

One Stanton Street Marinette, WI 54143-2542

1

Tele: 715-735-7411

October 14, 2016

Mr. Conor Neal Project Manager EPA Region 5 Land & Chemicals Division 77 West Jackson Blvd, LU-9J Chicago, IL 60604-3590

Subject: Quarterly Progress Report (July through September 2016)

Administrative Order on Consent (February 26, 2009)

Tyco Fire Products LP Stanton Street Facility Marinette, Wisconsin WID 006 125 215

Dear Mr. Neal:

Section VI, 21, b (Page 10) of the Administrative Order on Consent (AOC), dated February 26, 2009, requires Tyco Fire Products LP (Tyco) to submit quarterly progress reports to the U.S. Environmental Protection Agency (USEPA) Region 5 and the Wisconsin Department of Natural Resources (WDNR). The reports are required to document activities conducted as part of the Resource Conservation and Recovery Act (RCRA) Corrective Actions at the Tyco facility in Marinette, Wisconsin. The enclosed report covers the period from July 1, 2016 through September 30, 2016, and presents a brief description of the work completed to date, data collected, problems encountered, and schedule of activities as required by the February 2009 AOC.

Work Completed During this Reporting Period

Operation of the groundwater collection and treatment system (GWCTS) continued through the third quarter of 2016. A summary of the operational data is included as Attachment 1. The Discharge Monitoring Reports (DMRs) are included in Attachment 2.

The Fall Phyto Plot Inspection was completed by Sand Creek Consultants on September 15, 2016. A write up of all work performed for the 2016 year will be given in the Phyto Plot End of Year Report submitted in the January 15, 2017 quarterly report.

Corrective actions were taken on all findings from the previous barrier wall, cover area, and monitoring well inspections.

Additional Activities

The extraction and management of impacted groundwater in the 8th Street slip and former Salt Vault areas of the site as part of the agreed upon pump down program began on June 23, 2016. The target groundwater elevation within the Salt Vault area was achieved on July 13th and within the 8th St. Slip on July 27th. Extraction is expected to continue until the week

of October 24th, at which point the system will be shut down for the winter. Tyco will monitor the groundwater elevations monthly until a determination can be made as to the need to continue any pump down operation. Through October 13, 2016, approximately 1,007,438 gallons of groundwater had been extracted and appropriately managed as part of this project.

Tyco, with the support of engineering consultant AECOM, completed a site assessment to evaluate the advantages and disadvantages of potential changes to surface water flow and the practicality of abandoning and/or sealing storm sewer lines. Tyco has shared a copy of the plan of proposed improvements with the agencies and has begun implementing this plan. During the week of September 26th, Tyco completed comprehensive improvements to the on-site industrial sewer system including abandonment, lining and replacement, as appropriate.

Data Collected

Extraction and treatment volumes, analytical testing, and discharge data are required as part of the Wisconsin Pollutant Discharge and Elimination System (WPDES) permits obtained from WDNR for operation of the GWCTS. The GWCTS operates under permit WPDES WI-0001040-07-0. Attachment 2 includes the monthly WPDES DMRs for June 2016 through August 2016 for the GWCTS. Additional data on the operation of the GWCTS is included in Attachment 1.

Groundwater elevation data recorded by installed transducers was downloaded on October 6, 2016 and is under evaluation. The site-wide data will be provided in the annual report.

Problems Encountered

On August 11th, Tyco discovered 3 samples from the GWCTS effluent monitoring had exceeded WPDES criteria. Tyco immediately shut down the process, notified the WDNR, and began investigation into the causes of the elevated levels of arsenic in the effluent stream. Tyco collected analytical data at various stages of system operation, verified all gauges and meters were operating correctly and replaced the membranes in both the Primary and Brine RO systems as a precaution. Tyco also completed analytical testing for speciation of arsenic in the water from the wells being utilized by the pump down program. The speciation results indicated higher than anticipated ratio of organic to inorganic arsenic. This explains why groundwater containing elevated concentrations of total arsenic did not have corresponding elevated conductivity values. As currently designed, the GWCTS system uses conductivity as an indicator of arsenic concentrations to prevent potential exceedances. The laboratory report for the speciation results is included as Attachment 4. Tyco has discontinued the processing of any water generated by the pump down program, and ran system trials with the process in recycle before resuming operation on August 26th. The system has operated without an exceedance since making this operational change.

Schedule of Upcoming Activities

The following is a summary of activities to be conducted during the next reporting period.

- Submit the quarterly progress report.
- Complete the second semi-annual barrier wall, cover area, and monitoring well inspections.
- Complete the second Semi-Annual Barrier wall monitoring event.
- Address inspection findings for the Vertical Barrier Wall, Cover Areas, and Monitoring Wells.
- Implement the planned storm water management improvements.

List of Key Correspondence and Document Submittals

Table 1

Documents Submitted

July to September 2016, Tyco Fire Products LP Facility, Marinette, Wisconsin

Description of Submittal	Submitted To	Date Submitted
Quarterly Progress Report	USEPA	July 15, 2016
Extension Request – Response to Comments to EPA Review of Tyco Outfall Investigation Report	USEPA	August 2, 2016
Bi-Weekly Pump Down Program Status report	USEPA	August 17,2016
Bi-Weekly Pump Down Program Status report	USEPA	August 30,2016
Response to Comments on Outfall Investigation Report	USEPA	September 8, 2016
Bi-Weekly Pump Down Program Status Report	WDNR	September 15, 2016
Bi-Weekly Pump Down Program Status Report	USEPA	September 27, 2016
Bi-Weekly Pump Down Program Status Report	USEPA	October 11, 2016

Table 2Correspondence from Agency *July to September 2016, Tyco Fire Products LP Facility, Marinette, Wisconsin*

Description of Correspondence	Received From	Date Received
Notification of change in Project		_
Manager	USEPA	July 25, 2016

Please contact me at 715-587-6670 if you have any questions or require additional information.

Respectfully Yours,

Tyco Fire Products LP

Rya J. Luena Ryan Suennen

Environmental Field Projects

Attachments

- 1 GWCTS Operation Summary
- 2 DMRs for the GWCTS
- 3 Arsenic Speciation Laboratory Results
- cc: Kristin DuFresne, WDNR
 Jim Killian, WDNR
 Joe Janeczek, Johnson Controls
 Rich Mator, Johnson Controls
 Scott Stacy, Tyco Fire Products LP
 Jeff Danko, Tyco
 Mariel Carter, Stephenson Public Library

Document Control No.: 20161014 US10.11014

Attachment 1 GWCTS Operation Summary

Groundwater Collection and Treatment System Operation

SUBJECT: Groundwater Collection and Treatment System Operation for Tyco

Fire Products LP, Marinette, Wisconsin

DATE: October 14, 2016

Operation of the groundwater collection and treatment system (GWCTS) occurring from July 1, 2016 through September 30, 2016 is summarized below:

- The GWCTS operated for 25 days in July, 16 days in August, and 25 days in September, for a total of 66 days. The plant did not operate during the WPDES exceedance investigation.
- Approximately 204,450 gallons of reject water was produced during system operations and subsequently disposed of offsite.
- The precipitation recorded from the weather station in Marinette, Wisconsin was 11.41 inches. (http://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00475091/detail).
- An estimated total of 995,771 gallons was discharged to the Menominee River as effluent under WPDES permit.
- An estimated total of 795,651 gallons of groundwater were extracted (not including volumes extracted as part of the pump down program) from the site during the reporting period. Details of water volumes extracted from each area of the site and changes in water levels are shown in the Table 1 below.

Table 1 - Extraction Well Data Summary

	Gallons Run Q3 2016	Gallons Run Q3 2015
Extraction Well	(7/01/2016-9/30/2016)	(7/01/2015-9/30/2015)
EW-1	28,093	391,872
EW-2	2,588	64,381
EW-3	0	20,248
EW-4	10,254	26,862
EW-5	141,679	156,643
EW-6	358,944	365,837
EW-7	254,093	752,196
Total	795,651	1,778,039

1

Attachment 2 DMRs for the GWCTS

Validation - Success - 13:19:35

No errors found. Warning messages do not prevent successful validation or submittal of form

Print

Close

eReport Submit - TYCO FIRE PROTECTION PRODUCTS

LP - 388105 Facility Name

TYCO FIRE PROTECTION PRODUCTS LP

Form Type

Wastewater Discharge Monitoring Long Report

DOC ID

362102

Reporting Period

6/1/2016 to 6/30/2016

Finalize Submi

Goto List

Once this file has been submitted, it will no longer be editable. Click 'Finalize Submit' button to continue.

The Official Internet site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608,266.2621

- 388105

Facility Name

TYCO FIRE PROTECTION PRODUCTS LP

Form Type

Wastewater Discharge Monitoring Long Report

DOC ID

362102

Reporting Period

6/1/2016 to 6/30/2016

Enter Certification Code

emilotaxeg

E-Mail was sent to

afleury@tycoint.com

Certify

Return To List

Without leaving THIS page, check E-Mail address for message containing Certification code. Enter code and click 'Certify' button to complete Submittal.

Submittal of this form is required by section 283.55, Wis. Stats., and chapters NR 205 and NR 214 or NR 204, Wis. Admin. Code.

Personally identifiable information collected on this form may be used for purposes other than that for which it was originally collected. Under Wisconsin's open records laws, DNR is required to provide all non-confidential information to any person who requests it. Such information may be provided to the public in written or electronic form. Information reported may be made available to the public via a DNR web page.

I certify under penalty of law that this form submitted to DNR on 7/18/2016 for the period 6/1/2016 to 6/30/2016 and identified by the DOC ID number listed above was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

The Official Internet site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621

- 388105 Facility Name

TYCO FIRE PROTECTION PRODUCTS LP

Form Type

Wastewater Discharge Monitoring Long Report

DOC ID

362102

Reporting Period

6/1/2016 to 6/30/2016

Enter Certification Code

emilotaxeg

E-Mail was sent to

afleury@tycoint.com

Return To List

Certification complete.

The Official Internet site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621

Wastewater Discharge Monitoring Long Report

Facility Name:

TYCO FIRE PROTECTION PRODUCTS LP

Contact Address: One Stanton Street

Marinette, WI 54143

Facility Contact: Judith Rost, Sr Lab Tech

Phone Number: (715) 735-7411

Reporting Period: 06/01/2016 - 06/30/2016

Form Due Date: 07/21/2016 Permit Number: 0001040

For DNR Use Only

Date Received:

DOC:

362102

FIN:

7245

FID:

438039470 Northeast Region

Region:

Permit Drafter: Jeff W. Brauer

Reviewer:

Bruce S. Oman

Office:

Peshtigo

	Sample Point	001	703	001	001	001
	Description	PRIOR TO MENOMINEE RIVER	Intake Water Monitoring	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER
	Parameter	211	280	487	374	373
	Description	Flow Rate	Mercury, Total Recoverable	Temperature	pH (Minimum)	pH (Maximum)
	Units	MGD	ng/L	degF	SU	su
	Sample Type	CONTINUOUS	GRAB	GRAB	CONTINUOUS	CONTINUOUS
	Frequency	DAILY	MONTHLY	MONTHLY	DAILY	DAILY
Sample Results	Day 1	0.24148		78	6.8	7.1
	2	0.24489		71	6.9	7.1
	3	0.35572		70	6.8	7.2
	4	0.15332	***************************************	67	7.0	7.2
	5	0.08186		66	7.1	7.3
	6	0.21606		69	7.0	7.1
	7	0.22846		70	6.9	7.1
	8	0.24484		70	6.9	7.6
	9	0.22814		72	7.2	7.4
	10	0.26037		73	7.0	7.4
	11	0.09176		73	7.2	7.4
	12	0.09257		70	6.8	7.4
	13	0.22225		74	6.8	7.2
	14	0.34345		75	6.8	7.4
	15	0.42497		73	6.4	7.2
	16	0.22594		74	7.0	7.2
	17	0.22694		80	7.0	7.2
	18	0.11857		78	7.1	7.3
	19	0.10200		72	7.2	7.3
	20	0.24407		75	7.1	7.2
	21	0.26389	,	76	7.2	7.4
	22	0.26932		73	7.1	7.3
	23	0.25705		74	7.1	7.3
	24	0.18685		77	7.1	7.2
	25	0.45555		75	6.3	7.4
	26	0.13295		74	6.6	7.3
	27	0.26022	6.8	73	7.1	7.2
	28	0.26564		72	7.0	7.2
	29	0.28292		74	6.9	7.2
	30	0.19381		76	7.1	7.4
	31					
		I		<u> </u>		

Permit: 0001040 DOC: 362102

	Sample Point	001	703	001	001	001
	Description	PRIOR TO MENOMINEE RIVER	Intake Water Monitoring	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER
	Parameter	211	280	487	374	373
	Description	Flow Rate	Mercury, Total Recoverable	Temperature	pH (Minimum)	pH (Maximum)
	Units	MGD	ng/L	degF	su	su
Summary Values	Monthly Avg	0.230528667	6.8	73.133333333	6.95	7.273333333
	Monthly Total					
	Daily Max	0.45555	6.8	80	7.2	7.6
	Daily Min	0.08186	6.8	66	6.3	7.1
	Rolling 12 Month Avg					
Limit(s) in Effect	Monthly Avg					
	Monthly Total					
	Daily Max					11 0
	Daily Min				4 0	
	Rolling 12 Month Avg					
QA/QC Information	LOD		0.2			
	LOQ		0.5			
	QC Exceedance	N	N	N	N	N
	Lab Certification		721026460			

	Sample Point	001	001	001	001	001
	Description	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER
	Parameter	379	376	388	231	35
	Description	pH Total Exceedance Time Minutes	pH Exceedances Greater Than 60 Minutes	Phosphorus, Total	Hardness, Total as CaCO3	Arsenic, Total Recoverable
	Units	minutes	Number	mg/L	mg/L	ug/L
	Sample Type	CONTINUOUS	CONTINUOUS	24 HR COMP	24 HR COMP	24 HR COMP
	Frequency	DAILY	DAILY	WEEKLY	MONTHLY	MONTHLY
Sample Results	Day 1			0.315	260	300
	2		- 148A()			
	3			····		
	4					
	5					
	6					
	7					
	8	, inne		0.352	230	250
	9					
	10					
	11					
	12					
	13					
	14					
	15			0.278	130	200
	16					
	17					
	18					
	19					
	20					
	21					
	22			0.174	200	230
	23					
	24					
	25					
	26					
	27					
	28					
	29					
	30					
	31	,,,,				

	Sample Point	001		001		001		001	001	
	Description	PRIOR TO MENOMINEE F		PRIOR TO MENOMINEE F		PRIOR TO MENOMINEE F		PRIOR TO MENOMINEE RIVE	PRIOR TO R MENOMINEE R	
	Parameter	379		376		388		231	35	
	Description	pH Total Exceed		pH Exceedar Greater Thar Minutes	ices i 60	Phosphorus, 7	Γotal	Hardness, Total as CaCO3	Arsenic, Tota Recoverable	
	Units	minutes		Number		mg/L		mg/L	ug/L	
Summary Values	Monthly Avg					0.27975	1	205	245	
	Monthly Total									
	Daily Max					0.352		260	300	
	Daily Min					0.174		130	200	
	Rolling 12 Month Avg					0.3				
Limit(s) in Effect	Monthly Avg									
	Monthly Total	446	0							
	Daily Max			0	0				680	0
	Daily Min									
	Rolling 12 Month Avg					1	0			
QA/QC Information	LOD		•		•	0.008			1	
	LOQ					0.027			2	
	QC Exceedance	N		N		N		N	N	
	Lab Certification		•			43803947	70	721026460	72102646	0

	Sample Point	001	001	001	001	001
	Description	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER
	Parameter	35	147	147	87	152
	Description	Arsenic, Total Recoverable	Copper, Total Recoverable	Copper, Total Recoverable	Cadmium, Total Recoverable	Cyanide, Amenable
	Units	lbs/day	ug/L	lbs/day	ug/L	ug/L
	Sample Type	CALCULATED	24 HR COMP	24 HR COMP	24 HR COMP	24 HR COMP
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1	0.603	16	0.03216	<0.14	
	2					
	3					
	4	ш				
	5					
	6					
	7					
	8	0.51	8.8	0.017952	<0.14	
	9					
	10				<u></u>	
	11 12					
	13					
	14					
	15	0.708	6.9	0.024426	0.15	<5.0
	16					
	17					
	18					
	19					
	20					
	21					
	22	0.5175	5.8	0.01305	<0.14	
	23					
	24					
	25 26					
	26 27					
	28					
	29	.,.,				
	30					_
	31					

	Sample Point	001		001		001		001	001
	Description	PRIOR TO MENOMINEE R		PRIOR TO MENOMINEE RI	VER	PRIOR TO MENOMINEE F		PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER
	Parameter	35		147		147		87	152
	Description	Arsenic, Tota Recoverable		Copper, Tota Recoverable		Copper, Tol Recoverab		Cadmium, Total Recoverable	Cyanide, Amenable
	Units	lbs/day		ug/L		lbs/day		ug/L	ug/L
Summary Values	Monthly Avg	0.584625	•	9.375		0,02189	7	0.0375	0
	Monthly Total								
	Daily Max	0.708		16		0.03216		0.15	<5
	Daily Min	0.51		5.8		0.01305		<0.14	<5
	Rolling 12 Month Avg								
Limit(s) in Effect	Monthly Avg								
	Monthly Total								
	Daily Max	12	0	69	0	0.98	0		
	Daily Min		-			- 11			
	Rolling 12 Month Avg								
QA/QC Information	LOD		•	1.3				0.14	5
	LOQ			4				0.45	15
	QC Exceedance	N		N		N		N	N
	Lab Certification			721026460)			721026460	721026460

	Sample Point	001	001	101	101	101
	Description	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	112	280	211	457	342
	Description	Chlorine, Total Residual	Mercury, Total Recoverable	Flow Rate	Suspended Solids, Total	Oil & Grease (Freon)
	Units	ug/L	ng/L	MGD	mg/L	mg/L
	Sample Type	GRAB	GRAB	CONTINUOUS	24 HR COMP	GRAB
	Frequency	MONTHLY	MONTHLY	DAILY	DAILY	2/WEEK
Sample Results	Day 1			0.02582	4.2	<0.99
	2			0.02628	4.0	<0.99
	3			0.03197	5.6	
	4			0.01993	5.8	
	5					
	6			0.02303	6.2	
	7			0.02046	5.5	
	8			0.02818	7.0	<0.99
	9			0.02382	7.6	< 0.99
	10			0.02302	8.3	
	11			0.01725	19.3	
	12					
	13			0.02404	10.3	
	14			0.02350	8.0	
	15			0.02491	6.6	<0.99
	16			0.02063	9.5	<0.99
	17			0.02277	4.4	L
	18			0.00991	10.3	
	19					
	20			0.02074	9.0	
	21			0.02219	9.4	
	22			0.02263	10.0	<0.99
	23			0.01547	9.8	<0.99
	24			0.01221	17.5	
	25	-				
	26					
	27	10	3.0	0.02352	12.5	
	28			0.01612	9.7	
	29			0.02229	6.4	
	30			0.01275	8.8	
	31					

	Sample Point	001	001	101	101	101
	Description	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	112	280	211	457	342
	Description	Chlorine, Total Residual	Mercury, Total Recoverable	Flow Rate	Suspended Solids, Total	Oil & Grease (Freon)
	Units	ug/L	ng/L	MGD	mg/L	mg/L.
Summary Values	Monthly Avg	10	3	0.0213376	8.628	0
	Monthly Total					
	Daily Max	10	3	0.03197	19.3	<0.99
	Daily Min	10	3	0.00991	4	<0.99
	Rolling 12 Month Avg					
Limit(s) in Effect	Monthly Avg				31 0	26 0
	Monthly Total					
	Daily Max				60 0	52 0
	Daily Min					
	Rolling 12 Month Avg					
QA/QC Information	LOD	30	0.2			0.99
	LOQ	100	0.5			3.1
	QC Exceedance	N	N	N	N	N
	Lab Certification		721026460	### T	438039470	721026460

Permit: 0001040

DOC: 362102

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	87	133	315	553	155
	Description	Cadmium, Total Recoverable	Chromium, Total Recoverable	Nickel, Total Recoverable	Zinc, Total Recoverable	Cyanide, Total
	Units	ug/L	ug/L	ug/L	ug/L	ug/L
	Sample Type	24 HR COMP	24 HR COMP	24 HR COMP	24 HR COMP	GRAB
	Frequency	2/WEEK	MONTHLY	2/WEEK	2/WEEK	MONTHLY
Sample Results	Day 1	<0.14	<0.67	1.7	32	
	2	<0.14	< 0.67	2.3	23	
	3					
	4					
	5					
	6					
	7					
	8	<0.14	<0.67	3.4	39	
	9	<0.14	<0.67	4.0	39	
	10					
	11					
	12					
	13					
	14					
	15	<0.14	<0.67	3.3	37	19
	16	0.32	<0.67	4.0	30	
	17					
	18					
	19					
	20					
	21					
	22	0.22	<0.67	2.3	42	
	23	<0.14	<0.67	2.3	31	
	24			•		
	25					
	26					
	27					
	28					
·	29					
	30				117,44.00	
	31					

	Sample Point	101		101		101		101		101	
	Description	Metal Finishi Effluent	ing	Metal Finishi Effluent	ng	Metal Finish Effluent	ing	Metal Finish Effluent	ning	Metal Finishi Effluent	ng
	Parameter	87		133		315		553		155	
	Description	Cadmium, To Recoverabl		Chromium, To Recoverabl		Nickel, Tot Recoverab		Zinc, Tota Recoverab		Cyanide, To	tal
	Units	ug/L		ug/L		ug/L		ug/L		ug/L	
Summary Values	Monthly Avg	0.0675		0		2.9125		34.125		19	
	Monthly Total										
	Daily Max	0.32		<0.67		4		42		19	
	Daily Min	<0.14		<0.67		1.7		23		19	
	Rolling 12 Month Avg										
Limit(s) in Effect	Monthly Avg	260	0	1710 ·	0	2380	0	1480	0	650	0
	Monthly Total										
	Daily Max	690	0	2770	0	3980	0	2610	0	1200	0
	Daily Min							······································			
	Rolling 12 Month Avg										
QA/QC Information	LOD	0.14	•	0.67		1.1		5		5	
	LOQ	0.45		2		3.4		10		15	W-000
	QC Exceedance	N		N		N		N		N	
	Lab Certification	72102646	30	72102646	60	72102646	30	7210264	60	72102646	00

