

Updates to Total Organic Gases (TOG) Calculations in MOVES

Darrell Sonntag (EPA) and Claudia Toro (ORISE Participant*) MOVES Review Work Group June 7, 2017

> *This work was supported by an interagency agreement between EPA and DOE

Total Organic Gases in MOVES

- TOG = hydrocarbons plus oxygenated hydrocarbons (e.g. aldehydes, alcohols)
- MOVES2014 used Total Hydrocarbon (THC) emission rates to estimate all other organic gas aggregates (NMHC, VOC, NMOG, TOG) through a series of calculations

NMHC: Non-Methane Hydrocarbons NMOG: Non-Methane Organic Gases VOC: Volatile Organic Compounds CH₄: Methane

Calculating CH₄ and NMHC

In MOVES, methane is calculated as a fraction of THC

$$NMHC = THC \times \left[1 - \frac{CH_4}{THC}\right]$$
$$CH_4 = THC \times \frac{CH_4}{THC}$$

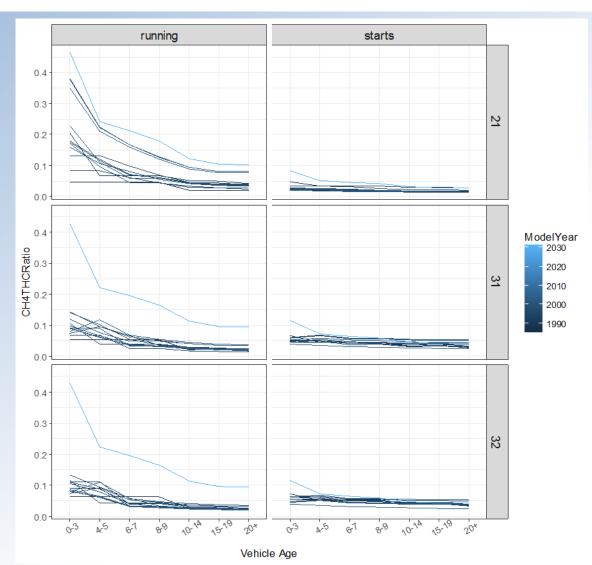
Calculating NMOG and VOC

 In MOVES 2014, NMOG and VOC are calculated using conversion factors referred to as *speciationConstant*

$$NMOG = NMHC \times \frac{NMOG}{NMHC} + \sum_{i=1}^{4} (A_i \times B_i \times C_i)$$
$$VOC = NMHC \times \frac{VOC}{NMHC} + \sum_{i=1}^{4} (A_i \times B_i \times C_i)$$

Where:

- A = oxySpeciation
- B = oxyMassFraction


C = oxyVolume

i = gasoline oxygenates (ethanol, MTBE, ETBE, TAME)

Motivation for updating CH₄/THC

- CH₄/THC ratios in MOVES2014 are based on a CH₄ emission rate for running and a CH₄ rate for starts
 - Based on emission test results¹
- Data available for THC emission rates varied with opModes and age among other factors
- Data for CH₄ emission rates <u>did</u> <u>not</u> vary with opModes or age, resulting in decreases in CH₄/THC ratios with age
- For next public release, we want a simpler, more transparent derivation of CH₄/THC ratios consistent with other TOG calculations

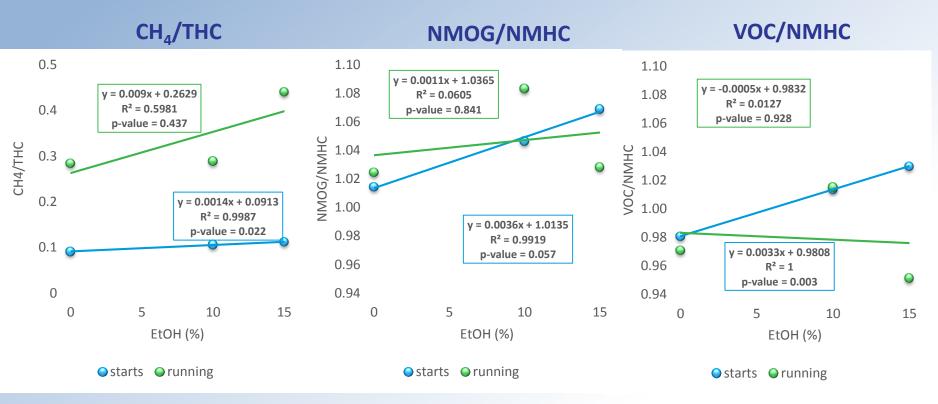
¹ From FTP emission results and other supplemental information as described in EPA-420-R-15-003

