UPDATE

MOVES2014 Background HD Diesel

- HD cold start emissions are modeled in MOVES as grams of emission per start for HC, CO, NOx, and PM
- The cold start rates in MOVES2014 are based on the following data:
 - LHDD: <u>21</u> MY 1988-2000 LHD diesel vehicles on the Federal Test Procedure (FTP)
 - MHDD/HHDD: <u>One</u> MY 2007 MHDD and PEMS testing of 24 idling trucks.
 - Mixed results for NOx, led to determination of zero NOx emissions for cold starts. The HC and CO emissions are a result of the <u>single</u> MHDD engine tested.
 - The PM emissions for MY 2007 and later were projected based on a 90 percent reduction to account for the 2007 HD PM standards and application of diesel particulate filters.
- No differentiation by MY, except for PM for post-2007.

MOVES2014 Background HD Gasoline

- The LHD rates in MOVES2014 are based on a number of pickup trucks tested over the FTP to determine cold start emission rates (see table below)
 - Projected HC and NOx values for 2005-07 and 2008-17 MY groups based on ratio of standards.
 - Incorporated Tier 3 standards for CO, HC, and NOx
- LHD45, MHD, and HHD Gasoline HC, CO, and NOx rates were projected based on ratio of HD engine standards to HD vehicle standards

Model-year Group	Age Group (Years)				Total	
	0-3	4-5	6-7	8-9	10-14	
1960-1989				19	22	41
1990			1	29		30
1991-1997	73	59	32	4		168
1998-2004	8					8
Total	81	59	33	52	22	247

New Data

- Analyzed MY 2015-2017 HD engine data from EPA's Compliance Division
 - We began collecting separate cold and hot results starting with 2015 MY
- Removed data under the following conditions:
 - Duplicate entries of engines
 - One HD gasoline family had the same emission levels for hot and cold for all emissions. Concluded this was a data entry error into VERIFY.
- The number of unique engines analyzed for each category is shown below -

Category	Number of Engines	Manufacturers
HD Gas	3	Ford, GM, Powertrain Integration
LHDD	5	Ford, FPT, Hino, Isuzu
MHDD	6	Ford, Hino, Cummins, Detroit Diesel
HHDD	11	Cummins, Hino, PACCAR, Volvo, Detroit Diesel

Calculations of Cold Start Emissions

- For each engine, the cold start emissions are determined by the difference between the emissions from a FTP with a cold start and a FTP with a warm start .
- Because the FTP measurements are in grams per horsepower-hour, a FTP cycle work conversion is required.

Grams per start

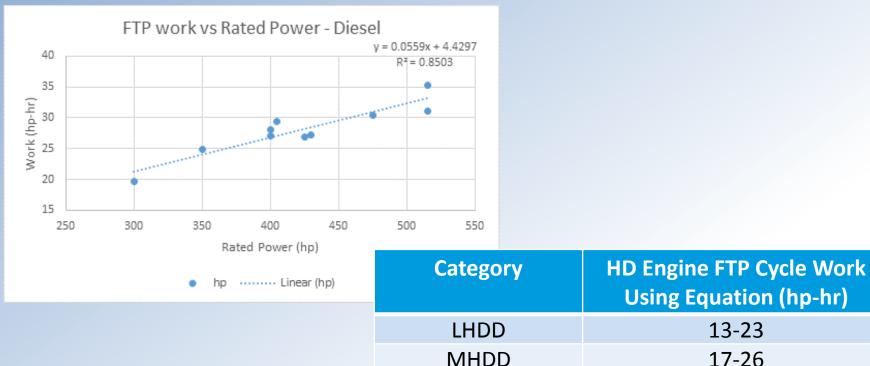
= [Cold FTP Emission Results (g/hp-hr)

- Hot FTP Emission Results (g/hp-hr)] *

* FTP Cycle Work (hp-hr)