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	147	264	430	374	373
	Description	Copper, Total Recoverable	Lead, Total Recoverable	Silver, Total Recoverable	pH (Minimum)	pH (Maximum)
·	Units	ug/L	ug/L	ug/L	su	su
	Sample Type	24 HR COMP	24 HR COMP	24 HR COMP	CONTINUOUS	CONTINUOUS
	Frequency	2/WEEK	MONTHLY	MONTHLY	DAILY	DAILY
ample Results	Day 1	4.8	<1.5	<0.37	6.4	7.7
	2	3.3	<1.5	<0.37	6.4	7.6
	3				6.6	7.0
	4				6.4	7.2
	5					
	6				6.3	7.4
	7				6.1	6.7
	8	5.6	<1.5	<0.37	6.0	6.6
	9	4.5	<1.5	<0.37	6.4	7.4
	10				6.3	7.0
	11				6.2	6.8
	12					"
	13				7.0	7.6
	14				6.7	7.7
	15	5.5	<1.5	< 0.37	6.6	7.2
	16	4.9	<1.5	< 0.37	6.8	7.6
	17				6.4	7.1
	18	,			6.1	6.6
	19					
	20				7.2	8.4
	21				6.6	7.8
	22	5.2	<1.5	< 0.37	6.2	7.0
	23	5.4	<1.5	<0.37	6.8	7.2
	24				6.8	7.4
	25	<u></u>				
	26					
	27				7.0	7.7
	28				6.1	7.3
	29				6.2	6.8
	30				6.2	7.4
	31					

	Sample Point	101		101		101		101		101	-
	Description	Metal Finishi Effluent	ng	Metal Finishii Effluent	ng	Metal Finish Effluent	ing	Metal Finish Effluent		Metal Finishi Effluent	ng
	Parameter	147		264		430		374		373	
	Description	Copper, Tot Recoverabl		Lead, Total Recoverable		Silver, Tota Recoverab		pH (Minimu	ım)	pH (Maximur	n)
	Units	ug/L		ug/L		ug/L		su		su	
Summary Values	Monthly Avg	4.9		0		0		6.472		7.288	
	Monthly Total										
	Daily Max	5.6		<1.5		<0.37		7.2		8.4	
	Daily Min	3.3		<1.5		<0.37		6		6.6	
	Rolling 12 Month Avg										
Limit(s) in Effect	Monthly Avg	2070	0	430	0	240	0				
	Monthly Total							•			
	Daily Max	3380	0	690	0	430	0			11	0
	Daily Min							4	0		
	Rolling 12 Month Avg										
QA/QC Information	LOD	1.3		1.5		0.37					
	LOQ	4		4.9		1.2					
	QC Exceedance	N		N		N		N		N	
	Lab Certification	72102646	0	72102646	0	72102646	30				

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	379	376	507	40	490
	Description	pH Total Exceedance Time Minutes	pH Exceedances Greater Than 60 Minutes	Total Toxic Organics	Benzene	Tetrachloroethylene
	Units	minutes	Number	ug/L	ug/L_	ug/L
	Sample Type	CALCULATED	CALCULATED	24 HR COMP	24 HR COMP	24 HR COMP
	Frequency	DAILY	DAILY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9			. Walkerman		
	10					
	11					
	12					
	13	=1				
	14					
	15				,,,,,,	
	16					
	17					
	18					
	19					
	20					
	21					
:	22					
	23					
•	24					
	25					
	26					
	27					
	28					
	29				, , , , , , , , , , , , , , , , , , ,	
	30					
	31					

	Sample Point	101		101		101		101	101
	Description	Metal Finish Effluent	ing	Metal Finish Effluent	ing	Metal Finishi Effluent	ng	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	379		376		507		40	490
	Description	pH Total Excee Time Minut		pH Exceedar Greater That Minutes		Total Toxic Org	anics	Benzene	Tetrachloroethylene
	Units	minutes		Number		ug/L		ug/L	ug/L
Summary Values	Monthly Avg								
	Monthly Total								
	Daily Max								
	Daily Min			**************************************					
	Rolling 12 Month Avg								
Limit(s) in Effect	Monthly Avg								
	Monthly Total	446	0	0	0				
	Daily Max					2130			
	Daily Min			•••					
	Rolling 12 Month Avg								
QA/QC Information	LOD		•						
	LOQ			-					
	QC Exceedance	N		N		N		N	N
	Lab Certification								

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	500	561	200	508	285
	Description	Toluene	1,1,1-Trichloro- ethane	Ethylbenzene	Trichloro- ethylene	Methylene chloride
	Units	ug/L	ug/L	ug/L	ug/L	ug/L
	Sample Type	24 HR COMP	24 HR COMP	24 HR COMP	24 HR COMP	24 HR COMP
Pamula Basulta	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9				***************************************	
	10 11					
	12					
	13					
	14					
	15					
	16			, , , , , , , , , , , , , , , , , , , ,		
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24				•••	
1	25					
}	26					
	27					
	28			101 - 10 - 10 - 10 - 10 - 10 - 10 - 10		
ľ	29			 		
	30			, <u>, , , , , , , , , , , , , , , , , , </u>		
	31			***		

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent				
	Parameter	500	561	200	508	285
	Description	Toluene	1,1,1-Trichloro- ethane	Ethylbenzene	Trichloro- ethylene	Methylene chloride
	Units	ug/L	ug/L	ug/L	ug/L	ug/L
Summary Values	Monthly Avg					
	Monthly Total					
	Daily Max					
	Daily Min					
	Rolling 12 Month Avg	and the second				
Limit(s) in Effect	Monthly Avg					
	Monthly Total					
	Daily Max					
	Daily Min					
	Rolling 12 Month Avg					
QA/QC Information	LOD					
	LOQ					
	QC Exceedance					
	Lab Certification			-		

	Sample Point	101	106	106	106	107
	Description	Metal Finishing Effluent		Future remedial action ww		Mercury Field Blank Results
	Parameter	167	211	35	457	280
	Description	Di-n-butyl phthalate (dibutyl phthalate)	Flow Rate	Arsenic, Total Recoverable	Suspended Solids, Total	Mercury, Total Recoverable
	Units	ug/L	gpđ	ug/L	mg/L	ng/L
	Sample Type	24 HR COMP	CONTINUOUS	24 HR COMP	24 HR COMP	GRAB
Sample Results	Frequency	MONTHLY	DAILY	WEEKLY	WEEKLY	MONTHLY
Sample Results	Day 1					
	2					
	3 4			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14					
	15					
	16				, , , , , , , , , , , , , , , , , , , ,	
	17					
	18					
	19					
	20					
	21					
	22					
	23			/		
	24					
	25					
	26					
	27	•				<0.20
	28					
	29					
	30					
	31					

	Sample Point	101	106	106	106	107
	Description	Metal Finishing Effluent	Future remedial action ww	Future remedial action ww	Future remedial action ww	Mercury Field Blank Results
	Parameter	167	211	35	457	280
	Description	Di-n-butyl phthalate (dibutyl phthalate)	Flow Rate	Arsenic, Total Recoverable	Suspended Solids, Total	Mercury, Total Recoverable
	Units	ug/L	gpd	ug/L	mg/L	ng/L
Summary Values	Monthly Avg					0
	Monthly Total					
•	Daily Max					<0.2
	Daily Min					<0.2
	Rolling 12 Month Avg					
Limit(s) in Effect	Monthly Avg					
	Monthly Total					
	Daily Max					
	Daily Min					
	Rolling 12 Month Avg					
QA/QC Information	LOD					0.2
	LOQ					0.5
	QC Exceedance	N	N	N	N	N .
	Lab Certification					721026460

Page 18 of 23

	Sample Point	003	003	003	003	003
	Description	Future remedial action dischg	Future remedial action dischg			
	Parameter	211	457	35	374	373
	Description	Flow Rate	Suspended Solids, Total	Arsenic, Total Recoverable	pH (Minimum)	pH (Maximum)
	Units	MGD	mg/L	ug/L	su	su
	Sample Type	CONTINUOUS	24 HR COMP	24 HR COMP	CONTINUOUS	CONTINUOUS
	Frequency	DAILY	WEEKLY	WEEKLY	DAILY	DAILY
Sample Results	Day 1	0.005786			6.7	7.0
	2	0.011277	1.4	66	6.7	7.1
	3	0.021220			6.1	7.9
	4	0.010507			6.8	7.3
	5	0.001282			6.1	7.7
	6	0.024516			7.1	8.3
	7	0.013323			6.1	7.5
	8	0.023067			7.0	7.6
	9	0.021169			7.1	7.3
	10	0.015994			7.1	7.4
	11	0.014253			6.0	7.4
	12	0.015801			6.5	6.6
	13	0.011463	2.0	60	6.2	7.3
	14	0.019454			6.3	7.0
	15	0.012688			6.4	7.7
	16	0.014311			6.4	6.8
	17	0.009057			6.0	7.9
	18	0.009679			8.0	8.1
	19	0.014347			7.2	8.4
	20	0.010083	1.1	74	6.7	7.7
	21	0.023862			6.4	7.6
	22	0.021244			7.2	7.5
	23	0.017985	1.2	200	7.1	7.4
	24	0.011563			6.1	8.6
	25	0.012782			7.6	8.6
	26	0.014163			6.7	8.6
	27	0.009465			6.0	7.8
	28	0.018964			6.8	7.9
ŀ	29	0.010016			6.6	7.1
	30	0.002931			7.1	7.1
	31					

· ···	Sample Point	003	003	003	003	003
	Description	Future remedial action dischg				
	Parameter	211	457	35	374	373
	Description	Flow Rate	Suspended Solids, Total	Arsenic, Total Recoverable	pH (Minimum)	pH (Maximum)
	Units	MGD	mg/L	ug/L	su	su
Summary Values	Monthly Avg	0.014075067	1.425	100	6.67	7.606666667
	Monthly Total					
	Daily Max	0.024516	2	200	8	8.6
	Daily Min	0.001282	1.1	60	6	6.6
	Rolling 12 Month Avg					
Limit(s) in Effect	Monthly Avg					
	Monthly Total					
	Daily Max			680 0		11 0
	Daily Min				4 0	
	Rolling 12 Month Avg					
QA/QC Information	LOD			1		
	LOQ	and the second		2		
	QC Exceedance	N	N	N	N	N
	Lab Certification		438039470	721026460		

	Sample Point	003	003
	Description		Future remedial action
	резсприон	dischg	dischg
	Parameter	379	376
	Description	pH Total Exceedance Time Minutes	pH Exceedances Greater Than 60 Minutes
	Units	minutes	Number
	Sample Type	CONTINUOUS	CONTINUOUS
	Frequency	DAILY	DAILY
Sample Results	Day 1		
	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
	14		
	15		
	16		
	17		
	18		
	19		
	20		
	21		
	22		
	23		
	24		
	25 26		
	27		
	28		
	29		
	30		
	31		

	Sample Point	003		003	
	Description	Future remedial dischg	action	Future remedial action dischg	
	Parameter	379			
	Description	pH Total Exceedance Time Minutes		pH Exceedances Greater Than 60 Minutes	
	Units	minutes Numbe		Number	
Summary Values	Monthly Avg				
	Monthly Total				
	Daily Max				
	Daily Min				
	Rolling 12 Month Avg				
Limit(s) in Effect	Monthly Avg				
	Monthly Total	446	0		
	Daily Max			0	0
	Daily Min				
	Rolling 12 Month Avg				
QA/QC Information	LOD				
	LOQ				
	QC Exceedance	N		N	
	Lab Certification				

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)
1. Based on my inquiry of the person or persons directly responsible for managing compiliance with the permit limitation for TTO I certify that to the best of my knowledge and belief no dumping of concentrated toxic organics into the wastewaters has
occurred since filing of the last discharge monitoring report. I further certify that this facility is implementing the solvent management plan submitted to the department.
General Remarks
CN- always done as a grab sample per WDNR. CI- done only once a month
Laboratory Quality Control Comments
Ediboratory Quality Control Continuents

- 393825

Facility Name

TYCO FIRE PROTECTION PRODUCTS LP

Form Type

Wastewater Discharge Monitoring Long Report

DOC ID

367819

Reporting Period

7/1/2016 to 7/31/2016

Enter Certification Code

ostaficerm

E-Mail was sent to

afleury@tycoint.com

Return To List

Certification complete.

The Official Internet site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621

- 393825
Facility Name
TYCO FIRE PROTECTION PRODUCTS LP
Form Type
Wastewater Discharge Monitoring Long Report
DOC ID
367819
Reporting Period
7/1/2016 to 7/31/2016

ostaficerm

E-Mail was sent to afleury@tycoint.com

Enter Certification Code

Certify

Return To List

Without leaving THIS page, check E-Mail address for message containing Certification code. Enter code and click 'Certify' button to complete Submittal.

Submittal of this form is required by section 283.55, Wis. Stats., and chapters NR 205 and NR 214 or NR 204, Wis. Admin. Code.

Personally identifiable information collected on this form may be used for purposes other than that for which it was originally collected. Under Wisconsin's open records laws, DNR is required to provide all non-confidential information to any person who requests it. Such information may be provided to the public in written or electronic form. Information reported may be made available to the public via a DNR web page.

I certify under penalty of law that this form submitted to DNR on 8/20/2016 for the period 7/1/2016 to 7/31/2016 and identified by the DOC ID number listed above was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

The Official Internet site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621

Wastewater Discharge Monitoring Long Report

Facility Name:

TYCO FIRE PROTECTION PRODUCTS LP

Contact Address: One Stanton Street

Marinette, WI 54143

Facility Contact: Judith Rost, Sr Lab Tech

Phone Number: (715) 735-7411

Reporting Period: 07/01/2016 - 07/31/2016

Form Due Date: 08/21/2016 Permit Number: 0001040

For DNR Use Only

Date Received:

DOC:

367819

FIN:

7245

FID:

438039470

Region:

Northeast Region

Permit Drafter: Trevor J Moen

Reviewer:

Bruce S. Oman

Office:

Peshtigo

	Sample Point	001	703	001	001	001
	Description	PRIOR TO MENOMINEE RIVER	Intake Water Monitoring	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER
	Parameter	211	280	487	374	373
	Description	Flow Rate	Mercury, Total Recoverable	Temperature	pH (Minimum)	pH (Maximum)
	Units	MGD	ng/L	degF	su	su
	Sample Type	CONTINUOUS	GRAB	GRAB	CONTINUOUS	CONTINUOUS
	Frequency	DAILY	MONTHLY	MONTHLY	DAILY	DAILY
Sample Results	Day 1	0.08087		70	7.2	7.4
	2	0.08823		72	7.3	7.4
	3	0.08822		73	7.3	7.4
	4	0.09591		77	7.2	7.4
	5	0.25056		77	7.1	7.3
	6	0.31477		78	6.7	7.3
	7	0.21462		74	7.1	7.3
	8	0.09243		76	7.2	7.5
	9	0.19023		73	7.3	7.5
	10	0.11726		72	7.3	7.5
	11	0.23388		78	6.9	7.4
	12	0.26292		80	7.1	7.4
	13	0.29372		77	7.1	7.2
	14	0.23513		75	7.0	7.2
	15	0.11708		69	7.2	7.4
	16	0.09022	149-7	74	7.3	7.5
	17	0.20485		72	6.7	7.4
	18	0.25258		76	7.2	7.3
	19	0.24846		76	7.1	7.3
	20	0.26355		80	7.1	7.2
	21	0.29126		81	6,7	7.3
	22	0.14517		79	7.2	7.4
1	23	0.06905		82	7.2	7.4
	24	0.09649		78	7.3	7.4
	25	0.23505		80	7.3	7.4
	26	0,24260		81	7.3	7.4
	27	0.30890	7.9	76	7.3	7.4
	28	0.26453		74	7.1	7.4
	29	0.14433		77	7.1	7.3
	30	0.06796			7.3	7.4
	31	0.10245			7.3	7.5

Facility Name: TYCO FIRE PROTECTION PRODUCTS LP Reporting Period: 07/01/2016 to 07/31/2016

	Sample Point	001	703	001	001	001	
	Description	PRIOR TO MENOMINEE RIVER	Intake Water Monitoring	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	
	Parameter	211	280	487	374	373	
	Description	Flow Rate	Mercury, Total Recoverable	Temperature	pH (Minimum)	pH (Maximum)	
	Units	MGD	ng/L	degF	su	su	
Summary Values	Monthly Avg	0.183976774	7.9	76.103448276	7.14516129	7.374193548	
	Monthly Total						
	Daily Max	0.31477	7.9	82	7.3	7.5	
	Daily Min	0.06796	7.9	69	6.7	7.2	
	Rolling 12 Month Avg						
Limit(s) in Effect	Monthly Avg						
	Monthly Total						
	Daily Max					11 0	
	Daily Min				4 0		
	Rolling 12 Month Avg						
QA/QC Information	LOD	•	0.2				
	LOQ		0.5				
	QC Exceedance	N	N	N	N	N	
	Lab Certification		721026460				

	Sample Point	001	001	001	001	001
	Description	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER
ţ	Parameter	379	376	388	231	35
	Description	pH Total Exceedance Time Minutes	pH Exceedances Greater Than 60 Minutes	Phosphorus, Total	Hardness, Total as CaCO3	Arsenic, Total Recoverable
ŀ	Units	minutes	Number	mg/L	mg/L	ug/L
	Sample Type	CONTINUOUS	CONTINUOUS	24 HR COMP	24 HR COMP	24 HR COMP
ľ	Frequency	DAILY	DAILY	WEEKLY	MONTHLY	MONTHLY
Sample Results	Day 1		•			
ľ	2					
ľ	3					
Ī	4					
ľ	5			0.085	450	<1.0
,	6	-				
ľ	7					
	8	,,,,,,,,,				
ľ	9					
ľ	10					***
Ī	11			0.124	270	360
Ì	12					
	13					
-	14					
	15					
 	16					
ŀ	17			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	18			0.076	250	340
	19					
	20		100			
•	21					
ļ	22					
,	23					
ı	24					
	25			0.113	330	2700
	26					
	27	, , , , , , , , , , , , , , , , , , ,	- and to			
	28					
	29					
	30					
	31					

<u> </u>	Sample Point	001		001		001		001	001	
	Description	PRIOR TO MENOMINEE F		PRIOR TO MENOMINEE		PRIOR TO MENOMINEE F		PRIOR TO MENOMINEE RIVE	PRIOR TO R MENOMINEE R	
	Parameter	379		376		388		231	35	
	Description	pH Total Excee	dance	pH Exceedar	nces	Phosphorus, 1	otal	Hardness, Total as		al
		Time Minute		Greater Thar Minutes	า 60	·		CaCO3	Recoverable	e
	Units	minutes		Number		mg/L		mg/L	ug/L	
Summary Values	Monthly Avg					0.0995		325	850	
	Monthly Total									
	Daily Max					0.124		450	2700	
	Daily Min			·		0.076		250	<1	
	Rolling 12 Month Avg					0.3				
Limit(s) in Effect	Monthly Avg									
	Monthly Total	446	0							
	Daily Max			0	0	****			680	1
	Daily Min		<u> </u>							
	Rolling 12 Month Avg			****		1	0			
QA/QC Information	LOD		<u> </u>		•	0.008	•		1	
	LOQ					0.027			2	
	QC Exceedance			N		N		N	N	
	Lab Certification					43803947	'0	721026460	721026460	

· -	Sample Point	001	001	001	001	001
	Description	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER
·	Parameter	35	147	147	87	152
	Description	Arsenic, Total Recoverable	Copper, Total Re c overable	Copper, Total Recoverable	Cadmium, Total Recoverable	Cyanide, Amenable
	Units	lbs/day	ug/L	lbs/day	ug/L	ug/L
	Sample Type	CALCULATED	24 HR COMP	24 HR COMP	24 HR COMP	24 HR COMP
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5	2.09	4.5	0.009405	<0.14	
	6					
	7					
	8					
	9					
	10					
	11	0.702	5.6	0.01092	<0.14	
	12					
	13					
	14					
	15					
	16			, 4444		
	17					
	18	0.714	6.2	0.01302	<0.14	<5.0
	19					
	20					
	21					
	22					
	23					
	24					
	25	5.292	6.0	0.01176	<0.14	
	26					
	27					
	28					
	29					
	30					
	31					

	Sample Point	001		001		001		001	001	
	Description	PRIOR TO MENOMINEE R	IVER	PRIOR TO MENOMINEE RIV	VER	PRIOR TO MENOMINEE R		PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	
	Parameter	35		147		147	<u>~</u>	87	152	
	Description	Arsenic, Tota Recoverable		Copper, Total Recoverable		Copper, Total Recoverable		Cadmium, Total Recoverable	Cyanide, Amenable	
	Units	lbs/day 2.1995		ug/L 5.575		lbs/day		ug/L	ug/L	
Summary Values	Monthly Avg					0.01127625		0	0	
	Monthly Total		5.000							
	Daily Max	5.292	5.292 0.702		6.2 4.5			<0.14	<5	
	Daily Min	0.702					0.009405		<5	
	Rolling 12 Month Avg	,								
Limit(s) in Effect	Monthly Avg									
	Monthly Total									
	Daily Max	12	0	69	0	0.98	0			
	Daily Min									
	Rolling 12 Month Avg									
QA/QC Information	LOD			1.3				0.14	5	
	LOQ			4				0.45	15	
	QC Exceedance	N	N			N		N	N	
	Lab Certification			721026460)			721026460	721026460	