Note: Plot only shows LD for illustrative purposes but the age trend applies to all sourcetypes

Proposed updates to CH₄/THC: Data

- For the next MOVES release, we suggest to calculate CH₄/THC ratios based on each SPECIATE* profile used in MOVES
 - SPECIATE profiles used in MOVES cover all sourcetypes and processes
 - Further detail on specific code changes provided in the appendix
- For Tier 2 vehicles running on low-level ethanol blends, we propose to include CH₄/THC ratios for cold-starts and running emissions based on bag-specific data from EPAct Phase I
- For CNG exhaust, we are considering the use of ARB measurements not currently included in the SPECIATE database

Proposed updates to speciationConstant parameters


 For the next MOVES release, we suggest calculating NMOG/NMHC and VOC/NMHC ratios based on each SPECIATE profile used in MOVES

 For Tier 2 vehicles running on low-level ethanol blends, we propose to include NMOG/NMHC and VOC/NMHC ratios for coldstarts and running emissions based on bagspecific data from EPAct Phase I

Analysis of EPAct Phase I data for Tier 2 vehicles

• Each point corresponds to the ratio of means for all tests considered at each ethanol level:

 The linear fit model suggests that the relationship with ethanol composition is statistically significant for starts but not for running emissions

Analysis of EPAct Phase I data for Tier 2 vehicles (cont'd)

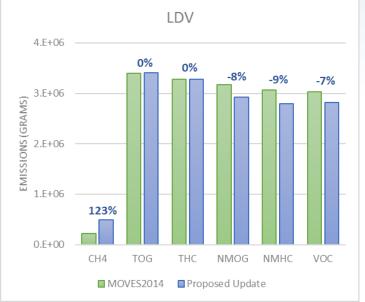
 For Tier 2 vehicles, we propose the use of CH₄/THC, NMOG/NMHC and VOC/NMHC that vary with ethanol levels (0-15%) for starts while using a constant ratio for the running emission process.

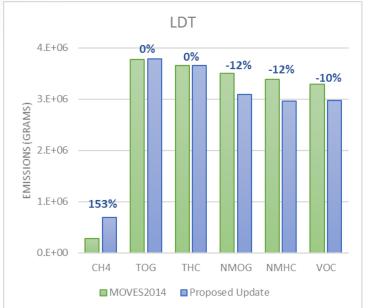
Ethanol (%)	CH ₄ /THC		NMOG	G/NMHC	VOC/NMHC		
	starts	running	starts	running	starts	running	
0	0.091	0.338	1.014	1.038	0.981	0.974	
5	0.098	0.338	1.031	1.038	0.997	0.974	
8	0.102	0.338	1.042	1.038	1.007	0.974	
10	0.105	0.338	1.046	1.038	1.014	0.974	
15	0.112	0.338	1.069	1.038	1.030	0.974	

*A table relating the new proposed ratios with MOVES parameters and SPECIATE profiles is presented in the appendix.

