Texas Commission on Environmental Quality ## Annual Monitoring Network Plan TEXAS COMMISSION ON BUVERONMENTAL COMMIT P.O. Box 13087 Austin, Texas 78711 3087 2017 #### Table of Contents INTRODUCTION......4 REGULATORY NETWORK CHANGES....... Area-Wide Monitoring Requirements......5 Regional Administrator Monitoring Requirements......5 Near-Road NO₂ Monitoring Requirements6 Monitoring Requirements......7 Monitoring Requirements......10 Collocation Requirements.......11 Pb Waivers11 Collin County Pb Redesignation Request......12 Monitoring Requirements......13 Changes to the Regulatory CO Monitoring Network14 Particulate Matter of 10 Micrometers or Less......16 Changes to the Regulatory PM₁₀ Monitoring Network......17 Changes to the Regulatory PM_{2.5} Monitoring Network20 Volatile Organic Compounds......23 Monitoring Requirements......23 Changes to the VOC Monitoring Network23 Carbonyls.......24 Monitoring Requirements......24 Changes to the Carbonyl Monitoring Network......25 Meteorology.......25 Status of Network Changes During the Past Year.......26 #### List of Appendices Appendix A – Ambient Air Monitoring Network Site List Appendix B - Population and Monitoring Requirements by Metropolitan Statistical Area Appendix C - Nitrogen Dioxide and Total Reactive Nitrogen Monitoring Requirements Appendix D – Sulfur Dioxide Monitoring Information Appendix E - Sulfur Dioxide Data Requirements Rule Monitor Placement Evaluations **Appendix F - Ozone Monitoring Requirements** Appendix G - Carbon Monoxide Monitoring Requirements Appendix H – Particulate Matter of 10 Micrometers or Less Monitoring Requirements, Monitor Locations, and Method Codes Appendix I – Particulate Matter of 2.5 Micrometers or Less Monitoring Requirements, Monitor Locations, and Method Codes Appendix J - Acronym and Abbreviation List Appendix K - Sulfur Dioxide Ongoing Data Requirements Annual Report Appendix L – TCEQ Response to Comments Received on the 2017 Annual Monitoring Network Plan #### List of Tables Table 1: Near-Road Site List Table 2: Source-Oriented Sulfur Dioxide Monitoring Stations Table 3: Sulfur Dioxide Monitors Recommended for Decommission Table 4: 2013-2015 Lead Point Source Emissions Inventory Data Table 5: Carbon Monoxide One-Hour Design Values Table 6: Carbon Monoxide Eight-Hour Design Values Table 7: Particulate Matter of 10 Micrometers or Less Monitoring Requirements Table 8: Number of Required Particulate Matter of 2.5 Micrometers or Less Monitors Table 9: Continuous Particulate Matter of 2.5 Micrometers or Less Deactivation Summary Table 10: Particulate Matter of 2.5 Micrometers or Less Deployments and Method Code Changes Summary Table 11: Particulate Matter of 2.5 Micrometers or Less Decommission Recommendation Summary Table 12: Canister and Automated Gas Chromatograph Site List #### INTRODUCTION Title 40 Code of Federal Regulations (CFR) Part 58.10 requires states to submit an annual monitoring network plan (AMNP) to the United States (U.S.) Environmental Protection Agency (EPA) by July 1 of each year. This monitoring plan is required to provide the implementation and maintenance framework for an air quality surveillance system, known commonly as the ambient air quality monitoring network. The AMNP must be made available for public inspection and comment for at least 30 days prior to submission to the EPA. The AMNP is forwarded to the EPA for final review and approval along with any comments received during the 30-day inspection period and the associated Texas Commission on Environmental Quality (TCEQ) responses as an appendix. This document provides information on the TCEQ ambient air monitoring network established to meet the National Ambient Air Quality Standards (NAAQS) regulatory requirements and other monitors that support this effort. This document presents the current Texas network, as well as recommended changes to the network, from July 1, 2016, through December 31, 2018. As described in 40 CFR Part 58, Appendix D, monitors are deployed to meet minimum design requirements for the State or Local Air Monitoring Stations (SLAMS), Photochemical Assessment Monitoring Stations (PAMS), and National Core Multipollutant Monitoring Stations (NCore) federally required ambient air monitoring networks. A list of all monitors and their respective networks is located in Appendix A. Based on annual internal audits performed to date, all monitoring sites are meeting the requirements defined in 40 CFR Part 58 Appendices A, B, C, D, and E. As acknowledged by the EPA in the response letter to the TCEQ 2016 Annual Monitoring Network Plan, received October 27, 2016, the Brownsville site (EPA air quality system [AQS] database number [#] 480610006) was not meeting the siting criteria defined in 40 CFR Part 58, Appendix E due to a utility structure constructed in the monitoring path of the sampler inlets after the site was deployed. The property owner relocated the structure causing the siting criteria violation; the site is now in compliance with all siting criteria. The TCEQ continues to recommend the decommission of some monitors at the Brownsville site as proposed in this AMNP. Appendix B contains a summary of core based statistical areas (CBSAs) or metropolitan statistical areas (MSAs), which reference 2016 U.S. Census Bureau population estimates, and a summary count of required monitors. The TCEQ relied on this summary in evaluating monitors as documented in this AMNP. The U.S. Census Bureau defines CBSA as a collective term for MSAs, and the terms are used interchangeably in this plan. #### **REGULATORY NETWORK CHANGES** #### Nitrogen Dioxide The TCEQ nitrogen dioxide (NO_2) network includes nitric oxide (NO_2), NO_2 , and total reactive nitrogen compounds (NO_y) monitoring requirements. The TCEQ NO_2 network is designed to meet area-wide, Regional Administrator 40 (RA-40), and near-road monitoring requirements. Pursuant to the PAMS program, 40 CFR Part 58, Appendix D, Section 5 also requires hourly averaged NO_2 , and NO_2 to be collected at NCore sites in CBSAs with a population of 1,000,000 or more persons. Title 40 CFR Part 58, Appendix D, Section 3 further requires NO_2 and NO_2 to be collected at all NCore sites, irrespective of population. The state-wide NO_2 network consists of NO_2 monitoring at 46 sites, with NO_2 measured at five sites. Appendix C of this plan summarizes the monitoring requirements and the current number of NO_2 and NO_2 monitors in each MSA in Texas. #### **Area-Wide Monitoring Requirements** Title 40 CFR Part 58, Appendix D, Section 4.3.3 requires one area-wide ambient air quality monitoring site in each CBSA with a population of 1,000,000 or more persons. The requirements stipulate that the site must be located in the area with the expected highest NO_2 concentration that is also representative of a neighborhood or larger (urban) spatial scale. Title 40 CFR Part 58, Appendix D, Section 4.3.5 (3) defines neighborhood scale monitoring as representative of air quality conditions in an area with dimensions between 0.5 and 4.0 kilometers, and urban scale monitoring as representative of air quality conditions in an area with dimensions between 4.0 and 50 kilometers. Based on 2016 U.S. Census Bureau population estimates for Texas, area-wide neighborhood or urban scale NO_2 monitoring is required in the Austin-Round Rock, Dallas-Fort Worth-Arlington, Houston-Woodlands-Sugar Land, and San Antonio-New Braunfels CBSAs. The following four NO_2 monitors meet these area-wide requirements: - Austin-Round Rock: Austin Northwest (AQS# 484530014); - Dallas-Fort Worth-Arlington: Dallas Hinton (AQS# 481130069); - Houston-The Woodlands-Sugar Land: Clinton (AQS# 482011035); and - San Antonio-New Braunfels: San Antonio Northwest (AQS# 480290032). #### **Regional Administrator Monitoring Requirements** Title 40 CFR Part 58, Appendix D, Section 4.3.4 states that the EPA Regional Administrators will collaborate with the states to designate a minimum of 40 NO_2 monitoring stations nationwide that are sited in locations to protect susceptible and vulnerable populations. The TCEQ collaborated with the EPA to identify appropriate monitoring sites to meet this requirement which includes the following four NO_2 monitors, listed by CBSA: - Beaumont-Port Arthur: Nederland High School (AQS# 482451035); - Dallas-Fort Worth-Arlington: Arlington Municipal Airport (AQS# 484393011); - El Paso: Ascarate Park Southeast (SE) (AQS# 481410055); and - Houston-The Woodlands-Sugar Land: Clinton (AQS# 482011035). #### **Near-Road NO₂ Monitoring Requirements** Title 40 CFR Part 58, Appendix D, Section 4.3.2 requires one microscale near-road NO₂ monitor in each CBSA with a population of 1,000,000 or more persons to be located near a major road with high annual average daily traffic counts. An additional near-road monitor is required in each CBSA with a population of 2,500,000 or more persons. On December 30, 2016, the EPA published the final rule (81 Federal Register 96382) to approve changes to ambient NO₂ monitoring requirements that removed the requirement for near-road NO₂ monitoring stations in areas with populations between 500,000 and 1,000,000 persons. The current TCEQ near-road monitoring network, summarized in Table 1, is meeting this requirement with six near-road sites as approved in the TCEQ 2014 Annual Monitoring Network Plan response letter from EPA Region 6 received January 14, 2015. **Table 1: Near-Road Site List** | AQS
Number | Site Name Core Based Statistical Area | | U.S. Census
Bureau 2016
Population
Estimate | Parameters
Monitored
(described
below) | | |---------------|---|--|--|--|--| | 481131067 | Dallas LBJ Freeway | Dallas-Fort
Worth-
Arlington | 7,233,323 | NO ₂ , met | | | 484391053 | Fort Worth
California Parkway
North | Dallas-Fort Worth-
Arlington | 7,233,323 | NO ₂ , CO, PM _{2.5} , met | | | 482011066 | Houston
Southwest
Freeway | Houston-The
Woodlands-Sugar
Land | 6,772,470 | NO ₂ , met | | | 482011052 | Houston North
Loop | Houston-The
Woodlands-Sugar
Land | 6,772,470 | NO ₂ , CO, PM _{2.5} ,
met | | | 480291069 | San Antonio
Interstate 35 | San Antonio-New
Braunfels | 2,429,609 | NO ₂ , CO, PM _{2.5} , met | | | 484531068 | Austin North
Interstate 35 | Austin-Round Rock | 2,056,405 | NO ₂ , CO, PM _{2.5} , met | | AQS – Air Quality System met - meteorological equipment with sensors to monitor wind speed, wind direction, and ambient temperature NO2 – nitrogen dioxide CO - carbon monoxide PM2.5 - particulate matter of 2.5 micrometers or less U.S. - United States #### Changes to the Regulatory NO₂ Monitoring Network The TCEQ recommends relocating the NO₂ monitor at the Waco Mazanec site (AQS# 483091037) to the Killeen Skylark Field site (AQS# 480271047). The 2015 one-hour design value for the NO₂ monitor at the Waco Mazanec site is 24 parts per billion (ppb), 24 percent (%) of the NAAQS, and the design values have been trending downward since 2010. In the response letter to the TCEQ's 2015 Five-Year Ambient Air Monitoring Network Assessment (five-year plan) dated July 15, 2016, the EPA recommended decommissioning NO₂ monitoring at Waco Mazanec in the future due to low design values. Relocating the NO₂ monitor to the Killeen Skylark Field site would allow the TCEQ to better predict and document ozone formation in the Killeen-Temple CBSA, since monitored ozone levels are higher in this area than in Waco. NO₂ monitoring is not required in either the Waco or Killeen-Temple CBSAs under Title 40 CFR Part 58, Appendix D. Based on the property owner's request, the TCEQ is relocating the Lynchburg Ferry site (AQS# 482011015) and therefore temporarily shut down the NO_2 monitor on March 14, 2017. The new site location will contain the same monitoring equipment, including NO_2 , once the site preparation and electrical connections are complete. The EPA approved the proposed new location, approximately 0.22 miles southeast, in a letter dated March 9, 2017. The TCEQ NO₂ network, as discussed above and summarized in Appendix C, meets or exceeds monitoring requirements in all areas. No further changes to the network are recommended at this time. #### Sulfur Dioxide #### **Monitoring Requirements** Title 40 CFR Part 58, Appendix D, Section 4.4.2, requires states to establish a sulfur dioxide (SO_2) monitoring network based on a calculated population weighted emissions index (PWEI). This index is calculated by multiplying the population of a CBSA with the emissions inventory (EI) data for counties within that CBSA. The calculated value is then divided by one million to obtain the PWEI value. The PWEI monitoring requirements are listed below: - one monitor in CBSAs with a PWEI value equal to or greater than 5,000, but less than 100,000; - two monitors in CBSAs with a PWEI value equal to or greater than 100,000, but less than 1,000,000; and - three monitors in CBSAs with a PWEI value equal to or greater than 1,000,000. The TCEQ used the 2016 U.S. Census Bureau population estimates and 2014 National Emissions Inventory (NEI) data with 2015 TCEQ point-source EI data to calculate the PWEI and determine the minimum monitoring requirements for each CBSA. As shown in Appendix D, the TCEQ is currently meeting the SO_2 monitoring requirements determined by the PWEI analysis. Title 40 CFR Part 58, Appendix D, Section 3 requires states to monitor SO₂ at NCore sites. The TCEQ is meeting this requirement with high-sensitivity SO₂ monitors at the following three NCore sites: - Dallas Hinton (AQS# 481130069); - El Paso Chamizal (AQS# 481410044); and - Houston Deer Park #2 (AQS# 482011039). The TCEQ is required to operate a total of 21 SO_2 monitors, and is currently meeting and exceeding the monitoring requirements with 36 SO_2 monitors in the network, as shown in Appendix D of this document. #### **Data Requirements Rule** On June 2, 2010, the EPA established a primary (health based) one-hour SO₂ NAAQS at a level of 75 ppb. On August 10, 2015, EPA finalized the *Data Requirements Rule for* the 1-Hour Sulfur Dioxide Primary NAAQS (DRR). This rule requires air agencies to provide data to characterize air quality around sources that emit 2,000 tons per year (tpy) or more of SO₂ and that are not located in an area previously designated nonattainment. The DRR establishes criteria for identifying the emission sources and associated areas for SO_2 air quality characterization. Air agencies have the option to characterize air quality by modeling predicted impacts of emissions or by using strategically sited ambient air quality monitors to measure actual area concentrations. The DRR provides the deadlines for source-oriented monitoring and/or modeling to characterize ambient air quality impacts from the identified SO_2 sources. On January 15, 2016, the TCEQ provided the EPA with a list of 25 SO₂ sources meeting the DRR emissions applicability threshold. Appendix D of this plan lists the DRR required sources along with 2015 EI data and whether air quality is characterized through monitoring or modeling at each source. The TCEQ met the DRR monitoring requirements by deploying 11 source-oriented SO₂ monitors near 13 required sources by the January 1, 2017, deadline. Details related to the site evaluation and selection process for these 11 monitors are outlined in the TCEQ's 2016 Annual Monitoring Network Plan, approved by the EPA on October 27, 2016. The specific facilities, station names, and activation dates are listed in Table 2. The remaining 12 sources were either characterized with modeling, designated nonattainment, or exempted from the DRR. Table 2 also lists the three additional monitoring stations in areas designated nonattainment by the EPA, effective January 12, 2017. However, a request for reconsideration of all three SO_2 nonattainment designations was submitted to the EPA in February 2017. At this time, the TCEQ intends to deploy monitoring stations near Big Brown Steam Electric Station, Monticello Steam Electric Station, and Martin Lake Electrical Station based on the evaluation of monitoring locations outlined in Appendix E of this document. The proposed monitoring stations will include federal reference method (FRM) or federal equivalent method (FEM) monitors designated as special purpose monitors for determining compliance or progress towards compliance with the one-hour SO_2 standard in these nonattainment areas. **Table 2: Source-Oriented Sulfur Dioxide Monitoring Stations** | Facility Name | County
Name | Air Monitoring
Station Name | AQS
Number | Activation
Date | |----------------------------------|----------------|------------------------------------|---------------|--------------------| | Big Spring Carbon
Black | Howard | Big Spring Midway | 482271072 | 12/03/2016 | | Calaveras Plant | Bexar | San Antonio Gardner
Road | 480291080 | 11/18/2016 | | Oxbow Calcining | Jefferson | Port Arthur 7 th Street | 482451071 | 09/30/2016 | | AEP Pirkey Power Plant | Harrison | Hallsville Red Oak
Road | 482031079 | 12/06/2016 | | Streetman Plant | Navarro | Richland Southeast
1220 Road | 483491081 | 11/16/2016 | | Welsh Power Plant | Titus | Cookville FM 4855 | 484491078 | 12/07/2016 | | Sandow Steam Electric
Station | Milam | Rockdale John D.
Harper Road | 483311075 | 11/19/2016 | | Facility Name | County
Name | Air Monitoring
Station Name | AQS
Number | Activation
Date | |--|----------------|--------------------------------------|---------------|--------------------| | Sandow 5 Generating Plant | Milam | Rockdale John D.
Harper Road | 483311075 | 11/19/2016 | | Oak Grove Steam
Electric Station | Robertson | Franklin Oak Grove | 483951076 | 10/13/2016 | | Borger Carbon Black
Plant (Sid Richardson | Hutchinson | Borger FM 1559 | 482331073 | 11/02/2016 | | Borger Carbon Black
Plant (Orion) | Hutchinson | Borger FM 1559 | 482331073 | 11/02/2016 | | Harrington Station
Power Plant | Potter | Amarillo Xcel El Rancho | 483751077 | 12/16/2016 | | Echo Carbon Black
Plant (Orion) | Orange | Orange 1 st Street | 483611083 | 10/03/2016 | | Big Brown Steam
Electric Station | Freestone | Fairfield FM 2570 Ward Ranch* | 481611084 | * | | Monticello Steam
Electric Station | Titus | Mount Pleasant FM
127* | 484491074 | * | | Martin Lake Electrical Station | Rusk | Tatum CR 2181d
Martin Creek Lake* | 484011082 | * | ^{*}Air monitoring site names are tentative and activation dates pending. AQS - Air Quality System FM - farm-to-market #### Changes to the Regulatory SO₂ Monitoring Network The TCEQ performed a detailed evaluation of the current SO₂ monitoring network, analyzing PWEI and DRR requirements, historical design value trends, and percentage of the NAAQS. Through this evaluation, the TCEQ identified six SO₂ monitors which are no longer required in the network. The TCEQ is requesting approval to decommission these monitors by December 31, 2017. Appendix D contains area maps that display the locations of each of the recommended monitors in relation to other SO₂ monitors in the area. Design values for these SO₂ monitors are all significantly lower than the NAAQS with decreasing trends from 2010-2016. Table 3 lists the recommended monitors with the percentage of the NAAQS and the design values from 2010-2016. **Table 3: Sulfur Dioxide Monitors Recommended for Decommission** | | | One-Hour SO ₂ Design Value | | | | | | | |---|---------------------|---------------------------------------|------|------|------|------|------|------| | Site
Name
(AQS
Number) | Percentage of NAAQS | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | | El Paso UTEP
(481410037) | 9% | 9 | 8 | 7 | 7 | 5 | 5 | 6 | | Houston
Monroe
(482010062) | 10% | 27 | 22 | 20 | 16 | 13 | 10 | 7 | | Houston North
Wayside
(482010046) | 10% | 23 | 13 | 10 | 10 | 8 | 8 | 7 | | Italy
(481391044) | 10% | 9 | 7 | 6 | 7 | 8 | 8 | 7 | | Seabrook
Friendship
Park
(482011050) | 11% | 16 | 15 | 14 | 12 | 10 | 8 | 8 | | Skyline Park
(481410058) | 3% | 5 | 3 | 3 | 3 | 2 | 2 | 2 | % - percent AQS – Air Quality System NAAQS - National Ambient Air Quality Standards ppb - parts per billion SO₂ - sulfur dioxide UTEP – University of Texas at El Paso #### Lead #### **Monitoring Requirements** The TCEQ lead (Pb) network is designed to meet 40 CFR Part 58, Appendix D, Section 4.5 monitoring requirements. This section requires state agencies to conduct ambient air Pb monitoring near Pb sources that are expected to show, or have been shown to contribute to a maximum Pb concentration in ambient air in excess of the NAAQS of 0.15 micrograms per cubic meter ($\mu g/m^3$) on a rolling three-month average. Title 40 CFR Part 58, Appendix D, Section 4.5(a) requires a minimum of one source-oriented ambient air Pb monitoring site to measure maximum concentrations near each non-airport facility that emits 0.50 tpy or more of Pb annually, based on either the most recent NEI data or annual El data submitted to meet state reporting requirements. To meet these requirements, the TCEQ supports total suspended particulate (TSP) Pb monitoring at five source-oriented sites and five population exposure sites. The TCEQ network meets or exceeds federal requirements with Pb monitoring at a total of ten sites. The 2015 maximum three-month rolling averages for all existing Pb monitors are well below the NAAQS, with the highest concentration at 0.08 μ g/m³; 53% of the NAAQS. The requirement to measure airborne particulate Pb at NCore sites was eliminated in the EPA's final rule published in the Federal Register on March 28, 2016, *Revisions to the Ambient Monitoring Quality Assurance and Other Requirements; Final Rule.* The EPA removed this requirement due to the extremely low Pb concentrations measured at NCore sites. In accordance with this change, the TCEQ decommissioned NCore TSP Pb at three NCore sites in 2016: Dallas Hinton (AQS# 481130069), Houston Deer Park #2 (AQS# 482011039), and Ascarate Park SE (AQS# 481410055) in El Paso. #### **Collocation Requirements** Title 40 CFR Part 58, Appendix A, Section 3.4.4 requires a primary quality assurance organization to select 15% of the Pb monitoring sites within its network, not counting NCore sites, for collocated sampling, with the first of these sites measuring the highest Pb concentrations in the network. Based on the current network of primary Pb monitors, the TCEQ is required to have two collocated Pb monitors. The TCEQ has three collocated Pb monitors: Frisco Eubanks (AQS# 480850009) in Collin County; Ojo De Agua (AQS# 481411021) in El Paso County; and Terrell Temtex (AQS# 482570020) in Kaufman County. The 2015 average concentration at the Frisco Eubanks site has decreased and is no longer the highest Pb concentration in the state. According to 2015 and 2016 data, the Terrell Temtex (AQS# 482570020) site now has the highest three-month rolling average concentration (0.08 $\mu g/m^3$) in the network. The TCEQ decommissioned the collocated monitor at Frisco 7 (AQS# 480850007) and deployed a new collocation monitor at Terrell Temtex in early 2017 to maintain compliance, as approved in the EPA response letter to the TCEQ *2016 Annual Monitoring Network Plan*, received October 27, 2016. The collocation monitor at Terrell Temtex was activated on April 13, 2017 to sample every 12th day. #### Pb Waivers Pursuant to 40 CFR Part 58, Appendix D, Section 4.5(a)(ii), the EPA Regional Administrator may waive the requirement in 40 CFR Part 58, Appendix D, 4.5(a) for monitoring near specific Pb sources with sufficient demonstration that the Pb source will not contribute to a maximum concentration in ambient air greater than 50% of the NAAQS of 0.15 $\mu g/m^3$, based on historical monitoring data, modeling, or other approved means. All approved waivers must be renewed once every five years as part of the network assessment required under 40 CFR Part 58.10(d). The TCEQ submitted five Pb waivers for source-oriented monitoring since 2010, and the EPA Region 6 granted all five requests. Three of these waivers are no longer required because source emissions have decreased below the 0.50 tpy threshold. The remaining two Pb waivers remain effective. Requests to renew the Pb waivers for the Lower Colorado River Authority Fayette Power Plant in Fayette County and the U.S. Department of the Army facility in Fort Hood were submitted in the 2015 TCEQ Texas Five-Year Ambient Monitoring Network Assessment. The two waiver renewal requests included information regarding a Pb modeling analysis indicating that the predicted maximum ground level concentration for a rolling three-month average continued to remain below 50% of the NAAQS. The EPA Region 6 approved these waiver renewal requests in the TCEQ 2015 Annual Monitoring Network Plan response letter, dated October 26, 2015. These renewals are valid until July 1, 2020. In addition to the waivers, a Pb ambient air monitor was deployed in 2011 to monitor ambient Pb concentrations downwind of the Conecsus, Limited Liability Company (LLC) facility just west of Terrell, Texas, therefore, no waiver request has been submitted for this source. The TCEQ evaluated the 2013, 2014, and 2015 point source EI data for the Fayette Power Plant, Fort Hood, and Conecsus for comparison to the 0.50 tpy threshold, shown in Table 4. All three sources reduced their reported Pb emissions in 2014, and have continued to maintain emissions below the threshold in 2015. No additional sources reported emissions greater than 0.50 tpy in 2015. **Table 4: 2013-2015 Lead Point Source Emissions Inventory Data** | Company | County | 2013 Pb
Emissions
(tpy) | 2014 Pb
Emissions
(tpy) | 2015 Pb
Emissions
(tpy) | TCEQ Comments | |---|---------|-------------------------------|-------------------------------|-------------------------------|---| | United States
Department of the
Army, Fort Hood | Bell | 0.74 | 0.08 | 0.16 | Pb waiver renewal approved on October 26, 2015. | | Lower Colorado
River Authority | Fayette | 0.59 | 0.51 | 0.49 | Pb waiver renewal approved on October 26, 2015. | | Conecsus LLC | Kaufman | 0.69 | 0.33 | 0.34 | Pb is currently monitored at the Terrell Temtex site. | LLC - limited liability company Pb - lead TCEQ - Texas Commission on Environmental Quality tpy - tons per year #### **Collin County Pb Redesignation Request** On December 31, 2010, the EPA designated an area surrounding Exide Technologies, located in Frisco, Collin County, as nonattainment for the 2008 Pb NAAQS (75 Federal Register 71033). To demonstrate attainment, the area is required to have three-month rolling average monitoring data below the NAAQS for 36 consecutive months. The Collin County Pb monitoring network consists of four regulatory Pb ambient air quality monitors, one collocated Pb ambient air quality monitor, and a meteorological station. Data from these monitors are used to determine the area's compliance with the 2008 Pb NAAQS. Between January 1, 2013, and December 31, 2016, there was no measured three-month rolling average above the Pb NAAQS. The 2015 design value is 0.08 $\mu g/m^3$, while the preliminary 2016 design value for the area is 0.02 $\mu g/m^3$. Thus, the area has demonstrated compliance with the 2008 Pb NAAQS. Based on measured compliance with the standard, the TCEQ adopted the *Collin County Redesignation Request and Maintenance Plan State Implementation Plan Revision for the 2008 Lead National Ambient Air Quality Standard* on October 19, 2016. In this state implementation plan (SIP) revision, the TCEQ requested that the Collin County Pb nonattainment area be redesignated as attainment for the 2008 Pb standard with the associated maintenance plan. The request was submitted to the EPA for approval on November 2, 2016. If the EPA approves the TCEQ request to designate the Collin County area as attainment for Pb, the TCEQ will evaluate and may propose changes to the existing Pb monitors in Collin County as allowed by the maintenance plan. #### **Changes to the Regulatory Pb Monitoring Network** Due to revisions to 40 CFR Part 58, Appendix D, Section 3(b) published by the EPA on March 28, 2016, TSP Pb monitoring is no longer a required measurement at NCore sites. In the 2016 AMNP, the TCEQ recommended to discontinue the TSP Pb monitors at the three NCore sites: Dallas Hinton (AQS# 481130069), Ascarate Park SE (AQS# 481410055), and Houston Deer Park #2 (AQS# 482011039). The EPA approved the request in their response letter to the TCEQ 2016 Annual Monitoring Network Plan, dated October 27, 2016. The TCEQ decommissioned the Pb monitors at these three NCore sites on December 31, 2016. The TCEQ recommends to decommission the Brownsville site (AQS# 480610006) TSP Pb monitor. This monitor exceeds minimum monitoring requirements and is not required for source-oriented monitoring. The 2015 rolling three-month average design value for the Pb monitor at the site is 0.00 μ g/m³. The Pb levels at this site have been below the detection limit since 2000 (trended around 0.02 μ g/m³), and still remain below the limit. The TCEQ recommends to decommission the Laredo Vidaurri site (AQS# 484790016) TSP Pb monitor by December 31, 2017. This monitor exceeds minimum monitoring requirements and is not required for source-oriented monitoring. The 2015 rolling three-month average design value for the Pb monitor at the site is 0.01,