	Sample Point	001	001	101	101	101
	Description	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	112	280	211	457	342
	Description	Chlorine, Total Residual	Mercury, Total Recoverable	Flow Rate	Suspended Solids, Total	Oil & Grease (Freon)
•	Units	ug/L	ng/L	MGD	mg/L	mg/L
	Sample Type	GRAB	GRAB	CONTINUOUS	24 HR COMP	GRAB
	Frequency	MONTHLY	MONTHLY	DAILY	DAILY	2/WEEK
Sample Results	Day 1					
	2					
	3					
	4					
	5			0.02116	8.6	<0.99
	6			0.02110	7.2	<0.99
	7			0.01846	5. 4	
	8			0.00280	10.0	
	9	****				:
	10					
	11			0.01076	15.0	1.9
	12			0.02094	62.8	<0.99
	13			0.01510	19.5	
	14			0.01891	24.3	
	15					
	16					
	17					
	18		****	0.01894	15.7	<0.99
	19			0.02958	13.0	<0.99
	20			0.02105	6.0	
	21			0.02405	22.3	
	22			0.01059	30.0	
	23					
	24					
	25			0.02199	15.0	1.1
	26			0.01946	12.3	<0.99
	27	10	0.80	0.02271	16.3	
	28			0.01991	19.3	
	29			0.01182	12.3	
	30					
	31					

	Sample Point	001	001	101	101	101	
	Description	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	
	Parameter	112	280	211	457	342	
	Description	Chlorine, Total Residual	Mercury, Total Recoverable	Flow Rate	Suspended Solids, Total	Oil & Grease (Freon)	
	Units	ug/L ng/L		MGD	mg/L	mg/L	
Summary Values	Monthly Avg	10	0.8	0.018296111 17.5		0.375	
	Monthly Total						
	Daily Max	10	0.8	0.02958	62.8	1.9	
	Daily Min	10	0.8	0.0028	5.4	<0.99	
	Rolling 12 Month Avg						
Limit(s) in Effect	Monthly Avg				31 0	26 0	
	Monthly Total						
	Daily Max				60 1	52 0	
	Daily Min						
	Rolling 12 Month Avg						
QA/QC Information	LOD	30	0.2			0.99	
	LOQ	100	0.5			3.1	
	QC Exceedance	N	N	N	Y	N	
	Lab Certification		721026460		438039470	721026460	

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	87	133	315	553	155
	Description	Cadmium, Total Recoverable	Chromium, Total Recoverable	Nickel, Total Recoverable	Zinc, Total Recoverable	Cyanide, Total
	Units	ug/L	ug/L	ug/L	ug/L	ug/L
	Sample Type	24 HR COMP	24 HR COMP	24 HR COMP	24 HR COMP	GRAB
	Frequency	2/WEEK	MONTHLY	2/WEEK	2/WEEK	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					page hidge A. A. C.
	5	<0.14	<0.67	2.4	21	
	6	<0.14	0.72	1.3	45	
	7					
	8	0.15	0.71	9.2	64	
	9					
	10					
	11	<0.14	<0.67	12.0	56	
	12				AUG	
	13					
	14					
	15					
	16					***
	17					
	18	<0.14	1.1	3.0	41	<5.0
	19	<0.14	0.88	1.6	23	
	20		:			
	21					
	22	<0.14	0.76	2.2	29	
	23					
	24				-	
	25	<0.14	<0.67	1.7	28	
	26					
	27	-				
	28					
	29					
	30					
	31					

<u> </u>	Sample Point	101		101		101		101		101	
	Description	Metal Finishi Effluent	ng	Metal Finishir Effluent	Metal Finishing Effluent		ing	Metal Finish Effluent		Metal Finish Effluent	ing
	Parameter	87		133		315		553		155	
	Description	Cadmium, To Recoverable		Chromium, To Recoverable		Nickel, Total Recoverable ug/L		Zinc, Total Recoverable		Cyanide, Total	
	Units	ug/L		ug/L				ug/L		ug/L	
Summary Values	Monthly Avg		0.01875		0.52125			38.375		0	•
	Monthly Total		0.15 <0.14								
	Daily Max	0.15			1.1 <0.67			64		<5	
	Daily Min	<0.14					1.3			<5	
	Rolling 12 Month Avg										
Limit(s) in Effect	Monthly Avg	260	0	1710	0	2380	0	1480	0	650	0
	Monthly Total	+ 111 = 1									
	Daily Max	690	0	2770	0	3980	0	2610	0	1200	0
	Daily Min										
	Rolling 12 Month Avg										
QA/QC Information	LOD	0.14	. I	0.67		1.1		5		5	
	LOQ	0.45		2		3.4		10		15	
	QC Exceedance	N	N			N		N		N	
	Lab Certification	72102646	0	72102646	0	72102646	30	721026460		721026460	

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
		Lindelik	Emgent			
	Parameter	147	264	430	374	373
	Description	Copper, Total Recoverable	Lead, Total Rec ov erable	Silver, Total Recoverable	pH (Minimum)	pH (Maximum)
	Units	ug/L	ug/L	`ug/L	su	su
	Sample Type	24 HR COMP	24 HR COMP	24 HR COMP	CONTINUOUS	CONTINUOUS
	Frequency	2/WEEK	MONTHLY	MONTHLY	DAILY	DAILY
Sample Results	Day 1					
	2					
	3					
	4				,	
	5	6.1	<1.5	<0.37	6.6	8.6
	6	2.1	<1.5	<0.37	6.4	7.6
	7				6.2	6.8
	8	4.1	<1.5	<0.37	6.3	6.3
_	9					
	10					
	11	6.0	<1.5	<0.37	7.0	8.4
	12				6.8	8.2
	13				6.4	7.9
	14				7.0	7.2
	15					
	16					
	17				-,	
	18	3.8	<1.5	<0.37	8.3	8.9
	19	5.4	<1.5	<0.37	8.2	8.6
	20				7.9	8.8
	21				8.0	8.4
	22	3.5	<1.5	<0.37	8.2	8.4
	23					
	24					
	25	3.7	<1.5	<0.37	8.2	9.0
,	26				7.8	8.7
	27				7.7	8.5
	28				7.8	8.5
	29				7.4	8.4
	30					
	31		-			

	Sample Point	101		101		101		101		101	
	Description	Metal Finishi Effluent	ng	Metal Finishir Effluent	ng	Metal Finishi Effluent	ing	Metal Finish Effluent		Metal Finishi Effluent	ng
	Parameter	147		264		430		374		373	-
	Description	Copper, Tot Recoverable		Lead, Total Recoverable		Silver, Total Recoverable ug/L		pH (Minimum)		pH (Maximum)	
	Units	ug/L		ug/L				su		su	
Summary Values	Monthly Avg	4.3375		0		0		7.344444	144	8.1777777	78
	Monthly Total	6.4						8.3			
	Daily Max	6.1	6.1 2.1		<1.5 <1.5		<0.37 <0.37			6.3	
	Daily Min	2.1									
	Rolling 12 Month Avg										
Limit(s) in Effect	Monthly Avg	2070	0	430	0	240	0				
	Monthly Total										
	Daily Max	3380	0	690	0	430	0			11	0
	Daily Min							4	0		
	Rolling 12 Month Avg			.,,							
QA/QC Information	LOD	1.3		1.5		0.37					
	LOQ	4		4.9		1.2					
	QC N Exceedance		N		N		N		N		
	Lab Certification	721026460		72102646	0	72102646	<u> </u>				

	Sample Point	101	101	101	101	101
•	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	379	376	507	40	490
	Description	pH Total Exceedance Time Minutes	pH Exceedances Greater Than 60 Minutes	Total Toxic Organics	Benzene	Tetrachloroethylene
ŀ	Units	minutes	Number	ug/L	ug/L	ug/L
Ī	Sample Type	CALCULATED	CALCULATED	24 HR COMP	24 HR COMP	24 HR COMP
	Frequency	DAILY	DAILY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					<u> </u>
	20					
	21					
	22					
	23				<u> </u>	
	24 25					
	26					
	27					
	28					
	29					
	30					
	31		.,,			

	Sample Point	101		101		101		101	101	
	Description	Metal Finishi Effluent	ing	Metal Finish Effluent	ing	Metal Finishing Effluent		Metal Finishing Effluent	Metal Finishing Effluent	
	Parameter	379		376		507		40	490	
	Description	pH Total Excee Time Minute		pH Exceedar Greater Thar Minutes	ices i 60	Total Toxic Orga	anics	Benzene	Tetrachloroethylene	
	Units	minutes		Number		ug/L		ug/L	ug/L	
Summary Values	Monthly Avg									
	Monthly Total									
	Daily Max									
	Daily Min									
	Rolling 12 Month Avg									
Limit(s) in Effect	Monthly Avg									
	Monthly Total	446	0	0	0					
	Daily Max					2130				
	Daily Min									
	Rolling 12 Month Avg									
QA/QC Information	LOD									
	LOQ									
	QC Exceedance	N		N		N		N	N	
	Lab Certification				•					

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	500	561	200	508	285
	Description	Toluene	1,1,1-Trichloro- ethane	Ethylbenzene	Trichloro- ethylene	Methylene chloride
	Units	ug/L	ug/L	ug/L	ug/L	ug/L
	Sample Type	24 HR COMP	24 HR COMP	24 HR COMP	24 HR COMP	24 HR COMP
Sample Results	Frequency Day 1	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Campie Results	2 2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13 14					
	15					
	16					
	17		14.			
	18					
	19	g parties i	100			
	20					
	21					
-	22					
************	23					
	24					
	25					
	26					
	27					
	28				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	29					
	30 31			- Art		
L	J 31					

	Sample Point	101	101	101	101	101	
	Description	Metal Finishing Effluent					
	Parameter	500	561	200	508	285	
	Description	Toluene	1,1,1-Trichloro- ethane	Ethylbenzene	Trichloro- ethylene	Methylene chloride	
				-			
	Units	ug/L	ug/L	ug/L	ug/∟	ug/L	
Summary Values	Monthly Avg						
	Monthly Total						
	Daily _, Max			·			
	Daily Min						
	Rolling 12 Month Avg						
Limit(s) in Effect	Monthly Avg						
	Monthly Total						
	Daily Max						
	Daily Min						
	Rolling 12 Month Avg						
QA/QC Information	LOD						
	LOQ			-			
	QC Exceedance	N	N	N	N	N	
	Lab Certification						

	Sample Point	101	106	106	106	107
	Description	Metal Finishing Effluent		Future remedial action ww	Future remedial action ww	Mercury Field Blank Results
	Parameter	167	211	35	457	280
	Description	Di-n-butyl phthalate (dibutyl phthalate)	Flow Rate	Arşenic, Total Recoverable	Suspended Solids, Total	Mercury, Total Recoverable
	Units	ug/L	gpd	ug/L	mg/L	ng/L
	Sample Type	24 HR COMP	CONTINUOUS	24 HR COMP	24 HR COMP	GRAB
	Frequency	MONTHLY	DAILY	WEEKLY	WEEKLY	MONTHLY
Sample Results	Day 1					
	2					= 44.0
	3			:		
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18			-		
	19	.*1//				
	20					
	21					
	22					
	23					
	24					
	25					
	26			1		<u></u>
						<0.20
	27					-0,20
	28					
	29					
	30					,
	31		<u></u>			

	Sample Point	101	106	106	106	107
	Description	Metal Finishing Effluent	Future remedial action ww	Future remedial action ww	Future remedial action ww	Mercury Field Blank Results
	Parameter	167	211	35	457	280
	Description	Di-n-butyl phthalate (dibutyl phthalate)	Flow Rate	Arsenic, Total Recoverable	Suspended Solids, Total	Mercury, Total Recoverable
	Units	ug/L	gpd	ug/L	mg/L	ng/L
Summary Values	Monthly Avg					0
	Monthly Total					
	Daily Max					<0.2
	Daily Min					<0.2
	Rolling 12 Month Avg					
Limit(s) in Effect	Monthly Avg					
	Monthly Total					
	Daily Max					
	Daily Min					
	Rolling 12 Month Avg					
QA/QC Information	LOD					0.2
	LOQ					0.5
	QC Exceedance	N	N	N	N	N
	Lab Certification					721026460

	Sample Point	003	003	003	003	003
	Description	Future remedial action dischg				
	Parameter	211	457	35	374	373
	Description	Flow Rate	Suspended Solids, Total	Arsenic, Total Recoverable	pH (Minimum)	pH (Maximum)
	Units	MGD	mg/L	ug/L	su	su
	Sample Type	CONTINUOUS	24 HR COMP	24 HR COMP	CONTINUOUS	CONTINUOUS
	Frequency	DAILY	WEEKLY	WEEKLY	DAILY	DAILY
Sample Results	Day 1	0.006133			7.1	7.1
	2					
	3					
	4					
	5			,		
	6					
	7					
	8	0.015232			8.3	8.4
	9	0.008871			8.3	8.5
	10	0.009938			6.0	8.9
	11	0.010701			6.3	8.5
	12	0.011160	4.3	5000	7.3	8.2
	13	0.013570			6.7	8.3
	14	0.016935			6.4	7.2
	15	0.016452			6.7	7.2
	16	0.006335			6.4	6.5
	17	0.005414			6.5	6.6
	18	0.011888			6.5	6.7
	19	0.017345	3.6	3200	6.4	6.9
	20	0.010393			6.4	6.6
	21	0.012627			6.6	6.7
	22	0.007289			6.7	7.0
	23	0.006484			6.8	9.0
	24	0.005376			6.5	8.9
	25	0.012480			6.3	7.4
	26	0.009432	2.7	3000	6.2	7.2
	27	0.011843			6.8	7.3
	28	0.007387			6.7	7.6
	29	0.011146			6.1	7.7
•	30	0.004726			6.6	7.3
	31	0.013920			6.0	6.6

	Sample Point	003	003	003	003	003	
	Description	Future remedial action dischg					
	Parameter	211	457 35		374	373	
	Description	Flow Rate	Suspended Solids, Total	Arsenic, Total Recoverable	pH (Minimum)	pH (Maximum)	
	Units	MGD	mg/L	ug/L.	su	su	
Summary Values	Monthly Avg	0.01052308	3.533333333	3733.333333333	6.664	7.532	
	Monthly Total						
	Daily Max	0.017345	4.3	5000	8.3	9	
	Daily Min	0.004726	2.7	3000	6	6.5	
	Rolling 12 Month Avg						
Limit(s) in Effect	Monthly Avg						
	Monthly Total						
	Daily Max			680 3		11 0	
	Daily Min				4 0		
	Rolling 12 Month Avg	-					
QA/QC Information	LOD			1			
	LOQ			2	<u></u>		
	QC Exceedance	N	N	Y	N	N	
	Lab Certification		438039470	721026460			

	Sample Point	003	003
	Description		Future remedial action
	Dosonption	dischg	dischg
	Parameter	379	376
	Description	pH Total Exceedance Time Minutes	pH Exceedances Greater Than 60 Minutes
	Units	minutes	Number
	Sample Type	CONTINUOUS	CONTINUOUS
	Frequency	DAILY	DAILY
Sample Results	Day 1		
	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
	14		
	15		
	16		
	17		
	18		,-
	19		
	20		
	21		
	22		
	23		
	24		
	25		
	26		
	27		
	28	,	
	29		
	30		
	31		

	Sample Point	003		003	
	Description		action	Future remedial action dischg	
	Parameter	379		376	
	Description	pH Total Excee Time Minute		pH Exceedances Greater Than 60 Minutes	
	Units	minutes		Number	
Summary Values	Monthly Avg				
	Monthly Total				
	Daily Max				
	Daily Min				
	Rolling 12 Month Avg				
Limit(s) in Effect	Monthly Avg				
	Monthly Total	446	0		
	Daily Max			0	0
	Daily Min				
	Rolling 12 Month Avg				
QA/QC Information	LOD		•		
	LOQ				
	QC Exceedance	N	•	N	*
	Lab Certification				

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.)

1. Based on my inquiry of the person or persons directly resp	oonsible for m	anaging co	mpiliance wit	h the pe	mit limitation for
TTO I certify that to the best of my knowledge and belief no o	dumping of co	oncentrated	toxic organic	s into th	e wastewaters
has				•	

2. occurred since filing of the last discharge monitoring report. I further certify that this facility is implementing the solvent management plan submitted to the department.

General Remarks

Outfall OF001 temperature chart was stuck and did not run on July 30-31 so, you will not have a temperature reading. The first week of July OF003 sampler was not taken because the system did not run all week because of maintenance

CN- is always a grab sample per WDNR

Laboratory Quality Control Comments

On July 25th, 2016 OF001 the Arsenic was out of range, we have been working on the problem ever since sending different samples out to other Labs for Analysis.

July 12th we had an exceedance of TSS for that day of 62.8.

The three weeks that we ran the sampler on OF003 we had an exceedance of Arsenic and we have been shut down since then and working with other labs to solve the problem.

eReport Certify - TYCO FIRE PROTECTION PRODUCTS LP

- 393163

Facility Name

TYCO FIRE PROTECTION PRODUCTS LP

Form Type

Wastewater Discharge Monitoring Long Report

DOC ID

367820

Reporting Period

8/1/2016 to 8/31/2016

Enter Certification Code

mckeymetom

E-Mail was sent to

afleury@tycoint.com

Return To List

Certification complete.

The Official Internet site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608,266,2621

Questions or comments about this e-form: Contact Us

Wastewater Discharge Monitoring Long Report

Facility Name:

TYCO FIRE PROTECTION PRODUCTS LP

Contact Address: One Stanton Street

Marinette, WI 54143

Facility Contact: Judith Rost, Sr Lab Tech

Phone Number: (715) 735-7411

Reporting Period: 08/01/2016 - 08/31/2016

Form Due Date: 09/21/2016 Permit Number: 0001040

For DNR Use Only

Date Received:

DOC:

367820

FIN:

7245

FID:

438039470

Region:

Northeast Region

Reviewer:

Permit Drafter: Trevor J Moen Bruce S. Oman

Office:

Peshtigo

	Sample Point	001	703	001	001	001
	Description	PRIOR TO MENOMINEE RIVER	Intake Water Monitoring	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER
	Parameter	211	280	487	374	373
	Description	Flow Rate	Mercury, Total Recoverable	Temperature	pH (Minimum)	pH (Maximum)
	Units	MGD	ng/L	degF	su	su
	Sample Type	CONTINUOUS	GRAB	GRAB	CONTINUOUS	CONTINUOUS
	Frequency	DAILY	MONTHLY	MONTHLY	DAILY	DAILY
Sample Results	Day 1	0.25257		80	7.1	7.3
	2	0.23976		83	7.0	7.3
	3	0.24910		84	6.9	7.3
	4	0.20950		84	7.0	7.1
	5	0.13841		83	7.0	7.7
	6	0.00904		80	7.7	7.9
	7	0.05457		79	7.4	7.9
	8	0.22159		79	7.3	7.6
	9	0.21639		82	7.3	7.6
	10	0.22361		84	7.2	7.5
	11	0.22643		84	7.1	7.4
	12	0.20241		79	6.8	7.3
	13	0.07661		78	6.8	7.5
	14	0.11398		79	6.6	7.5
	15	0.21831		84	7.1	7.2
	16	0.30649		90	6.7	7.4
	17	0.23163		82	7.0	7.2
	18	0.22913		83	6.9	7.0
	19	0.26925		75	6.4	7.1
	20	0.24351		71	6.3	7.2
-	21	0.10522		74	7.1	7.2
	22	0.21820		77	6.8	7.0
	23	0.31805		79	6.8	7.0
	24	0.25802	6.4	7 5	6.4	7.2
	25	0.14667		72	6.8	7.2
	26	0.10929		72	6.6	7.2
	27	0.12596		77	6.6	7.1
	28	0.10815		76	7.0	7.2
	29	0.21743		77	6.9	7.0
	30	0.25150		79	6.8	7.1
Per constitution of the co	31	0.25498		83	6.9	7.3

Facility Name: TYCO FIRE PROTECTION PRODUCTS LP Reporting Period: 08/01/2016 to 08/31/2016

·	Sample Point	001	703	001	001	001	
	Description	PRIOR TO MENOMINEE RIVER	Intake Water Monitoring	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	
	Parameter	211	280	487	374	373	
	Description	Flow Rate	Mercury, Total Recoverable	Temperature	рН (Minimum)	pH (Maximum)	
	Units	MGD	ng/L	degF	su	su	
Summary Values	Monthly Avg	0.195024516	6.4	79.483870968	6.912903226	7.306451613	
3	Monthly Total						
	Daily Max	0.31805	6.4	90	7.7	7.9	
	Daily Min	0.00904	6.4	71	6.3	7	
	Rolling 12 Month Avg						
Limit(s) in Effect	Monthly Avg						
	Monthly Total						
	Daily Max					11 0	
	Daily Min				4 0		
	Rolling 12 Month Avg						
QA/QC Information	LOD	1	0.2				
	LOQ		0.5				
	QC Exceedance	N	N	N	N	N	
	Lab Certification		721026460				

	Sample Point	001	001	001	001	001
	Description	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER
	Parameter	379	376	388	231	35
	Description	pH Total Exceedance Time Minutes	pH Exceedances Greater Than 60 Minutes	Phosphorus, Total	Hardness, Total as CaCO3	Arsenic, Total Recoverable
	Units	minutes	Number	mg/L	mg/L	ug/L
	Sample Type	CONTINUOUS	CONTINUOUS	24 HR COMP	24 HR COMP	24 HR COMP
	Frequency	DAILY	DAILY	WEEKLY	MONTHLY	MONTHLY
Sample Results	Day 1			0.432	250	790
	2					
	3					
	4					
	5					
	6					
	7					
	8			0.694	300	1200
	9					
	10					
	11					
	12					
	13					
	14					
	15			0.166	240	270
	16					
	17					
	18					
	19					
	20					
	21					
	22			0.338	210	380
	23					
	24					
	25					
	26					
	27					
	28					
	29					
	30 .					
	31		E			

	Sample Point	001		001		001		001		001	
	Description	PRIOR TO MENOMINEE F		PRIOR TO MENOMINEE F		PRIOR TO MENOMINEE F		PRIOR TO MENOMINEE RI	VER	PRIOR TO MENOMINEE R	
	Parameter	379		376		388		231		35	
	Description	pH Total Excee Time Minute		pH Exceedances Greater Than 60 Minutes		Phosphorus, Total		Hardness, Total as CaCO3		Arsenic, Total Recoverable	
	Units	minutes		Number		mg/L		mg/L		ug/L	
Summary Values	Monthly Avg					0.4075		250		660	
	Monthly Total										
	Daily Max							300		1200	
	Daily Min						0.166			270	
	Rolling 12 Month Avg					0.3					
Limit(s) in Effect	Monthly Avg										
	Monthly Total	446	0						<u> </u>		
	Daily Max			0	0					680	2
	Daily Min										
	Rolling 12 Month Avg					1	0				
QA/QC Information	LOD				•	0.008	•			1	
	LOQ					0.027				2	
	QC Exceedance	N		N	N			N		Y	
	Lab Certification					43803947	70	721026460)	72102646	0