Implications to NMOG and VOC calculations

- New methodology does not allow the determination of parameters used to correct for oxygenated volume of fuel.
- However, these adjustments have become less relevant as MTBE, ETBE and TAME are removed from the market, supporting the idea of eliminating these adjustments from the algorithm.


$$NMOG = NMHC \times \frac{NMOG}{NMHC} + \sum_{i=1}^{4} (A_i \times B_i \times C_i)$$
$$VOC = NMHC \times \frac{VOC}{NMHC} + \sum_{i=1}^{4} (A_i \times B_i \times C_i)$$


MOVES includes profiles for fuel subtypes E0, E5, E8, etc.
 Thus, ethanol impacts could still be included.

Impact on the Inventory*

- Case Study:
 - New Mexico, July 2015
 - LDV, LDT only
 - Fuel sales set to 100% E10
 - Modified CH₄/THC and speciationConstants for Tier
 2 vehicles running on E10
 - Results shown for MY >2000
- Large increase in CH₄ emissions
 - For New Mexico, this would represent increasing CH₄ share of GHG emissions from 0.005% to 0.015% for the onroad non-diesel light-duty sector (2014 NEI)
- Overall, changes result in a decrease in emissions of NMOG, NMHC and VOC of ~10%
- TOG change is negligible (TOG = NMOG + CH₄). Decrease in NMOG is offset by increase in CH₄

*A full assessment will be performed when the new code is delivered.

Summary

- For the next MOVES release, we propose to update CH₄/THC ratio to be consistent with other TOG calculations and data
- We propose to remove the age effect which is expected to significantly increase the methane from gasoline vehicles
- Overall, it is expected that updates in speciationConstant parameters will result in negligible changes of TOG emissions

CH₄/THC and speciationConstant parameters for SPECIATE profiles

Profile number	Profile description	Emission Process	Fuel Subtype	Affected vehicles	CH₄/THC	NMOG/NMHC	VOC/NMHC
4547	Diesel headspace	Evaporative Permeation	Diesel, biodiesel	All diesel	0	1	1
8750a	Pre-Tier 2 E0 exhaust	Running, starts exhaust and crankcase Gasoline		Pre-2001 LD gas All MC and non-LD gas	0.142	1.024	0.996
8751a	Pre-Tier 2 E10 exhaust	Running, starts exhaust and crankcase.	exhaust and RFG, E10, E8, E5 All MC		0.146	1.037	1.008
8753	E0 Evap	Evaporative (vapors, leaks), refueling spillage	Conventional Gasoline	All gas	0	1	1
8754	E10 Evap	Evaporative (vapors, leaks), refueling spillage	E10, E8, E5	All gas	0	1.071	1.071
8766	E0 Evap perm	Evaporative Permeation	Conventional Gasoline	All gas	0	1	1
8769	E10 Evap perm	Evaporative Permeation	E10, E8, E5	All gas	0	1.129	1.129
8770	E15 Evap perm	Evaporative Permeation	E15, E20	All gas	0	1.175	1.175
	Pre-2007	Running, starts, extended idle exhaust and crankcase.		Pre-2007 diesel			
8774	MY HDD	APU	Diesel, biodiesel	Pre-2024 APU	0	1.145	1.124
	exhaust	Running, starts exhaust and crankcase.		Pre-2007 LD diesel			

14

CH₄/THC and speciationConstant parameters for SPECIATE profiles (cont'd)

Profile number	Profile description	Emission Process	Fuel Subtype	Affected vehicles	CH₄/THC	NMOG/NMHC	VOC/NMHC
2007-2009		Running, starts exhaust and crankcase.		2007+ LD diesel			
8775	HDD	APU	Diesel, biodiesel	2024+ APU	0.589	1.343	1.285
	exhaust	Running, starts, extended idle exhaust and crankcase.		2007+ HD diesel			
95335	2011+ HDD	Running, starts exhaust and crankcase.	Diesel, biodiesel	2010+ LD diesel	0	1.085	0.965
	exhaust	Running, starts, extended idle exhaust and crankcase.		2010+ HD diesel			
8869	E0 Headspace	Refueling displacement vapor loss	Conventional Gasoline	All gas	0	1	1
8870	E10 Headspace	Refueling displacement vapor loss	E10, E8, E5	All gas	0	1	1
8871	E15 Headspace	Refueling displacement vapor loss	E15, E20	All gas	0	1	1
8872	E15 Evap	Evaporative (vapors, leaks), refueling spillage	E15, E20	All gas	0	1.118	1.118
8934	E85 Evap	Evaporative permeation	Ethanol, E85, E70	All ethanol	0	1.501	1.501