6% of the NAAQS. The Pb levels at this site trended around 0.04 $\mu g/m^3$ in 2000, and have been trending downward since then. Through existing ambient air monitors and current Pb waivers, the TCEQ is meeting or exceeding all federal Pb monitoring requirements. #### **Ozone** #### **Monitoring Requirements** Network design criteria for SLAMS sites, described in 40 CFR Part 58, Appendix D, Section 4.1, require ozone (O_3) monitoring in each CBSA with a population of 350,000 or more persons. Monitoring is also required in CBSAs with lower populations if measured O_3 values in that MSA are within 85% of the NAAQS of 0.070 parts per million (ppm). According to 2016 U.S. Census Bureau population estimates and 2014-2016 eight-hour O_3 design values, the TCEQ is required to operate a minimum of 24 O_3 monitors to meet SLAMS network requirements. The TCEQ is exceeding the requirement with 46 O_3 monitors in the SLAMS network, as listed in Appendix A. Additional O_3 monitoring is required under the NCore and PAMS monitoring networks, as described in 40 CFR Part 58, Appendix D, Sections 3 and 5, respectively. O_3 monitoring is required at all NCore sites to meet NCore network design criteria, and at NCore sites in CBSAs with a population of 1,000,000 or more persons to meet PAMS network requirements. The TCEQ is meeting NCore and PAMS network requirements with O_3 monitors at all three NCore sites in the Houston, Dallas, and El Paso CBSAs. As shown in Appendix F, the TCEQ is required to operate a total of 29 O_3 monitors to meet SLAMS, PAMS, and NCore design criteria, and is currently exceeding this requirement with 70 O_3 monitors in the network. #### Changes to the Regulatory O₃ Monitoring Network Based on the property owner's request, the TCEQ is relocating the Lynchburg Ferry site (AQS# 482011015) and therefore temporarily shut down the O_3 monitor on March 14, 2017. The new site location will contain the same monitoring equipment, including O_3 , once the site preparation and electrical connections are complete. The EPA approved the proposed new location approximately 0.22 miles southeast, in a letter dated March 9, 2017. The TCEQ recommends to decommission the O_3 monitor at the Brownsville site (AQS# 480610006), in accordance with the EPA comment to decommission this monitor in the response letter to the 2015 TCEQ *Texas Five-Year Ambient Monitoring Network Assessment*, dated July 15, 2016. This monitor is exceeding minimum requirements, with the O_3 monitor at the nearby Harlingen Teege site (AQS# 480611023) fulfilling design criteria for the SLAMS monitoring network. The O_3 design value at the Brownsville site is equal to that at the Harlingen Teege site: 0.057 ppm; 81% of the NAAQS. As described above and summarized in Appendix F of this document, the TCEQ O_3 network is meeting or exceeding the current MSA requirements, and no additional changes to the network are recommended at this time. #### Carbon Monoxide #### **Monitoring Requirements** Title 40 CFR Part 58, Appendix D, Section 3.0 requires carbon monoxide (CO) monitoring at NCore sites. EPA's Technical Assistance Document (TAD) for Precursor Gas Measurements in the NCore Multi-pollutant Monitoring Network – Version 4 (September 2005) recommends high-sensitivity CO monitors at the NCore sites. The TCEQ meets this requirement with high-sensitivity CO monitors at all three NCore sites in the Houston-The Woodlands-Sugar Land, Dallas-Fort Worth-Arlington, and El Paso CBSAs. Title 40 CFR Part 58, Appendix D, Section 4.2 also requires CO monitors collocated with required near-road NO₂ monitors in CBSAs of 1,000,000 or more persons. The TCEQ meets this requirement with CO monitors at near-road sites in the Austin-Round Rock, San Antonio-New Braunfels, Houston-The Woodlands-Sugar Land, and Dallas-Fort Worth-Arlington area CBSAs. The TCEQ deployed CO monitors at near-road sites in the Austin-Round Rock and San Antonio-New Braunfels CBSAs in December 2016 to meet the January 1, 2017, deadline. The TCEQ CO monitoring network is required to operate a total of seven CO monitors. The TCEQ is currently exceeding the requirements with 15 total CO monitors: ten CO monitors and five high-sensitivity CO monitors. A summary of the required and current CO monitors in each CBSA is included in Appendix G. The EPA revisions to the PAMS program under the final rule published on October 26, 2015, and as listed in 40 CFR Part 58, Appendix D, Section 5, remove CO from the list of required PAMS measurements. The CO monitors at the Houston Clinton site (AQS# 482011035) and the Beaumont Nederland High School site (AQS# 482451035) are now exceeding minimum requirements. The TCEQ will reevaluate the option to decommission these monitors during the assessment of the PAMS network to be published in the 2018 AMNP. #### **Changes to the Regulatory CO Monitoring Network** In compliance with near-road requirements in the Austin-Round Rock and San Antonio-New Braunfels CBSAs, the TCEQ deployed CO monitors at the Austin North Interstate 35 site (AQS# 484531068) and the San Antonio Interstate 35 site (AQS# 480291069) on December 19, 2016, and December 22, 2016, respectively. The TCEQ recommends relocating the CO monitor at Ascarate Park SE (AQS# 481410055) in the El Paso CBSA to the University of Texas at El Paso (UTEP) site (AQS# 481410037). There are no CO monitoring requirements at either site, although the TCEQ determined that a CO monitor would be useful at the UTEP site for evaluating potential ozone exceptional events related to wild fires. The 2016 eight-hour design value for the CO monitor at Ascarate Park is 2.4 ppm, 27% of the NAAQS. CO monitoring for the area would continue at the El Paso Chamizal site (AQS# 481410044) and the Ojo De Agua site (AQS# 481411021). The TCEQ recommends decommissioning the CO monitor at the Brownsville site (AQS# 480610006). This monitor is exceeding minimum monitoring requirements for the Brownsville-Harlingen CBSA. The 2016 eight-hour design value for the CO monitor at the site is 0.9 ppm, 10% of the NAAQS. This recommendation supports the EPA comment that the TCEQ consider decommissioning this monitor in its response letter to the TCEQ 2016 Annual Monitoring Network Plan, received October 27, 2016. The TCEQ also recommends to decommission the CO monitor at the Laredo Bridge site (AQS# 484790017) in 2017. This CBSA is not required to have any CO monitors; the TCEQ currently operates two. The 2016 eight-hour design value for the CO monitor at the site is 1.2 ppm, 13% of the NAAQS. CO monitoring for the area would continue at the Laredo Vidaurri site (AQS# 484790016). Tables 5 and 6 list the annual one-hour and eight-hour design values, respectively, from 2005 to 2015 for the CO monitors recommended for decommission. Table 5: Carbon Monoxide One-Hour Design Values¹ | Site Name
(AQS
Number) | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |------------------------------------|------|------|------|------|------|------|------|------|------|------|------| | Ascarate
Park SE
(481410055) | 7.8 | 6.1 | 4.9 | 4.9 | 5.2 | 4.4 | 4.2 | 4.1 | 3.6 | 4.2 | 4.2 | | Brownsville
(480610006) | 3.4 | 2.1 | 2.1 | 1.6 | 1.7 | 1.4 | 1.7 | 1.2 | 1.5 | 1.1 | 1.9 | | Laredo
Bridge
(484790017) | 5.0 | 5.7 | 3.9 | 3.7 | 2.7 | N/A | N/A | N/A | 2.2 | 1.9 | 2.8 | ¹Annual one-hour CO design value in parts per million (ppm); one-hour CO NAAQS equals 35 ppm AQS - Air Quality System CO – carbon monoxide NAAQS - National Ambient Air Quality Standard SE - southeast N/A - not applicable Table 6: Carbon Monoxide Eight-Hour Design Values¹ | Site Name
(AQS
Number) | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |------------------------------------|------|------|------|------|------|------|------|------|------|------|------| | Ascarate
Park SE
(481410055) | 3.9 | 3.3 | 2.8 | 3.0 | 2.5 | 2.8 | 2.2 | 2.4 | 2.6 | 2.4 | 2.8 | | Brownsville
(480610006) | 1.7 | 1.1 | 1.1 | 0.8 | 0.8 | 0.8 | 0.9 | 0.5 | 0.8 | 0.7 | 1.0 | | Laredo
Bridge
(484790017) | 3.0 | 4.3 | 2.2 | 2.3 | 1.6 | N/A | N/A | N/A | 1.2 | 1.2 | 1.2 | ¹Annual eight-hour CO design value in parts per million (ppm); eight hour CO NAAQS equals 9 ppm AQS - Air Quality System CO - carbon monoxide NAAQS - National Ambient Air Quality Standard SE - southeast N/A - not applicable #### Particulate Matter of 10 Micrometers or Less #### **Monitoring Requirements** The TCEQ PM_{10} network is designed to meet the area requirements of 40 CFR Part 58, Appendix D, Section 4.6, specifying the range of PM_{10} monitoring stations required in MSAs based on population and measured concentrations, if available. A sample of this information is provided in Table 7. The TCEQ network consists of PM_{10} monitoring at 26 sites. Compliance with the PM_{10} standard is based on the number of measured exceedances of the 150 $\mu g/m^3$ standard on average over a three year period. The evaluation of PM_{10} monitoring requirements was completed using the 2016 U.S. Census Bureau population estimates and 2016 measured PM_{10} concentrations. This evaluation and the associated maximum 2014-2016 concentrations for each MSA are shown in Appendix H, Table 1. From this evaluation, the TCEQ determined that each MSA listed in Appendix H within the PM_{10} network meets or exceeds minimum PM_{10} monitoring requirements. Table 7: Particulate Matter of 10 Micrometers or Less Monitoring Requirements | Population | High | Medium | Low | |-------------------|----------------------------|----------------------------|----------------------------| | Category | Concentration ¹ | Concentration ² | Concentration ³ | | >1,000,000 | 6-10 | 4-8 | 2-4 | | 500,000-1,000,000 | 4-8 | 2-4 | 1-2 | | 250,000-500,000 | 3-4 | 1-2 | 0-1 | | 100,000-250,000 | 1-2 | 0-1 | 0 | $^{^{1}}$ High Concentration areas are those for which ambient
PM_{10} data show ambient concentrations exceeding the PM_{10} NAAQS by 20 percent or more $^{^{2}}$ Medium Concentration areas are those for which ambient PM $_{10}$ data show ambient concentrations exceeding 80 percent of the PM $_{10}$ NAAQS $^{^{\}hat{3}}$ Low Concentration areas are those for which ambient PM_{10} data show ambient concentrations less than 80 percent of the PM_{10} NAAQS $[\]mathrm{PM}_{\mathrm{10}}\,\text{-}\,\mathrm{particulate}$ matter of 10 micrometers or less in diameter > - greater than #### **Collocation Requirements** Title 40 CFR Part 58, Appendix A, Section 3.3.4 requires a primary quality assurance organization to select 15% of the manual PM_{10} monitoring sites within the PM_{10} network for collocated sampling. At least 50% of the selected sites should have an annual mean particulate matter concentration among the highest in the network. Appendix H, Table 2 lists the maximum concentration measurement during the 3-year period of 2014-2016 and also includes the 2014, 2015, and 2016 annual mean concentrations for each PM_{10} site. The TCEQ annually evaluates the data to determine network efficacy for the collocated PM_{10} monitors. Based on the current network of PM_{10} samplers, the TCEQ is required to operate four PM_{10} collocated samplers; the TCEQ is currently operating six. In 2017, the TCEQ plans to decommission the previously approved collocated monitor at the Texas City Fire Station site (AQS# 481670004). After this decommission, the TCEQ will continue to exceed collocation requirements with five collocated PM_{10} samplers in the network. PM_{10} measured annual average concentration data was evaluated from 2014-2016, as shown in Appendix H, Table 2, to determine appropriate collocation sites within the network. PM_{10} measurement concentrations at Clinton (AQS# 482011035), Socorro Hueco (AQS# 481410057), and Convention Center (AQS# 481130050) sites had annual mean concentrations among the highest in the network and continue to satisfy collocation requirements. The three-year average PM_{10} concentration at Ojo De Agua (AQS# 481411021) is just within the highest 25% of the network, and these data also supports area exceptional events analysis. The PM_{10} collocated monitor at Houston Deer Park #2 (AQS# 482011039) supports collocation requirements for the NATTS program. #### Changes to the Regulatory PM₁₀ Monitoring Network As approved by the EPA in their response letter to the TCEQ 2016 Annual Monitoring Network Plan, dated October 27, 2016, the TCEQ decommissioned the collocated PM_{10} monitors, with primary monitors remaining active, at the Laredo Vidaurri (AQS# 484790016) and Dona Park (AQS# 483550034) sites, effective December 31, 2016. The TCEQ will decommission the collocated PM_{10} monitor at the Texas City Fire Station site (AQS# 481670004) in 2017. The filters from the PM_{10} sampler at the Clinton site (AQS# 482011035) were analyzed for metals speciation in addition to gravimetric PM_{10} mass. The metals speciation analysis was originally proposed to meet an EPA national air toxics initiative that is no longer active. The speciation data are not required to meet any federal monitoring criteria, and are not requested by TCEQ stakeholders or the operating agency, the City of Houston. The special purpose metals speciation analysis was discontinued as of December 31, 2016. The TCEQ will maintain the PM_{10} gravimetric mass sampler at Clinton on a one in six day sampling schedule. The source-oriented PM_{10} metals speciation sampler at the Morrell site (AQS# 481130018) in Dallas was deployed in 2010, to monitor elevated nickel and chromium levels upwind of Dal Chrome Co., Inc., an automotive chrome bumper recycling facility. Elevated annual nickel levels were detected at the site from 1987-2011. The annual average nickel concentrations decreased and stabilized in the range of 0.0023 to 0.3 $\mu g/m^3$ from 1998 through 2014. The annual average nickel concentration dropped significantly after Dal Chrome closed in November 2013. In May 2016, the property owner requested to remove the monitoring station immediately. With annual average concentrations near $0.0 \mu g/m^3$ and the source no longer active, the TCEQ decommissioned the special purpose monitor station effective June 1, 2016. As summarized above and in Appendix H of this document, the TCEQ is meeting network monitoring requirements for PM_{10} and no additional changes are recommended at this time. #### Particulate Matter of 2.5 Micrometers or Less #### **Monitoring Requirements** The TCEQ $PM_{2.5}$ network is designed to meet area, near-road, regional background, and regional transport requirements under the SLAMS network, as well as the NCore requirements for $PM_{2.5}$. In 2017, the TCEQ added $PM_{2.5}$ FEM continuous monitors to the network. Title 40 CFR Part 58, Appendix D, Section 4.7 requires $PM_{2.5}$ monitoring in MSAs with populations of 500,000 or more persons and in MSAs with lower populations if measured $PM_{2.5}$ design values for an MSA equals or exceeds 85% of the NAAQS. The $PM_{2.5}$ annual mean concentration NAAQS is 12.0 μ g/m³ averaged over three years and the $PM_{2.5}$ 24-hour average concentration standard is 35 μ g/m³ for the 98th percentile, averaged over three years. Title 40 CFR Part 58, Appendix D, Section 4.7, Table D-5 lists the PM_{2.5} MSA minimum SLAMS monitoring requirements. Title 40 CFR Part 58, Appendix D, Section 4.7.1(b)(2) requires a PM_{2.5} monitor to be collocated at a near-road NO₂ station in CBSAs with a population of 1,000,000 or more persons. Additionally, 40 CFR Part 58, Appendix D, Section 3 requires PM_{2.5} mass, PM_{2.5} mass continuous, speciated PM_{2.5}, and coarse particulate matter (PM_{10-2.5}) mass monitoring at all NCore sites. Pursuant to 40 CFR Part 58, Appendix D, Section 4.7.2, the TCEQ must operate continuous PM_{2.5} monitors equal to at least one-half the required number of SLAMS-required sites. At least one of these required continuous analyzers in each MSA must be collocated with one of the required FRM/FEM monitors, unless the FEM monitor is itself a continuous monitor. Finally, 40 CFR Part 58, Appendix D, Section 4.7.3 requires each state to install and operate at least one PM_{2.5} site to monitor for regional background and at least one PM_{2.5} site to monitor regional transport. A detailed analysis of $PM_{2.5}$ monitoring and siting requirements using the 2016 U.S. Census Bureau population estimates and 2016 measured $PM_{2.5}$ concentrations is provided in Appendix I. The TCEQ's assessment of $PM_{2.5}$ monitoring requirements and current monitors is included in Appendix I, Table 1. Appendix I, Table 2 provides information regarding each $PM_{2.5}$ FRM/FEM site. A summary of the current $PM_{2.5}$ monitoring network based on requirements and design values is provided below in Table 8, sorted by MSA populations. Through this evaluation, the TCEQ determined that it meets or exceeds minimum monitoring requirements for all areas and parameters. Table 8: Number of Required Particulate Matter of 2.5 Micrometers or Less Monitors | Metropolitan Statistical Area | FRM/FEM
Required ¹ | FRM/FEM
Existing ² | Speciation
Required ¹ | Speciation
Existing ² | Continuous
Required ^{1,2} | Continuous
Existing ² | |----------------------------------|----------------------------------|----------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|-------------------------------------| | Dallas-Fort Worth-Arlington | 4 | 7 | 1 | 2 | 2 | 6 | | Houston-The Woodlands-Sugar Land | 5 | 7 | 1 | 2 | 5 | 9 | | San Antonio-New Braunfels | 3 | 3 | 0 | 0 | 2 | 5 | | Austin-Round Rock | 3 | 2 | 0 | 0 | 0 | 3 | | El Paso | 2 | 2 | 1 | 1 | 2 | 4 | | McAllen-Edinburg-Mission4 | 2 | 2 | 0 | 0 | 1 | 1 | | Corpus Christi | 1 | 2 | 0 | 1 | 1 | 1 | | Killeen-Temple | 0 | 0 | 0 | 0 | 0 | 0 | | Brownsville-Harlingen | 1 | 1 | 0 | 0 | 0 | 1 | | Beaumont-Port Arthur | 0 | 0 | 0 | 0 | 0 | 3 | | Lubbock | 0 | 0 | 0 | 0 | 0 | 1 | | Laredo | 0 | 0 | 0 | 0 | 1 | 1 | | Waco | 0 | 0 | 0 | 0 | 0 | 1 | | Amarillo | 0 | 0 | 0 | 0 | 0 | 1 | | Odessa | 0 | 0 | 0 | 0 | 0 | 1 | | Texarkana | 0 | 1 | 0 | 0 | 1 | 1 | | Marshall3 | 0 | 1 | 0 | 1 | 1 | 1 | | Eagle Pass3 | 0 | 0 | 0 | 0 | 0 | 1 | | Corsicana3 | 0 | 0 | 0 | 0 | 0 | 1 | | Fayette County5 | 0 | 0 | 0 | 0 | 0 | 1 | | Big Bend National Park5 | 0 | 0 | 0 | 0 | 1 | 1 | | Totals | 21 | 28 | 3 | 7 | 17 | 44 | ¹Required monitors include State or Local Air Monitoring Stations (SLAMS), National Core (NCore), near-road, and regional background and transport sites. ²Individual monitors may fulfill one or more requirements. ³Area is classified as a micropolitan area, and is not subject to SLAMS requirements. ⁴Site annual values do not meet completeness criteria. ⁵Sites do not fall within a metropolitan or micropolitan statistical area. FEM - federal equivalent method FRM – federal reference method $[\]mbox{PM}_{\mbox{\scriptsize 2.5}}$ – particulate matter of 2.5 micrometers or less in diameter #### **Collocation Requirements** Title 40 CFR Part 58, Appendix A, Section 3.2.3 requires a primary quality assurance organization to select 15% of the $PM_{2.5}$ monitoring sites within the network for collocated sampling, for each distinct monitoring method designation (FRM or FEM). Fifty percent of the collocated audit monitors must be deployed at sites with annual average or daily concentrations estimated to be within plus or minus 20% of either the annual or 24-hour NAAQS. Based on the current $PM_{2.5}$ network of 25 FRM monitors, the TCEQ is required to have four collocated $PM_{2.5}$ monitors. As of July 1, 2016, the TCEQ operated three collocated $PM_{2.5}$ monitors at Clinton (AQS# 482011035), Corpus Christi Huisache (AQS# 483550032), and Dallas Hinton (AQS#
481130069). To meet the minimum requirements, the TCEQ added a collocated $PM_{2.5}$ FRM monitor at the El Paso Chamizal site (AQS# 481410044), activated February 12, 2017. This site was chosen based on the annual and 24-hour $PM_{2.5}$ concentrations in the El Paso area. This site has an annual 2013-2015 design value of 9.9 μ g/m³, which is within 17% of the NAAQS, meeting the aforementioned collocation requirements. The TCEQ will deploy $PM_{2.5}$ continuous FEM monitors (method code 209) in 2017 to replace aging $PM_{2.5}$ equipment. Table 10 (below) details the intended locations for these monitors. Pursuant to 40 CFR Part 58, Appendix A, Section 3.2.3.2(b), based on the intended $PM_{2.5}$ network of FEM monitors, the TCEQ will be required to have one primary $PM_{2.5}$ FRM monitor collocated with one $PM_{2.5}$ FEM monitor. To meet this requirement, the TCEQ deployed a collocated monitor at the Austin Webberville Rd site (AQS# 484530021) in March 2017. #### Changes to the Regulatory PM_{2.5} Monitoring Network In compliance with near-road monitoring requirements, the TCEQ deployed a new $PM_{2.5}$ FRM monitor to the San Antonio Interstate 35 site (AQS# 480291069), activated January 1, 2017, and relocated the $PM_{2.5}$ FRM monitor from the Austin Audubon Society site (AQS# 484530020) to the Austin North Interstate 35 near-road site (AQS# 484531068), activated January 7, 2017. As discussed in the TCEQ 2015 AMNP, the TCEQ relocated the Texarkana monitoring site (AQS# 480370004) approximately one mile northwest to physically accommodate both an FRM monitor and a continuous monitor to comply with requirements. The new monitoring site is Texarkana New Boston (AQS# 480371031). The EPA approved this site on March 23, 2016. This site fulfills area requirements for a continuous $PM_{2.5}$ monitor and a $PM_{2.5}$ FRM monitor. The design value for the Texarkana MSA for 2013-2015 was 9.8 $\mu g/m^3$, with a decreasing trend from the 2012-2014 design value of 10.2 $\mu g/m^3$. In the response letter to the TCEQ 2016 Annual Monitoring Network Plan, dated October 27, 2016, the EPA approved the TCEQ's request to reduce the sampling frequency of the FRM monitor at this site from every third day to every sixth day. The TCEQ officially changed the sampling frequency for this monitor to every sixth day on December 8, 2016. In the response letter to the 2016 AMNP, the EPA approved the TCEQ's recommendation to decommission the four PM_{2.5} continuous tapered element oscillating microbalances (TEOM) monitors listed in Table 9. Table 9 lists the deactivation date for each monitor. Table 9: Continuous Particulate Matter of 2.5 Micrometers or Less Deactivation Summary | AQS Number | Site Name | Metropolitan Statistical Area | Deactivation Date | |------------|----------------------------------|-------------------------------------|-------------------| | 481130069 | Dallas Hinton | Dallas-Fort Worth-Arlington | December 31, 2015 | | 482011042 | Kingwood | Houston-The Woodlands-Sugar
Land | December 31, 2016 | | 481391044 | Italy | Dallas-Fort Worth-Arlington | December 6, 2016 | | 481350003 | Odessa Hays
Elementary School | Odessa | December 31, 2016 | AQS - Air Quality System On July 31, 2016, the TCEQ concluded a special study for the EPA on black carbon at the Houston Deer Park #2 monitoring site (AQS# 482011039). The study required the operation of two instruments: a Sunset carbon analyzer collocated with an aethelometer. On November 29, 2016, the TCEQ requested to decommission these two instruments by December 30, 2016, because they were not necessary to meet federal monitoring requirements. In a letter dated January 5, 2017, the EPA approved the TCEQ's request to decommission the Sunset carbon analyzer and the aethelometer. Both instruments were decommissioned, effective December 31, 2016. In the TCEQ *2016 Annual Monitoring Network Plan* response letter, dated October 27, 2016, the EPA also requested an update regarding decommissioning the City Public Service Pecan Valley site (AQS# 480290055). Per the property owner's request, the PM_{2.5} TEOM at this site was decommissioned on November 23, 2015. In 2017, the TCEQ will introduce a new $PM_{2.5}$ continuous FEM monitor to the network, a beta attenuation mass (BAM-1022) monitor, method code 209. The new BAM-1022 will replace aging equipment in the $PM_{2.5}$ network to reduce data loss. In some cases, the monitor will replace a stand-alone $PM_{2.5}$ continuous TEOM with non-regulatory designations. In other cases, the new FEM monitor will replace a $PM_{2.5}$ FRM filter based monitor collocated with a $PM_{2.5}$ continuous TEOM. The changes to the $PM_{2.5}$ network are detailed by site, monitor type, and method code in Table 10, and will be completed by December 31, 2017. Table 10: Particulate Matter of 2.5 Micrometers or Less Deployments and Method Code Changes Summary | AQS
Number | Site Name | be Replaced to be Added | | Current Method
Code(s)
Designation | New Method
Code
Designation | |---------------|-------------------------------|-------------------------|----------|--|-----------------------------------| | 484530021 | Austin
Webberville
Road | PM2.5 TEOM | BAM-1022 | 702
(non-regulatory) | 209 | | 482010058 | Baytown | PM2.5 FRM | BAM-1022 | 145 | 209 | | 482010058 | Baytown | PM2.5 TEOM | BAM-1022 | 702
(non-regulatory) | 209 | | 480430101 | Bravo Big
Bend | PM2.5 TEOM | BAM-1022 | 702
(non-regulatory) | 209 | | AQS
Number | Site Name | Monitor(s) to be Replaced | FEM Monitor
to be Added | Current Method
Code(s)
Designation | New Method
Code
Designation | |---------------|---------------------------|---------------------------|----------------------------|--|-----------------------------------| | 482450022 | Hamshire | PM _{2.5} TEOM | BAM-1022 | 702
(non-regulatory) | 209 | | 480610006 | Brownsville | PM _{2.5} FRM | BAM-1022 | 702
(non-regulatory) | 209 | | 482011034 | Houston
East | PM _{2.5} TEOM | BAM-1022 | 702
(non-regulatory) | 209 | | 482150043 | Mission | PM _{2.5} TEOM | BAM-1022 | 702
(non-regulatory) | 209 | | 482450021 | Port Arthur
Memorial | PM _{2.5} TEOM | BAM-1022 | 702
(non-regulatory) | 209 | | 483611100 | SETRPC 42
Mauriceville | PM _{2.5} TEOM | BAM-1022 | 702
(non-regulatory) | 209 | | 484790313 | World
Trade
Bridge | PM _{2.5} TEOM | BAM-1022 | 702