	Sample Point	001	001	001	001	001
	Description	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER
ŀ	Parameter	35	147	147	87	152
	Description	Arsenic, Total Recoverable	Copper, Total Recoverable	Copper, Total Recoverable	Cadmium, Total Recoverable	Cyanide, Amenable
	Units	lbs/day	ug/L	lbs/day	ug/L	ug/L
-	Sample Type	CALCULATED	24 HR COMP	24 HR COMP	24 HR COMP	24 HR COMP
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1	1.6669	4.1	0.008651	<0.14	
	2					
	3					
	4					
	5					
	6					
	7					
	8	2.22	5.9	0.010915	<0.14	
	9					
	10					
	11					
	12					
	13					
	14					
	15	0.4914	6.1	0.011102	<0.14	<5.0
	16					
	17					
	18					
	19					
	20					
	21					
	22	0.6916	12	0.02184	<0.14	
	23					
Statement of the statem	24					
	25					
	26					
	27					
	28					
	29					
[30					
	31					

	Sample Point	001		001		001		001	001	
	Description	PRIOR TO MENOMINEE RI	VER	PRIOR TO MENOMINEE RI	VER	PRIOR TO MENOMINEE F		PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	
	Parameter	35		147		147		87	152	
	Description	Arsenic, Tota Recoverable		Copper, Tota	Copper, Total Recoverable		al e	Cadmium, Total Recoverable	Cyanide, Amenable	
	Units	lbs/day		ug/L	ug/L			ug/L	ug/L	
Summary Values	Monthly Avg	1.267475		7.025	7.025		7	0	0	
	Monthly Total				•					
	Daily Max	2.22		12	12			<0.14	<5	
	Daily Min	0.4914		4.1	4.1		0.008651		<5	
	Rolling 12 Month Avg									
Limit(s) in Effect	Monthly Avg									
	Monthly Total									
	Daily Max	12	0	69	0	0.98	0			
	Daily Min									
	Rolling 12 Month Avg									
QA/QC Information	LOD			1.3				0.14	5	
	LOQ							0.45	15	
	QC Exceedance	N		N	•	N		N	N	
	Lab Certification			721026460)			721026460	721026460	

	Sample Point	001	001	101	101	101
	Description	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	112	280	211	457	342
	Description	Chlorine, Total Residual	Mercury, Total Recoverable	Flow Rate	Suspended Solids, Total	Oil & Grease (Freon)
	Units	ug/L	ng/L	MGD	mg/L	mg/L
	Sample Type	GRAB	GRAB	CONTINUOUS	24 HR COMP	GRAB
	Frequency	MONTHLY	MONTHLY	DAILY	DAILY	2/WEEK
Sample Results	Day 1			0.022097	27.3	1.9
	2			0.020139	35.0	1.7
ľ	3			0.019338	44.0	
	4			0.012388	39.3	
	5			0.013383	29.0	
	6					
	7					
	8			0.018504	12.2	<0.99
	9			0.014068	15.3	<0.99
	10			0.016738	17.5	
	11			0.015621	12.0	
	12			0.008871	13.3	
	13			0.002512	18.3	
	14					
	15			0.016219	7.8	<0.99
	16			0.018068	7.5	<0.99
	17			0.016841	8.8	
	18			0.011578	6.8	
	19			0.011716	7.5	
	20			0.004465	13.0	
	21					
	22	20		0.011781	16.3	<0.99
	23 •			0.013079	10.3	<0.99
	24		1.9	0.015688	11.0	
	25			0.014301	11.3	
	26			0.010783	13.3	
	27			0.00539	15.3	
	28					
	29			0.010675	17.3	
	30			0.012479	8.7	
	31			0.014245	18.7	

	Sample Point	001	001	101	101	101	
	Description	PRIOR TO MENOMINEE RIVER	PRIOR TO MENOMINEE RIVER	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	
	Parameter	112	280	211	457	342	
	Description	Chlorine, Total Residual	Mercury, Total Recoverable	Flow Rate	Suspended Solids, Total	Oil & Grease (Freon)	
	Units	ug/L	ng/L	MGD	mg/L	mg/L	
Summary Values	Monthly Avg	20	1.9	0.013498731	16.8	0.45	
Monthly Total							
	Daily Max	20	1.9	0.022097	44	1.9	
	Daily Min	20	1.9	0.002512	6.8	<0.99	
	Rolling 12 Month Avg						
Limit(s) in Effect	Monthly Avg				31 0	26 0	
	Monthly Total						
	Daily Max				60 0	52 0	
	Daily Min						
	Rolling 12 Month Avg						
QA/QC Information	LOD	30	0.2			0.99	
	LOQ	100	0.5			3.1	
	QC Exceedance	N	N	N	N	N	
	Lab Certification		721026460		438039470	721026460	

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	87	133	315	553	155
	Description	Cadmium, Total Recoverable	Chromium, Total Recoverable	Nickel, Total Recoverable	Zinc, Total Recoverable	Cyanide, Total
	Units	ug/L	ug/L	ug/L	ug/L	ug/L
	Sample Type	24 HR COMP	24 HR COMP	24 HR COMP	24 HR COMP	GRAB
	Frequency	2/WEEK	MONTHLY	2/WEEK	2/WEEK	MONTHLY
Sample Results	Day 1	<0.14	3.2	2.5	31	
	2	<0.14	1.4	2.4	44	
	3					
	4					
	5					
	6					
	7					
	8	0.16	<0.67	2.3	110	
	9	<0.14	<0.67	1.5	61	<5.0
	10					
	11					
	12					,
	13					
	14					
	15	0.22	<0.67	<1.1	59	
	16	<0.14	0.96	1.3	49	
	17					
	18					
	19					
	20					
	21					
	22	<0.14	<0.67	7.4	89	
	23	0.24	0.90	10	77	
	24					
	25					
	26					
	27					
	28					
	29					
	30					
	31			-		

	Sample Point	101		101		101		101		101	
	Description	Metal Finishii Effluent	ng	Metal Finishi Effluent	ng	Metal Finish Effluent	ing	Metal Finish Effluent	ing	Metal Finishi Effluent	ng
	Parameter	87		133		315		553		155	
	Description	Cadmium, To Recoverable		Chromium, To Recoverable		Nickel, Total Recoverable		Zinc, Total Recoverable		Cyanide, Total	
	Units	ug/L		ug/L	ug/L			ug/L		ug/L	
Summary Values	Monthly Avg	0.0775	0.0775			3,425		65		0	
	Monthly Total										
	Daily Max	0.24	0.24			10		110		<5	
	Daily Min	<0.14	<0.14		<0.67		<1.1			<5	
	Rolling 12 Month Avg										
Limit(s) in Effect	Monthly Avg	260	0	1710	0	2380	0	1480	0	650	0
	Monthly Total										
	Daily Max	690	0	2770	0	3980	0	2610	0	1200	0
	Daily Min					- 1000 to 100 to					
	Rolling 12 Month Avg					, , , , , , , , , , , , , , , , , , , ,					
QA/QC Information	LOD	0.14	0.14			1.1		5		5	
	LOQ	0.45				3.4		10		15	
	QC Exceedance	N		N		N		N		N	
ž	Lab Certification	72102646	0	72102646	60	72102646	721026460		30	721026460	

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	147	264	430	374	373
	Description	Copper, Total Recoverable	Lead, Total Recoverable	Silver, Total Recoverable	pH (Minimum)	pH (Maximum)
	Units	ug/L	ug/L	ug/L	su	su
	Sample Type	24 HR COMP	24 HR COMP	24 HR COMP	CONTINUOUS	CONTINUOUS
	Frequency	2/WEEK	MONTHLY	MONTHLY	DAILY	DAILY
Sample Results	Day 1	8.2	<1.5	<0.37	7.1	7.8
	2	5.8	<1.5	<0.37	7.0	7.4
	3				7.0	7.7
	4				7.1	7.9
	5				7.4	8.2
	6					
	7					
	8	7.6	<1.5	<0.37	7.8	8.7
	9	5.9	<1.5	<0.37	8.0	8.6
	10				7.9	8.4
	11				7.4	8.2
	12				7.2	8.4
	13				7.2	8.1
	14					
	15	2.2	<1.5	<0.37	7.3	8.1
	16	3.5	<1.5	<0.37	6.7	7.9
	17				6.5	7.4
	18				6.9	7.7
	19				7.6	8.1
	20	····			7.4	8.3
	21			100		
	22	9.3	<1.5	<0.37	7.2	8.0
	23	8.9	<1.5	<0.37	7.4	7.9
	24				6.8	7.7
	25				6.8	7.2
	26				7.3	7.7
	27				7.4	8.0
	28					
	29				7.6	8.1
	30				7.4	7.9
	31		4,		7.5	8.4

	Sample Point	101		101		101		101		101	
	Description	Metal Finishi Effluent	ng	Metal Finishi Effluent	ng	Metal Finish Effluent	ing	Metal Finisl Effluent		Metal Finish Effluent	
	Parameter	147		264		430		374		373	
	Description	Copper, Tot Recoverabl	al e	Lead, Tota Recoverable		Silver, Total Recoverable		pH (Minimum)		pH (Maximum)	
	Units	ug/L		ug/L	ug/L			su		su	
Summary Values	Monthly Avg	6.425		0	"	0		7.265384	615	7.9923070	392
	Monthly Total										
	Daily Max	9.3	9.3		<1.5			8		8.7	
	Daily Min	2.2	2.2		<1.5		<0.37			7.2	
	Rolling 12 Month Avg										
Limit(s) in Effect	Monthly Avg	2070	0	430	0	240	0				
	Monthly Total										
	Daily Max	3380	0	690	0	430	0			11	0
	Daily Min							4	0		
	Rolling 12 Month Avg			· · · · · · · · · · · · · · · · · · ·							
QA/QC Information				1.5	•	0.37				,	
	LOQ	LOQ 4		4.9		1.2	·				
	QC Exceedance	N		N		N		N		N	
	Lab Certification	72102646	30	72102646	50	7210264	60				

	Sample Point	101	101	101	101	101
	Description	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
,	Parameter	379	376	507	40	490
	Description	pH Total Exceedance Time Minutes	pH Exceedances Greater Than 60 Minutes	Total Toxic Organics	Benzene	Tetrachloroethylene
	Units	minutes	Number	ug/L	ug/L	ug/L
	Sample Type	CALCULATED	CALCULATED	24 HR COMP	24 HR COMP	24 HR COMP
	Frequency	DAILY	DAILY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2				<u></u>	
	3					
	4					
	5					
	6	.,,,				
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24					
	25					
	26					
	27					
*	28					
	29					
	30					
	31					

	Sample Point	101		101		101		101	101
	Description		Metal Finishing Effluent		Finishing Metal Finishing Metal Finishing Tuent Effluent Effluent		Metal Finishing Effluent	Metal Finishing Effluent	
	Parameter	379		376	276		507		490
	Description	pH Total Excee Time Minute		pH Exceedar Greater Thar Minutes	ices i 60	Total Toxic Orga	anics	40 Benzene	Tetrachloroethylene
	Units	minutes		Number		ug/L		ug/L	ug/L
Summary Values	Monthly Avg			•					
	Monthly Total								
	Daily Max								
	Daily Min							·	
	Rolling 12 Month Avg								
Limit(s) in Effect	Monthly Avg								
	Monthly Total	446	0	0	0				
	Daily Max					2130			
	Daily Min								
	Rolling 12 Month Avg			,					
QA/QC Information	LOĐ								
	LOQ								
	QC Exceedance	N		N	, ,	N		N	N
	Lab Certification		•••					,	

	Sample Point	101	101	101	101	101
	Description	Metal Finishing	Metal Finishing	Metal Finishing Effluent	Metal Finishing	Metal Finishing Effluent
		Effluent	Effluent	Effluent	Effluent	Effluent
	Parameter	500	561	200	508	285
	Description	Toluene	1,1,1-Trichloro- ethane	Ethylbenzene	Trichloro- ethylene	Methylene chloride
	Units	ug/L	ug/L	ug/L	ug/L	ug/L
	Sample Type	24 HR COMP	24 HR COMP	24 HR COMP	24 HR COMP	24 HR COMP
	Frequency	MONTHLY	MONTHLY	MONTHLY	MONTHLY	MONTHLY
Sample Results	Day 1					
	2			,		
	3			·		
	4					
	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24					
	25					
	26		- Company			
	27					
	28					
	29				·	
	30					
	31					

	Sample Point	101	101	101	101	101
	Description Metal Finishir Effluent		Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent	Metal Finishing Effluent
	Parameter	500	561	200	508	285
	Description	Toluene	1,1,1-Trichloro- ethane	Ethylbenzene	Trichloro- ethylene	Methylene chloride
	Units	ug/L	ug/L	ug/L	ug/L	ug/L
Summary Values	Monthly Avg					
	Monthly Total					
	Daily Max					
	Daily Min					
	Rolling 12 Month Avg					
Limit(s) in Effect	Monthly Avg					
	Monthly Total					
	Daily Max					
	Daily Min					
	Rolling 12 Month Avg					
QA/QC Information	LOD					
	LOQ					
	QC Exceedance	N	N	N	N	N
	Lab Certification					

	Sample Point	101	106	106	106	107
	Description	Metal Finishing		Future remedial action		Mercury Field Blank Results
	Dodding	Effluent	ww	ww	ww	Results
	Parameter	167	211	35	457	280
	Description	Di-n-butyl phthalate (dibutyl phthalate)	Flow Rate	Arsenic, Total Recoverable	Suspended Solids, Total	Mercury, Total Recoverable
	Units	ug/L	gpd	ug/L	mg/L	ng/L
	Sample Type	24 HR COMP	CONTINUOUS	24 HR COMP	24 HR COMP	GRAB
	Frequency	MONTHLY	DAILY	WEEKLY	WEEKLY	MONTHLY
Sample Results	Day 1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					<u> </u>
	9					
	10					
	11					
	12					
	13					
	14				,,,,	
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					·
	24					<0.20
	25					
	26					
	27					
	28					
	29					
	30					
	31	.,,	·			

Permit: 0001040 DOC: 367820

	Sample Point	101	106	106	106	107
	Description	Metal Finishing Effluent	Future remedial action ww	Future remedial action ww ww		Mercury Field Blank Results
	Parameter 167		211	35	457	280
	Description	Di-n-butyl phthalate (dibutyl phthalate)	Flow Rate	Arsenic, Total Recoverable	Suspended Solids, Total	Mercury, Total Recoverable
	Units	ug/L	gpd	ug/L	mg/L	ng/L
Summary Values	Monthly Avg					0
	Monthly Total					
	Daily Max					<0.2
	Daily Min					<0.2
	Rolling 12 Month Avg	, plus s a				
Limit(s) in Effect	Monthly Avg					
-	Monthly Total					
	Daily Max					
	Daily Min					
	Rolling 12 Month Avg					
QA/QC Information	LOD	•				0.2
	LOQ					0.5
	QC Exceedance	N	N	N	N	N
	Lab Certification					721026460

	Sample Point	003	003	003	003	003
	Description	Future remedial action dischg				
	Parameter	211	457	35	374	373
	Description	Flow Rate	Suspended Solids, Total	Arsenic, Total Recoverable	pH (Minimum)	pH (Maximum)
	Units	MGD	mg/L	ug/L	su	su
	Sample Type	CONTINUOUS	24 HR COMP	24 HR COMP	CONTINUOUS	CONTINUOUS
	Frequency	DAILY	WEEKLY	WEEKLY	DAILY	DAILY
Sample Results	Day 1	0.013744	1.3	4600	6.1	6.7
	2	0.006780			6.6	6.8
	3	0.016324			6.6	7.0
	4	0.014006			6.6	6.8
	5	0.008679			6.5	6.7
	6	0.007356			6.5	6.7
	7	0.014718		,,,	6.4	6.8
	8	0.011956	<1.0	1900	6.6	7.4
	9	0.013017			6.5	6.8
	10	0.019338			6.4	6.5
	11	0.008024			6.5	6.6
	12					
	13					
	14					
	15					
	16					
	17					
	18					
	19					
	20					
	21					
	22					
	23					
	24					
	25					
	26	0.023726	1.0	62	6.0	7.4
	27	0.000748			6.0	6.2
	28	0.008843			6.0	9.2
	29	0.018991			6.0	8.9
	30	0.019418			6.7	8.8
	31	0.033385			6.0	8.1

	Sample Point	003	003	003	003	003	
	Description	Future remedial action dischg					
	Parameter	211	457	35	374		
	Description	Flow Rate	Suspended Solids, Total	Arsenic, Total Recoverable	pH (Minimum)	pH (Maximum)	
	Units	MGD	mg/L	ug/L	su	su	
Summary Values	ary Monthly 0.014061941		0.766666667	2187.333333333	6.352941176	7.258823529	
	Monthly Total						
	Daily Max	0.033385	1.3	4600	6.7	9.2	
	Daily Min	0.000748	<1	62	6	6.2	
	Rolling 12 Month Avg		project HAA				
Limit(s) in Effect	Monthly Avg						
	Monthly Total						
	Daily Max			680 2		11 0	
	Daily Min				4 0		
	Rolling 12 Month Avg						
QA/QC Information	LOD			1			
	LOQ			2			
	QC Exceedance	N	N	Y	N	N	
	Lab Certification		438039470	721026460			

	Sample Point	003	003
	Description		Future remedial action
		dischg	dischg
	Parameter	379	376
	Description	pH Total Exceedance	pH Exceedances
		Time Minutes	Greater Than 60 Minutes
	Units	minutes	Number
	Sample Type	CONTINUOUS	CONTINUOUS
	Frequency	DAILY	DAILY
Sample Results	Day 1		
	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
	14		
	15		
	16		
	17		
	18		
	19		
	20		
	21		
	22		,
	23		
	24		
	25		<u> </u>
	26		
	27		
	28	50	
	29		
	30		
	31		
		i	

Permit: 0001040

DOC: 367820

	Sample Point	003		003	
	Description	Future remedial a dischg	ction	Future remedial actior dischg	
	Parameter	379		376	
	Description	pH Total Exceeds	ance	pH Exceedance	es
		` Time Minutes		Greater Than 60 Minutes	
	Units	minutes		Number	
Summary Values	Monthly Avg	50			
	Monthly Total	50			
	Daily Max	50			
	Daily Min	50			
	Rolling 12 Month Avg				
Limit(s) in Effect	Monthly Avg				
	Monthly Total	446	0		
	Daily Max			0	0
	Daily Min				
	Rolling 12 Month Avg				
QA/QC Information	LOD				
	LOQ				
	QC Exceedance	N		N	
	Lab Certification				

Footnotes (DNR Use Only; Instructions for completing this form that are unique for your facility may be displayed here.) 1. Based on my inquiry of the person or persons directly responsible for managing compiliance with the permit limitation for TTO I certify that to the best of my knowledge and belief no dumping of concentrated toxic organics into the wastewaters has 2. occurred since filing of the last discharge monitoring report. I further certify that this facility is implementing the solvent management plan submitted to the department. General Remarks CN- is always taken as a grab sample per WDNR.

Laboratory Quality Control Comments

OF001 had an Arsenic exceedance on August 1 and August 8. The results indicated that the sewer had multiple areas that had failed, allowing arsenic impacted groundwater to enter the Industrial Sewer system and discharge at the Outfall OF-001. Lining, repairing and abandoning portions of the sewer are in process to correct this problem. Repairs are expected to be completed by October 7, 2016.

OF003 had an Arsenic exceedance on August 1 and August 8 also. The investigation resulted in that the cause was due to higher concentrations of organic arsenic that were greater than the system itself could handle at that time. Corrective actions were: Temporarily suspended operation of the GWCT,

Replace the membranes of the Primary RO Unit and Brine RO Unit,

Suspend treating the water from the Remediation Pump Down Program, and

Implemented the new chemistry for the GWCT which was planned, but not yet implemented.

Wastewater Discharge Monitoring Form Facility Name: TYCO FIRE PROTECTION PRODUCTS LP Reporting Period: 08/01/2016 to 08/31/2016

Permit: 0001040

Attachment 3 Laboratory Speciation Report

Report of Arsenic Speciation in Groundwater

Project Name: Tyco – Marinette 2016

Project Number: 676354

Samples Collected: August 22 and August 23, 2016

Report Date: August 30, 2016

Prepared for:

Kaye Walker CH2M 4121 Carmichael Road, Suite 400 Montgomery, AL 36106 kaye.walker@ch2m.com

Brooks Applied Labs

Project ID: CHM-MN1601 Work Order: 1635021

Table of Contents

Case Narrative	3-4
Report Information	5
Sample Information	6
Batch Summary	6
Sample Results	7-8
Accuracy & Precision Summary	9
Method Blanks & Reporting Limits	10-11
Instrument Calibrations	12-15
Sample Containers	16-18
Shipping Containers	19
Chain-of-Custody Form(s)	20-21
Waybill(s)	22
Arsenic Speciation. Data Sequence 1600966. Batch B162062	23-97

Case Narrative

Sample Reception

Seven (7) water samples were received by Brooks Applied Labs (BAL) on August 24, 2016 in a sealed cooler at ambient temperature. The samples were logged in for the analyses of total recoverable arsenic (As) and dissolved arsenic speciation in accordance with the submitted chain of custody (COC) forms. All samples were received and stored securely according to BAL standard operating procedures (SOP).

In accordance with the client's request, all total recoverable arsenic fractions were placed on hold upon receipt. Consequently, no total recoverable arsenic results have been included in this report.

It should be noted that the samples were received at ambient temperature instead of at 4°C as recommended by BAL. While refrigeration of the arsenic speciation fractions is recommended to minimize any potential molecular conversions, no qualification of the data was required.

Arsenic Speciation

All samples for arsenic speciation were directly analyzed by ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). In accordance with the quotation issued for this project, arsenic speciation was defined as the dissolved concentrations of arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMAs], and dimethylarsinic acid [DMAs].