CH₄/THC and speciationConstant parameters for Tier 2 vehicles

Profile number	Profile description	Emission Process	Fuel Subtype	Affected vehicles	CH ₄ /THC	NMOG/NMHC	VOC/NMHC
8756	Tier 2 E0 exhaust	Start exhaust and crankcase	Conventional Gasoline	2001+ LD gas	0.091	1.014	0.981
N/A	Tier 2 E5 exhaust	Start exhaust and crankcase	E5	2001+ LD gas	0.098	1.031	0.997
N/A	Tier 2 E8 exhaust	Start exhaust and crankcase	E8	2001+ LD gas	0.102	1.042	1.007
8757	Tier 2 E10 exhaust	Start exhaust and crankcase	E5, E8, E10	2001+ LD gas	0.105	1.046	1.014
8758	Tier 2 E15 exhaust	Start exhaust and crankcase	E15, E20	2001+ LD gas	0.112	1.069	1.030
8855	Tier 2 E85 exhaust	Start exhaust and crankcase	Ethanol, E85, E70	All ethanol	0.273	1.511	1.454

Profile number	Profile description	Emission Process	Fuel Subtype	Affected vehicles	CH ₄ /THC	NMOG/NMHC	VOC/NMHC	
8756	Tier 2 E0 exhaust	Running exhaust and crankcase	Conventional Gasoline	2001+ LD gas	0.338	1.038	0.974	
N/A	Tier 2 E5 exhaust	Running exhaust and crankcase	E5	2001+ LD gas	0.338	1.038	0.974	
N/A	Tier 2 E8 exhaust	Running exhaust and crankcase	E8	2001+ LD gas	0.338	1.038	0.974	
8757	Tier 2 E10 exhaust	Running exhaust and crankcase	E5, E8, E10	2001+ LD gas	0.338	1.038	0.974	
8758	Tier 2 E15 exhaust	Running exhaust and crankcase	E15, E20	2001+ LD gas	0.338	1.038	0.974	ENCY - SA
8855	Tier 2 E85 exhaust	Running exhaust and crankcase	Ethanol, E85, E70	All ethanol	0.822	1.234	0.934	AGENCY

Proposed updates to CH₄/THC: Code

- CH₄/THC vary by the same factors as NMOG and VOC
 - processID (start, running, ext. idle, fuel vapor venting, etc)
 - fuelSubTypeID (E0, E5, E10, E85, ULSD diesel, biodiesel, CNG, etc)
 - regClassID (light-duty vehicles, light-duty trucks, lightheavy-duty trucks, heavy heavy-duty trucks, etc.)
 - modelYearGroupID (2007-2009, etc.)
- CH₄/THC no longer to vary by:
 - Vehicle age
 - Source Type (vehicle classification based on activity, e.g., Refuse Truck and Transit Bus)

Calculations using SPECIATE profiles

1. $NMOG = TOG - CH_4$

2.
$$m_{NMHC} = m_{NMOG} + \rho_{NMHC} \times \sum_{i=1}^{N} \left(\frac{m_{OHCi}}{\rho_{OHCi}} \times RF_{OHCi} \right) - \sum_{i=1}^{N} m_{OHCi}$$

3. THC = NMOG ×
$$\frac{NMHC}{NMOG}$$
 + CH₄

4.
$$VOC = TOG - CH_4 - C_2H_2 - C_3H_6O$$

5. Calculate ratios CH₄/THC, NMOG/NMHC, VOC/NMHC

NOTE: Equation 2 is rearranged from Equation 1066.635-1 in the Federal Register. For details on each variable see 40 CFR 1066.635.