(non-regulatory) | 209 | AQS - Air Quality System BAM - beta attenuation mass (monitor) FRM – federal reference method FEM – federal equivalent method PM_{2.5} – particulate matter of 2.5 micrometers or less in diameter TEOM - tapered element oscillating microbalances The PM_{2.5} TEOMs at the Brownsville site (AQS# 480610006), the Austin Webberville Rd site (AQS# 484530021), the Hamshire site (AQS# 482450022), and the Baytown site (AQS# 482010058) all experienced irreparable catastrophic instrument failures. The shutdown date for each of these instruments is the date of failure, with the exception of the Brownsville and Hamshire PM_{2.5} TEOMs, which were deactivated effective December 31, 2016. The shutdown date for the Austin Webberville Rd PM_{2.5} TEOM is September 19, 2016, and the shutdown date for the Baytown PM_{2.5} TEOM is December 31, 2016. As shown in Table 10, a PM_{2.5} continuous FEM monitor (BAM-1022) was deployed to the Austin Webberville Road, Baytown, and Hamshire sites to replace the existing equipment, with the effective dates for the newly-deployed instruments as April 27, 2017, March 21, 2017, and May 16, 2017, respectively. With the deployment of the PM_{2.5} FEM BAM-1022 to Baytown, the TCEQ decommissioned the PM_{2.5} FRM monitor at the site, effective March 20, 2017 (the BAM-1022 replacing both the PM_{2.5} TEOM and the PM_{2.5} FRM). The TCEQ will update the PM_{2.5} FRM at Brownsville to a PM_{2.5} continuous FEM monitor (BAM-1022) in 2017. The TCEQ recommends to decommission the two $PM_{2.5}$ continuous special purpose monitors listed in Table 11. The remaining monitors in these MSAs continue to meet and exceed federal requirements. Table 11: Particulate Matter of 2.5 Micrometers or Less Decommission **Recommendation Summary** | AQS
Number | Site
Name | MSA | Type of
Monitor | 2016
Annual
Mean
(µg/m³) | MSA
Required
Monitors | MSA
Existing
Monitors | Rationale | |---------------|-------------------|-------------------------------------|---------------------------|-----------------------------------|-----------------------------|-----------------------------|---| | 484530020 | Austin
Audubon | Austin-
Round
Rock | PM _{2.5}
TEOM | 7.2 | 1 | 3 | Exceeds area requirements | | 480290053 | Selma | San
Antonio-
New
Braunfels | PM _{2.5}
TEOM | 8.4 | 2 | 5 | Exceeds area
requirements;
close
proximity to
PM _{2.5} near-
road monitor | μg/m³ - micrograms per cubic meter AQS - Air Quality System MSA - metropolitan statistical area $PM_{2.5}$ – particulate matter of 2.5 micrometers or less in diameter TEOM - tapered element oscillating microbalances Through existing ambient air monitors (primary and collocated), the TCEQ is meeting or exceeding all federal PM_{2.5} monitoring requirements. #### Volatile Organic Compounds #### **Monitoring Requirements** Title 40 CFR Part 58, Appendix D, Section 5 requires hourly averaged speciated volatile organic compound (VOC) monitoring at NCore sites located in CBSAs with a population of 1,000,000 or more persons as part of the PAMS network requirements. The TCEQ meets this requirement with a minimum of one automated gas chromatograph (autoGC) at each NCore site. The TCEQ also monitors speciated VOC concentrations using discrete canister sampling. The TCEQ has eight autoGCs and six canister
samplers in the PAMS network and an additional four canister samplers to support the NATTS and special purpose monitoring. #### **Changes to the VOC Monitoring Network** All samplers in the VOC monitoring network are meeting federal requirements, and no changes are recommended at this time. The TCEQ will reevaluate all PAMS VOC measurements during the assessment of the PAMS network to be published in the 2018 AMNP. The PAMS network canister samplers and autoGC monitors are listed in Table 12, and a complete list of these monitors is in Appendix A of this document. **Table 12: Canister and Automated Gas Chromatograph Site List** | AQS
Number | TCEQ Region | Site Name | Sampler
Type | AQS
Network &
Monitor
Type | |---------------|----------------------|-----------------------|-----------------|-------------------------------------| | 481130069 | 04-Dallas/Fort Worth | Dallas Hinton | Canister | PAMS | | 481130069 | 04-Dallas/Fort Worth | Dallas Hinton | AutoGC | PAMS/NCore | | 481210034 | 04-Dallas/Fort Worth | Denton Airport South | Canister | PAMS | | 481391044 | 04-Dallas/Fort Worth | Italy | Canister | PAMS | | 482511008 | 04-Dallas/Fort Worth | Johnson County Luisa | Canister | SPM | | 484391002 | 04-Dallas/Fort Worth | Fort Worth Northwest | Canister | PAMS | | 484391002 | 04-Dallas/Fort Worth | Fort Worth Northwest | AutoGC | PAMS | | 484393009 | 04-Dallas/Fort Worth | Grapevine Fairway | Canister | PAMS | | 482030002 | 05-Tyler | Karnack | Canister | NATTS | | 481410044 | 06-El Paso | El Paso Chamizal | AutoGC | PAMS/NCore | | 482450009 | 10-Beaumont | Beaumont Downtown | AutoGC | PAMS | | 482451035 | 10-Beaumont | Nederland High School | AutoGC | PAMS | | 482010026 | 12-Houston | Channelview | AutoGC | PAMS | | 482011035 | 12-Houston | Clinton | AutoGC | PAMS | | 482011039 | 12-Houston | Houston Deer Park #2 | Canister | NATTS/PAMS | | 482011039 | 12-Houston | Houston Deer Park #2 | Canister | NATTS, QA
Collocated | | 482011039 | 12-Houston | Houston Deer Park #2 | AutoGC | PAMS/NCore | | 484790017 | 16-Laredo | Laredo Bridge | Canister | Border | # - number AQS - Air Quality System AutoGC - automated gas chromatograph NATTS - National Air Toxics Trends Stations ${\hbox{NCore -National Core Multipollutant Monitoring Stations}}\\$ PAMS - Photochemical Assessment Monitoring Stations QA – quality assurance SPM - special purpose monitor TCEQ - Texas Commission on Environmental Quality #### Carbonyls #### **Monitoring Requirements** According to PAMS network requirements listed under 40 CFR Part 58, Appendix D, Section 5, the TCEQ is required to collect three eight-hour averaged carbonyl samples per day on a 1 in 3 day schedule at each NCore site located in a CBSA with a population of 1,000,000 or more persons. The TCEQ collects carbonyl samples at the Clinton (AQS# 482011035) and Dallas Hinton (AQS# 481130069) PAMS sites. In addition, the TCEQ has two special purpose carbonyl samplers in support of the NATTS program and two additional special purpose samplers each collecting one, 24-hour sample every six days. The TCEQ exceeds monitoring requirements with a total of six carbonyl samplers at the sites listed below: - Dallas Hinton (AQS# 481130069); - Clinton (AQS# 482011035); - Houston Deer Park #2 (AQS# 482011039); - Karnack (AQS# 482030002); - Fort Worth Northwest (AQS# 484391002); and - Ascarate Park SE (AQS# 481410055). #### **Changes to the Carbonyl Monitoring Network** The TCEQ proposes to change the sampling frequency in accordance with PAMS requirements listed under 40 CFR Part 58, Appendix D, Section 5, to collect three, eight hour carbonyl samples per day at the Clinton (AQS# 482011035) and at the Dallas Hinton (AQS# 481130069) sites. The TCEQ will further evaluate all PAMS carbonyl measurements during the assessment of the PAMS network to be published in the 2018 AMNP. As summarized above and in Appendix A of this document, the TCEQ carbonyl monitoring network is meeting or exceeding all requirements, and no changes are recommended at this time. #### Meteorology #### **Monitoring Requirements** Title 40 CFR Part 58, Appendix D, Section 5 requires surface and upper-air meteorology measurements at all PAMS sites located at NCore stations in CBSAs with a population of 1,000,000 or more persons. The TCEQ collects surface meteorology data at all PAMS sites and most network sites. Surface meteorology includes wind speed, wind direction, and outdoor temperature. The TCEQ operates radar profilers to fulfill the PAMS upper air meteorology requirements. Surface meteorology and upper air meteorology are included in the Appendix A site list. #### Changes to the Meteorology Monitoring Network The $PM_{2.5}$ TEOM at the Kingwood site (AQS# 482011042) was decommissioned effective December 31, 2016, as described above. The site included a precipitation monitor, which was decommissioned on January 20, 2017. The TCEQ temporarily shut down the surface meteorology (solar radiation, wind speed, wind direction, and temperature) at the Lynchburg Ferry site (AQS# 482011015) on March 14, 2017, at the request of the property owner. The owner notified the TCEQ of the intent to redevelop the surrounding area. The EPA approved the proposed new location approximately 0.22 miles southeast, in a letter dated March 9, 2017. The new site location will contain the same monitoring equipment, including solar radiation, wind speed, wind direction, and temperature, once the site preparation and electrical connections are complete. #### **SUMMARY** #### Status of Network Changes During the Past Year The following is a summary of changes that have occurred since the 2016 AMNP. - Based on the clarification for NO₂ monitoring requirements published in the Federal Register on March 28, 2016, *Revisions to the Ambient Monitoring Quality Assurance and Other Requirements: Final Rule*, the NCore network designation from the NO₂ monitors was removed at El Paso Chamizal (AQS# 481410044) and Houston Deer Park #2 (AQS# 482011039) from AQS, effective April 27, 2016. - The TCEQ deployed the 11 required SO₂ monitoring stations (method code 109) by January 1, 2017, to characterize the ambient air near SO₂ emissions sources in accordance with the DRR. Details and site activation dates are listed in Table 2 of this document. - To maintain compliance with collocation requirements, the TCEQ decommissioned the collocated Pb monitor at Frisco 7 (AQS# 480850007) on January 31, 2017, and deployed a collocated Pb monitor (method code 192, sampling every twelfth day) to Terrell Temtex (AQS# 482570020), effective April 13, 2017. - Pursuant to revisions to 40 CFR Part 58, Appendix D, Section 3(b) published by the EPA on March 28, 2016, the TCEQ decommissioned Pb monitors at the three NCore sites, Houston Deer Park #2 (AQS# 482011039), Dallas Hinton (AQS# 481130069), and Ascarate Park (AQS# 481410055) on December 31, 2016. - In compliance with near-road requirements in the Austin-Round Rock and San Antonio-New Braunfels CBSAs, the TCEQ deployed gas filter correlation CO monitors (method code 93) at the Austin North Interstate 35 (AQS# 484531068) and San Antonio Interstate 35 (AQS# 480291069) sites, effective December 19, 2016 and December 22, 2016, respectively. - PM_{10} metals speciation analysis from the PM_{10} sampler at the Clinton site (AQS# 482011035) was discontinued on December 31, 2016. The PM_{10} mass sampler at this site will continue to provide gravimetric data on a one-in-six days sampling frequency. - The Pasadena HL&P (AQS# 482010071) PM₁₀ monitor in the Houston-Woodlands-Sugar Land MSA was decommissioned on December 31, 2016. - The collocated PM₁₀ monitors at the Laredo Vidaurri (AQS# 484790016) and Dona Park (AQS# 483550034) sites were decommissioned, effective December 31, 2016. Primary monitors at both sites will remain active. The TCEQ will decommission the collocated PM₁₀ monitor at the Texas City Fire Station site (AQS# 481670004) in 2017. - The source-oriented PM_{10} metals speciation sampler at the Morrell site (AQS# 481130018) was decommissioned effective June 1, 2016, due to property owner request and shutdown of source. - To meet the minimum collocation requirements, the TCEQ added a collocated PM_{2.5} FRM monitor (method code 145, sampling every twelfth day) at the El Paso Chamizal site (AQS# 481410044), effective February 12, 2017. - The TCEQ deployed PM_{2.5} FRM monitors (method code 145, sampling every third day) at existing near-road stations in the Austin-Round Rock and San Antonio-New Braunfels CBSAs. The TCEQ deployed a new PM_{2.5} FRM monitor to the San Antonio Interstate 35 site (AQS# 480291069) effective January 1, 2017, and relocated the PM_{2.5} FRM monitor from the Austin Audubon Society site (AQS# 484530020) to the Austin North Interstate 35 near-road site (AQS# 484531068) effective January 7, 2017. The PM_{2.5} FRM monitor from the Austin Audubon Society site (AQS# 484530020) was decommissioned effective January 20, 2017. - PM_{2.5} continuous FEM monitors (method code 209) were deployed to the following sites in 2017: - Austin Webberville Rd (AQS# 484530021) to meet collocation requirements for method code 209, effective April 27, 2017; - Bravo Big Bend (AQS# 480430101) effective May 5, 2017; - Baytown (AQS# 482010058) effective March 21, 2017, with the deactivation of the PM_{2.5} FRM effective March 20, 2017; and - Hamshire (AQS# 482450022) effective May 16, 2017. - Four continuous PM_{2.5} TEOMs at the following sites were decommissioned due to catastrophic instrument failures: - Brownsville (AQS# 480610006), effective December 31, 2016; - Austin Webberville Rd (AQS# 484530021), effective September 19, 2016; - Baytown (AQS# 482010058), effective December 31, 2016; and - Hamshire (AQS# 482450022), effective December 31, 2016. - Four continuous PM_{2.5} TEOMs, designated as special purpose monitors, were decommissioned at the following sites: - Dallas Hinton (AQS# 481130069), effective
December 31, 2015; - Kingwood (AQS# 482011042), effective December 31, 2016; - Italy (AQS# 481391044), effective December 6, 2016; and - Odessa Hays Elementary School (AQS# 481350003), effective December 31, 2016. - The PM_{2.5} Sunset carbon analyzer and PM_{2.5} black carbon aethelometer special purpose monitors at Houston Deer Park #2 (AQS# 482011039) were decommissioned on December 31, 2016. - The sampling frequency for the Texarkana New Boston (AQS# 480371031) PM_{2.5} FRM monitor was changed from every third day to every sixth day on December 8, 2016. - The TCEQ discontinued submitting average daily temperature and average daily pressure measurements from manual PM_{2.5} samplers and average temperature and average pressure recorded at Pb sites to AQS effective April 30, 2016. The TCEQ will continue to submit these measurements applicable to the PM_{2.5} Chemical Speciation Network as requested by the EPA in June 2017. - The TCEQ decommissioned the entire Kingwood (AQS# 482011042) site, including surface meteorology (precipitation monitor), effective January 20, 2017. #### 2017 Proposed Network Changes The following is a summary of proposed changes discussed in this year's assessment. - The EPA recommended decommissioning the Brownsville site (AQS# 480610006) in the 2016 AMNP response letter due to concerns over siting criteria compliance. The site is now in compliance with all siting criteria. The TCEQ will decommission the O₃, TSP Pb, and CO monitors, and replace the PM_{2.5} FRM sampler with a PM_{2.5} FEM continuous monitor in 2017. - The TCEQ will relocate the Lynchburg Ferry air monitoring site (AQS# 482011015) at the request of the property owner. The EPA approved the proposed new location, approximately 0.22 miles southeast at 4407 Independence Parkway, La Porte, Texas, in a letter dated March 9, 2017. All parameters at the current location were temporarily shut down on March 14, 2017. The new site location will contain the same monitoring equipment, including O₃, NO₂, solar radiation, wind speed, wind direction, and temperature, once the site preparation and electrical connections are complete. The AQS identification number and monitoring objectives remain the same. - The TCEQ recommends relocating the NO₂ monitor at the Waco Mazanec site (AQS# 483091037) to the Killeen Skylark Field site (AQS# 480271047) in 2017. - The TCEQ intends to deploy three additional special purpose SO_2 monitoring stations to characterize the ambient air in SO_2 nonattainment designated areas based on the evaluation of potentially viable monitoring locations outlined in Appendix E of this document. - The TCEQ recommends to decommission the following SO₂ monitors exceeding minimum monitoring requirements: - El Paso UTEP (AQS# 481410037); - Houston Monroe (AQS# 482010062): - Houston North Wayside (AQS# 482010046); - Italy (AQS# 481391044); - Seabrook Friendship Park (AQS# 482011050); and - Skyline Park (AQS# 481410058). - The TCEQ recommends to decommission the Laredo Vidaurri site (AQS# 484790016) TSP Pb monitor by December 31, 2017. - The TCEQ recommends relocating the CO monitor at the Ascarate Park SE site (AQS# 481410055) to El Paso UTEP site in 2017, (AQS# 481410037) (in the El Paso CBSA). - The TCEQ recommends to decommission the Laredo Bridge site CO monitor in the Laredo CBSA by December 31, 2017. - The TCEQ will deploy PM_{2.5} continuous FEM monitors (BAM-1022) to replace aging equipment at the following sites in 2017: - Brownsville (AQS# 480610006); - Houston East (AQS# 482011034); - SETRPC 42 Mauriceville (AQS# 483611100); - Mission (AQS# 482150043); - Port Arthur Memorial (AQS# 482450021); and - World Trade Bridge (AQS# 484790313). - The TCEQ recommends to decommission the continuous PM_{2.5} continuous monitors at the following sites: - Austin Audubon (AQS#484530020); and - Selma (AQS# 480290053). - The TCEQ recommends to change the sampling frequency in accordance with PAMS requirements listed under 40 CFR Part 58, Appendix D, Section 5, to collect three, eight-hour carbonyl samples per day, every third day during ozone season, at the Clinton (AQS# 482011035) and at the Dallas Hinton site (AQS# 481130069). #### **CONCLUSION** After consideration of the federal regulations, 2016 U.S. Census Bureau population data, and 2016 design values, the TCEQ will meet or exceed all monitoring requirements with the above-mentioned recommendations for the next calendar year. This network plan focuses on the current network and changes within this network from July 1, 2016, through December 31, 2018. # Appendix A ## **Ambient Air Monitoring Network Site List** Texas Commission on Environmental Quality 2017 Annual Monitoring Network Plan | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-----------------------------------|---|-------------------------------------|-----------|-------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|--|---------------| | 483751025 | Amarillo 24th
Avenue | 4205 NE 24th Avenue,
Amarillo | Amarillo, TX | 35.236736 | -101.787405 | Suburban | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | 483751025 | Amarillo 24th
Avenue | 4205 NE 24th Avenue,
Amarillo | Amarillo, TX | 35.236736 | -101.787405 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 483751025 | Amarillo 24th
Avenue | 4205 NE 24th Avenue,
Amarillo | Amarillo, TX | 35.236736 | -101.787405 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 483750320 | Amarillo A&M | 6500 Amarillo Blvd West,
Amarillo | Amarillo, TX | 35.201592 | -101.909275 | Urban and
Center City | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Urban Scale | | 483750024 | Amarillo SH
136 | 7100 State Highway 136,
Amarillo | Amarillo, TX | 35.280273 | -101.715640 | Rural | TSP (Pb) | SLAMS | HiVol ICP-MS | 24 Hours; 1/6
Days | Population Exposure;
Source Oriented | Middle Scale | | 483751077 | Amarillo Xcel
El Rancho | Folsom Rd. & El Rancho
Rd., Amarillo | Amarillo, TX | 35.316500 | -101.741800 | Rural | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Source Oriented | Neighborhood | | 483751077 | Amarillo Xcel
El Rancho | Folsom Rd. & El Rancho
Rd., Amarillo | Amarillo, TX | 35.316500 | -101.741800 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 483751077 | Amarillo Xcel
El Rancho | Folsom Rd. & El Rancho
Rd., Amarillo | Amarillo, TX | 35.316500 | -101.741800 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 484393011 | Arlington
Municipal
Airport | 5504 South Collins Street,
Arlington | Dallas-Fort Worth-
Arlington, TX | 32.656357 | -97.088585 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Population Exposure | Neighborhood | | | Arlington
Municipal
Airport | 5504 South Collins Street,
Arlington | Dallas-Fort Worth-
Arlington, TX | 32.656357 | -97.088585 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 484393011 | Arlington
Municipal
Airport | 5504 South Collins Street,
Arlington | Dallas-Fort Worth-
Arlington, TX | 32.656357 | -97.088585 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Highest Concentration | Neighborhood | | 484393011 | Arlington
Municipal
Airport | 5504 South Collins Street,
Arlington | Dallas-Fort Worth-
Arlington, TX | 32.656357 | -97.088585 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | Highest Concentration | Neighborhood | | 484393011 | Arlington
Municipal
Airport | 5504 South Collins Street,
Arlington | Dallas-Fort Worth-
Arlington, TX | 32.656357 | -97.088585 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Highest Concentration | Neighborhood | | | Arlington
Municipal
Airport | 5504 South Collins Street,
Arlington | Dallas-Fort Worth-
Arlington, TX | 32.656357 | -97.088585 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Neighborhood | | 481410055 | Ascarate Park
SE | 650 R E Thomason Loop, El
Paso | El Paso, TX | 31.746775 | -106.402806 | Suburban | Barometric
Pressure | PAMS/SLAMS | Barometer | Continuous | Max Ozone
Concentration; Upwind
Background | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|------------------------------|-----------------------------------|--------------------------|-----------|-------------|---------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|--|-------------------------------| | 481410055 | Ascarate Park
SE | 650 R E Thomason Loop, El
Paso | El Paso, TX | 31.746775 | -106.402806 | Suburban | Carbonyl | SPM | DNPH Silica HPLC | 24 Hours; 1/6
Days | Max Ozone
Concentration; Upwind
Background | Neighborhood | | 481410055 | Ascarate Park
SE | 650 R E Thomason Loop, El
Paso | El Paso, TX | 31.746775 | -106.402806 | Suburban | со | SLAMS | Gas Filter
Correlation | Continuous | Highest Concentration | Urban Scale | |
481410055 | Ascarate Park
SE | 650 R E Thomason Loop, El
Paso | El Paso, TX | 31.746775 | -106.402806 | Suburban | Dew Point | SPM | Derived at site | Continuous | Highest Concentration;
Upwind Background | Urban Scale | | 481410055 | Ascarate Park
SE | 650 R E Thomason Loop, El
Paso | El Paso, TX | 31.746775 | -106.402806 | Suburban | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Highest Concentration;
Upwind Background | Neighborhood
/ Urban Scale | | 481410055 | Ascarate Park
SE | 650 R E Thomason Loop, El
Paso | El Paso, TX | 31.746775 | -106.402806 | Suburban | О3 | PAMS/SLAMS | UV Photometric | Continuous | Max Ozone
Concentration; Upwind
Background | Neighborhood | | 481410055 | Ascarate Park
SE | 650 R E Thomason Loop, El
Paso | El Paso, TX | 31.746775 | -106.402806 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Neighborhood | | 481410055 | Ascarate Park
SE | 650 R E Thomason Loop, El
Paso | El Paso, TX | 31.746775 | -106.402806 | Suburban | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Max Ozone
Concentration; Upwind
Background | Neighborhood | | 481410055 | Ascarate Park
SE | 650 R E Thomason Loop, El
Paso | El Paso, TX | 31.746775 | -106.402806 | Suburban | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Ozone
Concentration; Upwind
Background | Neighborhood | | 481410055 | Ascarate Park
SE | 650 R E Thomason Loop, El
Paso | El Paso, TX | 31.746775 | -106.402806 | Suburban | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Max Ozone
Concentration; Upwind
Background | Neighborhood | | 481410055 | Ascarate Park
SE | 650 R E Thomason Loop, El
Paso | El Paso, TX | 31.746775 | -106.402806 | Suburban | Visibility | SPM | Visibility Sensor | Continuous | Highest Concentration;
Population Exposure | Urban Scale | | 481410055 | Ascarate Park
SE | 650 R E Thomason Loop, El
Paso | El Paso, TX | 31.746775 | -106.402806 | Suburban | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Ozone
Concentration; Upwind
Background | Neighborhood | | 484530020 | Austin
Audubon
Society | 12200 Lime Creek Rd,
Leander | Austin-Round
Rock, TX | 30.483168 | -97.872301 | Rural | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 484530020 | Austin
Audubon
Society | | Austin-Round
Rock, TX | 30.483168 | -97.872301 | Rural | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 484530020 | Austin
Audubon
Society | 12200 Lime Creek Rd,
Leander | Austin-Round
Rock, TX | 30.483168 | -97.872301 | Rural | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous+A
1 | Population Exposure | Neighborhood | | 484530020 | Austin
Audubon
Society | 12200 Lime Creek Rd,
Leander | Austin-Round
Rock, TX | 30.483168 | -97.872301 | Rural | Solar Radiation | SPM | Photovoltaic | Continuous | Population Exposure | Urban Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-------------------------------|---------------------------------|--------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|-----------------------------------|---------------| | 484530020 | Austin
Audubon
Society | 12200 Lime Creek Rd,
Leander | Austin-Round
Rock, TX | 30.483168 | -97.872301 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Urban Scale | | 484530020 | Austin
Audubon
Society | 12200 Lime Creek Rd,
Leander | Austin-Round
Rock, TX | 30.483168 | -97.872301 | Rural | Wind (3m) | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Urban Scale | | 484531068 | Austin North
Interstate 35 | 8912 N IH 35 SVRD SB,
Austin | Austin-Round
Rock, TX | 30.353860 | -97.691660 | Urban and
Center City | со | Near Road/SLAMS | Gas Filter
Correlation | Continuous | Max Precursor
Emissions Impact | Microscale | | 484531068 | Austin North
Interstate 35 | 8912 N IH 35 SVRD SB,
Austin | Austin-Round
Rock, TX | 30.353860 | -97.691660 | Urban and
Center City | NO/NO2/NOx | Near Road/SLAMS | Chemiluminescence | Continuous | Max Precursor
Emissions Impact | Microscale | | 484531068 | Austin North
Interstate 35 | 8912 N IH 35 SVRD SB,
Austin | Austin-Round
Rock, TX | 30.353860 | -97.691660 | Urban and
Center City | PM2.5 (FRM) | Near Road/SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/3
Days | Max Precursor
Emissions Impact | Microscale | | 484531068 | Austin North
Interstate 35 | 8912 N IH 35 SVRD SB,
Austin | Austin-Round
Rock, TX | 30.353860 | -97.691660 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Max Precursor
Emissions Impact | Microscale | | 484531068 | Austin North
Interstate 35 | 8912 N IH 35 SVRD SB,
Austin | Austin-Round
Rock, TX | 30.353860 | -97.691660 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Microscale | | 484530014 | Austin
Northwest | 3724 North Hills Dr, Austin | Austin-Round
Rock, TX | 30.354436 | -97.760255 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Population Exposure | Urban Scale | | 484530014 | Austin
Northwest | 3724 North Hills Dr, Austin | Austin-Round
Rock, TX | 30.354436 | -97.760255 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 484530014 | Austin
Northwest | 3724 North Hills Dr, Austin | Austin-Round
Rock, TX | 30.354436 | -97.760255 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Neighborhood | | 484530014 | Austin
Northwest | 3724 North Hills Dr, Austin | Austin-Round
Rock, TX | 30.354436 | -97.760255 | Suburban | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Population Exposure | Urban Scale | | 484530014 | Austin
Northwest | 3724 North Hills Dr, Austin | Austin-Round
Rock, TX | 30.354436 | -97.760255 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 484530014 | Austin
Northwest | 3724 North Hills Dr, Austin | Austin-Round
Rock, TX | 30.354436 | -97.760255 | Suburban | Wind (3m) | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 484530021 | Austin
Webberville Rd | 2600B Webberville Rd,
Austin | Austin-Round
Rock, TX | 30.263208 | -97.712883 | Urban and
Center City | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 484530021 | Austin