The principles of IC-ICP-CRC-MS are as follows: aliquots of each sample are injected onto an anion exchange column and are mobilized by an alkaline (pH > 7) gradient. The eluting arsenic species are then introduced into a radio frequency (RF) plasma where energy-transfer processes cause desolvation, atomization, and ionization. The ions are extracted from the plasma through a differentially-pumped vacuum interface and travel through a pressurized chamber (CRC) containing a specific collision gas. Polyatomic interferences, due to their inherently larger size, collide more frequently with the collision gas and therefore may be separated from the analyte of interest via kinetic energy discrimination (KED). A solid-state detector detects ions transmitted through the mass analyzer on the basis of their mass-to-charge ratio (m/z), and the resulting current is processed by a data handling system. Retention times for each eluting species are compared to known standards for species identification.

Analytical Issues and Discussion

Sequence 1600966 - Batch B162062 - Arsenic Speciation

The COC form submitted by the client requested an MS/MSD set on the sample identified as EW-14. This request was mistakenly overlooked by the analyst when preparing the samples for arsenic speciation, and an MS/MSD set was instead performed on the sample identified as EW-8. The client was contacted about this issue and stated that no re-analyses should be necessary. Since all quality control results were within acceptance limits, no further action was taken.

It should be noted that all submitted samples contained additional, unidentified arsenic species. While their identities are unknown at this time, the estimated concentration of arsenic associated with each unknown species is provided in the attached raw data (chromatograms). Upon client

request Brooks Applied Labs may be able to pursue identification of these additional arsenical species.

All sample results were *not* method blank corrected, as described in the calculations section of the relevant BAL SOPs, and have been evaluated using method detection limits (MDLs) and method reporting limits (MRLs) that have been adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

We certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more details, please see the *Report Information* page in your report. Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Ben Wozniak Project Manager

ben@brooksapplied.com

Ben Woznick

BAL Report 1635021

Project ID: CHM-MN1601 PM: Ben Wozniak

Client PM: Kaye Walker

Report Information

Laboratory Accreditation

BAL is accredited by the National Environmental Laboratory Accreditation Program (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations /certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

Brooks Applied Labs	MS	matrix spike
method blank	MSD	matrix spike duplicate
laboratory fortified blank	ND	non-detect
calibration standard	NR	non-reportable
continuing calibration blank	N/C	not calculated
continuing calibration verification	PS	post preparation spike
chain of custody record	REC	percent recovery
dissolved fraction	RPD	relative percent difference
duplicate	SCV	secondary calibration verification
instrument blank	SOP	standard operating procedure
initial calibration verification	SRM	standard reference material
method detection limit	T	total fraction
method reporting limit	TR	total recoverable fraction
	method blank laboratory fortified blank calibration standard continuing calibration blank continuing calibration verification chain of custody record dissolved fraction duplicate instrument blank initial calibration verification method detection limit	method blank MSD laboratory fortified blank ND calibration standard NR continuing calibration blank N/C continuing calibration verification PS chain of custody record REC dissolved fraction RPD duplicate SCV instrument blank SOP initial calibration verification SRM method detection limit T

Definition of Data Qualifiers

(Effective 9/23/09)

- Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate. J
- Ε An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Result is estimated. н
- Estimated value. A full explanation is presented in the narrative. J-1
- Duplicate precision (RPD) for associated QC sample was not within acceptance criteria. Result is estimated. J-M
- Spike recovery for associated QC sample was not within acceptance criteria. Result is estimated. J-N
- Duplicate precision (RPD) was not within acceptance criteria. Result is estimated. M
- Spike recovery was not within acceptance criteria. Result is estimated. Ν
- Rejected, unusable value. A full explanation is presented in the narrative. R
- Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL. U
- Χ Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA SOW ILM03.0, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program</u> National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010. These supersede all previous qualifiers ever employed by BAL.

Project ID: CHM-MN1601 PM: Ben Wozniak

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
EW-10	1635021-01	Water	Sample	08/23/2016	08/24/2016
EW-10	1635021-02	Water	Sample	08/23/2016	08/24/2016
EW-14	1635021-03	Water	QC Sample	08/23/2016	08/24/2016
EW-14	1635021-04	Water	QC Sample	08/23/2016	08/24/2016
EW-13	1635021-05	Water	Sample	08/23/2016	08/24/2016
EW-13	1635021-06	Water	Sample	08/23/2016	08/24/2016
EW-9	1635021-07	Water	Sample	08/23/2016	08/24/2016
EW-9	1635021-08	Water	Sample	08/23/2016	08/24/2016
EW-11	1635021-09	Water	Sample	08/22/2016	08/24/2016
EW-11	1635021-10	Water	Sample	08/22/2016	08/24/2016
EW-11/D	1635021-11	Water	Field Duplicate	08/22/2016	08/24/2016
EW-11/D	1635021-12	Water	Field Duplicate	08/22/2016	08/24/2016
EW-8	1635021-13	Water	Sample	08/22/2016	08/24/2016
EW-8	1635021-14	Water	Sample	08/22/2016	08/24/2016

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
As(III)	Water	IC-ICP-MS	08/24/2016	08/26/2016	B162062	1600966
As(V)	Water	IC-ICP-MS	08/24/2016	08/26/2016	B162062	1600966
DMAs	Water	IC-ICP-MS	08/24/2016	08/26/2016	B162062	1600966
MMAs	Water	IC-ICP-MS	08/24/2016	08/26/2016	B162062	1600966

Project ID: CHM-MN1601 PM: Ben Wozniak

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
EW-10										
1635021-02	As(III)	Water	D	149000		200	2000	μg/L	B162062	1600966
1635021-02	As(V)	Water	D	≤ 200	U	200	2000	μg/L	B162062	1600966
1635021-02	DMAs	Water	D	97500	•	300	2100	μg/L	B162062	1600966
1635021-02	MMAs	Water	D	1380000		300	2300	μg/L	B162062	1600966
.0000 0_								1.0		
EW-11										
1635021-10	As(III)	Water	D	6030		100	1000	μg/L	B162062	1600966
1635021-10	As(V)	Water	D	≤ 100	U	100	1000	μg/L	B162062	1600966
1635021-10	DMAs	Water	D	6740		150	1050	μg/L	B162062	1600966
1635021-10	MMAs	Water	D	64600		150	1150	μg/L	B162062	1600966
EW-11/D										
1635021-12	As(III)	Water	D	5770		100	1000	μg/L	B162062	1600966
1635021-12	As(V)	Water	D	≤ 100	U	100	1000	μg/L	B162062	1600966
1635021-12	DMAs	Water	D	6270		150	1050	μg/L	B162062	1600966
1635021-12	MMAs	Water	D	59300		150	1150	μg/L	B162062	1600966
EW-13										
1635021-06	As(III)	Water	D	164000		200	2000	μg/L	B162062	1600966
1635021-06	As(V)	Water	D	≤ 200	U	200	2000	μg/L	B162062	1600966
1635021-06	DMAs	Water	D	151000		300	2100	μg/L	B162062	1600966
1635021-06	MMAs	Water	D	1770000		300	2300	μg/L	B162062	1600966
EW-14										
1635021-04	As(III)	Water	D	25100		20.0	200	μg/L	B162062	1600966
1635021-04	As(V)	Water	D	18300		20.0	200	μg/L	B162062	1600966
1635021-04	DMAs	Water	D	9450		30.0	210	μg/L	B162062	1600966
1635021-04	MMAs	Water	D	199000		30.0	230	μg/L	B162062	1600966
EW-8										
1635021-14	As(III)	Water	D	21400		20.0	200	μg/L	B162062	1600966
1635021-14	As(V)	Water	D	1130		20.0	200	μg/L	B162062	1600966
1635021-14	DMAs	Water	D	1160		30.0	210	μg/L	B162062	1600966
1635021-14	MMAs	Water	D	17200		30.0	230	μg/L	B162062	1600966

Project ID: CHM-MN1601 PM: Ben Wozniak

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
EW-9										
1635021-08	As(III)	Water	D	1570		10.0	100	μg/L	B162062	1600966
1635021-08	As(V)	Water	D	228		10.0	100	μg/L	B162062	1600966
1635021-08	DMAs	Water	D	≤ 15.0	U	15.0	105	μg/L	B162062	1600966
1635021-08	MMAs	Water	D	200		15.0	115	μg/L	B162062	1600966

Project ID: CHM-MN1601 PM: Ben Wozniak

Accuracy & Precision Summary

Batch: B162062 Lab Matrix: Water Method: IC-ICP-MS

Sample B162062-BS1	Analyte Laboratory Fortified Blank, As(III) As(V) DMAs	Native (NC00024	Spike 5.000 5.000 3.198	5.081 5.206 3.361	Units μg/L μg/L μg/L	102% 104%	75-125 75-125 75-125	RPD & Li	mits
B162062-BS2	Laboratory Fortified Blank, MMAs	(1545039)) 5.270	4.544	μg/L	86%	75-125		
B162062-DUP1	Duplicate, (1635021-14) As(III) As(V) DMAs MMAs	21350 1135 1157 17210		21030 929.1 1144 17260	μg/L μg/L μg/L μg/L			2% 20% 1% 0.3%	25 25 25 25
B162062-MS1	Matrix Spike, (1635021-14) As(III) As(V) DMAs MMAs	21350 1135 1157 17210	10000 10000 10420 11730	31000 12000 11340 28750	µg/L µg/L µg/L µg/L	109% 98%	75-125 75-125 75-125 75-125		
B162062-MSD1	Matrix Spike Duplicate, (16 As(III) As(V) DMAs MMAs	21350 21350 1135 1157 17210	10000 10000 10420 11730	31030 12240 11370 28630	µg/L µg/L µg/L µg/L	111% 98%	75-125 75-125 75-125 75-125	0.09% 2% 0.3% 0.4%	25 25 25 25

Project ID: CHM-MN1601 **PM:** Ben Wozniak

Method Blanks & Reporting Limits

Batch: B162062 Matrix: Water Method: IC-ICP-MS Analyte: As(III)

Sample	Result	Units
B162062-BLK1	0.00	μg/L
B162062-BLK2	0.00	μg/L
B162062-BLK3	0.00	μg/L
B162062-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.020
 MRL: 0.020

Analyte: As(V)

Sample	Result	Units
B162062-BLK1	0.001	μg/L
B162062-BLK2	0.001	μg/L
B162062-BLK3	0.001	μg/L
B162062-BLK4	0.0006	µg/L

 Average: 0.001
 MDL: 0.002

 Limit: 0.020
 MRL: 0.020

Analyte: DMAs

Sample	Result	Units
B162062-BLK1	0.001	μg/L
B162062-BLK2	0.005	μg/L
B162062-BLK3	0.001	μg/L
B162062-BLK4	0.0005	μg/L

 Average: 0.002
 MDL: 0.003

 Limit: 0.021
 MRL: 0.021

Project ID: CHM-MN1601 PM: Ben Wozniak

Method Blanks & Reporting Limits

Analyte: MMAs

Sample	Result	Units
B162062-BLK1	0.00	μg/L
B162062-BLK2	0.0005	μg/L
B162062-BLK3	0.0007	μg/L
B162062-BLK4	0.0005	μg/L

 Average: 0.000
 MDL: 0.003

 Limit: 0.023
 MRL: 0.023

Project ID: CHM-MN1601 PM: Ben Wozniak

Instrument Calibration

Sequence: 1600966 Arsenic Speciation by IC-ICPMS

Instrument: ICPMS6 Date: 08/26/2016 Analyte: As(III)

• • • • • • • • • • • • • • • • • • • •					
Lab ID 1600966-ICB1	True Value	Result 0.000	Units µg/L	RE	C & Limits
1600966-CAL1	0.02000	0.022	μg/L	109%	
1600966-CAL2	0.02000	0.021	μg/L	105%	
1600966-CAL3	0.02000	0.021	μg/L	105%	
1600966-CAL4	0.02000	0.020	μg/L	98%	
1600966-CAL5	0.2000	0.195	μg/L	98%	
1600966-CAL6	0.5000	0.478	μg/L	96%	
1600966-CAL7	2.000	1.941	μg/L	97%	
1600966-CAL8	5.000	4.994	μg/L	100%	
1600966-CAL9	20.00	20.01	μg/L	100%	
1600966-ICB2		0.002	μg/L		
1600966-ICV1	5.000	5.081	μg/L	102%	80-120
1600966-ICB3		0.000	μg/L		
1600966-CCV1	1.000	0.981	μg/L	98%	75-125
1600966-CCB1		0.00	μg/L		
1600966-CCV2	1.000	0.989	μg/L	99%	75-125
1600966-CCB2		0.00	μg/L		
1600966-CCV3	1.000	0.985	μg/L	98%	75-125
1600966-CCB3		0.00	μg/L		
1600966-CCV4	1.000	1.002	μg/L	100%	75-125
1600966-CCB4		0.00	μg/L		
1600966-CCV5	1.000	1.001	μg/L	100%	75-125
1600966-CCB5		0.00	μg/L		
1600966-CCV6	1.000	0.994	μg/L	99%	75-125
1600966-CCB6		0.00	μg/L		

Project ID: CHM-MN1601 PM: Ben Wozniak

Instrument Calibration

Sequence: 1600966 Arsenic Speciation by IC-ICPMS

Instrument: ICPMS6 Date: 08/26/2016 Analyte: As(V)

Lab ID 1600966-ICB1	True Value	Result -0.000001	Units μg/L	RE	C & Limits
1600966-CAL1	0.02000	0.023	μg/L	115%	
1600966-CAL2	0.02000	0.020	μg/L	102%	
1600966-CAL3	0.02000	0.021	μg/L	107%	
1600966-CAL4	0.02000	0.021	μg/L	104%	
1600966-CAL5	0.2000	0.193	μg/L	97%	
1600966-CAL6	0.5000	0.489	μg/L	98%	
1600966-CAL7	2.000	1.940	μg/L	97%	
1600966-CAL8	5.000	5.008	μg/L	100%	
1600966-CAL9	20.00	20.00	μg/L	100%	
1600966-ICB2		0.013	μg/L		
1600966-ICV1	5.000	5.206	μg/L	104%	80-120
1600966-ICB3		0.002	μg/L		
1600966-CCV1	1.000	0.986	μg/L	99%	75-125
1600966-CCB1		0.001	μg/L		
1600966-CCV2	1.000	0.994	μg/L	99%	75-125
1600966-CCB2		0.001	μg/L		
1600966-CCV3	1.000	0.994	μg/L	99%	75-125
1600966-CCB3		0.001	μg/L		
1600966-CCV4	1.000	1.003	μg/L	100%	75-125
1600966-CCB4		0.0009	μg/L		
1600966-CCV5	1.000	1.006	μg/L	101%	75-125
1600966-CCB5		0.001	μg/L		
1600966-CCV6	1.000	1.010	μg/L	101%	75-125
1600966-CCB6		0.002	μg/L		

Project ID: CHM-MN1601 PM: Ben Wozniak

Instrument Calibration

Sequence: 1600966 Arsenic Speciation by IC-ICPMS

Instrument: ICPMS6 Date: 08/26/2016 Analyte: DMAs

Lab ID 1600966-ICB1	True Value	Result 0.000	Units μg/L	RE	C & Limits
1600966-CAL1	0.02084	0.023	μg/L	110%	
1600966-CAL2	0.02084	0.022	μg/L	107%	
1600966-CAL3	0.02084	0.023	μg/L	111%	
1600966-CAL4	0.02084	0.022	μg/L	107%	
1600966-CAL5	0.2084	0.201	μg/L	96%	
1600966-CAL6	0.5210	0.497	μg/L	95%	
1600966-CAL7	2.084	2.029	μg/L	97%	
1600966-CAL8	5.210	5.200	μg/L	100%	
1600966-CAL9	20.84	20.85	μg/L	100%	
1600966-ICB2		0.0009	μg/L		
1600966-ICV1	3.198	3.361	μg/L	105%	80-120
1600966-ICB3		0.000	μg/L		
1600966-CCV1	1.042	1.009	μg/L	97%	75-125
1600966-CCB1		0.00	μg/L		
1600966-CCV2	1.042	1.023	μg/L	98%	75-125
1600966-CCB2		0.00	μg/L		
1600966-CCV3	1.042	1.018	μg/L	98%	75-125
1600966-CCB3		0.00	μg/L		
1600966-CCV4	1.042	1.026	μg/L	98%	75-125
1600966-CCB4		0.00	μg/L		
1600966-CCV5	1.042	1.039	μg/L	100%	75-125
1600966-CCB5		0.001	μg/L		
1600966-CCV6	1.042	1.040	μg/L	100%	75-125
1600966-CCB6		0.00	μg/L		

Project ID: CHM-MN1601 PM: Ben Wozniak

Instrument Calibration

Sequence: 1600966 Arsenic Speciation by IC-ICPMS

Instrument: ICPMS6 Date: 08/26/2016 Analyte: MMAs

Lab ID 1600966-ICB1	True Value	Result 0.000	<mark>Units</mark> μg/L	RE	C & Limits
1600966-CAL1	0.02346	0.027	μg/L	116%	
1600966-CAL2	0.02346	0.026	μg/L	109%	
1600966-CAL3	0.02346	0.026	μg/L	109%	
1600966-CAL4	0.02346	0.025	μg/L	107%	
1600966-CAL5	0.2346	0.224	μg/L	95%	
1600966-CAL6	0.5865	0.568	μg/L	97%	
1600966-CAL7	2.346	2.298	μg/L	98%	
1600966-CAL8	5.865	5.899	μg/L	101%	
1600966-CAL9	23.46	23.45	μg/L	100%	
1600966-ICB2		0.001	μg/L		
1600966-ICV2	5.270	4.544	μg/L	86%	80-120
1600966-ICB3		0.000	μg/L		
1600966-CCV1	1.173	1.159	μg/L	99%	75-125
1600966-CCB1		0.00	μg/L		
1600966-CCV2	1.173	1.174	μg/L	100%	75-125
1600966-CCB2		0.001	μg/L		
1600966-CCV3	1.173	1.164	μg/L	99%	75-125
1600966-CCB3		0.0004	μg/L		
1600966-CCV4	1.173	1.164	μg/L	99%	75-125
1600966-CCB4		0.0005	μg/L		
1600966-CCV5	1.173	1.175	μg/L	100%	75-125
1600966-CCB5		0.0006	μg/L		
1600966-CCV6	1.173	1.176	μg/L	100%	75-125
1600966-CCB6		0.00	μg/L		

Project ID: CHM-MN1601
PM: Ben Wozniak

Sample Containers

Lab ID: 1635021-01 Report Matrix: Water Collected: 08/23/2016 Sample: EW-10 Sample Type: Sample Received: 08/24/2016 **Des Container** Size Lot **Preservation** P-Lot pН Ship. Cont. Bottle HDPE ICP-W 60mL 1% HNO3 (BAL) 1630022 <2 Cooler 15-0056

Comments: HIGH LEVEL

Lab ID: 1635021-02 Collected: 08/23/2016 Report Matrix: Water Sample: EW-10 Sample Type: Sample Received: 08/24/2016 P-Lot **Des Container** Size Lot **Preservation** pН Ship. Cont. Vacutainer 10mL 16-0133 EDTA (PP) Not Provided Cooler

Comments: HIGH LEVEL

 Lab ID: 1635021-03
 Report Matrix: Water
 Collected: 08/23/2016

 Sample: EW-14
 Sample Type: QC Sample
 Received: 08/24/2016

Comments: MS/MSD labeled as native sample per client. Original samples labeled as extra vol.

Des Container Size Lot **Preservation** P-Lot Ship. Cont. рΗ Α Bottle HDPE ICP-W 60mL 15-0056 1% HNO3 (BAL) 1630022 <2 Cooler В EXTRA_VOL 60mL 1630022 15-0056 1% HNO3 (BAL) <2 Cooler

Comments: HIGH LEVEL

Lab ID: 1635021-04Report Matrix: WaterCollected: 08/23/2016Sample: EW-14Sample Type: QC SampleReceived: 08/24/2016

Comments: MS/MSD labeled as native sample per client. Original samples labeled as extra vol.