FTP Cycle Work Determination

- Background: The amount of work (hp-hr) performed over the engine FTP cycle is unique to each engine and is not supplied with the certification data. Therefore, we needed to determine a surrogate that is included in the certification data.
- To determine the FTP cycle work, we gathered test results that included cycle work and the engine's rated power data


Engine	MY	Lab	Rated power [hp]	FTP cycle work [hp-hr]
Cummins ISB	2010	NVFEL	300	19.67
Volvo D13	2012		405	29.38
Volvo D13	2012		515	35.36
Cummins ISX	2012		400	28.01
DDC S60	2004		515	31.06
Caterpillar 3406E	1996		475	30.37
DDC S60	1994		430	27.26
Mack E7-400	1995	WVU	400	27
Cummins M11-350E+	1997		350	24.94
Volvo VE D12B	1998		425	26.9

HD Diesel Engine FTP Cycle Work Determination

Evaluated FTP cycle work in relation to the Rated Power FTP Cycle Work (hp-hr) = 0.0559 * Rated Power (hp) + 4.4297

HHDD

17-26	
18-38	
	FILING ALL PROTECTION

13-23

HD Gasoline Engine FTP Cycle Work Determination

- The HD Gasoline FTP cycle is different than the HD Diesel FTP cycle
- Only one set of gasoline engine data included cycle work, so we are using this value to represent all three HD gasoline engines

Engine	2	MY	Lab	Rated power [hp]	FTP cycle work [hp-hr]
Ford V	10 Gas	2010+	SwRI	286	19.32
	Categor	' y	HD Engine FTP Cy Work (hp-hr)		
	HD Gasol	ine		19.3	

Cold Start Results HHDD

Grams/Start	HC (NMHC+CH4)	СО	ΝΟΧ	ΡΜ
MOVES2014	0.0	16.0	0.0	0.011
New Analysis - Mean	0.08	6.6	8.4	0.013
New Analysis – StdDev	0.1	5.6	1.7	0.029

Regulatory Class 48 for MY 2010 and newer. No differentiation by Age.

Cold Start Results MHDD

Grams/Start	HC (NMHC+CH4)	СО	ΝΟΧ	ΡΜ
MOVES2014	0.0	16.0	0.0	0.011
New Analysis - Mean	0.20	2.5	6.4	0.008
New Analysis – StdDev	0.2	2.7	1.8	0.017

Regulatory Class 46 and 47 for MY 2010 and newer. No differentiation by Age.

Cold Start Results LHDD

Grams/Start	HC (NMHC+CH4)	СО	ΝΟΧ	РМ
MOVES2014	0.13	1.38	1.68	0.01099
New Analysis - Mean	0.005	2.47	6.77	0.00
New Analysis – StdDev	0.11	2.61	2.24	0.01

Regulatory Class 40, 41, 42 for MY 2010 and newer. No differentiation by Age.

Cold Start Results HD Gasoline

Grams/Start	HC (NMHC+CH4)	СО	ΝΟΧ	РМ
MOVES2014	1.4	260	0.21	0.012
New Analysis - Mean	5.57	31.5	1.88	0.084
New Analysis – StdDev	0.6	6.36	1.04	0.049

