

# Safer and Effective Alternatives to Methylene Chloride For Paint Stripping Products

September 12, 2017

Greg Morose, Sc.D.

**Toxics Use Reduction Institute** 

University of Massachusetts Lowell



# Lab Testing: Coupon Preparation



#### **Substrates:**

wood, metal, masonry

### **Coatings:**

- 1 primer coat
- 4 finish coats (except 6 coats for a mixed coating coupon on wood)
- Lightly sand with 100 grit sandpaper and wipe clean with isopropyl alcohol before each coating (to promote better adhesion between coating layers)

### **Aging:**

3 weeks in oven at 140 F (to simulate 11 months of aging)



### Lab Testing Procedure





- Glue a 1.5 inch rubber ring gasket on the test area of the test vehicle
- Use a clean pipette to add 1.5 ml of solvent blend inside the ring gasket
- Cover the ring gasket with a lab watch glass
- Start timer to initiate dwell time
- Record initial cracking time
- After dwell time: remove watch glass
- Lightly scrape off coating residue with plastic scraper & record substrate exposure



# Lab Test Results – Example



<u>0</u>% (bold and underline) substrate exposure (top layer not affected)



60% substrate exposure



0% substrate exposure (some layer(s) removed)



95% substrate exposure



# Lab Test: Methylene Chloride Based Paint Strippers



### **Strypeeze:**

Methylene chloride
 (25% – 30%),
 methanol (25 – 30%),
 toluene (15 – 20%),
 and acetone (15 –
 20%).



### Klean Strip Stripper:

 Methylene chloride (60% – 100%), methanol (15 – 25%).



### **Super Remover MultiLayer Stripper:**

 Methylene chloride (60% – 100%), methanol (5 – 10%), and toluene (1 – 5%).



### SuperStrip:

Methylene chloride
 (85% - 90%), methanol
 (5 – 10 %), and toluene
 (0 – 5%).



### Lab Test: Alternative Products



NMP, Benzyl Alcohol, & Formic Acid



DMG, DMA, DMS, Triethyl phosphate



Acetone/glycol ether



NMP, DMG, DMA, DMS



NMP, Benzyl Alcohol



Benzyl alcohol



Benzyl alcohol, water



# Lab Test: University of Massachusetts Lowell (UML) Formulations

| Formulation*  | Solvents                            | Approximate<br>Solvent Cost<br>(\$ per lb) |
|---------------|-------------------------------------|--------------------------------------------|
| Formulation Y | Methyl acetate DMSO Thiophene       | \$0.75                                     |
| Formulation 4 | Methyl acetate<br>DMSO<br>Thiophene | \$0.94                                     |



<sup>\*</sup> Patent application filed August, 2016.

### Wood Substrate - Coatings



Oil based primer



Latex paint



Ероху



Lacquer



Varnish



Oil based paint



Shellac



Polyurethane -



### **Wood Test Coupons**

Pine wood substrate 3.5" wide x 15" long

Topcoat X

Topcoat X

Topcoat X

Topcoat X

Oil primer (white)

Wood substrate

Standard coupon

Polyurethane

Polyurethane

Oil topcoat (grey)

Latex topcoat (red)

Oil topcoat (grey)

Latex topcoat (red)

Oil primer (white)