P-Lot **Des Container Preservation** Ship. Cont. Size Lot pН Α Vacutainer 10mL 16-0133 EDTA (PP) Not Provided Cooler В EXTRA_VOL 10mL 16-0133 EDTA (PP) Not Provided Cooler

Comments: HIGH LEVEL

Project ID: CHM-MN1601 **PM:** Ben Wozniak

Sample Containers

Lab ID: 1635021-05 Report Matrix: Water Collected: 08/23/2016 Sample: EW-13 Received: 08/24/2016 Sample Type: Sample **Des Container** Size P-Lot Ship. Cont. Lot **Preservation** pН Bottle HDPE ICP-W 60mL 15-0056 1% HNO3 (BAL) 1630022 <2 Cooler Comments: HIGH LEVEL

Lab ID: 1635021-06 Report Matrix: Water Collected: 08/23/2016 Sample: EW-13 Received: 08/24/2016 Sample Type: Sample Des Container **Size** Lot **Preservation** P-Lot pН Ship. Cont. EDTA (PP) Vacutainer 10mL 16-0133 Not Provided Cooler

Comments: HIGH LEVEL

Lab ID: 1635021-07 Collected: 08/23/2016 Report Matrix: Water Sample Type: Sample Sample: EW-9 Received: 08/24/2016 **Des Container** Size Lot **Preservation** P-Lot pН Ship. Cont. Bottle HDPE ICP-W 1% HNO3 (BAL) 60mL 15-0056 1630022 <2 Cooler

Comments: HIGH LEVEL

Lab ID: 1635021-08 Report Matrix: Water Collected: 08/23/2016 Sample: EW-9 Received: 08/24/2016 Sample Type: Sample Size P-Lot **Des Container** Lot **Preservation** Ship. Cont. pН Vacutainer 10mL 16-0133 EDTA (PP) Not Provided Cooler

Comments: HIGH LEVEL

Lab ID: 1635021-09 Report Matrix: Water Collected: 08/22/2016 Sample: EW-11 Received: 08/24/2016 Sample Type: Sample **Des Container** Size Lot **Preservation** P-Lot На Ship. Cont. Bottle HDPE ICP-W 60mL 15-0056 1% HNO3 (BAL) 1630022 <2 Cooler

Comments: HIGH LEVEL

Project ID: CHM-MN1601 **PM:** Ben Wozniak

Sample Containers

Lab ID: 1635021-10 Report Matrix: Water Collected: 08/22/2016 Sample: EW-11 Received: 08/24/2016 Sample Type: Sample **Des Container** Size P-Lot Ship. Cont. Lot **Preservation** pН Vacutainer 10mL 16-0133 EDTA (PP) Not Provided Cooler

Comments: HIGH LEVEL

Lab ID: 1635021-11 Report Matrix: Water Collected: 08/22/2016 Sample: EW-11/D Received: 08/24/2016 Sample Type: Field Duplicate **Des Container Size** Lot **Preservation** P-Lot pН Ship. Cont. 15-0056 1% HNO3 (BAL) Bottle HDPE ICP-W 60mL 1630022 <2 Cooler

Comments: HIGH LEVEL

Lab ID: 1635021-12 Collected: 08/22/2016 Report Matrix: Water Sample: EW-11/D Sample Type: Field Duplicate Received: 08/24/2016 **Des Container** Size Lot **Preservation** P-Lot На Ship. Cont. EDTA (PP) Α Vacutainer 10mL 16-0133 Not Provided Cooler

Comments: HIGH LEVEL

Lab ID: 1635021-13 Report Matrix: Water Collected: 08/22/2016 Sample: EW-8 Received: 08/24/2016 Sample Type: Sample Size P-Lot **Des Container** Lot **Preservation** Ship. Cont. pН **Bottle HDPE ICP-W** 60mL 15-0056 1% HNO3 (BAL) 1630022 <2 Cooler

Comments: HIGH LEVEL

Lab ID: 1635021-14 Report Matrix: Water Collected: 08/22/2016 Sample: EW-8 Received: 08/24/2016 Sample Type: Sample **Des Container** Size Lot **Preservation** P-Lot Ship. Cont. Vacutainer 10mL 16-0133 EDTA (PP) Not Provided Cooler

Comments: HIGH LEVEL

Project ID: CHM-MN1601 PM: Ben Wozniak

Shipping Containers

Cooler

Received: August 24, 2016 9:15 **Tracking No:** 532177812010 via FedEx

Coolant Type: None Temperature: ambient

Description: Cooler
Damaged in transit? No
Returned to client? No
Comments: Ambient

Custody seals present? Yes Custody seals intact? Yes COC present? Yes

Chain-of-Custody Form

Ship samples to: 18804 North Creek Parkway, Suite 100 Bothell, WA 98011

Received by: Javan For BAL use of	nly _ Date:	BAL Report 1635021
Work Order ID:		0915
Project ID:		

20 of 97

Client: <u>Pro Fire Profes</u> Contact: <u>Ryay Swent</u> Client Project ID: Samples Collected By: <u>Ry</u>	Him Product	PO Number: Phone: 7/5 Email: pyansi	-735 - 7411 wennen C tycoint. c	Mailing Address:	Marinette, w mation? (Yes/No	5t VI 54143
Samples Collected By: //	ay Swenner	Jeff Van	ko	_ BALPM: _ Ben C	U-	
Requested TAT (business days)	Collection	Client Samp	le Info	BAL Analyses Re	equired	Comments
2 EW-10 8/1 3 EW-14 8/1 4 EW-14 8/1 5 EW-13 8/1 6 EW-13 8/1 7 EW-8 8/1 8 EW-9 5/1 9 EW-11 8/1 10 EW-/1 8/1	23/16 /243 23/16 /243 23/16 /243 23/16 /245 23/16 /245 23/16 /245 23/16 /128 23/16 /149	Matrix Type Matrix Type Mumber of Container	ドield Filtered? (Yes/No) Preservation Type HCI/HNO₃/Other Total Hg, EPA 1631	g, EPA 163 Aetals Fotal As ss (specify) mma, DMA es (specify) ss (specify) y, secn, ukno	Filtration Other (specify) Other (specify)	Specify Here MS [MS] MS [MS]
Trip Blank		1 10	808 853 855555 55554		Table 1920	
Relinquished By: Residue	Date: δ-23-/6	Time: 13 . 0=	Relinquished By:		Date:	Time:
Received By:	Date:	Time:	Total Number of F	Packages:		
Page / of 2 List Haza	rdous Contamir	nants:			samples@hrooksannlie	d com l brooksannlied com

Ship samples to: 18804 North Creek Parkway, Suite 100 Bothell, WA 98011

Received by:	For BAL use only Date:	BAL Report 1635021 8/24/16
Work Order ID:	Time:	09:15
Project ID:		

Client: Tyco Fire Protector Contact: Ryan Swenne	Produc	<u>/s</u> P	O Numb	er: 7/5-	735-	77//	1	r	Mailing	Addre	ss: <u>(</u>	Dure Mavi	Sta	uton te, l	SF UI
Client: Tyco five Protector Contact: Ryan Swenne Client Project ID: CHM - MN Samples Collected By: Rya	1601 u Swenn	en /	mail: _/ Teff	Days	ko	inen E	tyco.	com	Email R BAL PM	Receipt 1:	:Confir Ben	matio <i>U</i>	n? (Yes/No)
Requested TAT (business days)	Collection		Clier	nt Sample	e Info	1		0	ВА	L Anal	lyses F	Requir	ed		Comments
2 EW-11/D 8	Date	49	とできる Matrix Type	Number of Container	Field Filtered? (Yes/No)	Preservation Type	Total Hg, EPA 1631	Methyl Hg, EPA 1630	X K ICP-MS Metals (specify) Toれ As	As Species (specify)	-50	Filtration	Other (specify)	Other (specify)	Specify Here
Trip Blank	Tp-4- 0	22.1/		12:0	15							T _P			T
Relinquished By: Ryx duby Received By: Page 2 of 2 List Haza	Date: 9 Date:		Time: Time:	13,00	_	elinquisi otal Nun			ages:				ate:	oksapplie	Time:

ORIGIN ID:GRBA (715) 735-741: MAILROOM TYCO FIRE PROTECTION PRODUCTS ONE STANTON STREET

(715) 735-7411

SHIP DATE: 23AUG16 ACTWGT: 7.6 LB CAD: 0344887/CAFE2912

MARINETTE, WI UNITED STATES

BILL SENDER

BROOKS APPLIED LABS 18804 NORTH CREEK PARKWAY SUITE 100

BOTHELL WA 98011

10ml vacutainer 16-0133 (Asspec.) 60ml 15-0056 (5m)

FedEx Express

TRK# 5321 7781 2010

WED - 24 AUG 10:30A PRIORITY OVERNIGHT

NH PAEA

98011 WA-US SEA

As Speciation (Basic Anion Exchange) Analysis Benchsheet SOP: BAL-4100-001

	As Spe	ciation (Basic Anion Exc	nange) Ar	larysis benchsneet 30	P: DAL-41	00-001	1
	Sequence:	1600966	_Analyst:	JMA	Date:	8/24/2016	_
	Instrument ID:	ICP-6	_Batch #:	B162	046, B1620	047, B162062	
	Diluent:				Eluent:	1628023	
	Pipette ID:		_	Balance ID:			-
	Sample ID	Comments	Dilution	Spike Info	LIMS ID	Aliqout (uL)	STD conc. (ppb)
8	SEQ-ICB1		1				
9	SEQ-CAL1		1		1545040	5uL of 1545038	0.02
10	SEQ-CAL2		1		1545040	5uL of 1545038	0.02
11	SEQ-CAL3		1	As3 Cal - NC00007	1545040	5uL of 1545038	0.02
12	SEQ-CAL4		1	As5 Cal - NC00006	1545040	5uL of 1545038	0.02
13	SEQ-CAL5		1	DMA Cal - NC00012	1545041	50uL of 1545038	0.2
14	SEQ-CAL6		1	MMA CAL - NC00011	1545042	125uL of 1545038	0.5
15	SEQ-CAL7		1		1545043	500uL of 1545038	2
16	SEQ-CAL8		1		1545044	25uL of 1545037	5
17	SEQ-CAL9		1	As3 ICV - NC00009	1545045	100uL of 1545037	20
18	SEQ-ICB2		1	As5 ICV - NC00008			
19	SEQ-ICV1		1	DMA ICV - NC00013	NC00034	25uL of NC00024	5
20	SEQ-ICV2		1	MMA ICV - NC00010	1547081	25uL of 1545039	5
21	SEQ-ICV3		1	AsB ICV - NC00014	NC00036	25uL of NC00026	5
22	SEQ-ICV4		1	TMAO ICV - NC00015	NC00037	25uL of NC00015	5
23	SEQ-ICB3		1			5000	
24	SEQ-SCV1		50	TMDA 70.2 - NC00360	NC00360	100uL of NC00360	
25	SEQ-CCV1		1	CCV (1ppb)	1619062	250uL of 1545038	
26	SEQ-CCB1		1				
27	B162062-BLK1	Diluent	1				
28	B162062-BLK2	B162062	1				
29	B162062-BLK3		1				
30	B162062-BLK4		1				
31	1635021-02		100000	100x (50uL), 1000x (5uL)			
32	1635021-04		10000	, , ,			
33	1635021-06		100000	(//			
34	1635021-08		5000	100x (50uL), 500x (10uL)			
35	SEQ-CCV2		1	CCV (1ppb)	1619062	250uL of 1545038	
36	SEQ-CCB2		1				
37	1635021-10		50000	500x (10uL), 1000x (5uL)			
38	1635021-12		50000	500x (10uL), 1000x (5uL)			
39	1635021-14		10000	(50uL) 100x, 100x			
40	B162062-DUP1	1635021-14	10000	(50uL) 100x, 100x			
41	B162062-MS1	1635021-14	10000	(50uL) 100x, 100x		250uL of 1545038	
42	B162062-MSD1	1635021-14	10000	(50uL) 100x, 100x		250uL of 1545038	
43	SEQ-CCV3		1	CCV (1ppb)	1619062	250uL of 1545038	
44	SEQ-CCB3		1				

Quantitation Report

File Name 033SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 8:26:12 PM

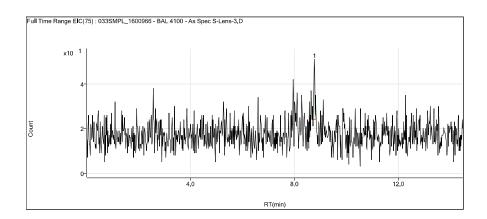
Sample Name SEQ-ICB1
Sample Type CalBlk
Comment --Prep Dilution 1.0000
Auto Dilution 1.0000
Total Dilution 1.0000
Operator Name ICPMS6
Acq Mode Time Resolved

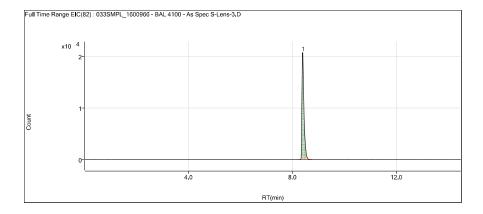
Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File --

Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---


FullQuant Table

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 7.9		ug/I		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3,2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	As3		ug/l		Pulse		
		75	DMA		ug/l		Pulse		
		75	ММА		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 1.9		ug/l		Pulse		
1	8.771	75	As5	0.000	ug/l	81	Pulse		

RT	Compound	Mass	Det.
8.407	Se82	82	Pulse

File Name 034SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 8:41:31 PM

 Sample Name
 SEQ-CAL1

 Sample Type
 CalStd

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

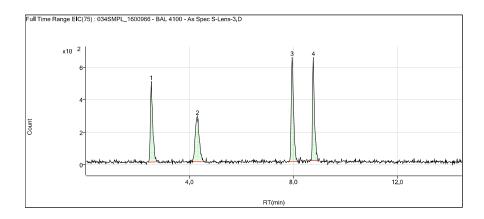
 Operator Name
 ICPMS6

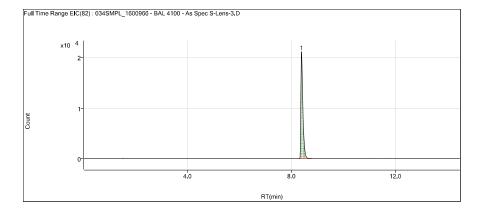
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9,2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/I		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5,2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		
1	2.531	75	DMA	0.023	ug/l	3166	Pulse		
2	4.299	75	As3	0.022	ug/l	3017	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
3	7.956	75	ММА	0.027	ug/l	4053	Pulse		
4	8.771	75	As5	0.023	ug/l	3336	Pulse		

RT	Compound	Mass	Det.
8.390	Se82	82	Pulse

File Name 035SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 8:56:49 PM

 Sample Name
 SEQ-CAL2

 Sample Type
 CalStd

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

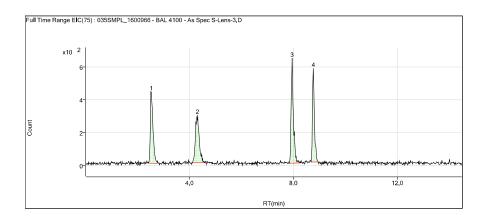
 Operator Name
 ICPMS6

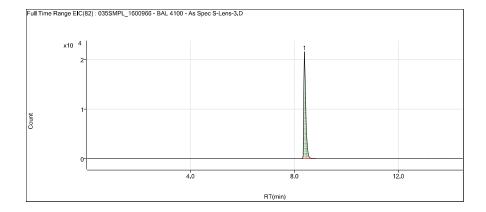
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File --


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9,2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/I		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5,2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		
1	2.514	75	DMA	0.022	ug/l	3064	Pulse		
2	4.316	75	As3	0.021	ug/l	2909	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
3	7.956	75	ММА	0.026	ug/l	3817	Pulse		
4	8.771	75	As5	0.020	ug/l	2958	Pulse		

RT	Compound	Mass	Det.
8.390	Se82	82	Pulse

File Name 036SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 9:12:06 PM

 Sample Name
 SEQ-CAL3

 Sample Type
 CalStd

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

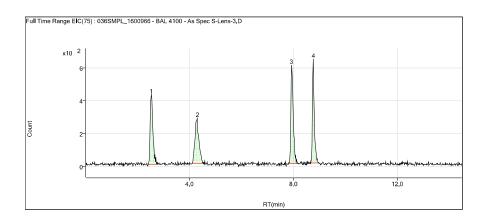
 Operator Name
 ICPMS6

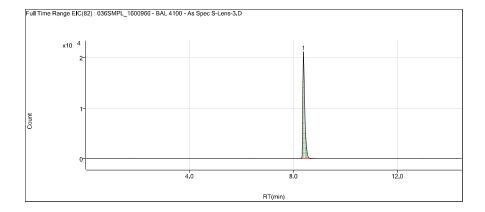
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9,2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/I		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5,2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		
1	2.531	75	DMA	0.023	ug/l	3184	Pulse		
2	4.299	75	As3	0.021	ug/l	2919	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
3	7.939	75	ММА	0.026	ug/l	3811	Pulse		
4	8.771	75	As5	0.021	ug/l	3089	Pulse		

RT	Compound	Mass	Det.
8.390	Se82	82	Pulse

File Name 037SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 9:27:26 PM

 Sample Name
 SEQ-CAL4

 Sample Type
 CalStd

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

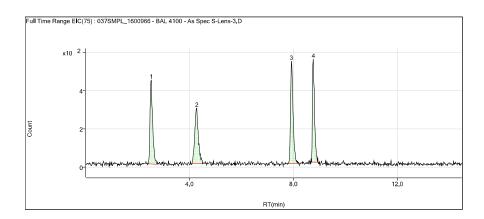
 Operator Name
 ICPMS6

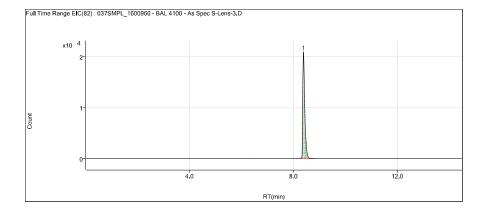
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/I		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/I		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/I		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4,2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/I		Pulse		
		75	Unk 1,9		ug/l		Pulse		
1	2.531	75	DMA	0.022	ug/l	3078	Pulse		
2	4.282	75	As3	0.020	ug/l	2727	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
3	7.939	75	ММА	0.025	ug/l	3721	Pulse		
4	8.771	75	As5	0.021	ug/l	3026	Pulse		

RT	Compound	Mass	Det.
8.390	Se82	82	Pulse

File Name 038SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 9:42:45 PM

 Sample Name
 SEQ-CAL5

 Sample Type
 CalStd

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

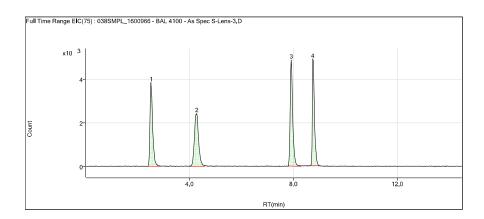
 Operator Name
 ICPMS6

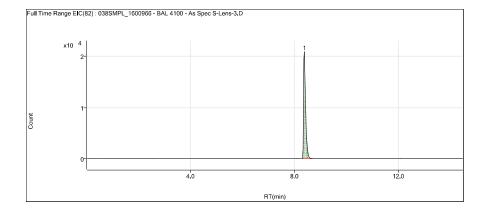
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9,2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/I		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5,2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4,6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1,9		ug/l		Pulse		
1	2.514	75	DMA	0.201	ug/l	27722	Pulse		
2	4.282	75	As3	0.195	ug/l	27033	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
3	7.922	75	ММА	0.224	ug/l	33327	Pulse		
4	8.754	75	As5	0.193	ug/l	27361	Pulse		

RT	Compound	Mass	Det.
8.390	Se82	82	Pulse

File Name 039SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 9:58:03 PM

 Sample Name
 SEQ-CAL6

 Sample Type
 CalStd

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

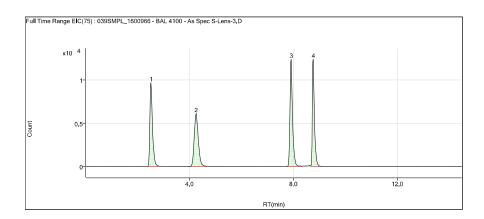
 Operator Name
 ICPMS6

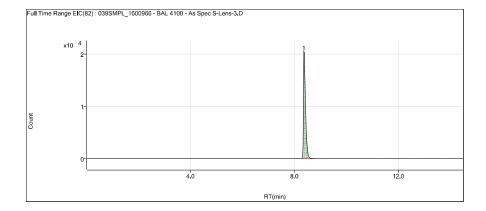
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9,2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5,2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		
1	2.514	75	DMA	0.497	ug/l	68507	Pulse		
2	4.264	75	As3	0.478	ug/l	66281	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
3	7.922	75	ММА	0.568	ug/l	84518	Pulse		
4	8.771	75	As5	0.489	ug/l	69078	Pulse		

RT	Compound	Mass	Det.
8.372	Se82	82	Pulse

File Name 040SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 10:13:22 PM

 Sample Name
 SEQ-CAL7

 Sample Type
 CalStd

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

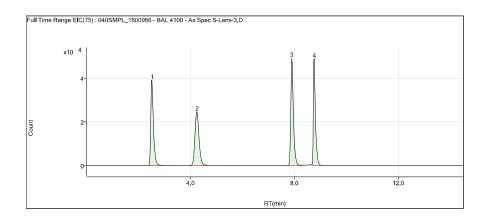
 Operator Name
 ICPMS6

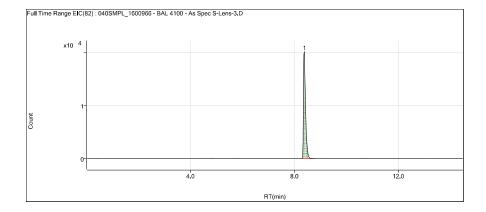
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9,2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/I		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/I		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4,2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/I		Pulse		
		75	Unk 1,9		ug/l		Pulse		
1	2.514	75	DMA	2.029	ug/l	279819	Pulse		
2	4.247	75	As3	1.941	ug/l	268996	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
3	7.904	75	ММА	2.297	ug/l	341942	Pulse		
4	8.771	75	As5	1.940	ug/l	273762	Pulse		

RT	Compound	Mass	Det.
8.390	Se82	82	Pulse

File Name 041SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 10:28:40 PM

 Sample Name
 SEQ-CAL8

 Sample Type
 CalStd

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

 Operator Name
 ICPMS6

 Acq Mode
 Time Resolved

Cal Title ---

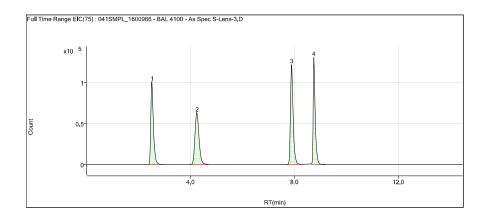
Cal Type External Calibration

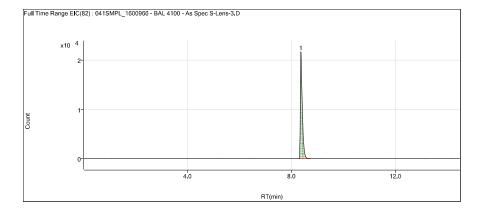
Bkg File ---

Bkg Mode Count Subtraction except for ISTD

08/29/2016 09:12:35

FQ BlankFile ---


FullQuant Table


Last Calib

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9,2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5,2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		
1	2.514	75	DMA	5.200	ug/l	717124	Pulse		
2	4.247	75	As3	4.994	ug/l	691946	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
3	7.904	75	ММА	5.899	ug/l	877982	Pulse		
4	8.754	75	As5	5.008	ug/l	706409	Pulse		