Regulatory Class LHD45 for MY 2010 and newer 0-3 Year Age results

SOAK TIME IMPACT ON START EMISSIONS UPDATE

Background

HD soak time impacts in MOVES2014 based on LD soak period effects

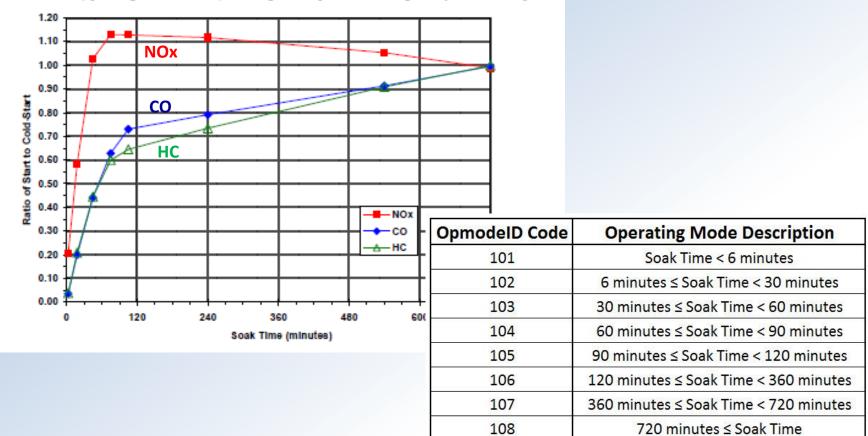
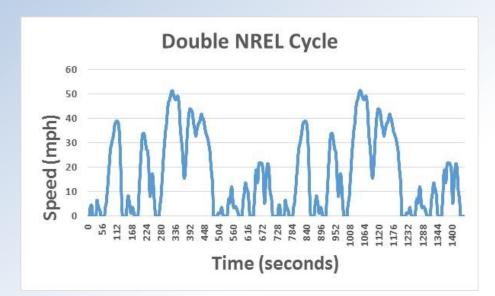
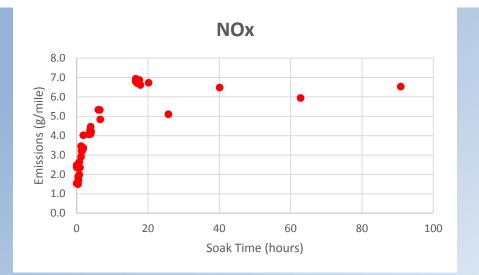


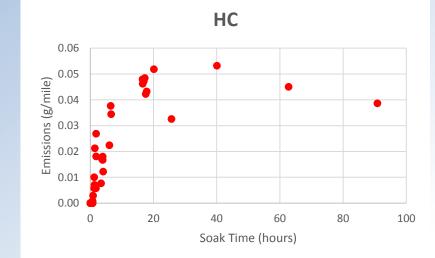
Figure 2-36. Soak Fractions Applied to Cold-Start Emissions (opModeID = 108) to Estimate Emissions for shorter Soak Periods (operating modes 101-107). This Figure is reproduced the Light-duty emissions Report*

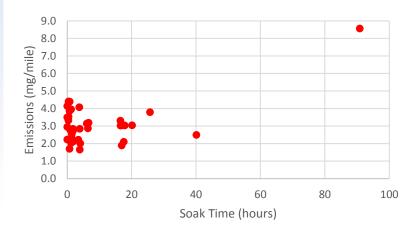

New HD Soak Curve Testing

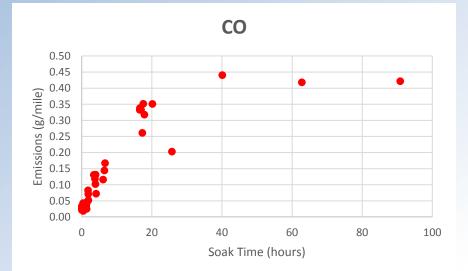
- Conducted two sets of new testing
 - Chassis Tests on 2015 MY Class 8 Diesel Day Cab
 - PEMS On-road Tests on MD Gasoline Truck and MD Diesel Truck

HD Chassis Testing


- Vehicle: 2015 MY day cab tractor
- Engine: 2015 MY diesel engine
- Odometer: 10,000 miles
- Cycle: NREL Transient Cycle (2x)
- Measurements:
 - Gaseous using bag and raw modal: THC, NMHC, CO, NOx
 - PM filters with triplicate weights
- Dyno inertia: 60,000 lb