Wood substrate

Mixed coupon





# Lab Test Results Summary: % Wood Substrate Exposed After Test

| Coup-<br>on    | Dwell<br>Time<br>(min) | Stryp-<br>eeze | Super<br>Strip | Klean<br>Strip | Super<br>Rem-<br>over | UML<br>Form<br>Y | UML<br>Form<br>4 | Eco-<br>Fast | Peel<br>Away | Citri-<br>Strip | Read-<br>y<br>Strip | EZ<br>Strip | Lift-<br>Off | Smart<br>Strip |
|----------------|------------------------|----------------|----------------|----------------|-----------------------|------------------|------------------|--------------|--------------|-----------------|---------------------|-------------|--------------|----------------|
| Epoxy<br>(4)   | 20, 10                 | 80             | 95             | 99             | 100                   | 90               | 80               | <u>o</u>     | <u>0</u>     | <u>o</u>        | <u>0</u>            | <u>o</u>    | <u>0</u>     | <u>0</u>       |
| Shellac<br>(4) | 8                      | 65             | 75             | 70             | 90                    | 85               | 70               | <u>0</u>     | <u>0</u>     | <u>0</u>        | <u>0</u>            | <u>0</u>    | <u>0</u>     | <u>0</u>       |
| Lacquer<br>(4) | 10                     | 75             | 95             | 85             | 85                    | 90               | 95               | 0            | 0            | 0               | 0                   | 0           | 0            | 0              |
| Polyur.<br>(4) | 10                     | 95             | 85             | 85             | 80                    | 90               | 95               | <u>0</u>     | <u>0</u>     | <u>0</u>        | 0                   | <u>0</u>    | <u>0</u>     | 0              |
| Varnish<br>(4) | 20, 12                 | 85             | 85             | 85             | 95                    | 100              | 80               | <u>0</u>     | <u>0</u>     | <u>0</u>        | <u>0</u>            | <u>0</u>    | <u>0</u>     | <u>0</u>       |
| Oil<br>(4)     | 25, 10                 | 95             | 90             | 95             | 95                    | 95               | 70               | <u>o</u>     | <u>0</u>     | <u>o</u>        | <u>0</u>            | <u>o</u>    | <u>0</u>     | <u>0</u>       |
| Latex<br>(4)   | 25                     | 85             | 80             | 85             | 70                    | 70               | 70               | 0            | 0            | 0               | 0                   | 0           | 0            | 0              |
| Mixed          | 20, 15                 | 85             | 90             | 85             | 95                    | 95               | 60               | 0            | 0            | 0               | 0                   | 0           | 0            | 0              |
| Aver-<br>age   |                        | 83             | 87             | 86             | 89                    | 89               | 78               | 0            | 0            | 0               | 0                   | 0           | 0            | 0              |

# Field Testing at Belcastro Furniture Restoration in Tyngsboro, MA

Decorative column
Approximately 115 years old
Several layers of lead based paint



#### **Paint Stripper Materials**

| Product                        | Supplier                                 | Ingredients                                                                                                                                |
|--------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| B7 Industrial<br>Paint Remover | Benco Sales Inc.,<br>Crossville, TN      | Methylene chloride 70% - 80% Methanol 5% - 15% 2-Butoxyethanol 1% - 10% 2-Methoxymethylethoxpropanol 1% - 3% Wetting agent and wax 1% - 5% |
| Formulation #4                 | University of<br>Massachusetts<br>Lowell | Methyl acetate Dimethyl sulfoxide (DMSO) Thiophene                                                                                         |



# Field Testing Procedure

The paint removal method conducted by the Belcastro operator consisted of the following iterative process:

- 1. Application of the paint stripping materials onto the surface of the decorative column
- Allowing the paint stripper to remain on the surface of the column for a few minutes
- 3. Scrubbing the area with ScotchBrite™ scouring pads and wire brushes
- 4. Wipe the area clean with a cloth rag so that photos could be taken

Steps 1 – 4 were repeated several times so that photos could be taken after 20 minutes, 29 minutes, 34 minutes, and 39 minutes of testing.



# Field Testing Results



# Field Testing Results



# Summary of Testing Results

### Lab Performance Testing:

Performance testing at the TURI Laboratory was conducted for a variety of coating materials on wood, masonry, and metal substrates. The testing results showed that the new solvent blends developed by UMass Lowell, worked equally to methylene chloride-based paint strippers and significantly better than other existing alternatives based on chemicals such as NMP, benzyl alcohol, and dibasic esters.

#### Field Performance Testing:

UMass Lowell Formulation #4 performed equally to the methylene chloride based product for removing multiple layers of lead paint from an old wood substrate.