RT	Compound	Mass	Det.
8.372	Se82	82	Pulse

File Name 042SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 10:43:57 PM

 Sample Name
 SEQ-CAL9

 Sample Type
 CalStd

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

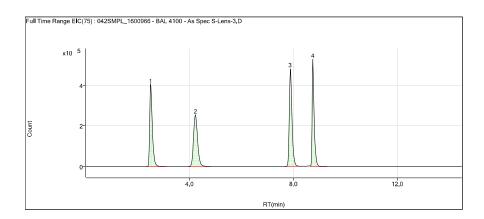
 Operator Name
 ICPMS6

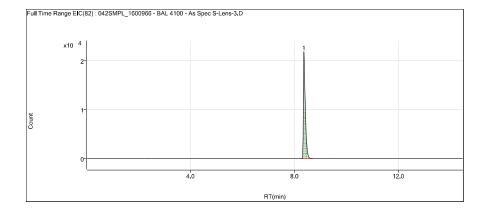
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/I		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/I		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4,2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1,9		ug/l		Pulse		
1	2.496	75	DMA	20.849	ug/l	2875013	Pulse		
2	4.230	75	As3	20.008	ug/l	2772403	Pulse		

	Peak#	RT	Mass	Compound	Conc	Units	Area	Det.	Ratio	ISTD
3		7.887	75	ММА	23.448	ug/l	3489862	Pulse		
4		8.754	75	As5	20.004	ug/l	2821509	Pulse		

RT	Compound	Mass	Det.
8.372	Se82	82	Pulse

File Name 043SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 10:59:16 PM

 Sample Name
 SEQ-ICB2

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

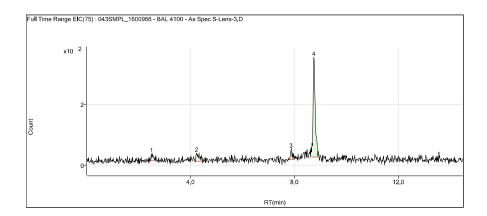
 Operator Name
 ICPMS6

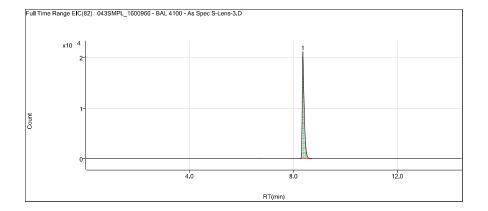
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9,2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		
1	2.496	75	DMA	0.001	ug/l	119	Pulse		
2	4.230	75	As3	0.002	ug/l	241	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
3	7.887	75	ММА	0.001	ug/l	179	Pulse		
4	8.754	75	As5	0.013	ug/l	1908	Pulse		

RT	Compound	Mass	Det.
8.372	Se82	82	Pulse

File Name 044SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 11:14:34 PM

 Sample Name
 SEQ-ICV1

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

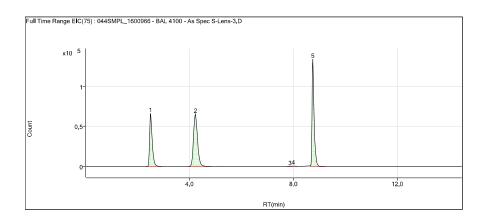
 Operator Name
 ICPMS6

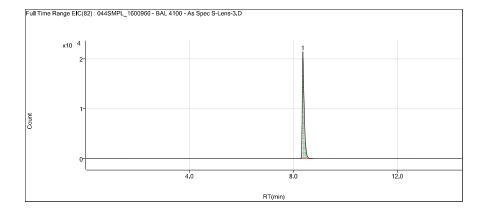
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9,2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/I		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		
1	2.496	75	DMA	3,361	ug/l	463472	Pulse		
2	4.230	75	As3	5.081	ug/l	704100	Pulse		
3	7.870	75	ММА	0.007	ug/l	1099	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
4	8.008	75	Unk 8	0.022	ug/l	3011	Pulse		
5	8.754	75	As5	5.206	ug/l	734284	Pulse		

RT	Compound	Mass	Det.
8.372	Se82	82	Pulse

File Name 045SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 11:29:52 PM

 Sample Name
 SEQ-ICV2

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

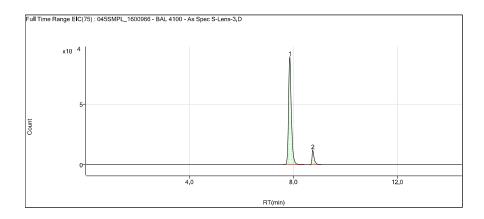
 Operator Name
 ICPMS6

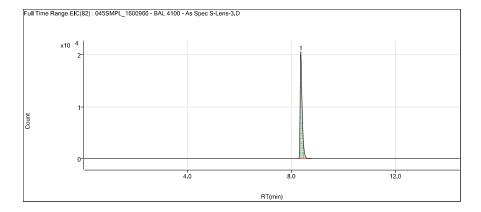
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	As3		ug/l		Pulse		
		75	DMA		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
1	7.870	75	ММА	4.544	ug/l	676343	Pulse		
2	8.754	75	As5	0.469	ug/l	66293	Pulse		

RT	Compound	Mass	Det.
8.372	Se82	82	Pulse

File Name 046SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/25/2016 11:45:11 PM

 Sample Name
 SEQ-ICV3

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

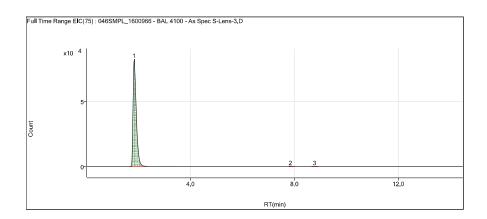
 Operator Name
 ICPMS6

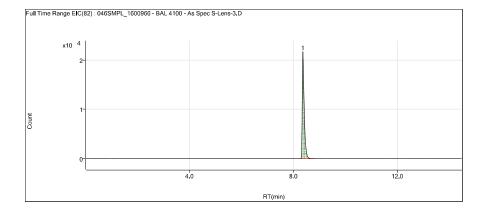
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4,6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	As3		ug/l		Pulse		
		75	DMA		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1,9		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
1	1.838	75	AsB+TMAO	5.151	ug/l	710275	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
2	7.852	75	ММА	0.001	ug/l	208	Pulse		
3	8.771	75	As5	0.004	ug/l	592	Pulse		

RT	Compound	Mass	Det.
8.372	Se82	82	Pulse

File Name 047SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 12:00:30 AM

 Sample Name
 SEQ-ICV4

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

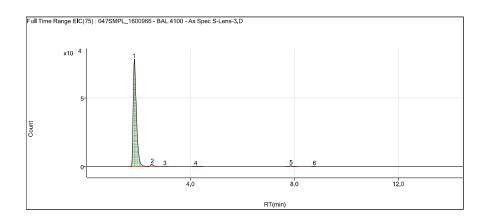
 Operator Name
 ICPMS6

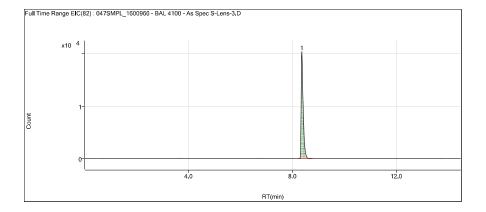
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9,2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		
1	1.838	75	AsB+TMAO	4.931	ug/l	679944	Pulse		
2	2,514	75	DMA	0.079	ug/l	10915	Pulse		
3	3.016	75	Unk 3.2	0.004	ug/l	552	Pulse		
4	4.212	75	As3	0.012	ug/l	1621	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
5	7.870	75	ММА	0.027	ug/l	3995	Pulse		
6	8.771	75	As5	0.003	ug/l	436	Pulse		

RT	Compound	Mass	Det.
8.372	Se82	82	Pulse

048SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D File Name

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

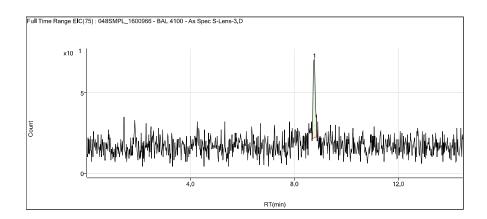
Acq Time 8/26/2016 12:15:49 AM

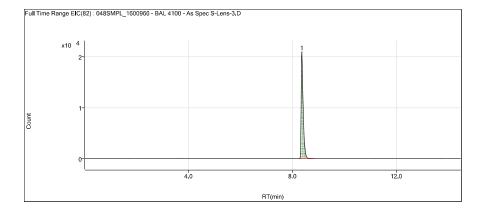
SEQ-ICB3 Sample Name Sample Type Sample Comment 1.0000 **Prep Dilution Auto Dilution** 1.0000 **Total Dilution** 1.0000 **Operator Name** ICPMS6 Acq Mode Time Resolved

Cal Title

External Calibration Cal Type **Last Calib** 08/29/2016 09:12:35

Bkg File


Count Subtraction except for ISTD Bkg Mode


FQ BlankFile

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 7.9		ug/I		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3,2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	As3		ug/l		Pulse		
		75	DMA		ug/l		Pulse		
		75	ММА		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 1.9		ug/l		Pulse		
1	8.771	75	As5	0.002	ug/l	294	Pulse		

RT	Compound	Mass	Det.
8.372	Se82	82	Pulse

File Name 049SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 12:31:07 AM

 Sample Name
 SEQ-SCV1

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 50.0000

 Auto Dilution
 50.0000

 Total Dilution
 50.0000

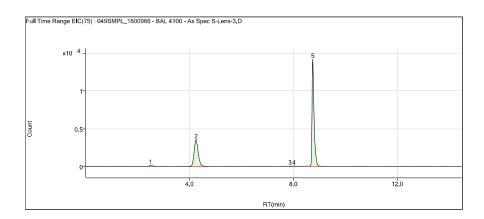
 Operator Name
 ICPMS6

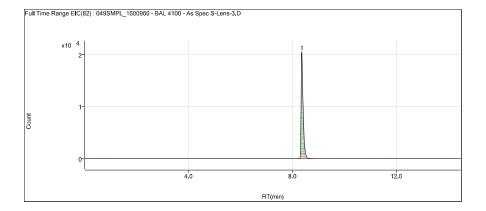
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9,2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4,6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		
1	2.496	75	DMA	0,374	ug/l	1032	Pulse		
2	4.264	75	As3	13.979	ug/l	38741	Pulse		
3	7.887	75	ММА	0.055	ug/l	163	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
4	8.026	75	Unk 8	0.135	ug/l	372	Pulse		
5	8.754	75	As5	27.414	ug/l	77410	Pulse		

RT	Compound	Mass	Det.	
8.372	Se82	82	Pulse	

File Name 050SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 12:46:24 AM

 Sample Name
 SEQ-CCV1

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

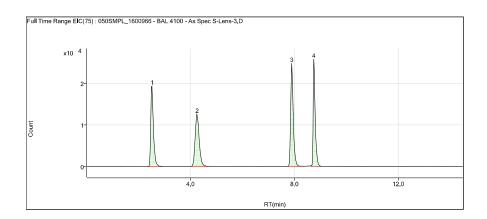
 Operator Name
 ICPMS6

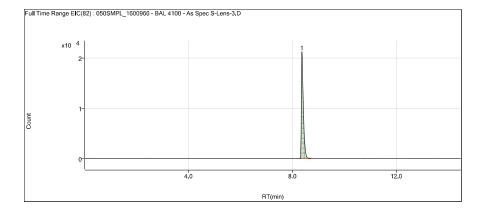
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/I		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4,2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1,9		ug/l		Pulse		
1	2.514	75	DMA	1.009	ug/l	139206	Pulse		
2	4.247	75	As3	0.981	ug/l	135871	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
3	7.904	75	ММА	1.159	ug/l	172455	Pulse		
4	8.754	75	As5	0.986	ug/l	139142	Pulse		

RT	Compound	Mass	Det.
8.372	Se82	82	Pulse

File Name 051SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 1:01:43 AM

 Sample Name
 SEQ-CCB1

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

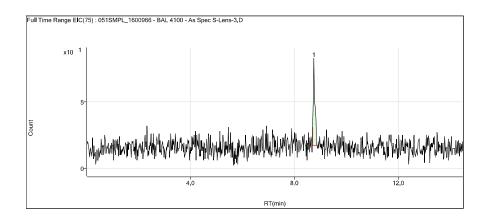
 Operator Name
 ICPMS6

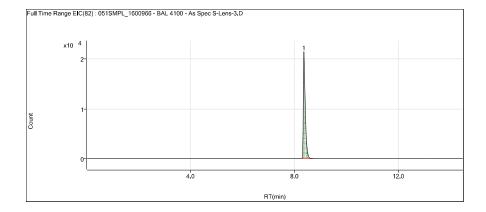
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3,2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	As3		ug/l		Pulse		
		75	DMA		ug/l		Pulse		
		75	ММА		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 1.9		ug/l		Pulse		
1	8.754	75	As5	0.001	ug/l	292	Pulse		

RT	Compound	Mass	Det.
8.372	Se82	82	Pulse

File Name 052SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 1:17:01 AM

Sample Name B162062-BLK1

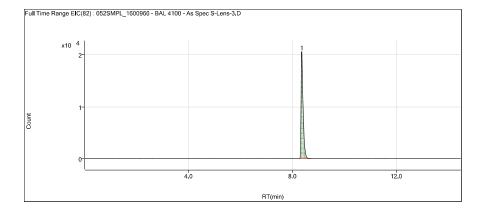
Sample Type Sample
Comment Diluent
Prep Dilution 1.0000
Auto Dilution 1.0000
Total Dilution 1.0000
Operator Name ICPMS6
Acq Mode Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---

Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4,6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	As3		ug/l		Pulse		
		75	мма		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
1	2.514	75	DMA	0.001	ug/l	176	Pulse		
2	8.754	75	As5	0.001	ug/l	268	Pulse		

RT	Compound	Mass	Det.
8.372	Se82	82	Pulse

File Name 053SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 1:32:18 AM

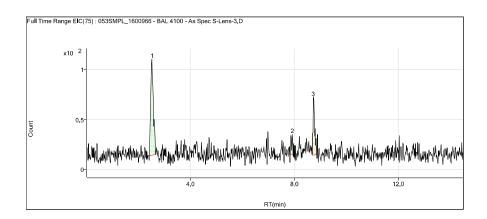
B162062-BLK2 Sample Name

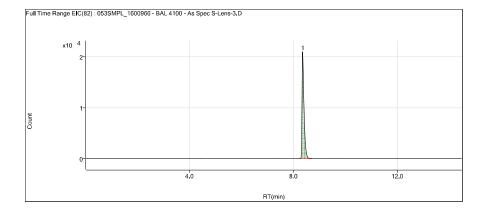
Sample Type Sample B162062 Comment 1.0000 **Prep Dilution Auto Dilution** 1.0000 1.0000 **Total Dilution Operator Name** ICPMS6 Acq Mode Time Resolved

Cal Title

External Calibration Cal Type **Last Calib** 08/29/2016 09:12:35

Bkg File


Count Subtraction except for ISTD Bkg Mode


FQ BlankFile

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	As3		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
1	2.514	75	DMA	0.005	ug/l	688	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
2	7.922	75	мма	0.001	ug/l	81	Pulse		
3	8.736	75	As5	0.001	ug/l	265	Pulse		

RT	Compound	Mass	Det.
8.355	Se82	82	Pulse

File Name 054SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 1:47:38 AM

Sample Name B162062-BLK3

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

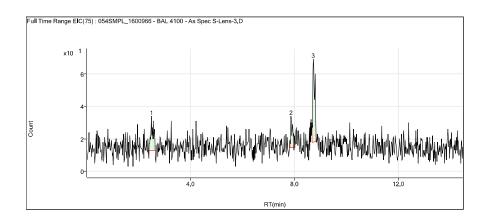
 Operator Name
 ICPMS6

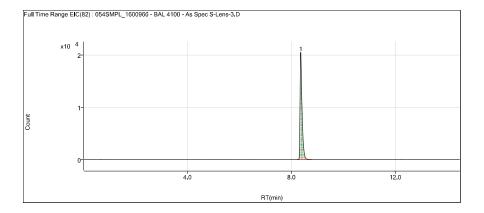
Acq Mode Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	As3		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
1	2.496	75	DMA	0.001	ug/l	148	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
2	7.870	75	мма	0.001	ug/l	101	Pulse		
3	8.736	75	As5	0.001	ug/l	282	Pulse		

RT	Compound	Mass	Det.
8.372	Se82	82	Pulse

File Name 055SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 2:02:56 AM

Sample Name B162062-BLK4

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

 Operator Name
 ICPMS6

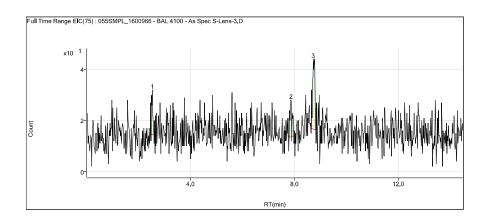
 Acq Mode
 Time Resolved

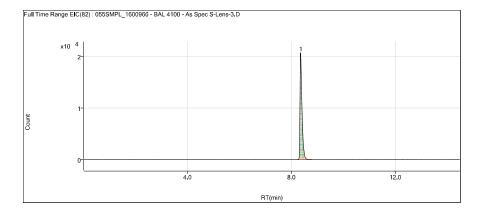
Acq Mode Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 7.9		ug/I		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4,6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	As3		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1,9		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
1	2.531	75	DMA	0.000	ug/l	63	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
2	7.870	75	мма	0.001	ug/l	81	Pulse		
3	8.736	75	As5	0.001	ug/l	172	Pulse		

RT	Compound	Mass	Det.
8.355	Se82	82	Pulse

File Name 056SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 2:18:15 AM

 Sample Name
 1635021-02

 Sample Type
 Sample

 Comment

 Prep Dilution
 100000.0000

 Auto Dilution
 1.0000

 Total Dilution
 100000.0000

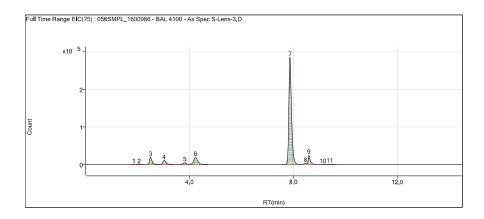
 Operator Name
 ICPMS6

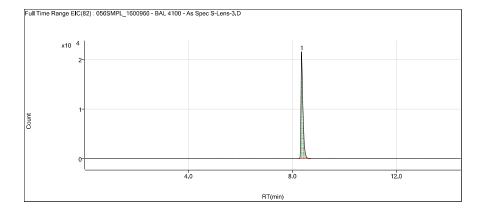
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8,9		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	As5		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 4,6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
1	1.855	75	AsB+TMAO	167.513	ug/l	231	Pulse		
2	2.063	75	Unk 1.9	1783.905	ug/l	2460	Pulse		
3	2.496	75	DMA	97499.820	ug/l	134452	Pulse		
4	3.016	75	Unk 3.2	66137.905	ug/l	91204	Pulse		
5	3.814	75	Unk 3.7	30132.761	ug/l	41553	Pulse		
6	4.230	75	As3	148600.133	ug/l	205907	Pulse		
7	7.870	75	ММА	1378020,069	ug/l	2050938	Pulse		
8	8.459	75	Unk 8.4	8223.366	ug/l	11340	Pulse		
9	8.598	75	Unk 8.6	100538.259	ug/l	138642	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
10	9.152	75	Unk 9.2	327.774	ug/l	452	Pulse		
11	9.413	75	Unk 9,4	5329,959	ug/l	7350	Pulse		

RT	Compound	Mass	Det.
8.355	Se82	82	Pulse

File Name 057SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 2:33:33 AM

 Sample Name
 1635021-04

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 10000.0000

 Auto Dilution
 1.0000

 Total Dilution
 10000.0000

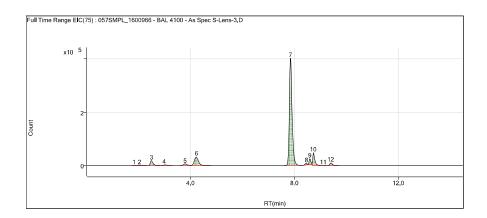
 Operator Name
 ICPMS6

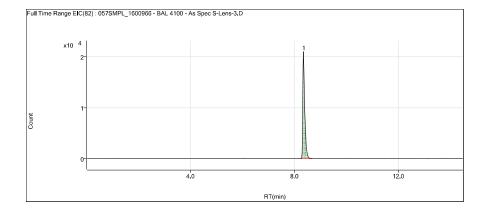
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File --


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 4,2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 12.8		ug/I		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 4.6		ug/I		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
1	1.838	75	AsB+TMAO	56.708	ug/l	782	Pulse		
2	2.028	75	Unk 1.9	424.149	ug/l	5849	Pulse		
3	2.496	75	DMA	9445.993	ug/l	130260	Pulse		
4	2.999	75	Unk 3.2	1351.852	ug/l	18642	Pulse		
5	3.796	75	Unk 3.7	4082.386	ug/l	56296	Pulse		
6	4.230	75	As3	25117.115	ug/l	348034	Pulse		
7	7.852	75	MMA	198681.092	ug/l	2957015	Pulse		
8	8.459	75	Unk 8,4	2885,357	ug/l	39789	Pulse		
9	8.598	75	Unk 8.6	7406.758	ug/l	102139	Pulse		
10	8.736	75	As5	18259.772	ug/l	257619	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
11	9.118	75	Unk 9.2	28.644	ug/l	395	Pulse		
12	9.413	75	Unk 9.4	4697.616	ug/l	64780	Pulse		

RT	Compound	Mass	Det.
8.355	Se82	82	Pulse

File Name 058SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 2:48:51 AM

 Sample Name
 1635021-06

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 100000.0000

 Auto Dilution
 1.0000

 Total Dilution
 100000.0000

 Operator Name
 ICPMS6

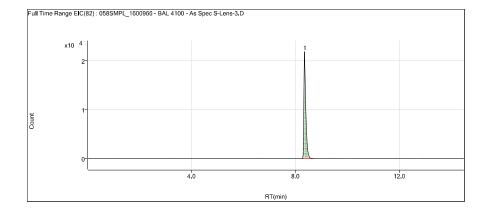
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	As5		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 4,6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
1	1.838	75	AsB+TMAO	443.076	ug/l	611	Pulse		
2	2.028	75	Unk 1.9	2857.148	ug/l	3940	Pulse		
3	2.496	75	DMA	151062.647	ug/l	208315	Pulse		
4	3.016	75	Unk 3.2	90258.327	ug/l	124466	Pulse		
5	3.814	75	Unk 3.7	28613.542	ug/l	39458	Pulse		
6	4.230	75	As3	163914.303	ug/l	227127	Pulse		
7	7.870	75	ММА	1774602,180	ug/l	2641180	Pulse		
8	8.459	75	Unk 8.4	4846.274	ug/l	6683	Pulse		
9	8.598	75	Unk 8.6	79945.762	ug/l	110245	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
10	9.135	75	Unk 9.2	538.797	ug/l	743	Pulse		
11	9.413	75	Unk 9,4	2494,566	ug/l	3440	Pulse		