Webberville Rd | 2600B Webberville Rd,
Austin | Austin-Round
Rock, TX | 30.263208 | -97.712883 | Urban and
Center City | PM2.5 (FEM) | SLAMS/QA Collocated | Beta Attentuation | Continuous | Population Exposure | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|--------------------------|------------------------------------|-----------------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|---|--------------------------------| | 484530021 | Austin
Webberville Rd | 2600B Webberville Rd,
Austin | Austin-Round
Rock, TX | 30.263208 | -97.712883 | Urban and
Center City | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 484530021 | Austin
Webberville Rd | 2600B Webberville Rd,
Austin | Austin-Round
Rock, TX | 30.263208 | -97.712883 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | 484530021 | Austin
Webberville Rd | 2600B Webberville Rd,
Austin | Austin-Round
Rock, TX | 30.263208 | -97.712883 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 482010058 | Baytown | 7210 1/2 Bayway Drive,
Baytown | Houston-Sugar
Land-Baytown, TX | 29.770698 | -95.031232 | Suburban | PM2.5 (FEM) | SLAMS | Beta Attentuation | Continuous | Population Exposure | Middle Scale /
Neighborhood | | 482010058 | Baytown | 7210 1/2 Bayway Drive,
Baytown | Houston-Sugar
Land-Baytown, TX | 29.770698 | -95.031232 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Highest Concentration | Neighborhood | | 482010058 | Baytown | 7210 1/2 Bayway Drive,
Baytown | Houston-Sugar
Land-Baytown, TX | 29.770698 | -95.031232 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Neighborhood | | 482011017 | Baytown Garth | 8622 Garth Road Unit A,
Baytown | Houston-Sugar
Land-Baytown, TX | 29.823319 | -94.983786 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Max Ozone
Concentration | Neighborhood | | 482011017 | Baytown Garth | 8622 Garth Road Unit A,
Baytown | Houston-Sugar
Land-Baytown, TX | 29.823319 | -94.983786 | Suburban | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | 482011017 | Baytown Garth | 8622 Garth Road
Unit A,
Baytown | Houston-Sugar
Land-Baytown, TX | 29.823319 | -94.983786 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | Population Exposure | | | 482011017 | Baytown Garth | 8622 Garth Road Unit A,
Baytown | Houston-Sugar
Land-Baytown, TX | 29.823319 | -94.983786 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | | | 482011017 | Baytown Garth | 8622 Garth Road Unit A,
Baytown | Houston-Sugar
Land-Baytown, TX | 29.823319 | -94.983786 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | | | 482450009 | Beaumont
Downtown | 1086 Vermont Avenue,
Beaumont | Beaumont-Port
Arthur, TX | 30.036422 | -94.071061 | Suburban | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Population Exposure | Neighborhood | | 482450009 | Beaumont
Downtown | 1086 Vermont Avenue,
Beaumont | Beaumont-Port
Arthur, TX | 30.036422 | -94.071061 | Suburban | О3 | PAMS/SLAMS | UV Photometric | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482450009 | Beaumont
Downtown | 1086 Vermont Avenue,
Beaumont | Beaumont-Port
Arthur, TX | 30.036422 | -94.071061 | Suburban | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | 482450009 | Beaumont
Downtown | 1086 Vermont Avenue,
Beaumont | Beaumont-Port
Arthur, TX | 30.036422 | -94.071061 | Suburban | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Precursor
Emissions Impact | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|----------------------|--|-------------------------------|-----------|-------------|--------------------------|---------------------------|-------------------------------|---------------------------------|-----------------------|---|----------------| | 482450009 | Beaumont
Downtown | 1086 Vermont Avenue,
Beaumont | Beaumont-Port
Arthur, TX | 30.036422 | -94.071061 | Suburban | Speciated VOC
(AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482450009 | Beaumont
Downtown | 1086 Vermont Avenue,
Beaumont | Beaumont-Port
Arthur, TX | 30.036422 | -94.071061 | Suburban | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482450009 | Beaumont
Downtown | 1086 Vermont Avenue,
Beaumont | Beaumont-Port
Arthur, TX | 30.036422 | -94.071061 | Suburban | TNMOC
(AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482450009 | Beaumont
Downtown | 1086 Vermont Avenue,
Beaumont | Beaumont-Port
Arthur, TX | 30.036422 | -94.071061 | Suburban | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482271072 | Big Spring
Midway | 1218 N. Midway Rd, Big
Spring | Big Spring, TX | 32.280278 | -101.407222 | Rural | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Source Oriented | Neighborhood | | 482271072 | Big Spring
Midway | 1218 N. Midway Rd, Big
Spring | Big Spring, TX | 32.280278 | -101.407222 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 482271072 | Big Spring
Midway | 1218 N. Midway Rd, Big
Spring | Big Spring, TX | 32.280278 | -101.407222 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 482331073 | Borger FM
1559 | 19440 FM 1559, Borger | Borger, TX | 35.676200 | -101.440100 | Rural | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Source Oriented | Neighborhood | | 482331073 | Borger FM
1559 | 19440 FM 1559, Borger | Borger, TX | 35.676200 | -101.440100 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 482331073 | Borger FM
1559 | 19440 FM 1559, Borger | Borger, TX | 35.676200 | -101.440100 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 480430101 | Bravo Big
Bend | Big Bend National Park, Big
Bend Nat Park | None | 29.302552 | -103.177908 | Rural | PM2.5 (FEM) | SPM | Beta Attentuation | Continuous | Regional Transport | Regional Scale | | 480430101 | Bravo Big
Bend | Big Bend National Park, Big
Bend Nat Park | None | 29.302552 | -103.177908 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Microscale | | 480430101 | Bravo Big
Bend | Big Bend National Park, Big
Bend Nat Park | None | 29.302552 | -103.177908 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Microscale | | 480610006 | Brownsville | 344 Porter Drive,
Brownsville | Brownsville-
Harlingen, TX | 25.892518 | -97.493830 | Urban and
Center City | со | SPM | Gas Filter
Correlation | Continuous | Highest Concentration | Neighborhood | | 480610006 | Brownsville | 344 Porter Drive,
Brownsville | Brownsville-
Harlingen, TX | 25.892518 | -97.493830 | Urban and
Center City | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|----------------|---|-------------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|--|----------------| | 480610006 | Brownsville | 344 Porter Drive,
Brownsville | Brownsville-
Harlingen, TX | 25.892518 | -97.493830 | Urban and
Center City | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/3
Days | Population Exposure | Regional Scale | | 480610006 | Brownsville | 344 Porter Drive,
Brownsville | Brownsville-
Harlingen, TX | 25.892518 | -97.493830 | Urban and
Center City | Solar Radiation | SPM | Photovoltaic | Continuous | Highest Concentration | Neighborhood | | 480610006 | Brownsville | 344 Porter Drive,
Brownsville | Brownsville-
Harlingen, TX | 25.892518 | -97.493830 | Urban and
Center City | SVOC | SPM | HiVol PUF XAD GC-
MS | 24 Hours; 1/6
Days | Population Exposure;
Upwind Background | Middle Scale | | 480610006 | Brownsville | 344 Porter Drive,
Brownsville | Brownsville-
Harlingen, TX | 25.892518 | -97.493830 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Urban Scale | | 480610006 | Brownsville | 344 Porter Drive,
Brownsville | Brownsville-
Harlingen, TX | 25.892518 | -97.493830 | Urban and
Center City | TSP (Pb) | SLAMS | HiVol ICP-MS | 24 Hours; 1/6
Days | Population Exposure | Urban Scale | | 480610006 | Brownsville | 344 Porter Drive,
Brownsville | Brownsville-
Harlingen, TX | 25.892518 | -97.493830 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Neighborhood | | 480290059 | Calaveras Lake | 14620 Laguna Rd, San
Antonio | San Antonio, TX | 29.275381 | -98.311692 | Rural | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Source Oriented;
Upwind Background | Urban Scale | | 480290059 | Calaveras Lake | 14620 Laguna Rd, San
Antonio | San Antonio, TX | 29.275381 | -98.311692 | Rural | О3 | SLAMS | UV Photometric | Continuous | Source Oriented;
Upwind Background | Urban Scale | | 480290059 | Calaveras Lake | 14620 Laguna Rd, San
Antonio | San Antonio, TX | 29.275381 | -98.311692 | Rural | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | Population Exposure;
Upwind Background | Urban Scale | | 480290059 | Calaveras Lake | 14620 Laguna Rd, San
Antonio | San Antonio, TX | 29.275381 | -98.311692 | Rural | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Regional Transport;
Source Oriented | Regional Scale | | 480290059 | Calaveras Lake | 14620 Laguna Rd, San
Antonio | San Antonio, TX | 29.275381 | -98.311692 | Rural | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Population Exposure;
Source Oriented | Neighborhood | | 480290059 | Calaveras Lake | 14620 Laguna Rd, San
Antonio | San Antonio, TX | 29.275381 | -98.311692 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Source Oriented | Urban Scale | | 480290059 | Calaveras Lake | 14620 Laguna Rd, San
Antonio | San Antonio, TX | 29.275381 | -98.311692 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Source Oriented | Urban Scale | | 480290052 | Camp Bullis | F Range (1000Yd marker
off Wilderness Trail), Near
Wilderness Rd, San Antonio | San Antonio, TX | 29.632058 | -98.564936 | Rural | О3 | SLAMS | UV Photometric | Continuous | Max Ozone
Concentration;
Population Exposure | Urban Scale | | 480290052 | Camp Bullis | F Range (1000Yd marker
off Wilderness Trail), Near
Wilderness Rd, San Antonio | San Antonio, TX | 29.632058 | -98.564936 | Rural | Solar Radiation | SPM | Photovoltaic | Continuous | Highest Concentration | Urban Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS
Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|---------------------|---|-------------------------------------|-----------|------------|---------------------|---------------------------|-------------------------------|---------------------------------|-----------------------|---|--------------------------------| | 480290052 | Camp Bullis | F Range (1000Yd marker
off Wilderness Trail), Near
Wilderness Rd, San Antonio | San Antonio, TX | 29.632058 | -98.564936 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Highest Concentration | Urban Scale | | 480290052 | Camp Bullis | F Range (1000Yd marker
off Wilderness Trail), Near
Wilderness Rd, San Antonio | San Antonio, TX | 29.632058 | -98.564936 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Urban Scale | | 482010026 | Channelview | 1405 Sheldon Road,
Channelview | Houston-Sugar
Land-Baytown, TX | 29.802707 | -95.125495 | Suburban | Dew Point | SPM | Derived at site | Continuous | Highest Concentration | Neighborhood | | 482010026 | Channelview | 1405 Sheldon Road,
Channelview | Houston-Sugar
Land-Baytown, TX | 29.802707 | -95.125495 | Suburban | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Population Exposure | Middle Scale /
Neighborhood | | 482010026 | Channelview | 1405 Sheldon Road,
Channelview | Houston-Sugar
Land-Baytown, TX | 29.802707 | -95.125495 | Suburban | О3 | PAMS/SLAMS | UV Photometric | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482010026 | Channelview | 1405 Sheldon Road,
Channelview | Houston-Sugar
Land-Baytown, TX | 29.802707 | -95.125495 | Suburban | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482010026 | Channelview | 1405 Sheldon Road,
Channelview | Houston-Sugar
Land-Baytown, TX | 29.802707 | -95.125495 | Suburban | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482010026 | Channelview | 1405 Sheldon Road,
Channelview | Houston-Sugar
Land-Baytown, TX | 29.802707 | -95.125495 | Suburban | Speciated VOC
(AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Population Exposure | Neighborhood | | 482010026 | Channelview | 1405 Sheldon Road,
Channelview | Houston-Sugar
Land-Baytown, TX | 29.802707 | -95.125495 | Suburban | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482010026 | Channelview | 1405 Sheldon Road,
Channelview | Houston-Sugar
Land-Baytown, TX | 29.802707 | -95.125495 | Suburban | TNMOC
(AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Population Exposure | Neighborhood | | 482010026 | Channelview | 1405 Sheldon Road,
Channelview | Houston-Sugar
Land-Baytown, TX | 29.802707 | -95.125495 | Suburban | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482510003 | Cleburne
Airport | 1650 Airport Drive,
Cleburne | Dallas-Fort Worth-
Arlington, TX | 32.353595 | -97.436742 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Urban Scale | | 482510003 | Cleburne
Airport | 1650 Airport Drive,
Cleburne | Dallas-Fort Worth-
Arlington, TX | 32.353595 | -97.436742 | Suburban | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Highest Concentration | Neighborhood | | 482510003 | Cleburne
Airport | 1650 Airport Drive,
Cleburne | Dallas-Fort Worth-
Arlington, TX | 32.353595 | -97.436742 | Suburban | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Highest Concentration | Neighborhood | | 482510003 | Cleburne
Airport | 1650 Airport Drive,
Cleburne | Dallas-Fort Worth-
Arlington, TX | 32.353595 | -97.436742 | Suburban | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-----------|---------------------------------|-----------------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|-------------------------------|---------------------------------------|---|---------------| | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | Barometric
Pressure | PAMS/SLAMS | Barometer | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | Carbonyl | PAMS/SLAMS | DNPH Silica HPLC | Seasonal, 3
Hours;
Seasonal, 24 | Max Precursor
Emissions Impact | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | CO (High
Sensitivity) | PAMS/SLAMS | Gas Filter
Correlation | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | Dew Point | SPM | Derived at site | Continuous | Population Exposure | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | О3 | PAMS/SLAMS | UV Photometric | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | PM10 (FRM) | QA Collocated/SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Highest Concentration;
Population Exposure | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/3
Days | Highest Concentration;
Source Oriented | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/1
Days | Highest Concentration;
Population Exposure;
Source Oriented | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | PM2.5 (FRM) | QA Collocated/SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | Highest Concentration;
Population Exposure | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | Precipitation | SPM | Rain Gauge | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Precursor
Emissions Impact | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|----------------------|---------------------------------|-------------------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|---|---------------| | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | Speciated VOC (AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Highest Concentration;
Population Exposure;
Source Oriented | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister |
Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | TNMOC
(AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Highest Concentration;
Population Exposure;
Source Oriented | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | UV Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482011035 | Clinton | 9525 1/2 Clinton Dr,
Houston | Houston-Sugar
Land-Baytown, TX | 29.733726 | -95.257593 | Urban and
Center City | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 483390078 | Conroe
Relocated | 9472A Hwy 1484, Conroe | Houston-Sugar
Land-Baytown, TX | 30.350302 | -95.425128 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | General/Background;
Population Exposure | Urban Scale | | 483390078 | Conroe
Relocated | 9472A Hwy 1484, Conroe | Houston-Sugar
Land-Baytown, TX | 30.350302 | -95.425128 | Suburban | О3 | PAMS/SLAMS | UV Photometric | Continuous | General/Background;
Population Exposure | Urban Scale | | 483390078 | Conroe
Relocated | 9472A Hwy 1484, Conroe | Houston-Sugar
Land-Baytown, TX | 30.350302 | -95.425128 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | General/Background | Neighborhood | | 483390078 | Conroe
Relocated | 9472A Hwy 1484, Conroe | Houston-Sugar
Land-Baytown, TX | 30.350302 | -95.425128 | Suburban | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Highest Concentration | Neighborhood | | 483390078 | Conroe
Relocated | 9472A Hwy 1484, Conroe | Houston-Sugar
Land-Baytown, TX | 30.350302 | -95.425128 | Suburban | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Highest Concentration | Neighborhood | | 483390078 | Conroe
Relocated | 9472A Hwy 1484, Conroe | Houston-Sugar
Land-Baytown, TX | 30.350302 | -95.425128 | Suburban | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Neighborhood | | 481130050 | Convention
Center | 717 South Akard, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.774262 | -96.797686 | Urban and
Center City | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 481130050 | Convention
Center | 717 South Akard, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.774262 | -96.797686 | Urban and
Center City | PM10 (FRM) | QA Collocated/SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 481130050 | Convention
Center | 717 South Akard, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.774262 | -96.797686 | Urban and
Center City | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/3
Days | Highest Concentration;
Population Exposure | Neighborhood | | 481130050 | Convention
Center | 717 South Akard, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.774262 | -96.797686 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|----------------------------|--|-------------------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|---|---------------| | 481130050 | Convention
Center | 717 South Akard, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.774262 | -96.797686 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 484491078 | Cookville FM
4855 | 385 CR 4855, Not In A City | Mount Pleasant,
TX | 33.075200 | -94.847400 | Rural | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Source Oriented | Neighborhood | | 484491078 | Cookville FM
4855 | 385 CR 4855, Not In A City | Mount Pleasant,
TX | 33.075200 | -94.847400 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 484491078 | Cookville FM
4855 | 385 CR 4855, Not In A City | Mount Pleasant,
TX | 33.075200 | -94.847400 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 483550032 | Corpus Christi
Huisache | 3810 Huisache Street,
Corpus Christi | Corpus Christi, TX | 27.804505 | -97.431582 | Urban and
Center City | PM2.5 (FRM) | QA Collocated/SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 483550032 | Corpus Christi
Huisache | 3810 Huisache Street,
Corpus Christi | Corpus Christi, TX | 27.804505 | -97.431582 | Urban and
Center City | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/3
Days | Population Exposure | Neighborhood | | 483550032 | Corpus Christi
Huisache | 3810 Huisache Street,
Corpus Christi | Corpus Christi, TX | 27.804505 | -97.431582 | Urban and
Center City | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Highest Concentration;
Population Exposure | Neighborhood | | 483550032 | Corpus Christi
Huisache | 3810 Huisache Street,
Corpus Christi | Corpus Christi, TX | 27.804505 | -97.431582 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Middle Scale | | 483550032 | Corpus Christi
Huisache | 3810 Huisache Street,
Corpus Christi | Corpus Christi, TX | 27.804505 | -97.431582 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Middle Scale | | 483550026 | Corpus Christi
Tuloso | 9860 La Branch, Corpus
Christi | Corpus Christi, TX | 27.832409 | -97.555380 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 483550026 | Corpus Christi
Tuloso | 9860 La Branch, Corpus
Christi | Corpus Christi, TX | 27.832409 | -97.555380 | Suburban | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | 483550026 | Corpus Christi
Tuloso | 9860 La Branch, Corpus
Christi | Corpus Christi, TX | 27.832409 | -97.555380 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Highest Concentration | Neighborhood | | 483550026 | Corpus Christi
Tuloso | 9860 La Branch, Corpus
Christi | Corpus Christi, TX | 27.832409 | -97.555380 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Neighborhood | | 483550025 | Corpus Christi
West | Corpus Christi State School
(Airport Rd), 902 AIRPORT
BLVD, Corpus Christi | Corpus Christi, TX | 27.765340 | -97.434262 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | | Corpus Christi
West | Corpus Christi State School
(Airport Rd), 902 AIRPORT
BLVD, Corpus Christi | Corpus Christi, TX | 27.765340 | -97.434262 | Suburban | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|------------------------|--|-------------------------------------|-----------|------------|--------------------------|---------------------------|-------------------------------|---|--|---|---------------| | 483550025 | Corpus Christi
West | Corpus Christi State School
(Airport Rd), 902 AIRPORT
BLVD, Corpus Christi | Corpus Christi, TX | 27.765340 | -97.434262 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | Population Exposure | Neighborhood | | 483550025 | Corpus Christi
West | Corpus Christi State School
(Airport Rd), 902 AIRPORT
BLVD, Corpus Christi | Corpus Christi, TX | 27.765340 | -97.434262 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | 483550025 | Corpus Christi
West | Corpus Christi State School
(Airport Rd), 902 AIRPORT
BLVD, Corpus Christi | Corpus Christi, TX | 27.765340 | -97.434262 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 483491051 | Corsicana
Airport | Corsicana Airport,
Corsicana | Corsicana, TX | 32.031934 | -96.399141 | Rural | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Source Oriented | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | Carbonyl | PAMS/SLAMS | DNPH Silica HPLC | 3 Hours;
Seasonal, 24
Hours;
Seasonal | Max Precursor
Emissions Impact | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | CO (High
Sensitivity) | NCORE/PAMS/SLAMS | Gas Filter
Correlation | Continuous | Max Precursor
Emissions
Impact;
Population Exposure | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | Dew Point | SPM | Derived at site | Continuous | Population Exposure | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | NOy (High
Sensitivity) | NCORE/SLAMS | Chemiluminescence | Continuous | Highest Concentration | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | О3 | NCORE/PAMS/SLAMS | UV Photometric | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | PM10-2.5 | NCORE/SLAMS | Beta Attentuation | Continuous | Population Exposure | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | PM2.5 (FEM) | NCORE/SLAMS | Beta Attentuation | Continuous | Population Exposure | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | PM2.5 (FRM) | NCORE/SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/1
Days | Population Exposure | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | PM2.5 (FRM) | QA Collocated/SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | PM2.5
(Speciation) | Csn Stn/SLAMS | Carbons Elements
 Ions Sequential
Non-FRM
Gravimetric | 24 Hours; 1/3
Days | Population Exposure | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-----------------------|------------------------------------|-------------------------------------|-----------|------------|--------------------------|-----------------------------|-------------------------------|---------------------------------|-----------------------|---|---------------| | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | Relative
Humidity | NCORE/PAMS/SLAMS | Humidity Sensor | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | SO2 (High
Sensitivity) | NCORE/SLAMS | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | Speciated VOC
(AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Highest Concentration;
Max Precursor
Emissions Impact | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | Speciated VOC
(Canister) | PAMS/SLAMS | Canister GC-MS | 24 Hours; 1/6
Days | Max Precursor
Emissions Impact | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | TNMOC
(AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Highest Concentration;
Max Precursor
Emissions Impact | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | Visibility | SPM | Visibility Sensor | Continuous | Population Exposure | Neighborhood | | 481130069 | Dallas Hinton | 1415 Hinton Street, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.820061 | -96.860117 | Urban and
Center City | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 481131067 | Dallas LBJ
Freeway | 8652 LBJ Freeway, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.921180 | -96.753550 | Urban and
Center City | NO/NO2/NOx | Near Road/SLAMS | Chemiluminescence | Continuous | Max Precursor
Emissions Impact | Microscale | | 481131067 | Dallas LBJ
Freeway | 8652 LBJ Freeway, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.921180 | -96.753550 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Max Precursor
Emissions Impact | Microscale | | 481131067 | Dallas LBJ
Freeway | 8652 LBJ Freeway, Dallas | Dallas-Fort Worth-
Arlington, TX | 32.921180 | -96.753550 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Microscale | | 481130075 | Dallas North
#2 | 12532 1/2 Nuestra Drive,
Dallas | Dallas-Fort Worth-
Arlington, TX | 32.919206 | -96.808498 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Population Exposure | Neighborhood | | 481130075 | Dallas North
#2 | 12532 1/2 Nuestra Drive,
Dallas | Dallas-Fort Worth-
Arlington, TX | 32.919206 | -96.808498 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Urban Scale | | 481130075 | Dallas North
#2 | 12532 1/2 Nuestra Drive,
Dallas | Dallas-Fort Worth-
Arlington, TX | 32.919206 | -96.808498 | Suburban | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Urban Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|--|------------------------------------|-------------------------------------|-----------|------------|---------------------|---------------------------|-------------------------------|---------------------------------|-----------------------|--|---------------| | 481130075 | Dallas North
#2 | 12532 1/2 Nuestra Drive,
Dallas | Dallas-Fort Worth-
Arlington, TX | 32.919206 | -96.808498 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | General/Background | Neighborhood | | 481130075 | Dallas North
#2 | 12532 1/2 Nuestra Drive,
Dallas | Dallas-Fort Worth-
Arlington, TX | 32.919206 | -96.808498 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 481130075 | Dallas North
#2 | 12532 1/2 Nuestra Drive,
Dallas | Dallas-Fort Worth-
Arlington, TX | 32.919206 | -96.808498 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 481130087 | Dallas Redbird
Airport
Executive | 3277 W Redbird Lane,
Dallas | Dallas-Fort Worth-
Arlington, TX | 32.676451 | -96.872060 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Population Exposure | Neighborhood | | 481130087 | Dallas Redbird
Airport
Executive | 3277 W Redbird Lane,
Dallas | Dallas-Fort Worth-
Arlington, TX | 32.676451 | -96.872060 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Urban Scale | | 481130087 | Dallas Redbird
Airport
Executive | 3277 W Redbird Lane,
Dallas | Dallas-Fort Worth-
Arlington, TX | 32.676451 | -96.872060 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 481130087 | Dallas Redbird