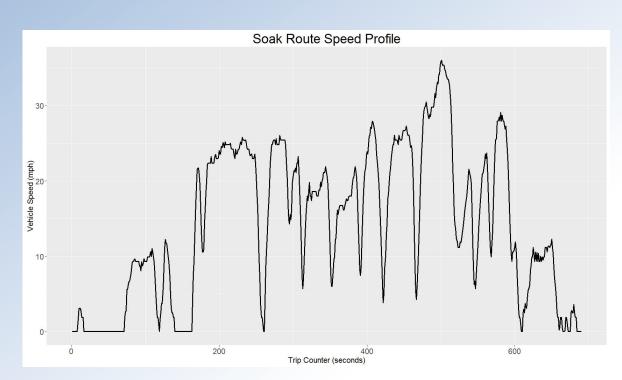



Chassis Test Results

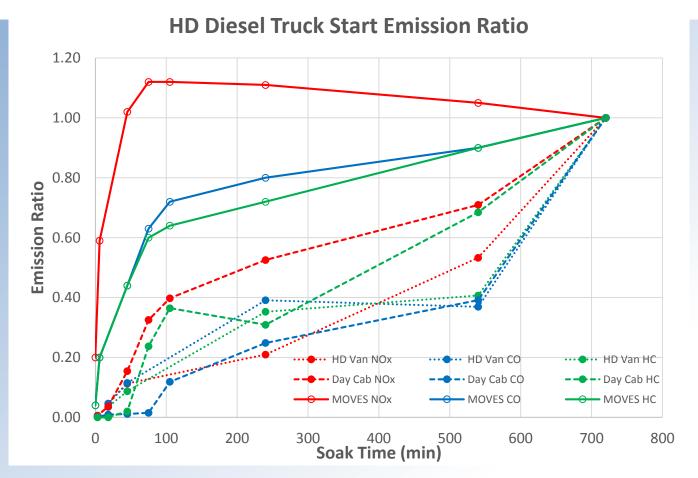

Emissions vs. Soak Time

PM

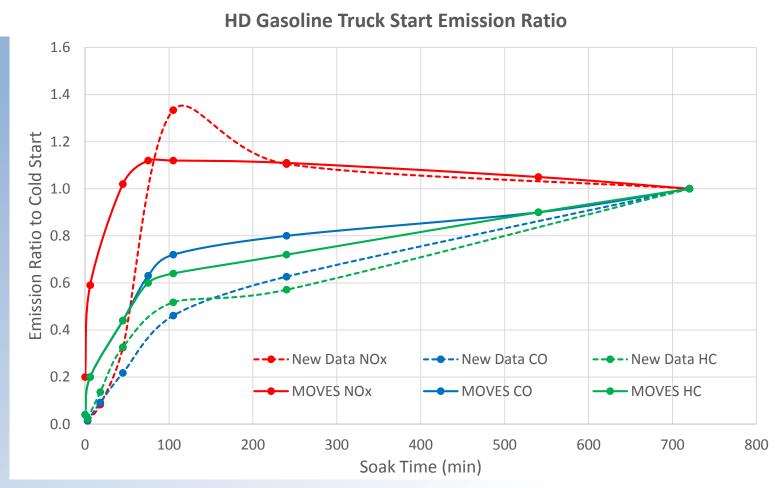
PEMS Testing


• Vehicles

- 2012 MY box truck with gasoline engine
- 2016 MY work van with diesel engine
- Test Cycle and Conditions
 - Vehicles soaked and started inside the laboratory for controlled temperature
 - Ambient temperatures > 50° F
 - 10 seconds of idle followed by soak route (see next slide)
- Replicates
 - 2-5 replicates for each soak period for each vehicle


PEMS Test Route

- Same route used for the LD soak work
- 2.7 miles
- 700 seconds
- City driving around our laboratory


HD Diesel Soak Curve

The HD diesel trucks show different trends than the ratios currently in MOVES2014, so propose to revise ratios in MOVES based on the average of the two vehicles

HD Gasoline Soak Curve

The MD gasoline truck shows similar trends as the soak ratios currently in MOVES, so propose to continue to use the existing ratios in MOVES

Summary

- Propose to update the following start emission rates:
 - MY 2010 and newer Heavy-Duty Diesel based on new 12hour soak emission rate and new soak curve
 - MY 2010 and newer Heavy-Duty Gasoline based on new cold start 12-hour soak emission rate and using the current light-duty gasoline soak curve