RT	Compound	Mass	Det.
8.355	Se82	82	Pulse

File Name 059SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 3:04:10 AM

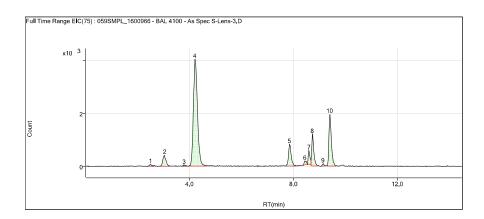
Sample Name 1635021-08
Sample Type Sample
Comment ---

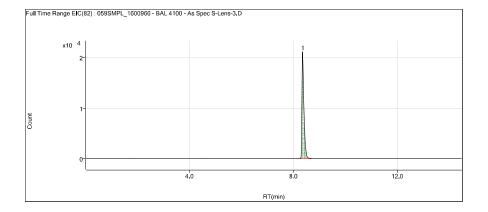
Prep Dilution 5000.0000
Auto Dilution 1.0000
Total Dilution 5000.0000
Operator Name ICPMS6
Acq Mode Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 6.0		ug/I		Pulse		
		75	Unk 4,2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 12.8		ug/I		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/I		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
1	2.496	75	DMA	14.975	ug/l	413	Pulse		
2	3.034	75	Unk 3.2	122.843	ug/l	3388	Pulse		
3	3.796	75	Unk 3.7	8.956	ug/l	247	Pulse		
4	4.212	75	As3	1571.146	ug/l	43541	Pulse		
5	7.852	75	MMA	199.755	ug/l	5946	Pulse		
6	8,442	75	Unk 8,4	31,146	ug/l	859	Pulse		
7	8.598	75	Unk 8.6	96.229	ug/l	2654	Pulse		
8	8.736	75	As5	228.118	ug/l	6516	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
9	9.152	75	Unk 9.2	12.763	ug/l	352	Pulse		
10	9.413	75	Unk 9.4	461,567	ug/l	12730	Pulse		

RT	Compound	Mass	Det.
8.355	Se82	82	Pulse

File Name 060SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 3:19:28 AM

 Sample Name
 SEQ-CCV2

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

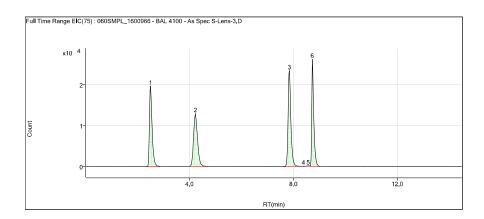
 Operator Name
 ICPMS6

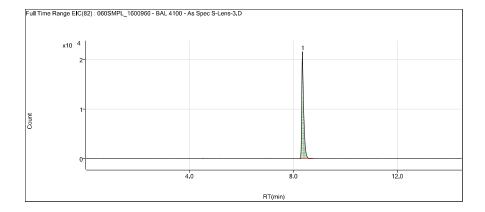
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 11,1		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 12.8		ug/I		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
1	2.496	75	DMA	1.023	ug/l	141063	Pulse		
2	4.230	75	As3	0,989	ug/l	137062	Pulse		
3	7.852	75	MMA	1.174	ug/l	174659	Pulse		
4	8.390	75	Unk 8.4	0.000	ug/l	56	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
5	8.580	75	Unk 8.6	0.001	ug/l	137	Pulse		
6	8.736	75	As5	0.994	ug/l	140256	Pulse		

RT	Compound	Mass	Det.
8.355	Se82	82	Pulse

File Name 061SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 3:34:46 AM

 Sample Name
 SEQ-CCB2

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

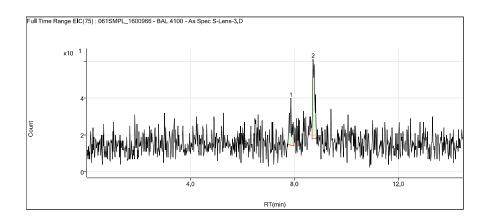
 Operator Name
 ICPMS6

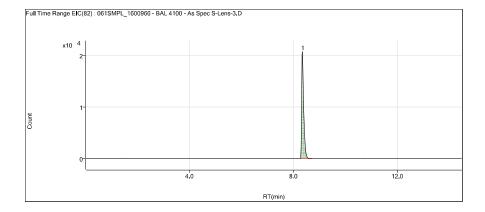
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	As3		ug/l		Pulse		
		75	DMA		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
1	7.870	75	мма	0.001	ug/l	150	Pulse		
2	8.719	75	As5	0.001	ug/l	254	Pulse		

RT	Compound	Mass	Det.
8.355	Se82	82	Pulse

File Name 062SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 3:50:04 AM

1635021-10 Sample Name Sample Type Sample Comment

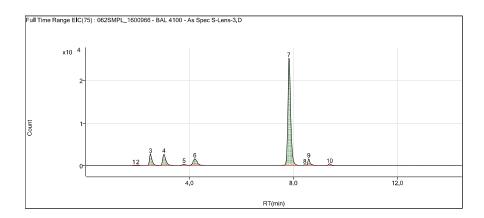
50000.0000 **Prep Dilution Auto Dilution** 1.0000 50000.0000 **Total Dilution Operator Name** ICPMS6 Time Resolved

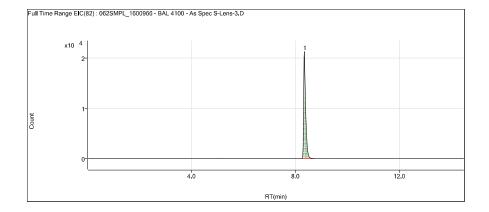
Acq Mode

Cal Title

External Calibration Cal Type **Last Calib** 08/29/2016 09:12:35

Bkg File


Count Subtraction except for ISTD Bkg Mode


FQ BlankFile

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10,2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 9.2		ug/I		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	As5		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
1	1.855	75	AsB+TMAO	46.048	ug/l	127	Pulse		
2	2.011	75	Unk 1.9	93.184	ug/l	257	Pulse		
3	2.496	75	DMA	6736.053	ug/l	18578	Pulse		
4	3.016	75	Unk 3.2	8001.828	ug/l	22069	Pulse		
5	3.779	75	Unk 3.7	707.761	ug/l	1952	Pulse		
6	4.195	75	As3	6028,240	ug/l	16706	Pulse		
7	7.835	75	MMA	64555.238	ug/l	192158	Pulse		
8	8.442	75	Unk 8.4	203.771	ug/l	562	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
9	8.598	75	Unk 8.6	3277.381	ug/l	9039	Pulse		
10	9.395	75	Unk 9,4	922,047	ug/l	2543	Pulse		

RT	Compound	Mass	Det.
8.355	Se82	82	Pulse

File Name 063SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 4:05:23 AM

 Sample Name
 1635021-12

 Sample Type
 Sample

 Comment

 Prep Dilution
 50000.0000

 Auto Dilution
 1.0000

 Total Dilution
 50000.0000

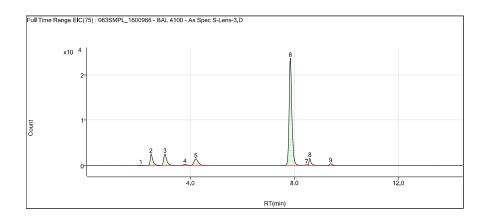
 Operator Name
 ICPMS6

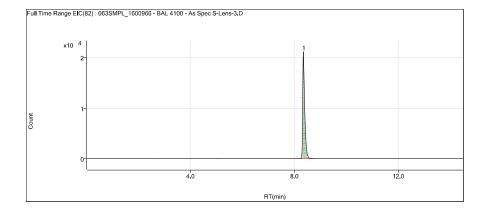
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10,2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 9.2		ug/I		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	As5		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
1	2.080	75	Unk 1.9	116.751	ug/l	322	Pulse		
2	2.479	75	DMA	6269.047	ug/l	17290	Pulse		
3	3.016	75	Unk 3.2	7424.234	ug/l	20476	Pulse		
4	3.796	75	Unk 3.7	684.193	ug/l	1887	Pulse		
5	4,212	75	As3	5774,929	ug/l	16004	Pulse		
6	7.852	75	MMA	59319.477	ug/l	176573	Pulse		
7	8.476	75	Unk 8.4	152.647	ug/l	421	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
8	8.598	75	Unk 8.6	3094.277	ug/l	8534	Pulse		
9	9.395	75	Unk 9,4	913,345	ug/l	2519	Pulse		

RT	Compound	Mass	Det.
8.355	Se82	82	Pulse

File Name 064SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 4:20:41 AM

Sample Name 1635021-14
Sample Type Sample
Comment ---

 Prep Dilution
 10000.0000

 Auto Dilution
 1,0000

 Total Dilution
 10000.0000

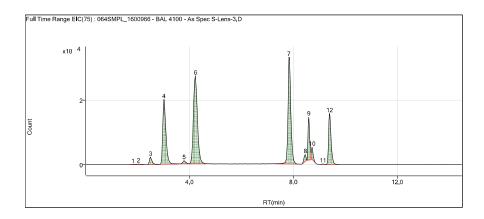
 Operator Name
 ICPMS6

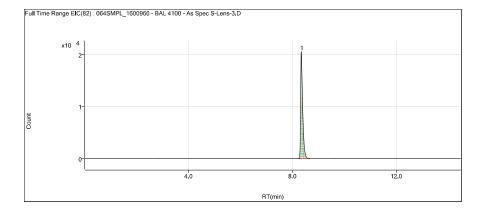
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 4,2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 12.8		ug/I		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
1	1.838	75	AsB+TMAO	7.107	ug/l	98	Pulse		
2	2.028	75	Unk 1.9	83.611	ug/l	1153	Pulse		
3	2.496	75	DMA	1156.782	ug/l	15952	Pulse		
4	3.016	75	Unk 3.2	12335.339	ug/l	170104	Pulse		
5	3.796	75	Unk 3.7	607.978	ug/l	8384	Pulse		
6	4.230	75	As3	21353.019	ug/l	295877	Pulse		
7	7.835	75	MMA	17209.310	ug/l	256130	Pulse		
8	8.459	75	Unk 8,4	879.770	ug/l	12132	Pulse		
9	8.598	75	Unk 8.6	4634.599	ug/l	63911	Pulse		
10	8.719	75	As5	1134.833	ug/l	16087	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
11	9.135	75	Unk 9.2	55.475	ug/l	765	Pulse		
12	9.395	75	Unk 9,4	7747,223	ug/l	106834	Pulse		

RT	Compound	Mass	Det.
8.355	Se82	82	Pulse

File Name 065SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 4:36:00 AM

Sample Name B162062-DUP1

 Sample Type
 Sample

 Comment
 1635021-14

 Prep Dilution
 10000.0000

 Auto Dilution
 1.0000

 Total Dilution
 10000.0000

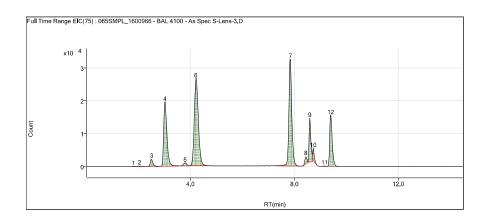
 Operator Name
 ICPMS6

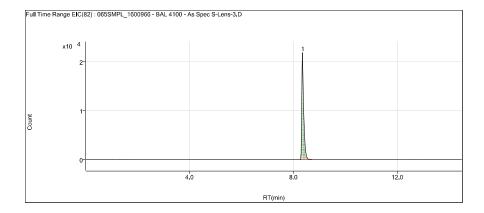
Acq Mode Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 4,2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
1	1.803	75	AsB+TMAO	8.992	ug/l	124	Pulse		
2	2.028	75	Unk 1.9	77.375	ug/l	1067	Pulse		
3	2.496	75	DMA	1144.092	ug/l	15777	Pulse		
4	3.016	75	Unk 3.2	12274.497	ug/l	169265	Pulse		
5	3.796	75	Unk 3.7	613,852	ug/l	8465	Pulse		
6	4.212	75	As3	21031.220	ug/l	291418	Pulse		
7	7.852	75	MMA	17259.770	ug/l	256881	Pulse		
8	8.442	75	Unk 8.4	918,928	ug/l	12672	Pulse		
9	8.598	75	Unk 8.6	4778.979	ug/l	65902	Pulse		
10	8.736	75	As5	929.148	ug/l	13186	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
11	9.170	75	Unk 9.2	45.395	ug/l	626	Pulse		
12	9.395	75	Unk 9.4	7649.398	ug/l	105485	Pulse		

RT	Compound	Mass	Det.
8.355	Se82	82	Pulse

File Name 066SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 4:51:18 AM

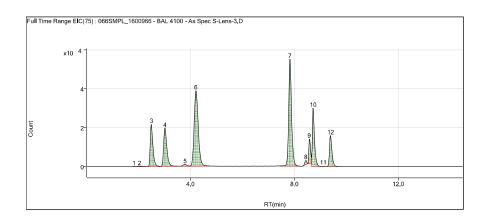
B162062-MS1 Sample Name Sample Type Sample 1635021-14 Comment 10000.0000 **Prep Dilution Auto Dilution** 1.0000 10000.0000 **Total Dilution Operator Name** ICPMS6 Acq Mode Time Resolved

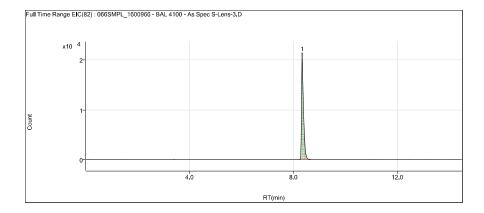
_ ._..

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 12.8		ug/I		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
1	1.820	75	AsB+TMAO	4.206	ug/l	58	Pulse		
2	2.046	75	Unk 1.9	81.726	ug/l	1127	Pulse		
3	2.496	75	DMA	11338.962	ug/l	156364	Pulse		
4	3.016	75	Unk 3.2	12286.245	ug/l	169427	Pulse		
5	3.796	75	Unk 3.7	634.737	ug/l	8753	Pulse		
6	4.212	75	As3	31003.978	ug/l	429605	Pulse		
7	7.835	75	MMA	28746.730	ug/l	427844	Pulse		
8	8.442	75	Unk 8.4	870,923	ug/l	12010	Pulse		
9	8.580	75	Unk 8.6	4431.118	ug/l	61105	Pulse		
10	8.719	75	As5	12002.375	ug/l	169364	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
11	9.118	75	Unk 9.2	42.205	ug/l	582	Pulse		
12	9.395	75	Unk 9.4	7649.906	ug/l	105492	Pulse		

RT	Compound	Mass	Det.
8.338	Se82	82	Pulse

File Name 067SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 5:06:36 AM

B162062-MSD1 Sample Name

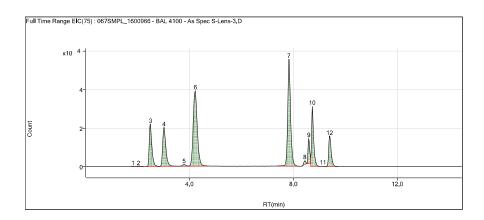
Sample Type Sample 1635021-14 Comment 10000.0000 **Prep Dilution Auto Dilution** 1.0000 10000.0000 **Total Dilution Operator Name** ICPMS6

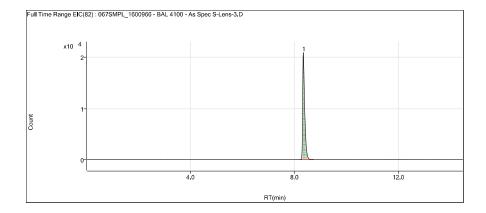
Acq Mode Time Resolved

Cal Title

External Calibration Cal Type **Last Calib** 08/29/2016 09:12:35

Bkg File


Count Subtraction except for ISTD Bkg Mode


FQ BlankFile

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 12.8		ug/I		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
1	1.838	75	AsB+TMAO	5.946	ug/l	82	Pulse		
2	2.028	75	Unk 1.9	79.986	ug/l	1103	Pulse		
3	2.496	75	DMA	11369.057	ug/l	156779	Pulse		
4	3.016	75	Unk 3.2	12402.416	ug/l	171029	Pulse		
5	3.779	75	Unk 3.7	567.224	ug/l	7822	Pulse		
6	4.230	75	As3	31033.062	ug/l	430008	Pulse		
7	7.835	75	MMA	28631.298	ug/l	426126	Pulse		
8	8.442	75	Unk 8.4	856,347	ug/l	11809	Pulse		
9	8.598	75	Unk 8.6	4385.505	ug/l	60476	Pulse		
10	8.736	75	As5	12243.582	ug/l	172766	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
11	9.152	75	Unk 9.2	48.078	ug/l	663	Pulse		
12	9.395	75	Unk 9.4	7726.483	ug/l	106548	Pulse		

RT	Compound	Mass	Det.
8.355	Se82	82	Pulse

File Name 068SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

Acq Time 8/26/2016 5:21:55 AM

 Sample Name
 SEQ-CCV3

 Sample Type
 Sample

 Comment
 --

 Prep Dilution
 1.0000

 Auto Dilution
 1.0000

 Total Dilution
 1.0000

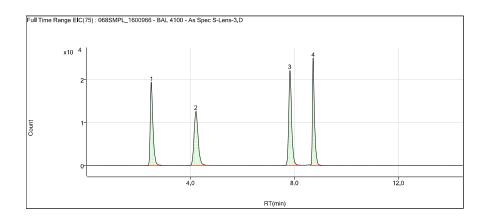
 Operator Name
 ICPMS6

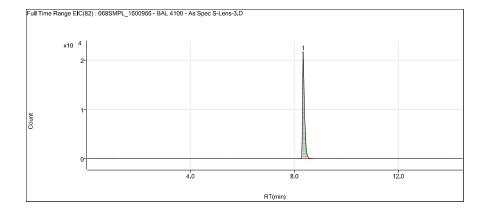
 Acq Mode
 Time Resolved

Cal Title ---

Cal TypeExternal CalibrationLast Calib08/29/2016 09:12:35

Bkg File ---


Bkg Mode Count Subtraction except for ISTD


FQ BlankFile ---

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 3.2		ug/I		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4,2		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1,9		ug/l		Pulse		
1	2.496	75	DMA	1.018	ug/l	140347	Pulse		
2	4.212	75	As3	0.985	ug/l	136422	Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
3	7.835	75	ММА	1.164	ug/l	173243	Pulse		
4	8.719	75	As5	0.994	ug/l	140283	Pulse		

RT	Compound	Mass	Det.
8.338	Se82	82	Pulse

069SMPL_1600966 - BAL 4100 - As Spec S-Lens-3.D File Name

File Path C:\Agilent\ICPMH\1\DATA\1600966 - BAL 4100 - As Spec S-Lens-Crunch.b

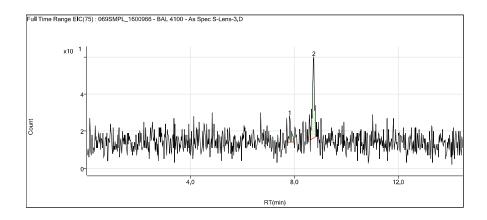
Acq Time 8/26/2016 5:37:12 AM

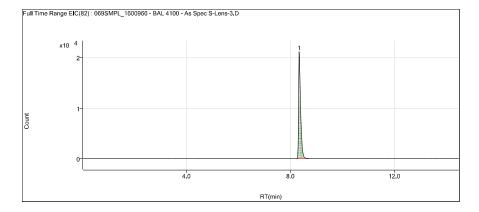
SEQ-CCB3 Sample Name Sample Type Sample Comment 1.0000 **Prep Dilution Auto Dilution** 1.0000 **Total Dilution** 1.0000 **Operator Name** ICPMS6 Acq Mode Time Resolved

Cal Title

External Calibration Cal Type **Last Calib** 08/29/2016 09:12:35

Bkg File


Count Subtraction except for ISTD Bkg Mode


FQ BlankFile

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
		75	Unk 3.3		ug/l		Pulse		
		75	Unk 12.8		ug/l		Pulse		
		75	Unk 10.8		ug/l		Pulse		
		75	Unk 2.8		ug/l		Pulse		
		75	Unk 8.4		ug/l		Pulse		
		75	Unk 9.2		ug/l		Pulse		
		75	Unk 7.9		ug/l		Pulse		
		75	Unk 8.2		ug/l		Pulse		
		75	Unk 10.2		ug/l		Pulse		
		75	Unk 11.1		ug/l		Pulse		
		75	Unk 8.6		ug/l		Pulse		
		75	Unk 8.9		ug/l		Pulse		
		75	Unk 8.8		ug/l		Pulse		
		75	Unk 11.7		ug/l		Pulse		
		75	Unk 6.0		ug/l		Pulse		
		75	Unk 5.2		ug/l		Pulse		
		75	Unk 3.2		ug/l		Pulse		
		75	Unk 4.6		ug/l		Pulse		
		75	Unk 7		ug/l		Pulse		
		75	Unk 14.1		ug/l		Pulse		
		75	As3		ug/l		Pulse		
		75	DMA		ug/l		Pulse		
		75	AsB+TMAO		ug/l		Pulse		
		75	Unk 9.7		ug/l		Pulse		
		75	Unk 4.2		ug/l		Pulse		
		75	Unk 9.4		ug/l		Pulse		
		75	Unk 3.7		ug/l		Pulse		
		75	Unk 9		ug/l		Pulse		
		75	Unk 8		ug/l		Pulse		
		75	Unk 1.9		ug/l		Pulse		

Peak#	RT	Mass	Compound	Conc.	Units	Area	Det.	Ratio	ISTD
1	7.818	75	ММА	0.000	ug/l	65	Pulse		
2	8.754	75	As5	0.001	ug/l	256	Pulse		

RT	Compound	Mass	Det.
8.338	Se82	82	Pulse