Airport
Executive | 3277 W Redbird Lane,
Dallas | Dallas-Fort Worth-
Arlington, TX | 32.676451 | -96.872060 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 481210034 | Denton Airport
South | Denton Airport South,
Denton | Dallas-Fort Worth-
Arlington, TX | 33.219069 | -97.196284 | Rural | Dew Point | SPM | Derived at site | Continuous | Population Exposure | Urban Scale | | 481210034 | Denton Airport
South | Denton Airport South,
Denton | Dallas-Fort Worth-
Arlington, TX | 33.219069 | -97.196284 | Rural | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Max Ozone
Concentration;
Population Exposure | Urban Scale | | 481210034 | Denton Airport
South | Denton Airport South,
Denton | Dallas-Fort Worth-
Arlington, TX | 33.219069 | -97.196284 | Rural
| NOy (High
Sensitivity) | PAMS/SLAMS | Chemiluminescence | Continuous | Max Ozone
Concentration;
Population Exposure | Urban Scale | | 481210034 | Denton Airport
South | Denton Airport South,
Denton | Dallas-Fort Worth-
Arlington, TX | 33.219069 | -97.196284 | Rural | О3 | PAMS/SLAMS | UV Photometric | Continuous | Max Ozone
Concentration;
Population Exposure | Urban Scale | | 481210034 | Denton Airport
South | Denton Airport South,
Denton | Dallas-Fort Worth-
Arlington, TX | 33.219069 | -97.196284 | Rural | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Urban Scale | | 481210034 | Denton Airport
South | Denton Airport South,
Denton | Dallas-Fort Worth-
Arlington, TX | 33.219069 | -97.196284 | Rural | Precipitation | PAMS/SLAMS | Rain Gauge | Continuous | Max Ozone
Concentration | Urban Scale | | 481210034 | Denton Airport
South | Denton Airport South,
Denton | Dallas-Fort Worth-
Arlington, TX | 33.219069 | -97.196284 | Rural | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Max Ozone
Concentration | Urban Scale | | 481210034 | Denton Airport
South | Denton Airport South,
Denton | Dallas-Fort Worth-
Arlington, TX | 33.219069 | -97.196284 | Rural | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Ozone
Concentration | Urban Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-------------------------|--|-------------------------------------|-----------|-------------|--------------------------|-----------------------------|-------------------------------|--|-----------------------|--|----------------| | 481210034 | Denton Airport
South | Denton Airport South,
Denton | Dallas-Fort Worth-
Arlington, TX | 33.219069 | -97.196284 | Rural | Speciated VOC
(Canister) | PAMS/SLAMS | Canister GC-MS | 24 Hours; 1/6
Days | Max Ozone
Concentration;
Population Exposure | Urban Scale | | 481210034 | Denton Airport
South | Denton Airport South,
Denton | Dallas-Fort Worth-
Arlington, TX | 33.219069 | -97.196284 | Rural | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Max Ozone
Concentration | Urban Scale | | 481210034 | Denton Airport
South | Denton Airport South,
Denton | Dallas-Fort Worth-
Arlington, TX | 33.219069 | -97.196284 | Rural | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Ozone
Concentration | Urban Scale | | 483550034 | Dona Park | 5707 Up River Rd, Corpus
Christi | Corpus Christi, TX | 27.811817 | -97.465703 | Urban and
Center City | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 483550034 | Dona Park | 5707 Up River Rd, Corpus
Christi | Corpus Christi, TX | 27.811817 | -97.465703 | Urban and
Center City | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 483550034 | Dona Park | 5707 Up River Rd, Corpus
Christi | Corpus Christi, TX | 27.811817 | -97.465703 | Urban and
Center City | PM2.5
(Speciation) | Csn
Supplemental/SLAMS | Ions Sequential
FRM Gravimetric
Sequential Non-FRM | 24 Hours; 1/6
Days | Population Exposure | | | 483550034 | Dona Park | 5707 Up River Rd, Corpus
Christi | Corpus Christi, TX | 27.811817 | -97.465703 | Urban and
Center City | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Urban Scale | | 483550034 | Dona Park | 5707 Up River Rd, Corpus
Christi | Corpus Christi, TX | 27.811817 | -97.465703 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Highest Concentration | Regional Scale | | 483550034 | Dona Park | 5707 Up River Rd, Corpus
Christi | Corpus Christi, TX | 27.811817 | -97.465703 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Regional Scale | | 484390075 | Eagle Mountain
Lake | 14290 Morris Dido Newark
Rd, Eagle Mountain | Dallas-Fort Worth-
Arlington, TX | 32.987891 | -97.477175 | Rural | О3 | SLAMS | UV Photometric | Continuous | Max Ozone
Concentration | Neighborhood | | 484390075 | Eagle Mountain
Lake | 14290 Morris Dido Newark
Rd, Eagle Mountain | Dallas-Fort Worth-
Arlington, TX | 32.987891 | -97.477175 | Rural | Solar Radiation | SPM | Photovoltaic | Continuous | Highest Concentration | Middle Scale | | 484390075 | Eagle Mountain
Lake | 14290 Morris Dido Newark
Rd, Eagle Mountain | Dallas-Fort Worth-
Arlington, TX | 32.987891 | -97.477175 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Highest Concentration | Middle Scale | | 484390075 | Eagle Mountain
Lake | 14290 Morris Dido Newark
Rd, Eagle Mountain | Dallas-Fort Worth-
Arlington, TX | 32.987891 | -97.477175 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Middle Scale | | 483230004 | Eagle Pass | 265 Foster Maldonado,
Eagle Pass | Eagle Pass, TX | 28.704607 | -100.451156 | Urban and
Center City | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Regional Scale | | 483230004 | Eagle Pass | 265 Foster Maldonado,
Eagle Pass | Eagle Pass, TX | 28.704607 | -100.451156 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Regional Transport | Regional Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|---|---|-------------------------------------|-----------|-------------|--------------------------|---------------------------|-------------------------------|---------------------------------|-----------------------|---|----------------| | 483230004 | Eagle Pass | 265 Foster Maldonado,
Eagle Pass | Eagle Pass, TX | 28.704607 | -100.451156 | Urban and
Center City | Visibility | SPM | Visibility Sensor | Continuous | Regional Transport | Regional Scale | | 483230004 | Eagle Pass | 265 Foster Maldonado,
Eagle Pass | Eagle Pass, TX | 28.704607 | -100.451156 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Regional Transport | Regional Scale | | 481130061 | Earhart | 3434 Bickers (Earhart Elem
School), Dallas | Dallas-Fort Worth-
Arlington, TX | 32.785359 | -96.876571 | Urban and
Center City | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 482151046 | Edinburg East
Freddy
Gonzalez Drive | 1491 East Freddy Gonzalez
Drive, Edinburg | McAllen-Edinburg-
Mission, TX | 26.288622 | -98.152066 | Urban and
Center City | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Regional Scale | | 482151046 | Edinburg East
Freddy
Gonzalez Drive | 1491 East Freddy Gonzalez
Drive, Edinburg | McAllen-Edinburg-
Mission, TX | 26.288622 | -98.152066 | Urban and
Center City | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/3
Days | Population Exposure | Regional Scale | | 482151046 | Edinburg East
Freddy
Gonzalez Drive | 1491 East Freddy Gonzalez
Drive, Edinburg | McAllen-Edinburg-
Mission, TX | 26.288622 | -98.152066 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Regional Scale | | 482151046 | Edinburg East
Freddy
Gonzalez Drive | 1491 East Freddy Gonzalez
Drive, Edinburg | McAllen-Edinburg-
Mission, TX | 26.288622 | -98.152066 | Urban and
Center City | Wind (3m) | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Regional Scale | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | CO (High
Sensitivity) | NCORE/SLAMS | Gas Filter
Correlation | Continuous | Highest Concentration | Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | Dew Point | SPM | Derived at site | Continuous | Highest Concentration;
Max Precursor
Emissions Impact | Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | NO/NO2/NOx | NCORE/PAMS/SLAMS | Chemiluminescence | Continuous | Highest Concentration;
Max Precursor
Emissions Impact | Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | NOy (High
Sensitivity) | NCORE/SLAMS | Chemiluminescence | Continuous | Highest Concentration | Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | О3 | NCORE/PAMS/SLAMS | UV Photometric | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | PM10-2.5 | NCORE/SLAMS | Beta Attentuation | Continuous | Highest Concentration;
Population Exposure |
Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | PM2.5 (FEM) | NCORE/SLAMS | Beta Attentuation | Continuous | Highest Concentration;
Population Exposure | Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/3
Days | Highest Concentration;
Population Exposure | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|---------------------|--------------------------------------|-------------|-----------|-------------|--------------------------|---------------------------|-------------------------------|---|-----------------------|---|---------------| | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | PM2.5
(Speciation) | Csn Stn/SLAMS | Carbons Elements
 Ions Sequential
Non-FRM
Gravimetric | 24 Hours; 1/3
Days | Highest Concentration | Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | SO2 (High
Sensitivity) | NCORE/SLAMS | Pulsed Fluorescence | Continuous | Highest Concentration | Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | Speciated VOC (AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Highest Concentration;
Max Precursor
Emissions Impact | Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | TNMOC
(AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Highest Concentration;
Max Precursor
Emissions Impact | Neighborhood | | 481410044 | El Paso
Chamizal | 800 S San Marcial Street,
El Paso | El Paso, TX | 31.765685 | -106.455227 | Urban and
Center City | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 481410037 | El Paso UTEP | 250 Rim Rd, El Paso | El Paso, TX | 31.768291 | -106.501260 | Urban and
Center City | Dew Point | SPM | Derived at site | Continuous | Max Ozone
Concentration;
Population Exposure | Neighborhood | | 481410037 | El Paso UTEP | 250 Rim Rd, El Paso | El Paso, TX | 31.768291 | -106.501260 | Urban and
Center City | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Max Ozone
Concentration;
Population Exposure | Neighborhood | | 481410037 | El Paso UTEP | 250 Rim Rd, El Paso | El Paso, TX | 31.768291 | -106.501260 | Urban and
Center City | О3 | PAMS/SLAMS | UV Photometric | Continuous | Max Ozone
Concentration;
Population Exposure | Neighborhood | | 481410037 | El Paso UTEP | 250 Rim Rd, El Paso | El Paso, TX | 31.768291 | -106.501260 | Urban and
Center City | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | General/Background;
Population Exposure | Neighborhood | | 481410037 | El Paso UTEP | 250 Rim Rd, El Paso | El Paso, TX | 31.768291 | -106.501260 | Urban and
Center City | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Highest Concentration | Neighborhood | | 481410037 | El Paso UTEP | 250 Rim Rd, El Paso | El Paso, TX | 31.768291 | -106.501260 | Urban and
Center City | Precipitation | PAMS/SLAMS | Rain Gauge | Continuous | Max Ozone
Concentration | Neighborhood | | 481410037 | El Paso UTEP | 250 Rim Rd, El Paso | El Paso, TX | 31.768291 | -106.501260 | Urban and
Center City | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Max Ozone
Concentration | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|---|-----------------------------------|-------------------------------------|-----------|-------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|---|----------------| | 481410037 | El Paso UTEP | 250 Rim Rd, El Paso | El Paso, TX | 31.768291 | -106.501260 | Urban and
Center City | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | 481410037 | El Paso UTEP | 250 Rim Rd, El Paso | El Paso, TX | 31.768291 | -106.501260 | Urban and
Center City | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Ozone
Concentration | Neighborhood | | 481410037 | El Paso UTEP | 250 Rim Rd, El Paso | El Paso, TX | 31.768291 | -106.501260 | Urban and
Center City | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Max Ozone
Concentration | Neighborhood | | 481410037 | El Paso UTEP | 250 Rim Rd, El Paso | El Paso, TX | 31.768291 | -106.501260 | Urban and
Center City | TSP (Pb) | SLAMS | HiVol ICP-AES | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 481410037 | El Paso UTEP | 250 Rim Rd, El Paso | El Paso, TX | 31.768291 | -106.501260 | Urban and
Center City | UV Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Ozone
Concentration | Neighborhood | | 481410037 | El Paso UTEP | 250 Rim Rd, El Paso | El Paso, TX | 31.768291 | -106.501260 | Urban and
Center City | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Ozone
Concentration | Neighborhood | | 481490001 | Fayette County | 636 Roznov Rd, Round Top | AUSTIN-SAN
MARCOS, TX | 29.962475 | -96.745875 | Rural | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Regional Transport;
Source Oriented | Regional Scale | | 484391053 | Fort Worth
California
Parkway North | 1198 California Parkway
North, | Dallas-Fort Worth-
Arlington, TX | 32.664722 | -97.338056 | Urban and
Center City | со | Near Road/SLAMS | Gas Filter
Correlation | Continuous | Max Precursor
Emissions Impact | Microscale | | 484391053 | Fort Worth
California
Parkway North | 1198 California Parkway
North, | Dallas-Fort Worth-
Arlington, TX | 32.664722 | -97.338056 | Urban and
Center City | NO/NO2/NOx | Near Road/SLAMS | Chemiluminescence | Continuous | Max Precursor
Emissions Impact | Microscale | | 484391053 | Fort Worth
California
Parkway North | 1198 California Parkway
North, | Dallas-Fort Worth-
Arlington, TX | 32.664722 | -97.338056 | Urban and
Center City | PM2.5 (FRM) | Near Road/SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/3
Days | Max Precursor
Emissions Impact | Microscale | | 484391053 | Fort Worth
California
Parkway North | 1198 California Parkway
North, | Dallas-Fort Worth-
Arlington, TX | 32.664722 | -97.338056 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Max Precursor
Emissions Impact | Microscale | | 484391053 | Fort Worth
California
Parkway North | 1198 California Parkway
North, | Dallas-Fort Worth-
Arlington, TX | 32.664722 | -97.338056 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Microscale | | 484391002 | Fort Worth
Northwest | 3317 Ross Ave, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.805818 | -97.356568 | Urban and
Center City | Carbonyl | SPM | DNPH Silica HPLC | 24 Hours; 1/6
Days | Max Precursor
Emissions Impact | Neighborhood | | 484391002 | Fort Worth
Northwest | 3317 Ross Ave, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.805818 | -97.356568 | Urban and
Center City | Dew Point | SPM | Derived at site | Continuous | Population Exposure | Middle Scale | | 484391002 | Fort Worth
Northwest | 3317 Ross Ave, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.805818 | -97.356568 | Urban and
Center City | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|----------------------------------|-----------------------------------|-------------------------------------|-----------|------------|--------------------------|-----------------------------|-------------------------------|---------------------------------|-----------------------
---|---------------| | 484391002 | Fort Worth
Northwest | 3317 Ross Ave, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.805818 | -97.356568 | Urban and
Center City | О3 | PAMS/SLAMS | UV Photometric | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 484391002 | Fort Worth
Northwest | 3317 Ross Ave, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.805818 | -97.356568 | Urban and
Center City | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/3
Days | Population Exposure | Neighborhood | | 484391002 | Fort Worth
Northwest | 3317 Ross Ave, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.805818 | -97.356568 | Urban and
Center City | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 484391002 | Fort Worth
Northwest | 3317 Ross Ave, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.805818 | -97.356568 | Urban and
Center City | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 484391002 | Fort Worth
Northwest | 3317 Ross Ave, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.805818 | -97.356568 | Urban and
Center City | Speciated VOC
(AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 484391002 | Fort Worth
Northwest | 3317 Ross Ave, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.805818 | -97.356568 | Urban and
Center City | Speciated VOC
(Canister) | PAMS/SLAMS | Canister GC-MS | 24 Hours; 1/6
Days | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 484391002 | Fort Worth
Northwest | 3317 Ross Ave, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.805818 | -97.356568 | Urban and
Center City | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 484391002 | Fort Worth
Northwest | 3317 Ross Ave, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.805818 | -97.356568 | Urban and
Center City | TNMOC
(AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 484391002 | Fort Worth
Northwest | 3317 Ross Ave, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.805818 | -97.356568 | Urban and
Center City | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 480290060 | Frank Wing
Municipal
Court | 401 South Frio St, San
Antonio | San Antonio, TX | 29.422183 | -98.505381 | Urban and
Center City | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Middle Scale | | 483951076 | Franklin Oak
Grove | 8127 Oak Grove Road,
Franklin | College Station-
Bryan, TX | 31.168889 | -96.481944 | Rural | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Source Oriented | Neighborhood | | 483951076 | Franklin Oak
Grove | 8127 Oak Grove Road,
Franklin | College Station-
Bryan, TX | 31.168889 | -96.481944 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 483951076 | Franklin Oak
Grove | | College Station-
Bryan, TX | 31.168889 | -96.481944 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 480850005 | Frisco | 6590 Hillcrest Road, Frisco | Dallas-Fort Worth-
Arlington, TX | 33.132400 | -96.786419 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Urban Scale | | 480850005 | Frisco | 6590 Hillcrest Road, Frisco | Dallas-Fort Worth-
Arlington, TX | 33.132400 | -96.786419 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | General/Background | Urban Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|--------------------------|------------------------------------|-------------------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|--|-------------------------------| | 480850005 | Frisco | 6590 Hillcrest Road, Frisco | Dallas-Fort Worth-
Arlington, TX | 33.132400 | -96.786419 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Urban Scale | | 480850005 | Frisco | 6590 Hillcrest Road, Frisco | Dallas-Fort Worth-
Arlington, TX | 33.132400 | -96.786419 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Urban Scale | | 480850003 | Frisco 5th St | 7471 South 5th Street,
Frisco | Dallas-Fort Worth-
Arlington, TX | 33.142336 | -96.824683 | Suburban | TSP (Pb) | SLAMS | HiVol ICP-MS | 24 Hours; 1/6
Days | Population Exposure;
Source Oriented | Middle Scale | | 480850007 | Frisco 7 | 6931 Ash Street, Frisco | Dallas-Fort Worth-
Arlington, TX | 33.147414 | -96.825769 | Suburban | TSP (Pb) | SLAMS | HiVol ICP-MS | 24 Hours; 1/6
Days | Population Exposure;
Source Oriented | Neighborhood | | 480850009 | Frisco Eubanks | 6601 Eubanks, Frisco | Dallas-Fort Worth-
Arlington, TX | 33.144662 | -96.828809 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure;
Source Oriented | Neighborhood | | 480850009 | Frisco Eubanks | 6601 Eubanks, Frisco | Dallas-Fort Worth-
Arlington, TX | 33.144662 | -96.828809 | Suburban | TSP (Pb) | SLAMS | HiVol ICP-MS | 24 Hours; 1/6
Days | Population Exposure;
Source Oriented | Neighborhood | | 480850009 | Frisco Eubanks | 6601 Eubanks, Frisco | Dallas-Fort Worth-
Arlington, TX | 33.144662 | -96.828809 | Suburban | TSP (Pb) | QA Collocated/SLAMS | HiVol ICP-MS | 24 Hours; 1/6
Days | Population Exposure;
Source Oriented | Neighborhood | | 480850009 | Frisco Eubanks | 6601 Eubanks, Frisco | Dallas-Fort Worth-
Arlington, TX | 33.144662 | -96.828809 | Suburban | Wind (3m) | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | | | 480850029 | Frisco
Stonebrook | 7202 Stonebrook Parkway,
Frisco | Dallas-Fort Worth-
Arlington, TX | 33.136025 | -96.824473 | Urban and
Center City | TSP (Pb) | SPM | HiVol ICP-MS | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 481671034 | Galveston 99th
Street | 9511 Avenue V 1/2,
Galveston | Houston-Sugar
Land-Baytown, TX | 29.254474 | -94.861289 | Suburban | Dew Point | SPM | Derived at site | Continuous | General/Background;
Upwind Background | Middle Scale | | 481671034 | Galveston 99th
Street | 9511 Avenue V 1/2,
Galveston | Houston-Sugar
Land-Baytown, TX | 29.254474 | -94.861289 | Suburban | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | General/Background;
Upwind Background | Middle Scale /
Urban Scale | | 481671034 | Galveston 99th
Street | 9511 Avenue V 1/2,
Galveston | Houston-Sugar
Land-Baytown, TX | 29.254474 | -94.861289 | Suburban | О3 | PAMS/SLAMS | UV Photometric | Continuous | Max Ozone
Concentration; Upwind
Background | Urban Scale | | 481671034 | Galveston 99th
Street | 9511 Avenue V 1/2,
Galveston | Houston-Sugar
Land-Baytown, TX | 29.254474 | -94.861289 | Suburban | PM2.5 (FRM) | SPM | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | Regional Transport | Regional Scale | | 481671034 | Galveston 99th
Street | 9511 Avenue V 1/2,
Galveston | Houston-Sugar
Land-Baytown, TX | 29.254474 | -94.861289 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Regional Transport | Regional Scale | | 481671034 | Galveston 99th
Street | 9511 Avenue V 1/2,
Galveston | Houston-Sugar
Land-Baytown, TX | 29.254474 | -94.861289 | Suburban | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Max Ozone
Concentration; Upwind
Background | Urban Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|--------------------------|----------------------------------|--|-----------|------------|---------------------|-----------------------------|-------------------------------|---------------------------------|-----------------------|--|---------------| | 481671034 | Galveston 99th
Street | 9511 Avenue V 1/2,
Galveston | Houston-Sugar
Land-Baytown, TX | 29.254474 | -94.861289 | Suburban | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Ozone
Concentration; Upwind
Background | Urban Scale | | 481671034 | Galveston 99th
Street | 9511 Avenue V 1/2,
Galveston | Houston-Sugar
Land-Baytown, TX | 29.254474 | -94.861289 | Suburban | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Max Ozone
Concentration; Upwind
Background | Urban Scale | | 481671034 | Galveston 99th
Street | 9511 Avenue V 1/2,
Galveston | Houston-Sugar
Land-Baytown, TX | 29.254474 | -94.861289 | Suburban | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Ozone
Concentration; Upwind
Background | Urban Scale | | 482210001 | Granbury | 200 N Gordon Street,
Granbury | Dallas-Fort Worth-
Arlington, TX
(Granbury, TX*) | 32.442304 | -97.803529 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population
Exposure | Neighborhood | | 482210001 | Granbury | 200 N Gordon Street,
Granbury | Granbury, TX | 32.442304 | -97.803529 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | General/Background | Middle Scale | | 482210001 | Granbury | 200 N Gordon Street,
Granbury | Granbury, TX | 32.442304 | -97.803529 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Middle Scale | | 482210001 | Granbury | 200 N Gordon Street,
Granbury | Granbury, TX | 32.442304 | -97.803529 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Middle Scale | | 484393009 | Grapevine
Fairway | 4100 Fairway Dr,
Grapevine | Dallas-Fort Worth-
Arlington, TX | 32.984260 | -97.063721 | Suburban | Barometric
Pressure | PAMS/SLAMS | Barometer | Continuous | Max Ozone
Concentration | Neighborhood | | 484393009 | Grapevine
Fairway | 4100 Fairway Dr,
Grapevine | Dallas-Fort Worth-
Arlington, TX | 32.984260 | -97.063721 | Suburban | Dew Point | SPM | Derived at site | Continuous | Highest Concentration;
Max Ozone
Concentration | Neighborhood | | 484393009 | Grapevine
Fairway | 4100 Fairway Dr,
Grapevine | Dallas-Fort Worth-
Arlington, TX | 32.984260 | -97.063721 | Suburban | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Max Ozone
Concentration;
Population Exposure | Neighborhood | | 484393009 | Grapevine
Fairway | 4100 Fairway Dr,
Grapevine | Dallas-Fort Worth-
Arlington, TX | 32.984260 | -97.063721 | Suburban | О3 | PAMS/SLAMS | UV Photometric | Continuous | Max Ozone
Concentration;
Population Exposure | Neighborhood | | 484393009 | Grapevine
Fairway | 4100 Fairway Dr,
Grapevine | Dallas-Fort Worth-
Arlington, TX | 32.984260 | -97.063721 | Suburban | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Max Ozone
Concentration | Neighborhood | | 484393009 | Grapevine
Fairway | 4100 Fairway Dr,
Grapevine | Dallas-Fort Worth-
Arlington, TX | 32.984260 | -97.063721 | Suburban | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Ozone
Concentration | Neighborhood | | 484393009 | Grapevine
Fairway | 4100 Fairway Dr,
Grapevine | Dallas-Fort Worth-
Arlington, TX | 32.984260 | -97.063721 | Suburban | Speciated VOC
(Canister) | PAMS/SLAMS | Canister GC-MS | 24 Hours; 1/6
Days | Max Ozone
Concentration;
Population Exposure | Neighborhood | | 484393009 | Grapevine
Fairway | 4100 Fairway Dr,
Grapevine | Dallas-Fort Worth-
Arlington, TX | 32.984260 | -97.063721 | Suburban | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Max Ozone
Concentration | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|----------------------------|-----------------------------------|-------------------------------------|-----------|------------|---------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|---|-------------------------------| | 484393009 | Grapevine
Fairway | 4100 Fairway Dr,
Grapevine | Dallas-Fort Worth-
Arlington, TX | 32.984260 | -97.063721 | Suburban | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Ozone
Concentration | Neighborhood | | 482311006 | Greenville | 824 Sayle Street,
Greenville | Dallas-Fort Worth-
Arlington, TX | 33.153088 | -96.115572 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Population Exposure;
Upwind Background | Neighborhood | | 482311006 | Greenville | 824 Sayle Street,
Greenville | Dallas-Fort Worth-
Arlington, TX | 33.153088 | -96.115572 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure;
Upwind Background | Neighborhood | | 482311006 | Greenville | 824 Sayle Street,
Greenville | Dallas-Fort Worth-
Arlington, TX | 33.153088 | -96.115572 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | General/Background | Neighborhood | | 482311006 | Greenville | 824 Sayle Street,
Greenville | Dallas-Fort Worth-
Arlington, TX | 33.153088 | -96.115572 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 482311006 | Greenville | 824 Sayle Street,
Greenville | Dallas-Fort Worth-
Arlington, TX | 33.153088 | -96.115572 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 482031079 | Hallsville Red
Oak Road | 9206 Red Oak Road,
Hallsville | Marshall, TX | 32.470200 | -94.481500 | Rural | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Source Oriented | Neighborhood | | 482031079 | Hallsville Red
Oak Road | 9206 Red Oak Road,
Hallsville | Marshall, TX | 32.470200 | -94.481500 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 482031079 | Hallsville Red
Oak Road | 9206 Red Oak Road,
Hallsville | Marshall, TX | 32.470200 | -94.481500 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 482450022 | Hamshire | 12552 Second St, Not In A
City | Beaumont-Port
Arthur, TX | 29.863957 | -94.317802 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | General/Background;
Regional Transport | Neighborhood
/ Urban Scale | | 482450022 | Hamshire | 12552 Second St, Not In A
City | Beaumont-Port
Arthur, TX | 29.863957 | -94.317802 | Suburban | О3 | SLAMS | UV Photometric | Continuous | General/Background;
Regional Transport | Urban Scale | | 482450022 | Hamshire | 12552 Second St, Not In A
City | Beaumont-Port
Arthur, TX | 29.863957 | -94.317802 | Suburban | PM2.5 (FEM) | SPM | Beta Attentuation | Continuous | Population Exposure | Neighborhood | | 482450022 | Hamshire | 12552 Second St, Not In A
City | Beaumont-Port
Arthur, TX | 29.863957 | -94.317802 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | General/Background | Neighborhood | | 482450022 | Hamshire | 12552 Second St, Not In A
City | Beaumont-Port
Arthur, TX | 29.863957 | -94.317802 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 482450022 | Hamshire | 12552 Second St, Not In A
City | Beaumont-Port
Arthur, TX | 29.863957 | -94.317802 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-------------------------|-------------------------------------|-------------------------------------|-----------|------------|--------------------------|---------------------------|-------------------------------|--|-----------------------|--|---------------| | 480611023 | Harlingen
Teege | 1602 W Teege Avenue,
Harlingen | Brownsville-
Harlingen, TX | 26.200335 | -97.712684 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 480611023 | Harlingen
Teege | 1602 W Teege Avenue,
Harlingen | Brownsville-
Harlingen, TX | 26.200335 | -97.712684 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | 480611023 | Harlingen
Teege | 1602 W Teege Avenue,
Harlingen | Brownsville-
Harlingen, TX | 26.200335 | -97.712684 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 484391006 | Haws Athletic
Center | 600 1/2 Congress St, Fort
Worth | Dallas-Fort Worth-
Arlington, TX | 32.759143 | -97.342334 | Urban and
Center City | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/3
Days | Highest Concentration;
Population Exposure | Neighborhood | | 484391006 | Haws Athletic
Center | 600 1/2 Congress St, Fort
Worth | Dallas-Fort Worth-
Arlington, TX | 32.759143 | -97.342334 | Urban and
Center City | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Highest Concentration | Neighborhood | | 482010024 | Houston Aldine | 4510 1/2 Aldine Mail Rd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.901036 | -95.326137 | Suburban | Barometric
Pressure | PAMS/SLAMS | Barometer | Continuous | Max Ozone
Concentration | Neighborhood | | 482010024 | Houston Aldine | 4510 1/2 Aldine Mail Rd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.901036 | -95.326137 | Suburban | Dew Point | SPM | Derived at site | Continuous | Population Exposure | Urban Scale | | 482010024 | Houston Aldine | 4510 1/2 Aldine Mail Rd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.901036 | -95.326137 | Suburban | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Max Ozone
Concentration;
Population Exposure | Neighborhood | | 482010024 | Houston Aldine | 4510 1/2 Aldine Mail Rd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.901036 | -95.326137 | Suburban | NOy (High
Sensitivity) | PAMS/SLAMS | Chemiluminescence | Continuous | Max Ozone
Concentration;
Population Exposure | Neighborhood | | 482010024 | Houston Aldine | 4510 1/2 Aldine Mail Rd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.901036 | -95.326137 | Suburban | О3 | PAMS/SLAMS | UV Photometric | Continuous | Max Ozone
Concentration;
Population Exposure | Neighborhood | |
482010024 | Houston Aldine | 4510 1/2 Aldine Mail Rd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.901036 | -95.326137 | Suburban | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Middle Scale | | 482010024 | Houston Aldine | 4510 1/2 Aldine Mail Rd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.901036 | -95.326137 | Suburban | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 482010024 | Houston Aldine | 4510 1/2 Aldine Mail Rd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.901036 | -95.326137 | Suburban | PM2.5
(Speciation) | SPM | Ions Sequential
 FRM Gravimetric
 Sequential Non-FRM | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 482010024 | Houston Aldine | 4510 1/2 Aldine Mail Rd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.901036 | -95.326137 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Neighborhood | | 482010024 | Houston Aldine | 4510 1/2 Aldine Mail Rd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.901036 | -95.326137 | Suburban | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Max Ozone
Concentration | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-------------------------|-------------------------------------|-----------------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|---|--------------------------------| | 482010024 | Houston Aldine | 4510 1/2 Aldine Mail Rd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.901036 | -95.326137 | Suburban | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Ozone
Concentration | Neighborhood | | 482010024 | Houston Aldine | 4510 1/2 Aldine Mail Rd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.901036 | -95.326137 | Suburban | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Max Ozone
Concentration | Neighborhood | | 482010024 | Houston Aldine | 4510 1/2 Aldine Mail Rd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.901036 | -95.326137 | Suburban | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Ozone
Concentration | Neighborhood | | 482010055 | Houston
Bayland Park | 6400 Bissonnet Street,
Houston | Houston-Sugar
Land-Baytown, TX | 29.695729 | -95.499219 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Population Exposure | Middle Scale /
Neighborhood | | 482010055 | Houston
Bayland Park | 6400 Bissonnet Street,
Houston | Houston-Sugar
Land-Baytown, TX | 29.695729 | -95.499219 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Middle Scale | | 482010055 | Houston
Bayland Park | 6400 Bissonnet Street,
Houston | Houston-Sugar
Land-Baytown, TX | 29.695729 | -95.499219 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | General/Background;
Max Precursor
Emissions Impact | Middle Scale | | 482010055 | Houston
Bayland Park | 6400 Bissonnet Street,
Houston | Houston-Sugar
Land-Baytown, TX | 29.695729 | -95.499219 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background;
Max Precursor
Emissions Impact | Middle Scale | | 482010055 | Houston
Bayland Park | 6400 Bissonnet Street,
Houston | Houston-Sugar
Land-Baytown, TX | 29.695729 | -95.499219 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background;
Max Precursor
Emissions Impact | Middle Scale | | 482010051 | Houston
Croquet | 13826 1/2 Croquet,
Houston | Houston-Sugar
Land-Baytown, TX | 29.623889 | -95.474167 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 482010051 | Houston
Croquet | 13826 1/2 Croquet,
Houston | Houston-Sugar
Land-Baytown, TX | 29.623889 | -95.474167 | Suburban | SO2 | SPM | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | 482010051 | Houston
Croquet | 13826 1/2 Croquet,
Houston | Houston-Sugar
Land-Baytown, TX | 29.623889 | -95.474167 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | 482010051 | Houston
Croquet | 13826 1/2 Croquet,
Houston | Houston-Sugar
Land-Baytown, TX | 29.623889 | -95.474167 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | Carbonyl | NATTS/PAMS/SLAMS | DNPH Silica HPLC | 24 Hours; 1/6
Days | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | CO (High
Sensitivity) | NCORE/SLAMS | Gas Filter
Correlation | Continuous | Population Exposure | Neighborhood | | | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | Dew Point | SPM | Derived at site | Continuous | Population Exposure | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-------------------------|----------------------------------|-----------------------------------|-----------|------------|--------------------------|---------------------------|-------------------------------|---|-----------------------|---|---------------| | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Population Exposure;
Source Oriented | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | NOy (High
Sensitivity) | NCORE/SLAMS | Chemiluminescence | Continuous | Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | О3 | NCORE/PAMS/SLAMS | UV Photometric | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | PM10 (FRM) | QA Collocated/SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Max Precursor
Emissions Impact;
Population Exposure;
Source Oriented | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | PM10
(Speciation) | QA Collocated/NATTS/
SLAMS | ICP-MS | 24 Hours; 1/6
Days | Population Exposure | | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | PM10
(Speciation) | NATTS/SLAMS | ICP-MS | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | PM10-2.5 | NCORE/SLAMS | Beta Attentuation | Continuous | Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | PM2.5 (FEM) | NCORE/SLAMS | Beta Attentuation | Continuous | Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | PM2.5 (FRM) | NCORE/SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/3
Days | Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | PM2.5
(Speciation) | Csn Stn/SLAMS | Carbons Elements
 Ions Sequential
Non-FRM
Gravimetric | 24 Hours; 1/3
Days | Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | PM2.5
(Speciation) | QA Collocated/SLAMS | Carbons Elements
 Ions Sequential
Non-FRM
Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban
and
Center City | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | Relative
Humidity | NCORE/PAMS/SLAMS | Humidity Sensor | Continuous | Max Precursor
Emissions Impact | Neighborhood | | | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | SO2 (High
Sensitivity) | NCORE/SLAMS | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-------------------------|----------------------------------|-----------------------------------|-----------|------------|--------------------------|-----------------------------|-------------------------------|---------------------------------|-----------------------|---|--------------------------------| | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | Speciated VOC
(AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | Speciated VOC
(Canister) | NATTS/QA
Collocated/SLAMS | Canister GC-MS | 24 Hours; 1/6
Days | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | Speciated VOC
(Canister) | NATTS/PAMS/SLAMS | Canister GC-MS | 24 Hours; 1/6
Days | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | SVOC | QA Collocated/SLAMS | HiVol PUF XAD GC-
MS | 24 Hours; 1/6
Days | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | svoc | NATTS/SLAMS | HiVol PUF XAD GC-
MS | 24 Hours; 1/6
Days | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | TNMOC
(AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482011039 | Houston Deer
Park #2 | 4514 1/2 Durant St, Deer
Park | Houston-Sugar
Land-Baytown, TX | 29.670025 | -95.128508 | Urban and
Center City | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482011034 | Houston East | 1262 1/2 Mae Drive,
Houston | Houston-Sugar
Land-Baytown, TX | 29.767997 | -95.220582 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Highest Concentration;
Population Exposure | Middle Scale /
Neighborhood | | 482011034 | Houston East | 1262 1/2 Mae Drive,
Houston | Houston-Sugar
Land-Baytown, TX | 29.767997 | -95.220582 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 482011034 | Houston East | 1262 1/2 Mae Drive,
Houston | Houston-Sugar
Land-Baytown, TX | 29.767997 | -95.220582 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Neighborhood | | 482011034 | Houston East | 1262 1/2 Mae Drive,
Houston | Houston-Sugar
Land-Baytown, TX | 29.767997 | -95.220582 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Urban Scale | | 482011034 | Houston East | 1262 1/2 Mae Drive,
Houston | Houston-Sugar
Land-Baytown, TX | 29.767997 | -95.220582 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 482010060 | Houston
Kirkpatrick | 5565 Kirkpatrick, Houston | Houston-Sugar
Land-Baytown, TX | 29.807415 | -95.293622 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|---------------------------------|------------------------------------|-----------------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|-----------------------------------|---------------| | 482010060 | Houston
Kirkpatrick | 5565 Kirkpatrick, Houston | Houston-Sugar
Land-Baytown, TX | 29.807415 | -95.293622 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 482010062 | Houston
Monroe | 9726 1/2 Monroe, Houston | Houston-Sugar
Land-Baytown, TX | 29.625556 | -95.267222 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 482010062 | Houston
Monroe | 9726 1/2 Monroe, Houston | Houston-Sugar
Land-Baytown, TX | 29.625556 | -95.267222 | Suburban | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 482010062 | Houston
Monroe | 9726 1/2 Monroe, Houston | Houston-Sugar
Land-Baytown, TX | 29.625556 | -95.267222 | Suburban | Precipitation | SPM | Rain Gauge | Continuous | General/Background | Neighborhood | | 482010062 | Houston
Monroe | 9726 1/2 Monroe, Houston | Houston-Sugar
Land-Baytown, TX | 29.625556 | -95.267222 | Suburban | SO2 | SPM | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | 482011052 | Houston North
Loop | 822 North Loop, Houston | Houston-Sugar
Land-Baytown, TX | 29.814530 | -95.387690 | Urban and
Center City | со | Near Road/SLAMS | Gas Filter
Correlation | Continuous | Max Precursor
Emissions Impact | Microscale | | 482011052 | Houston North
Loop | 822 North Loop, Houston | Houston-Sugar
Land-Baytown, TX | 29.814530 | -95.387690 | Urban and
Center City | NO/NO2/NOx | Near Road/SLAMS | Chemiluminescence | Continuous | Max Precursor
Emissions Impact | Microscale | | 482011052 | Houston North
Loop | 822 North Loop, Houston | Houston-Sugar
Land-Baytown, TX | 29.814530 | -95.387690 | Urban and
Center City | PM2.5 (FRM) | Near Road/SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/3
Days | Max Precursor
Emissions Impact | Microscale | | 482011052 | Houston North
Loop | 822 North Loop, Houston | Houston-Sugar
Land-Baytown, TX | 29.814530 | -95.387690 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Max Precursor
Emissions Impact | Microscale | | 482011052 | Houston North
Loop | 822 North Loop, Houston | Houston-Sugar
Land-Baytown, TX | 29.814530 | -95.387690 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Microscale | | 482010046 | Houston North
Wayside | 7330 1/2 North Wayside,
Houston | Houston-Sugar
Land-Baytown, TX | 29.828086 | -95.284096 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 482010046 | Houston North
Wayside | 7330 1/2 North Wayside,
Houston | Houston-Sugar
Land-Baytown, TX | 29.828086 | -95.284096 | Suburban | SO2 | SPM | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | 482011066 | Houston
Southwest
Freeway | | Houston-Sugar
Land-Baytown, TX | 29.721600 | -95.492650 | Urban and
Center City | NO/NO2/NOx | Near Road/SLAMS | Chemiluminescence | Continuous | Max Precursor
Emissions Impact | Microscale | | 482011066 | Houston
Southwest
Freeway | 5617 Westward Avenue,
Houston | Houston-Sugar
Land-Baytown, TX | 29.721600 | -95.492650 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Max Precursor
Emissions Impact | Microscale | | 482011066 | Houston
Southwest
Freeway | 5617 Westward Avenue,
Houston | Houston-Sugar
Land-Baytown, TX | 29.721600 | -95.492650 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Microscale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective |
Spatial Scale | |-------------|-----------------------|-------------------------------------|-------------------------------------|-----------|------------|---------------------|-----------------------------|-------------------------------|---------------------------------|-----------------------|-------------------------|----------------| | 482010066 | Houston
Westhollow | 3333 1/2 Hwy 6 South,
Houston | Houston-Sugar
Land-Baytown, TX | 29.723333 | -95.635833 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 482010066 | Houston
Westhollow | 3333 1/2 Hwy 6 South,
Houston | Houston-Sugar
Land-Baytown, TX | 29.723333 | -95.635833 | Suburban | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 482010066 | Houston
Westhollow | 3333 1/2 Hwy 6 South,
Houston | Houston-Sugar
Land-Baytown, TX | 29.723333 | -95.635833 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | 482010066 | Houston
Westhollow | 3333 1/2 Hwy 6 South,
Houston | Houston-Sugar
Land-Baytown, TX | 29.723333 | -95.635833 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 480612004 | Isla Blanca
Park | Lot B 69 1/2, South Padre
Island | Brownsville-
Harlingen, TX | 26.069615 | -97.162200 | Rural | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Regional Transport | Urban Scale | | 480612004 | Isla Blanca
Park | Lot B 69 1/2, South Padre
Island | Brownsville-
Harlingen, TX | 26.069615 | -97.162200 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Regional Transport | Regional Scale | | 480612004 | Isla Blanca
Park | Lot B 69 1/2, South Padre
Island | Brownsville-
Harlingen, TX | 26.069615 | -97.162200 | Rural | Wind (3m) | SPM | Potentiometer Cup
Anemometer | Continuous | Regional Transport | Regional Scale | | 481391044 | Italy | 900 FM 667 Ellis County,
Italy | Dallas-Fort Worth-
Arlington, TX | 32.175417 | -96.870189 | Rural | Dew Point | SPM | Derived at site | Continuous | Upwind Background | Urban Scale | | 481391044 | Italy | 900 FM 667 Ellis County,
Italy | Dallas-Fort Worth-
Arlington, TX | 32.175417 | -96.870189 | Rural | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Upwind Background | Urban Scale | | 481391044 | Italy | 900 FM 667 Ellis County,
Italy | Dallas-Fort Worth-
Arlington, TX | 32.175417 | -96.870189 | Rural | О3 | PAMS/SLAMS | UV Photometric | Continuous | Upwind Background | Urban Scale | | 481391044 | Italy | 900 FM 667 Ellis County,
Italy | Dallas-Fort Worth-
Arlington, TX | 32.175417 | -96.870189 | Rural | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Upwind Background | Urban Scale | | 481391044 | Italy | 900 FM 667 Ellis County,
Italy | Dallas-Fort Worth-
Arlington, TX | 32.175417 | -96.870189 | Rural | SO2 | SPM | Pulsed Fluorescence | Continuous | Upwind Background | Urban Scale | | 481391044 | Italy | 900 FM 667 Ellis County,
Italy | Dallas-Fort Worth-
Arlington, TX | 32.175417 | -96.870189 | Rural | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Upwind Background | Urban Scale | | 481391044 | Italy | 900 FM 667 Ellis County,
Italy | Dallas-Fort Worth-
Arlington, TX | 32.175417 | -96.870189 | Rural | Speciated VOC
(Canister) | PAMS/SLAMS | Canister GC-MS | 24 Hours; 1/6
Days | Upwind Background | Urban Scale | | 481391044 | Italy | 900 FM 667 Ellis County,
Italy | Dallas-Fort Worth-
Arlington, TX | 32.175417 | -96.870189 | Rural | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Upwind Background | Urban Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-----------------------------|--|-------------------------------------|-----------|-------------|---------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|-------------------------|---------------------------------| | 481391044 | Italy | 900 FM 667 Ellis County,
Italy | Dallas-Fort Worth-
Arlington, TX | 32.175417 | -96.870189 | Rural | UV Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Upwind Background | Urban Scale | | 481391044 | Italy | 900 FM 667 Ellis County,
Italy | Dallas-Fort Worth-
Arlington, TX | 32.175417 | -96.870189 | Rural | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Upwind Background | Urban Scale | | 481410029 | Ivanhoe | 10834 Ivanhoe (Ivanhoe
Fire Station), El Paso | El Paso, TX | 31.785769 | -106.323578 | Suburban | О3 | SPM | UV Photometric | Continuous | Population Exposure | Neighborhood | | 481410029 | Ivanhoe | 10834 Ivanhoe (Ivanhoe
Fire Station), El Paso | El Paso, TX | 31.785769 | -106.323578 | Suburban | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 481410029 | Ivanhoe | 10834 Ivanhoe (Ivanhoe
Fire Station), El Paso | El Paso, TX | 31.785769 | -106.323578 | Suburban | Relative
Humidity | Border Grant/SLAMS | Humidity Sensor | Continuous | General/Background | Neighborhood | | 481410029 | Ivanhoe | 10834 Ivanhoe (Ivanhoe
Fire Station), El Paso | El Paso, TX | 31.785769 | -106.323578 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 481410029 | Ivanhoe | 10834 Ivanhoe (Ivanhoe
Fire Station), El Paso | El Paso, TX | 31.785769 | -106.323578 | Suburban | Wind | Border Grant/SLAMS | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 482450018 | Jefferson
County Airport | End of 90th Street @
Jefferson County Airport,
Port Arthur | Beaumont-Port
Arthur, TX | 29.942798 | -94.000770 | Suburban | Precipitation | PAMS/SLAMS | Rain Gauge | Continuous | General/Background | Neighborhood | | 482450018 | Jefferson
County Airport | End of 90th Street @
Jefferson County Airport,
Port Arthur | Beaumont-Port
Arthur, TX | 29.942798 | -94.000770 | Suburban | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 482450018 | Jefferson
County Airport | End of 90th Street @
Jefferson County Airport,
Port Arthur | Beaumont-Port
Arthur, TX | 29.942798 | -94.000770 | Suburban | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 482511008 | Johnson
County Luisa | 2420 Luisa Ln, Alvarado | Dallas-Fort Worth-
Arlington, TX | 32.469701 | -97.169271 | Suburban | Speciated VOC (Canister) | SPM | Canister GC-MS | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 482511008 | Johnson
County Luisa | 2420 Luisa Ln, Alvarado | Dallas-Fort Worth-
Arlington, TX | 32.469701 | -97.169271 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | 482511008 | Johnson
County Luisa | 2420 Luisa Ln, Alvarado | Dallas-Fort Worth-
Arlington, TX | 32.469701 | -97.169271 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | Carbonyl | NATTS/SLAMS | DNPH Silica HPLC | 24 Hours; 1/6
Days | General/Background | Regional Scale | | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | General/Background | Regional Scale
/ Urban Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-----------|--------------------------------------|-------------------------------------|-----------|------------|---------------------|--------------------------|-------------------------------|---|-----------------------|---|---------------------------------| | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | О3 | SLAMS | UV Photometric | Continuous | General/Background | Regional Scale | | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | PM10 (FRM) | SPM | HiVol Gravimetric | 24 Hours; 1/6
Days | General/Background | Neighborhood | | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | PM10
(Speciation) | NATTS/SLAMS | ICP-MS | 24 Hours; 1/6
Days | General/Background | Regional Scale | | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | PM2.5 (FRM) | SPM | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | General/Background | Regional Scale
/ Urban Scale | | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | PM2.5
(Speciation) | Csn
Supplemental/SLAMS | Carbons Elements
 Ions Sequential
Non-FRM
Gravimetric | 24 Hours; 1/3
Days | Regional Transport;
General/Background | Regional Scale | | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous |
Regional Transport;
General/Background | Regional Scale | | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | Solar Radiation | SPM | Photovoltaic | Continuous | General/Background | Urban Scale | | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | Speciated VOC (Canister) | NATTS/SLAMS | Canister GC-MS | 24 Hours; 1/6
Days | General/Background | Regional Scale | | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | SVOC | NATTS/SLAMS | HiVol PUF XAD GC-
MS | 24 Hours; 1/6
Days | General/Background | Regional Scale | | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Urban Scale | | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | Visibility | SPM | Visibility Sensor | Continuous | General/Background | Urban Scale | | 482030002 | Karnack | Hwy 134 & Spur 449, Not
In A City | Marshall, TX | 32.668987 | -94.167457 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Urban Scale | | 482570005 | Kaufman | 3790 S Houston St,
Kaufman | Dallas-Fort Worth-
Arlington, TX | 32.564968 | -96.317687 | Suburban | Dew Point | SPM | Derived at site | Continuous | Highest Concentration | Neighborhood | | 482570005 | Kaufman | 3790 S Houston St,
Kaufman | Dallas-Fort Worth-
Arlington, TX | 32.564968 | -96.317687 | Suburban | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Population Exposure;
Upwind Background | Neighborhood
/ Urban Scale | | 482570005 | Kaufman | 3790 S Houston St,
Kaufman | Dallas-Fort Worth-
Arlington, TX | 32.564968 | -96.317687 | Suburban | О3 | PAMS/SLAMS | UV Photometric | Continuous | Population Exposure;
Upwind Background | Urban Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|--------------------------|---|-------------------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|--|----------------| | 482570005 | Kaufman | 3790 S Houston St,
Kaufman | Dallas-Fort Worth-
Arlington, TX | 32.564968 | -96.317687 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Upwind Background | Regional Scale | | 482570005 | Kaufman | 3790 S Houston St,
Kaufman | Dallas-Fort Worth-
Arlington, TX | 32.564968 | -96.317687 | Suburban | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Upwind Background | Urban Scale | | 482570005 | Kaufman | 3790 S Houston St,
Kaufman | Dallas-Fort Worth-
Arlington, TX | 32.564968 | -96.317687 | Suburban | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Population Exposure;
Upwind Background | Urban Scale | | 482570005 | Kaufman | 3790 S Houston St,
Kaufman | Dallas-Fort Worth-
Arlington, TX | 32.564968 | -96.317687 | Suburban | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Upwind Background | Urban Scale | | 482570005 | Kaufman | 3790 S Houston St,
Kaufman | Dallas-Fort Worth-
Arlington, TX | 32.564968 | -96.317687 | Suburban | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Upwind Background | Urban Scale | | 482570005 | Kaufman | 3790 S Houston St,
Kaufman | Dallas-Fort Worth-
Arlington, TX | 32.564968 | -96.317687 | Suburban | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Upwind Background | Urban Scale | | 484392003 | Keller | FAA Site off Alta Vista
Road, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.922474 | -97.282088 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Max Ozone
Concentration;
Population Exposure | Neighborhood | | 484392003 | Keller | FAA Site off Alta Vista
Road, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.922474 | -97.282088 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | General/Background | Urban Scale | | 484392003 | Keller | FAA Site off Alta Vista
Road, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.922474 | -97.282088 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Urban Scale | | 484392003 | Keller | FAA Site off Alta Vista
Road, Fort Worth | Dallas-Fort Worth-
Arlington, TX | 32.922474 | -97.282088 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Urban Scale | | 480271047 | Killeen Skylark
Field | 1605 Stone Tree Drive,
Killeen | Killeen-Temple-
Fort Hood, TX | 31.088002 | -97.679734 | Urban and
Center City | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Urban Scale | | 480271047 | Killeen Skylark
Field | 1605 Stone Tree Drive,
Killeen | Killeen-Temple-
Fort Hood, TX | 31.088002 | -97.679734 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Urban Scale | | 480271047 | Killeen Skylark
Field | 1605 Stone Tree Drive,
Killeen | Killeen-Temple-
Fort Hood, TX | 31.088002 | -97.679734 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Urban Scale | | 482011043 | La Porte
Airport C243 | La Porte Airport, 2434
Buchanan Street, La Porte | Houston-Sugar
Land-Baytown, TX | 29.672000 | -95.064700 | Suburban | Precipitation | PAMS/SLAMS | Rain Gauge | Continuous | General/Background | Neighborhood | | 482011043 | La Porte
Airport C243 | La Porte Airport, 2434
Buchanan Street, La Porte | Houston-Sugar
Land-Baytown, TX | 29.672000 | -95.064700 | Suburban | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|--------------------------|---|-----------------------------------|-----------|------------|--------------------------|-----------------------------|-------------------------------|---------------------------------|-----------------------|---|--------------------------------| | 482011043 | La Porte
Airport C243 | La Porte Airport, 2434
Buchanan Street, La Porte | Houston-Sugar
Land-Baytown, TX | 29.672000 | -95.064700 | Suburban | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 480391016 | Lake Jackson | 109B Brazoria Hwy 332
West, Lake Jackson | Houston-Sugar
Land-Baytown, TX | 29.043759 | -95.472946 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Population Exposure;
Source Oriented | Middle Scale /
Neighborhood | | 480391016 | Lake Jackson | 109B Brazoria Hwy 332
West, Lake Jackson | Houston-Sugar
Land-Baytown, TX | 29.043759 | -95.472946 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure;
Source Oriented | Neighborhood | | 480391016 | Lake Jackson | 109B Brazoria Hwy 332
West, Lake Jackson | Houston-Sugar
Land-Baytown, TX | 29.043759 | -95.472946 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | Highest Concentration | Middle Scale | | 480391016 | Lake Jackson | 109B Brazoria Hwy 332
West, Lake Jackson | Houston-Sugar
Land-Baytown, TX | 29.043759 | -95.472946 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Highest Concentration | Middle Scale | | 480391016 | Lake Jackson | 109B Brazoria Hwy 332
West, Lake Jackson | Houston-Sugar
Land-Baytown, TX | 29.043759 | -95.472946 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Middle Scale | | 482010047 | Lang | 4401 1/2 Lang Rd, Houston | Houston-Sugar
Land-Baytown, TX | 29.834167 | -95.489167 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Population Exposure | Middle Scale /
Urban Scale | | 482010047 | Lang | 4401 1/2 Lang Rd, Houston | Houston-Sugar
Land-Baytown, TX | 29.834167 | -95.489167 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Urban Scale | | 482010047 | Lang | 4401 1/2 Lang Rd, Houston | Houston-Sugar
Land-Baytown, TX | 29.834167 | -95.489167 | Suburban | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 484790017 | Laredo Bridge | 700 Zaragosa St, Laredo | Laredo, TX | 27.501826 | -99.502984 | Urban and
Center City | со | Border Grant/SLAMS | Gas Filter
Correlation | Continuous | Population Exposure;
Source Oriented | Microscale | | 484790017 | Laredo Bridge | 700 Zaragosa St, Laredo | Laredo, TX | 27.501826 | -99.502984 | Urban and
Center City | PM10 (FRM) | Border Grant/SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Highest Concentration | Microscale | | 484790017 | Laredo Bridge | 700 Zaragosa St, Laredo | Laredo, TX | 27.501826 | -99.502984 | Urban and
Center City | Speciated VOC
(Canister) | Border Grant/SLAMS | Canister GC-MS | 24 Hours; 1/6
Days | Highest Concentration | Neighborhood | | 484790017 | Laredo Bridge | 700 Zaragosa St, Laredo | Laredo, TX | 27.501826 | -99.502984 | Urban and
Center City |
Temperature
(Outdoor) | Border Grant/SLAMS | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | 484790017 | Laredo Bridge | 700 Zaragosa St, Laredo | Laredo, TX | 27.501826 | -99.502984 | Urban and
Center City | Wind | Border Grant/SLAMS | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 484790016 | Laredo Vidaurri | 2020 Vidaurri Ave, Laredo | Laredo, TX | 27.517449 | -99.515219 | Suburban | со | Border Grant/SLAMS | Gas Filter
Correlation | Continuous | Population Exposure | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|------------------------|---|--------------|-----------|-------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|--|----------------| | 484790016 | Laredo Vidaurri | 2020 Vidaurri Ave, Laredo | Laredo, TX | 27.517449 | -99.515219 | Suburban | О3 | Border Grant/SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 484790016 | Laredo Vidaurri | 2020 Vidaurri Ave, Laredo | Laredo, TX | 27.517449 | -99.515219 | Suburban | PM10 (FRM) | Border Grant/SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 484790016 | Laredo Vidaurri | 2020 Vidaurri Ave, Laredo | Laredo, TX | 27.517449 | -99.515219 | Suburban | Temperature
(Outdoor) | Border Grant/SLAMS | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | 484790016 | Laredo Vidaurri | 2020 Vidaurri Ave, Laredo | Laredo, TX | 27.517449 | -99.515219 | Suburban | TSP (Pb) | Border Grant/SLAMS | HiVol ICP-MS | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 484790016 | Laredo Vidaurri | 2020 Vidaurri Ave, Laredo | Laredo, TX | 27.517449 | -99.515219 | Suburban | Wind | Border Grant/SLAMS | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 481830001 | Longview | Gregg Co Airport near
Longview, Longview | Longview, TX | 32.378682 | -94.711811 | Rural | NO/NO2/NOx | SPM | Chemiluminescence | Continuous | Population Exposure | Neighborhood | | 481830001 | Longview | Gregg Co Airport near
Longview, Longview | Longview, TX | 32.378682 | -94.711811 | Rural | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 481830001 | Longview | Gregg Co Airport near
Longview, Longview | Longview, TX | 32.378682 | -94.711811 | Rural | Precipitation | SPM | Rain Gauge | Continuous | General/Background | Neighborhood | | 481830001 | Longview | Gregg Co Airport near
Longview, Longview | Longview, TX | 32.378682 | -94.711811 | Rural | SO2 | SLAMS | Pulsed Fluorescence | Continuous | General/Background;
Population Exposure | Neighborhood | | 481830001 | Longview | Gregg Co Airport near
Longview, Longview | Longview, TX | 32.378682 | -94.711811 | Rural | Solar Radiation | SPM | Photovoltaic | Continuous | General/Background | Neighborhood | | 481830001 | Longview | Gregg Co Airport near
Longview, Longview | Longview, TX | 32.378682 | -94.711811 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 481830001 | Longview | Gregg Co Airport near
Longview, Longview | Longview, TX | 32.378682 | -94.711811 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 483031028 | Lubbock 12th
Street | 3901 East 12th Street,
Lubbock | Lubbock, TX | 33.585530 | -101.786980 | Urban and
Center City | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Urban Scale | | 483031028 | Lubbock 12th
Street | 3901 East 12th Street,
Lubbock | Lubbock, TX | 33.585530 | -101.786980 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Regional Scale | | 483031028 | Lubbock 12th
Street | 3901 East 12th Street,
Lubbock | Lubbock, TX | 33.585530 | -101.786980 | Urban and
Center City | Wind (3m) | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Regional Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|----------------------|---|-------------------------------------|-----------|------------|---------------------|--------------------------|-------------------------------|--|-----------------------|---|--------------------------------| | 482011015 | Lynchburg
Ferry | 4407 Independence
Parkway South, Baytown | Houston-Sugar
Land-Baytown, TX | 29.761653 | -95.081386 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Source Oriented | Middle Scale /
Neighborhood | | 482011015 | Lynchburg
Ferry | 4407 Independence
Parkway South, Baytown | Houston-Sugar
Land-Baytown, TX | 29.761653 | -95.081386 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Source Oriented | Middle Scale | | 482011015 | Lynchburg
Ferry | 4407 Independence
Parkway South, Baytown | Houston-Sugar
Land-Baytown, TX | 29.761653 | -95.081386 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | Highest Concentration | Neighborhood | | 482011015 | Lynchburg
Ferry | 4407 Independence
Parkway South, Baytown | Houston-Sugar
Land-Baytown, TX | 29.761653 | -95.081386 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Highest Concentration | Neighborhood | | 482011015 | Lynchburg
Ferry | 4407 Independence
Parkway South, Baytown | Houston-Sugar
Land-Baytown, TX | 29.761653 | -95.081386 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Neighborhood | | 480391004 | Manvel Croix
Park | 4503 Croix Pkwy, Manvel | Houston-Sugar
Land-Baytown, TX | 29.520443 | -95.392509 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Population Exposure | Neighborhood
/ Urban Scale | | 480391004 | Manvel Croix
Park | 4503 Croix Pkwy, Manvel | Houston-Sugar
Land-Baytown, TX | 29.520443 | -95.392509 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Urban Scale | | 480391004 | Manvel Croix
Park | 4503 Croix Pkwy, Manvel | Houston-Sugar
Land-Baytown, TX | 29.520443 | -95.392509 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | 480391004 | Manvel Croix
Park | 4503 Croix Pkwy, Manvel | Houston-Sugar
Land-Baytown, TX | 29.520443 | -95.392509 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 481390016 | Midlothian
OFW | 2725 Old Fort Worth Road,
Midlothian | Dallas-Fort Worth-
Arlington, TX | 32.482083 | -97.026899 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Source Oriented | Neighborhood | | 481390016 | Midlothian
OFW | 2725 Old Fort Worth Road,
Midlothian | Dallas-Fort Worth-
Arlington, TX | 32.482083 | -97.026899 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Urban Scale | | 481390016 | Midlothian
OFW | 2725 Old Fort Worth Road,
Midlothian | Dallas-Fort Worth-
Arlington, TX | 32.482083 | -97.026899 | Suburban | PM2.5 (FRM) | SPM | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | Population Exposure;
Source Oriented | Microscale | | 481390016 | Midlothian
OFW | 2725 Old Fort Worth Road,
Midlothian | Dallas-Fort Worth-
Arlington, TX | 32.482083 | -97.026899 | Suburban | PM2.5
(Speciation) | SPM | Ions Sequential
 FRM Gravimetric
 Sequential Non-FRM | 24 Hours; 1/6
Days | Population Exposure;
Source Oriented | Neighborhood | | 481390016 | Midlothian
OFW | 2725 Old Fort Worth Road,
Midlothian | Dallas-Fort Worth-
Arlington, TX | 32.482083 | -97.026899 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Source Oriented | Regional Scale | | 481390016 | Midlothian
OFW | 2725 Old Fort Worth Road,
Midlothian | Dallas-Fort Worth-
Arlington, TX | 32.482083 | -97.026899 | Suburban | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Source Oriented | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|--------------------------|---|-------------------------------------|-----------|------------|---------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|-----------------------------------|----------------| | 481390016 | Midlothian
OFW | 2725 Old Fort Worth Road,
Midlothian | Dallas-Fort Worth-
Arlington, TX | 32.482083 | -97.026899 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | General/Background | Neighborhood | | 481390016 | Midlothian
OFW | 2725 Old Fort Worth Road,
Midlothian | Dallas-Fort Worth-
Arlington, TX | 32.482083 | -97.026899 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 481390016 | Midlothian
OFW | 2725 Old Fort Worth Road,
Midlothian | Dallas-Fort Worth-
Arlington, TX | 32.482083 |
-97.026899 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 482150043 | Mission | 2300 North Glasscock,
Mission | McAllen-Edinburg-
Mission, TX | 26.226210 | -98.291069 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 482150043 | Mission | 2300 North Glasscock,
Mission | McAllen-Edinburg-
Mission, TX | 26.226210 | -98.291069 | Suburban | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Urban Scale | | 482150043 | Mission | 2300 North Glasscock,
Mission | McAllen-Edinburg-
Mission, TX | 26.226210 | -98.291069 | Suburban | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Urban Scale | | 482150043 | Mission | 2300 North Glasscock,
Mission | McAllen-Edinburg-
Mission, TX | 26.226210 | -98.291069 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Urban Scale | | 482150043 | Mission | 2300 North Glasscock,
Mission | McAllen-Edinburg-
Mission, TX | 26.226210 | -98.291069 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | Population Exposure | Microscale | | 482150043 | Mission | 2300 North Glasscock,
Mission | McAllen-Edinburg-
Mission, TX | 26.226210 | -98.291069 | Suburban | SVOC | SPM | HiVol PUF XAD GC-
MS | 24 Hours; 1/6
Days | Population Exposure | Microscale | | 482150043 | Mission | 2300 North Glasscock,
Mission | McAllen-Edinburg-
Mission, TX | 26.226210 | -98.291069 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Microscale | | 482150043 | Mission | 2300 North Glasscock,
Mission | McAllen-Edinburg-
Mission, TX | 26.226210 | -98.291069 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Microscale | | 482730314 | National
Seashore | 20420 Park Road, Corpus
Christi | Kingsville, TX | 27.426981 | -97.298692 | Rural | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Regional Transport | Regional Scale | | 482730314 | National
Seashore | 20420 Park Road, Corpus
Christi | Kingsville, TX | 27.426981 | -97.298692 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Regional Transport | Regional Scale | | 482730314 | National
Seashore | 20420 Park Road, Corpus
Christi | Kingsville, TX | 27.426981 | -97.298692 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Regional Transport | Regional Scale | | 482451035 | Nederland
High School | 1800 N. 18th Street,
Nederland | Beaumont-Port
Arthur, TX | 29.978926 | -94.010872 | Suburban | Barometric
Pressure | PAMS/SLAMS | Barometer | Continuous | Max Precursor
Emissions Impact | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|----------------------------|-----------------------------------|-----------------------------------|-----------|------------|---------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|--|---------------| | 482451035 | Nederland
High School | 1800 N. 18th Street,
Nederland | Beaumont-Port
Arthur, TX | 29.978926 | -94.010872 | Suburban | CO (High
Sensitivity) | PAMS/SLAMS | Gas Filter
Correlation | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482451035 | Nederland
High School | 1800 N. 18th Street,
Nederland | Beaumont-Port
Arthur, TX | 29.978926 | -94.010872 | Suburban | Dew Point | SPM | Derived at site | Continuous | Population Exposure | Neighborhood | | 482451035 | Nederland
High School | 1800 N. 18th Street,
Nederland | Beaumont-Port
Arthur, TX | 29.978926 | -94.010872 | Suburban | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482451035 | Nederland
High School | 1800 N. 18th Street,
Nederland | Beaumont-Port
Arthur, TX | 29.978926 | -94.010872 | Suburban | О3 | PAMS/SLAMS | UV Photometric | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482451035 | Nederland
High School | 1800 N. 18th Street,
Nederland | Beaumont-Port
Arthur, TX | 29.978926 | -94.010872 | Suburban | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482451035 | Nederland
High School | 1800 N. 18th Street,
Nederland | Beaumont-Port
Arthur, TX | 29.978926 | -94.010872 | Suburban | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482451035 | Nederland
High School | 1800 N. 18th Street,
Nederland | Beaumont-Port
Arthur, TX | 29.978926 | -94.010872 | Suburban | Speciated VOC (AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482451035 | Nederland
High School | 1800 N. 18th Street,
Nederland | Beaumont-Port
Arthur, TX | 29.978926 | -94.010872 | Suburban | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482451035 | Nederland
High School | 1800 N. 18th Street,
Nederland | Beaumont-Port
Arthur, TX | 29.978926 | -94.010872 | Suburban | TNMOC
(AutoGC) | PAMS/SLAMS | AutoGC | Continuous | Max Precursor
Emissions Impact;
Population Exposure | Neighborhood | | 482451035 | Nederland
High School | 1800 N. 18th Street,
Nederland | Beaumont-Port
Arthur, TX | 29.978926 | -94.010872 | Suburban | UV Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482451035 | Nederland
High School | 1800 N. 18th Street,
Nederland | Beaumont-Port
Arthur, TX | 29.978926 | -94.010872 | Suburban | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Neighborhood | | 482010029 | Northwest
Harris County | 16822 Kitzman, Tomball | Houston-Sugar
Land-Baytown, TX | 30.039524 | -95.673951 | Rural | Dew Point | SPM | Derived at site | Continuous | Source Oriented | Microscale | | 482010029 | Northwest
Harris County | 16822 Kitzman, Tomball | Houston-Sugar
Land-Baytown, TX | 30.039524 | -95.673951 | Rural | NO/NO2/NOx | PAMS/SLAMS | Chemiluminescence | Continuous | Extreme Downwind;
Population Exposure;
Upwind Background | Urban Scale | | 482010029 | Northwest
Harris County | 16822 Kitzman, Tomball | Houston-Sugar
Land-Baytown, TX | 30.039524 | -95.673951 | Rural | О3 | PAMS/SLAMS | UV Photometric | Continuous | Extreme Downwind;
Population Exposure;
Upwind Background | Urban Scale | | 482010029 | Northwest
Harris County | 16822 Kitzman, Tomball | Houston-Sugar
Land-Baytown, TX | 30.039524 | -95.673951 | Rural | Relative
Humidity | PAMS/SLAMS | Humidity Sensor | Continuous | Extreme Downwind;
Upwind Background | Urban Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|----------------------------|-------------------------------------|-----------------------------------|-----------|-------------|--------------------------|--------------------------|-------------------------------|---------------------------------|------------------------|--|---------------| | 482010029 | Northwest
Harris County | 16822 Kitzman, Tomball | Houston-Sugar
Land-Baytown, TX | 30.039524 | -95.673951 | Rural | Solar Radiation | PAMS/SLAMS | Photovoltaic | Continuous | Extreme Downwind;
Upwind Background | Urban Scale | | 482010029 | Northwest
Harris County | 16822 Kitzman, Tomball | Houston-Sugar
Land-Baytown, TX | 30.039524 | -95.673951 | Rural | Temperature
(Outdoor) | PAMS/SLAMS | Aspirated
Thermister | Continuous | Extreme Downwind;
Upwind Background | Urban Scale | | 482010029 | Northwest
Harris County | 16822 Kitzman, Tomball | Houston-Sugar
Land-Baytown, TX | 30.039524 | -95.673951 | Rural | Wind | PAMS/SLAMS | Potentiometer Cup
Anemometer | Continuous | Extreme Downwind;
Upwind Background | Urban Scale | | 481351014 | Odessa
Gonzales | 2700 Disney, Odessa | Odessa, TX | 31.870253 | -102.334756 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Highest Concentration | Neighborhood | | 481351014 | Odessa
Gonzales | 2700 Disney, Odessa | Odessa, TX | 31.870253 | -102.334756 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | 481351014 | Odessa
Gonzales | 2700 Disney, Odessa | Odessa, TX | 31.870253 | -102.334756 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 481411021 | Ojo De Agua | 6767 Ojo De Agua, El Paso | El Paso, TX | 31.862470 | -106.547300 | Suburban | со | SLAMS | Gas Filter
Correlation | Continuous | Population Exposure | Neighborhood | | 481411021 | Ojo De Agua | 6767 Ojo De Agua, El Paso | El Paso, TX | 31.862470 | -106.547300 | Suburban | PM10 (FRM) | QA Collocated/SLAMS | HiVol Gravimetric | 24 Hours; 1/12
Days | Population Exposure | Neighborhood | | 481411021 | Ojo De Agua | 6767 Ojo De Agua, El Paso | El Paso, TX | 31.862470 | -106.547300 | Suburban | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure |
Neighborhood | | 481411021 | Ojo De Agua | 6767 Ojo De Agua, El Paso | El Paso, TX | 31.862470 | -106.547300 | Suburban | TSP (Pb) | SLAMS | HiVol ICP-AES | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 481411021 | Ojo De Agua | 6767 Ojo De Agua, El Paso | El Paso, TX | 31.862470 | -106.547300 | Suburban | TSP (Pb) | QA Collocated/SLAMS | HiVol ICP-AES | 24 Hours; 1/12
Days | Population Exposure | Neighborhood | | 481411021 | Ojo De Agua | 6767 Ojo De Agua, El Paso | El Paso, TX | 31.862470 | -106.547300 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 480290677 | Old Hwy 90 | 911 Old Hwy 90 West, San
Antonio | San Antonio, TX | 29.423944 | -98.580499 | Urban and
Center City | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Neighborhood | | 483611083 | Orange 1st
Street | 2239 1st Street, Orange | Beaumont-Port
Arthur, TX | 30.153675 | -93.725897 | Urban and
Center City | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Source Oriented | Neighborhood | | 483611083 | Orange 1st
Street | 2239 1st Street, Orange | Beaumont-Port
Arthur, TX | 30.153675 | -93.725897 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|----------------------|--|-----------------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|-------------------------|---------------| | 483611083 | Orange 1st
Street | 2239 1st Street, Orange | Beaumont-Port
Arthur, TX | 30.153675 | -93.725897 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 480290676 | Palo Alto | 9011 Poteet Jourdanton
Hwy, San Antonio | San Antonio, TX | 29.332790 | -98.551383 | Urban and
Center City | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Neighborhood | | 480290676 | Palo Alto | 9011 Poteet Jourdanton
Hwy, San Antonio | San Antonio, TX | 29.332790 | -98.551383 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 480290676 | Palo Alto | 9011 Poteet Jourdanton
Hwy, San Antonio | San Antonio, TX | 29.332790 | -98.551383 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 482010416 | Park Place | 7421 Park Place Blvd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.686389 | -95.294722 | Urban and
Center City | Barometric
Pressure | SPM | Barometer | Continuous | General/Background | Neighborhood | | 482010416 | Park Place | 7421 Park Place Blvd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.686389 | -95.294722 | Urban and
Center City | Dew Point | SPM | Derived at site | Continuous | General/Background | Neighborhood | | 482010416 | Park Place | 7421 Park Place Blvd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.686389 | -95.294722 | Urban and
Center City | NO/NO2/NOx | SPM | Chemiluminescence | Continuous | Population Exposure | Neighborhood | | 482010416 | Park Place | 7421 Park Place Blvd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.686389 | -95.294722 | Urban and
Center City | О3 | SPM | UV Photometric | Continuous | Population Exposure | Neighborhood | | 482010416 | Park Place | 7421 Park Place Blvd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.686389 | -95.294722 | Urban and
Center City | Precipitation | SPM | Rain Gauge | Continuous | General/Background | Neighborhood | | 482010416 | Park Place | 7421 Park Place Blvd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.686389 | -95.294722 | Urban and
Center City | Relative
Humidity | SPM | Humidity Sensor | Continuous | General/Background | Neighborhood | | 482010416 | Park Place | 7421 Park Place Blvd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.686389 | -95.294722 | Urban and
Center City | SO2 | SPM | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | 482010416 | Park Place | 7421 Park Place Blvd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.686389 | -95.294722 | Urban and
Center City | Solar Radiation | SPM | Photovoltaic | Continuous | General/Background | Neighborhood | | 482010416 | Park Place | 7421 Park Place Blvd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.686389 | -95.294722 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 482010416 | Park Place | 7421 Park Place Blvd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.686389 | -95.294722 | Urban and
Center City | UV Radiation | SPM | Photovoltaic | Continuous | General/Background | Neighborhood | | 482010416 | Park Place | 7421 Park Place Blvd,
Houston | Houston-Sugar
Land-Baytown, TX | 29.686389 | -95.294722 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-----------------------------------|---|-------------------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|---|----------------| | 483670081 | Parker County | 3033 New Authon Rd,
Weatherford | Dallas-Fort Worth-
Arlington, TX | 32.868773 | -97.905931 | Rural | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Urban Scale | | 483670081 | Parker County | 3033 New Authon Rd,
Weatherford | Dallas-Fort Worth-
Arlington, TX | 32.868773 | -97.905931 | Rural | Solar Radiation | SPM | Photovoltaic | Continuous | Source Oriented | Neighborhood | | 483670081 | Parker County | 3033 New Authon Rd,
Weatherford | Dallas-Fort Worth-
Arlington, TX | 32.868773 | -97.905931 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Source Oriented | Neighborhood | | 483670081 | Parker County | 3033 New Authon Rd,
Weatherford | Dallas-Fort Worth-
Arlington, TX | 32.868773 | -97.905931 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Source Oriented | Neighborhood | | 481211032 | Pilot Point | 792 E Northside Dr, Pilot
Point | Dallas-Fort Worth-
Arlington, TX | 33.410648 | -96.944590 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Regional Scale | | 481211032 | Pilot Point | 792 E Northside Dr, Pilot
Point | Dallas-Fort Worth-
Arlington, TX | 33.410648 | -96.944590 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | Upwind Background | Regional Scale | | 481211032 | Pilot Point | 792 E Northside Dr, Pilot
Point | Dallas-Fort Worth-
Arlington, TX | 33.410648 | -96.944590 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Upwind Background | Regional Scale | | 481211032 | Pilot Point | 792 E Northside Dr, Pilot
Point | Dallas-Fort Worth-
Arlington, TX | 33.410648 | -96.944590 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Upwind Background | Regional Scale | | 482451071 | Port Arthur 7th
Street | 7th Street / Texaco Island
Road, Port Arthur | Beaumont-Port
Arthur, TX | 29.848550 | -93.962194 | Rural | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Source Oriented | Neighborhood | | 482451071 | Port Arthur 7th
Street | 7th Street / Texaco Island
Road, Port Arthur | Beaumont-Port
Arthur, TX | 29.848550 | -93.962194 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 482451071 | Port Arthur 7th
Street | 7th Street / Texaco Island
Road, Port Arthur | Beaumont-Port
Arthur, TX | 29.848550 | -93.962194 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 482450021 | Port Arthur
Memorial
School | 2200 Jefferson Drive, Port
Arthur | Beaumont-Port
Arthur, TX | 29.922894 | -93.909018 | | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Neighborhood | | 482450011 | Port Arthur
West | 623 Ellias Street, Port
Arthur | Beaumont-Port
Arthur, TX | 29.897516 | -93.991084 | Urban and
Center City | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 482450011 | Port Arthur
West | 623 Ellias Street, Port
Arthur | Beaumont-Port
Arthur, TX | 29.897516 | -93.991084 | Urban and
Center City | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Source Oriented | Neighborhood | | 482450011 | Port Arthur
West | 623 Ellias Street, Port
Arthur | Beaumont-Port
Arthur, TX | 29.897516 | -93.991084 | Urban and
Center City | Solar Radiation | SPM | Photovoltaic | Continuous | Population Exposure;
Source Oriented | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|------------------------------------
---|-------------------------------------|-----------|-------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|---|---------------| | 482450011 | Port Arthur
West | 623 Ellias Street, Port
Arthur | Beaumont-Port
Arthur, TX | 29.897516 | -93.991084 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Source Oriented | Neighborhood | | 482450011 | Port Arthur
West | 623 Ellias Street, Port
Arthur | Beaumont-Port
Arthur, TX | 29.897516 | -93.991084 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure;
Source Oriented | Neighborhood | | 483491081 | Richland
Southeast
1220 Road | Southeast 1220 Road,
Richland | Corsicana, TX | 31.904100 | -96.352000 | Rural | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Source Oriented | Neighborhood | | 483491081 | Richland
Southeast
1220 Road | Southeast 1220 Road,
Richland | Corsicana, TX | 31.904100 | -96.352000 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 483491081 | Richland
Southeast
1220 Road | Southeast 1220 Road,
Richland | Corsicana, TX | 31.904100 | -96.352000 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 481410038 | Riverside | 301 Midway Dr (Riverside
High School), El Paso | El Paso, TX | 31.733800 | -106.372100 | Suburban | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 483311075 | Rockdale John
D. Harper
Road | 3990 John D Harper Road,
Rockdale | None | 30.569444 | -97.076111 | Rural | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Source Oriented | Neighborhood | | 483311075 | Rockdale John
D. Harper
Road | 3990 John D Harper Road,
Rockdale | None | 30.569444 | -97.076111 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 483311075 | Rockdale John
D. Harper
Road | 3990 John D Harper Road,
Rockdale | None | 30.569444 | -97.076111 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 483970001 | Rockwall Heath | 100 E Heath St, Rockwall | Dallas-Fort Worth-
Arlington, TX | 32.936523 | -96.459211 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 483970001 | Rockwall Heath | 100 E Heath St, Rockwall | Dallas-Fort Worth-
Arlington, TX | 32.936523 | -96.459211 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | Population Exposure | Neighborhood | | 483970001 | Rockwall Heath | 100 E Heath St, Rockwall | Dallas-Fort Worth-
Arlington, TX | 32.936523 | -96.459211 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | 483970001 | Rockwall Heath | 100 E Heath St, Rockwall | Dallas-Fort Worth-
Arlington, TX | 32.936523 | -96.459211 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 480291080 | San Antonio
Gardner Road | 7145 Gardner Road, San
Antonio | San Antonio, TX | 29.352911 | -98.332814 | Suburban | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Source Oriented | Neighborhood | | 480291080 | San Antonio
Gardner Road | 7145 Gardner Road, San
Antonio | San Antonio, TX | 29.352911 | -98.332814 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|--------------------------------|------------------------------------|-----------------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|--|--------------------------------| | 480291080 | San Antonio
Gardner Road | 7145 Gardner Road, San
Antonio | San Antonio, TX | 29.352911 | -98.332814 | Suburban | Wind (3m) | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 480291069 | San Antonio
Interstate 35 | 9904 IH 35 N, San Antonio | San Antonio, TX | 29.529400 | -98.391390 | Urban and
Center City | со | Near Road/SLAMS | Gas Filter
Correlation | Continuous | Max Precursor
Emissions Impact | Microscale | | 480291069 | San Antonio
Interstate 35 | 9904 IH 35 N, San Antonio | San Antonio, TX | 29.529400 | -98.391390 | Urban and
Center City | NO/NO2/NOx | Near Road/SLAMS | Chemiluminescence | Continuous | Max Precursor
Emissions Impact | Microscale | | 480291069 | San Antonio
Interstate 35 | 9904 IH 35 N, San Antonio | San Antonio, TX | 29.529400 | -98.391390 | Urban and
Center City | PM2.5 (FRM) | Near Road/SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/3
Days | Max Precursor
Emissions Impact | Microscale | | 480291069 | San Antonio
Interstate 35 | 9904 IH 35 N, San Antonio | San Antonio, TX | 29.529400 | -98.391390 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Max Precursor
Emissions Impact | Microscale | | 480291069 | San Antonio
Interstate 35 | 9904 IH 35 N, San Antonio | San Antonio, TX | 29.529400 | -98.391390 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Max Precursor
Emissions Impact | Microscale | | 480290032 | San Antonio
Northwest | 6655 Bluebird Lane, San
Antonio | San Antonio, TX | 29.515090 | -98.620166 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Population Exposure | Neighborhood | | 480290032 | San Antonio
Northwest | 6655 Bluebird Lane, San
Antonio | San Antonio, TX | 29.515090 | -98.620166 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Max Ozone
Concentration;
Population Exposure | Urban Scale | | 480290032 | San Antonio
Northwest | 6655 Bluebird Lane, San
Antonio | San Antonio, TX | 29.515090 | -98.620166 | Suburban | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Urban Scale | | 480290032 | San Antonio
Northwest | 6655 Bluebird Lane, San
Antonio | San Antonio, TX | 29.515090 | -98.620166 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Urban Scale | | 480290032 | San Antonio
Northwest | 6655 Bluebird Lane, San
Antonio | San Antonio, TX | 29.515090 | -98.620166 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Highest Concentration | Urban Scale | | 480290032 | San Antonio
Northwest | 6655 Bluebird Lane, San
Antonio | San Antonio, TX | 29.515090 | -98.620166 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Urban Scale | | 482011050 | Seabrook
Friendship
Park | 4522 Park Rd, Seabrook | Houston-Sugar
Land-Baytown, TX | 29.583047 | -95.015544 | Suburban | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Population Exposure | Middle Scale /
Neighborhood | | 482011050 | Seabrook
Friendship
Park | 4522 Park Rd, Seabrook | Houston-Sugar
Land-Baytown, TX | 29.583047 | -95.015544 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 482011050 | Seabrook
Friendship
Park | 4522 Park Rd, Seabrook | Houston-Sugar
Land-Baytown, TX | 29.583047 | -95.015544 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Highest Concentration | Middle Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|--------------------------------------|---|-----------------------------------|-----------|-------------|---------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|--|----------------| | 482011050 | Seabrook
Friendship
Park | 4522 Park Rd, Seabrook | Houston-Sugar
Land-Baytown, TX | 29.583047 | -95.015544 | Suburban | SO2 | SPM | Pulsed Fluorescence | Continuous | Population Exposure;
Source Oriented | Neighborhood | | 482011050 | Seabrook
Friendship
Park | 4522 Park Rd, Seabrook | Houston-Sugar
Land-Baytown, TX | 29.583047 | -95.015544 | Suburban | Solar Radiation | SPM | Photovoltaic | Continuous | Highest Concentration | Middle Scale | | 482011050 | Seabrook
Friendship
Park | 4522 Park Rd, Seabrook | Houston-Sugar
Land-Baytown, TX | 29.583047 | -95.015544 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Highest Concentration | Middle Scale | | 482011050 | Seabrook
Friendship
Park | 4522 Park Rd, Seabrook | Houston-Sugar
Land-Baytown, TX | 29.583047 | -95.015544 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Middle Scale | | 480290053 | Selma | 16289 North Evans Rd #2,
Selma | San Antonio, TX | 29.587741 | -98.312512 | Suburban | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 480290053 | Selma | 16289 North Evans Rd #2,
Selma | San Antonio, TX | 29.587741 | -98.312512 | Suburban |
PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Neighborhood | | 482450101 | SETRPC 40
Sabine Pass | 5200 Mechanic, Not In A
City | Beaumont-Port
Arthur, TX | 29.727931 | -93.894081 | Rural | О3 | PAMS/SLAMS | UV Photometric | Continuous | Max Ozone
Concentration | Neighborhood | | 483611100 | SETRPC 42
Mauriceville | Intersection of TX Hwys 62
& 12, Port Arthur | Beaumont-Port
Arthur, TX | 30.194558 | -93.867237 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Regional Transport;
Upwind Background | Regional Scale | | | SETRPC 43
Jefferson Co
Airport | Jefferson County Airport,
Port Arthur | Beaumont-Port
Arthur, TX | 29.942751 | -94.000684 | Suburban | О3 | SPM | UV Photometric | Continuous | Max Precursor
Emissions Impact | Middle Scale | | 481410058 | Skyline Park | 5050A Yvette Drive, El Paso | El Paso, TX | 31.893913 | -106.425827 | Suburban | О3 | Border Grant/SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 481410058 | Skyline Park | 5050A Yvette Drive, El Paso | El Paso, TX | 31.893913 | -106.425827 | Suburban | SO2 | Border Grant/SLAMS | Pulsed Fluorescence | Continuous | Population Exposure | Neighborhood | | 481410058 | Skyline Park | 5050A Yvette Drive, El Paso | El Paso, TX | 31.893913 | -106.425827 | Suburban | Temperature
(Outdoor) | Border Grant/SLAMS | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | 481410058 | Skyline Park | 5050A Yvette Drive, El Paso | El Paso, TX | 31.893913 | -106.425827 | Suburban | Wind | Border Grant/SLAMS | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 480710013 | Smith Point
Hawkins Camp | 1850 Hawkins Camp Rd,
Anahuac | Houston-Sugar
Land-Baytown, TX | 29.546244 | -94.786969 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Source Oriented | Neighborhood | | 480710013 | Smith Point
Hawkins Camp | 1850 Hawkins Camp Rd,
Anahuac | Houston-Sugar
Land-Baytown, TX | 29.546244 | -94.786969 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Source Oriented | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-------------------------|--|-------------------------------------|-----------|-------------|--------------------------|--------------------------|-------------------------------------|---------------------------------|------------------------|--|---------------| | 481410057 | Socorro Hueco | 320 Old Hueco Tanks Road,
El Paso | El Paso, TX | 31.667500 | -106.288000 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 481410057 | Socorro Hueco | 320 Old Hueco Tanks Road,
El Paso | El Paso, TX | 31.667500 | -106.288000 | Suburban | PM10 (FRM) | Border Grant/SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | General/Background;
Population Exposure | Neighborhood | | 481410057 | Socorro Hueco | 320 Old Hueco Tanks Road,
El Paso | El Paso, TX | 31.667500 | -106.288000 | Suburban | PM10 (FRM) | Border Grant/QA
Collocated/SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 481410057 | Socorro Hueco | 320 Old Hueco Tanks Road,
El Paso | El Paso, TX | 31.667500 | -106.288000 | Suburban | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Neighborhood | | 481410057 | Socorro Hueco | 320 Old Hueco Tanks Road,
El Paso | El Paso, TX | 31.667500 | -106.288000 | Suburban | svoc | SPM | HiVol PUF XAD GC-
MS | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 481410057 | Socorro Hueco | 320 Old Hueco Tanks Road,
El Paso | El Paso, TX | 31.667500 | -106.288000 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Neighborhood | | 481410057 | Socorro Hueco | 320 Old Hueco Tanks Road,
El Paso | El Paso, TX | 31.667500 | -106.288000 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Neighborhood | | 484393010 | Stage Coach | 8900 West Freeway, White
Settlement | Dallas-Fort Worth-
Arlington, TX | 32.739200 | -97.470330 | Suburban | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 480271045 | Temple
Georgia | 8406 Georgia Avenue,
Temple | Killeen-Temple-
Fort Hood, TX | 31.122419 | -97.431052 | Suburban | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Urban Scale | | 480271045 | Temple
Georgia | 8406 Georgia Avenue,
Temple | Killeen-Temple-
Fort Hood, TX | 31.122419 | -97.431052 | Suburban | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 480271045 | Temple
Georgia | 8406 Georgia Avenue,
Temple | Killeen-Temple-
Fort Hood, TX | 31.122419 | -97.431052 | Suburban | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 482570020 | Terrell Temtex | 2988 Temtex Blvd, Terrell | Dallas-Fort Worth-
Arlington, TX | 32.731919 | -96.317911 | Rural | TSP (Pb) | QA Collocated/SLAMS | HiVol ICP-MS | 24 Hours; 1/12
Days | Population Exposure;
Source Oriented | Neighborhood | | 482570020 | Terrell Temtex | 2988 Temtex Blvd, Terrell | Dallas-Fort Worth-
Arlington, TX | 32.731919 | -96.317911 | Rural | TSP (Pb) | SLAMS | HiVol ICP-MS | | Population Exposure;
Source Oriented | Neighborhood | | 480371031 | Texarkana
New Boston | 2700 New Boston Rd,
Texarkana | Texarkana, TX-
Texarkana, AR | 33.436111 | -94.077780 | Urban and
Center City | PM2.5 (FRM) | SLAMS | Sequential FRM
Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Urban Scale | | 480371031 | Texarkana
New Boston | 2700 New Boston Rd,
Texarkana | Texarkana, TX-
Texarkana, AR | 33.436111 | -94.077780 | Urban and
Center City | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure | Urban Scale | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|----------------------------|-----------------------------------|-----------------------------------|-----------|-------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|-------------------------|---------------| | 480371031 | Texarkana
New Boston | 2700 New Boston Rd,
Texarkana | Texarkana, TX-
Texarkana, AR | 33.436111 | -94.077780 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | Urban Scale | | 480371031 | Texarkana
New Boston | 2700 New Boston Rd,
Texarkana | Texarkana, TX-
Texarkana, AR | 33.436111 | -94.077780 | Urban and
Center City | Wind (3m) | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | Urban Scale | | 481670004 | Texas City Fire
Station | 2516 Texas Avenue, Texas
City | Houston-Sugar
Land-Baytown, TX | 29.384444 | -94.930833 | Urban and
Center City | PM10 (FRM) | SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Highest Concentration | Neighborhood | | 481670004 | Texas City Fire
Station | 2516 Texas Avenue, Texas
City | Houston-Sugar
Land-Baytown, TX | 29.384444 | -94.930833 | Urban and
Center City | PM10 (FRM) | QA Collocated/SLAMS | HiVol Gravimetric | 24 Hours; 1/6
Days | Highest Concentration | Neighborhood | | 484230007 | Tyler Airport
Relocated | 14790 County Road 1145,
Tyler | Tyler, TX | 32.344008 | -95.415752 | Rural | NO/NO2/NOx | SPM | Chemiluminescence | Continuous | General/Background | Urban Scale | | 484230007 | Tyler Airport
Relocated | 14790 County Road 1145,
Tyler | Tyler, TX | 32.344008 | -95.415752 | Rural | О3 | SLAMS | UV Photometric | Continuous | General/Background | Urban Scale | | 484230007 | Tyler Airport
Relocated | 14790 County Road 1145,
Tyler | Tyler, TX | 32.344008 | -95.415752 | Rural | Precipitation | SPM | Rain Gauge | Continuous | General/Background | Neighborhood | | 484230007 | Tyler Airport
Relocated | 14790 County Road 1145,
Tyler | Tyler, TX | 32.344008 | -95.415752 | Rural | Solar Radiation | SPM | Photovoltaic | Continuous | General/Background | Neighborhood | | 484230007 | Tyler Airport
Relocated | 14790 County Road 1145,
Tyler | Tyler, TX | 32.344008 | -95.415752 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | General/Background | Neighborhood | | 484230007 | Tyler Airport
Relocated | 14790 County Road 1145,
Tyler | Tyler, TX | 32.344008 | -95.415752 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | General/Background | Neighborhood | | 481410693 | Van Buren | 2700 Harrison Avenue, El
Paso | El Paso, TX | 31.813370 | -106.464520 | Urban and
Center City | PM10 (FRM) | SPM | HiVol Gravimetric | 24 Hours; 1/6
Days | Population Exposure | Neighborhood | | 481410693 | Van Buren | 2700 Harrison Avenue, El
Paso | El Paso, TX | 31.813370 | -106.464520 | Urban and
Center City | Relative
Humidity | SPM | Humidity Sensor | Continuous | Population Exposure | | | 481410693 | Van Buren | 2700 Harrison Avenue, El
Paso | El Paso, TX | 31.813370 | -106.464520 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Population Exposure | | | 481410693 | Van Buren | 2700 Harrison Avenue, El
Paso |
El Paso, TX | 31.813370 | -106.464520 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Population Exposure | | | 484690003 | Victoria | 106 Mockingbird Lane,
Victoria | Victoria, TX | 28.836170 | -97.005530 | Urban and
Center City | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|--------------|-----------------------------------|-----------------------------|-----------|------------|--------------------------|--------------------------|-------------------------------|---------------------------------|-----------------------|--|----------------| | 484690003 | Victoria | 106 Mockingbird Lane,
Victoria | Victoria, TX | 28.836170 | -97.005530 | Urban and
Center City | Solar Radiation | SPM | Photovoltaic | Continuous | Highest Concentration | Neighborhood | | 484690003 | Victoria | 106 Mockingbird Lane,
Victoria | Victoria, TX | 28.836170 | -97.005530 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Highest Concentration | Neighborhood | | 484690003 | Victoria | 106 Mockingbird Lane,
Victoria | Victoria, TX | 28.836170 | -97.005530 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Highest Concentration | Neighborhood | | 483091037 | Waco Mazanec | 4472 Mazanec Rd, Waco | Waco, TX | 31.653074 | -97.070698 | Rural | со | SLAMS | Gas Filter
Correlation | Continuous | Upwind Background | Urban Scale | | 483091037 | Waco Mazanec | 4472 Mazanec Rd, Waco | Waco, TX | 31.653074 | -97.070698 | Rural | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Upwind Background | Urban Scale | | 483091037 | Waco Mazanec | 4472 Mazanec Rd, Waco | Waco, TX | 31.653074 | -97.070698 | Rural | О3 | SLAMS | UV Photometric | Continuous | Upwind Background | Regional Scale | | 483091037 | Waco Mazanec | 4472 Mazanec Rd, Waco | Waco, TX | 31.653074 | -97.070698 | Rural | PM2.5
(TEOM)** | SPM | TEOM Gravimetric | Continuous | Population Exposure;
Regional Transport | Regional Scale | | 483091037 | Waco Mazanec | 4472 Mazanec Rd, Waco | Waco, TX | 31.653074 | -97.070698 | Rural | SO2 | SLAMS | Pulsed Fluorescence | Continuous | Upwind Background | Urban Scale | | 483091037 | Waco Mazanec | 4472 Mazanec Rd, Waco | Waco, TX | 31.653074 | -97.070698 | Rural | Solar Radiation | SPM | Photovoltaic | Continuous | Regional Transport | Urban Scale | | 483091037 | Waco Mazanec | 4472 Mazanec Rd, Waco | Waco, TX | 31.653074 | -97.070698 | Rural | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Regional Transport | Urban Scale | | 483091037 | Waco Mazanec | 4472 Mazanec Rd, Waco | Waco, TX | 31.653074 | -97.070698 | Rural | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Regional Transport | Urban Scale | | 483611001 | West Orange | 2700 Austin Ave, West
Orange | Beaumont-Port
Arthur, TX | 30.085263 | -93.761341 | Urban and
Center City | NO/NO2/NOx | SLAMS | Chemiluminescence | Continuous | Population Exposure | Neighborhood | | 483611001 | West Orange | 2700 Austin Ave, West
Orange | Beaumont-Port
Arthur, TX | 30.085263 | -93.761341 | Urban and
Center City | О3 | SLAMS | UV Photometric | Continuous | Population Exposure | Neighborhood | | 483611001 | West Orange | 2700 Austin Ave, West
Orange | Beaumont-Port
Arthur, TX | 30.085263 | -93.761341 | Urban and
Center City | Solar Radiation | SPM | Photovoltaic | Continuous | Source Oriented | Neighborhood | | 483611001 | West Orange | 2700 Austin Ave, West
Orange | Beaumont-Port
Arthur, TX | 30.085263 | -93.761341 | Urban and
Center City | Temperature
(Outdoor) | SPM | Aspirated
Thermister | Continuous | Source Oriented | Neighborhood | | AQS Site ID | Site Name | Address/Location | MSA / CBSA | Latitude | Longitude | Location
Setting | Sampler
Type | AQS Network &
Monitor Type | Methods | Operating
Schedule | Monitoring
Objective | Spatial Scale | |-------------|-----------------------|-------------------------------------|-----------------------------|-----------|------------|--------------------------|-------------------|-------------------------------|---------------------------------|-----------------------|-------------------------|---------------| | 483611001 | West Orange | 2700 Austin Ave, West
Orange | Beaumont-Port
Arthur, TX | 30.085263 | -93.761341 | Urban and
Center City | Wind | SPM | Potentiometer Cup
Anemometer | Continuous | Source Oriented | Neighborhood | | 484790313 | World Trade
Bridge | Mines Road 11601 FM
1472, Laredo | Laredo, TX | 27.599444 | -99.533333 | Suhurhan | PM2.5
(TEOM)** | Border Grant/SLAMS | TEOM Gravimetric | Continuous | Source Oriented | Microscale | Table 1: Legend | Symbol/Acronym | Description | |-------------------------------------|---| | * | Granbury, Texas, is not a Metropolitan Statistical Area on the US Census Bureaus's list, but is designated as such in AQS | | ** | Regulations §58.30 | | @ | at | | 24-Hour Avg, 1/6 Days | 1 24-Hour Average, Once every Sixth Day | | 24-Hour; 1/3 Days | 1 24-Hour Sample, Once every Third Day | | 24-Hours, Daily | 1 24-Hour Sample, Daily | | 24 1-Hour Avg; Daily | 24 1-Hour Average, Daily | | 8 3-Hours; 1/3 Days (Jul Sept.) | 8 3-Hour Samples, Once every Third Day from July through September | | 8 3-Hours; 1/3 Days (Jun Aug.) | 8 3-Hour Samples, Once every Third Day from June through August | | AMNP | Annual Monitoring Network Plan | | AQS | Air Quality System | | AutoGC | automated gas chromatograph | | Ave | Avenue | | Blvd | Boulevard | | | The Border network designation is part of the SLAMS network for monitors within 100 kilometers of the United | | Border | States/Mexico border. | | СО | carbon monoxide | | Со | County | | Dr | Drive | | E | East | | Elem | Elementary | | FM | Farm-to-Market | | FRM | federal reference method | | Hwy | Highway | | IH | Interstate Highway | | Max | Maximum | | N | North | | NATTS | National Air Toxics Trends Stations | | NCore | National Core Multipollutant Monitoring Stations | | NE | Northeast | | NO/NO ₂ /NO _x | nitrogen oxides | | NO _y | total reactive nitrogen | | O_3 | ozone | | PAMS | Photochemical Assessment Monitoring Stations | | PM ₁₀ | particulate matter of 10 micrometers or less in diameter | | | | | Symbol/Acronym | Description | |----------------------|---| | PM _{10-2.5} | coarse particulate matter | | PM _{2.5} | particulate matter of 2.5 micrometers or less in diameter | | QA Collocated | quality assurance collocated monitor | | Rd | Road | | S | South | | SB | South Bound | | SETRPC | Southeast Texas Regional Planning Commission | | SLAMS | State or Local Air Monitoring Stations | | SO ₂ | sulfur dioxide (one-hour and five-minute maximum monitors) | | SPM | special purpose monitor | | St | Street | | SVOC | semi-volatile organic compound | | TCEQ | Texas Commission on Environmental Quality | | TEOM | tapered element oscillating microbalance | | TSP | total suspended particulate | | TSP (Pb) | total suspended particulate (lead) | | UV | ultraviolet | | VOC | volatile organic compound | | Wind | All wind sampler types produce data for parameters 61101, 61103, 61104, 61105, and 61106. | | W | West | | Yd | Yard | # Appendix B # Population and Monitoring Requirements by Metropolitan Statistical Area Texas Commission on Environmental Quality 2017 Annual Monitoring Network Plan ### Appendix B: Population and Monitoring Requirements by Metropolitan Statistical Area | Dallas-Fort Worth-Arlington Houston-The Woodlands-Sugar Land San Antonio-New Braunfels | 7,233,323
6,772,470
2,429,609
2,056,405
849,843
841,971
454,726 | 7 7 2 2 2 0 0 3 3 | 15 19 3 2 | Required 2 3 | Current [†] 4 | Required 2 | Current [†] | Required | Current [†] | |--|---|-------------------|-----------|--------------|------------------------|------------|-----------------------------|----------|----------------------|----------|----------------------|----------|----------------------|----------|----------------------| | Houston-The Woodlands-Sugar Land San Antonio-New Braunfels Austin-Round Rock McAllen-Edinburg-Mission El Paso Corpus Christi Killeen-Temple Brownsville-Harlingen Beaumont-Port Arthur | 6,772,470
2,429,609
2,056,405
849,843
841,971
454,726 | 0 | 19 | 2
3
2 | 8 | 2 | 5 | - | | | | | | | | | Land San Antonio-New Braunfels Austin-Round Rock McAllen-Edinburg-Mission El Paso Corpus Christi Killeen-Temple Brownsville-Harlingen Beaumont-Port Arthur | 2,429,609
2,056,405
849,843
841,971
454,726 | 0 | 3 | 3 | 8 | | | 5 | 19 | 2 | 2 | 4 - 8 | 4 | 7 | 14 | | San Antonio-New Braunfels Austin-Round Rock McAllen-Edinburg-Mission El Paso Corpus Christi Killeen-Temple Brownsville-Harlingen Beaumont-Port Arthur | 2,056,405
849,843
841,971
454,726 | 0 | 2 | 2 | | 0 | 0 | 5 | 20 | 2 | 3 | 4 - 8 | 6 | 11 | 18 | | McAllen-Edinburg-Mission El Paso Corpus Christi Killeen-Temple Brownsville-Harlingen Beaumont-Port Arthur | 849,843
841,971
454,726 | 0 | 2 | | 2 | 0 | 0 | 2 | 3 | 1 | 1 | 2 - 4 | 2 | 5 | 8 | | El Paso Corpus Christi Killeen-Temple Brownsville-Harlingen Beaumont-Port Arthur |
841,971
454,726 | - | | 1 | 1 | 0 | 0 | 2 | 2 | 1 | 1 | 2 - 4 | 2 | 3 | 6 | | Corpus Christi Killeen-Temple Brownsville-Harlingen Beaumont-Port Arthur | 454,726 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 - 2 | 2 | 3 | 3 | | Killeen-Temple Brownsville-Harlingen Beaumont-Port Arthur | | 3 | 4 | 1 | 3 | 0 | 2 | 3 | 6 | 1 | 3 | 2 - 4 | 5 | 6 | 7 | | Brownsville-Harlingen
Beaumont-Port Arthur | 425.053 | 0 | 0 | 0 | 3 | 0 | 0 | 2 | 2 | 0 | 0 | 0 - 1 | 1 | 2 | 4 | | Beaumont-Port Arthur | 435,857 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 - 1 | 0 | 0 | 0 | | | 422,135 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 1 | 0 - 1 | 0 | 1 | 3 | | Lubbock | 409,968 | 1 | 4 | 3 | 4 | 0 | 0 | 2 | 7 | 0 | 1 | 0 - 1 | 0 | 0 | 3 | | | 314,840 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 - 1 | 0 | 0 | 1 | | Laredo | 271,193 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0 - 1 | 2 | 1 | 1 | | Waco | 265,207 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 - 1 | 0 | 0 | 1 | | Amarillo | 263,342 | 0 | 0 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 - 1 | 0 | 0 | 1 | | College Station-Bryan | 254,928 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Tyler | 225,290 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | | Longview | 217,446 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Abilene | 170,364 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Midland | 168,288 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Odessa | 157,462 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | Wichita Falls | 150,734 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Texarkana | 150,098 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | | Sherman-Denison | 128,235 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | San Angelo | 119,943 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Victoria | 99,984 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Marshall ¹ | 66,534 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 3 | | Eagle Pass ¹ | 57,685 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | Corsicana ¹ | 48,523 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | Big Bend National Park ² not | not available | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | Big Spring ¹ | 38,022 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Borger ¹ | 21,511 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mount Pleasant ¹ | 32,592 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Milam County ² | 24,871 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total | | 22 | 51 | 21 | 36 | 3 | 10 | 29 | 70 | 7 | 15 | 15-38 | 26 | 42 | 79 | ^{&#}x27;Monitors may fulfill multiple monitoring requirements, but are only counted once. Quality assurance monitors are not counted. Required and current monitor counts include NOy, high sensitivity SO₂, and high sensitivity CO. $\mbox{PM}\xspace{10\mbox{-}2.5}$ NCore requirements are not included in particulate matter counts. Planned deployment of required monitors is discussed in the applicable section of the AMNP document. CO - carbon monoxide SO₂ - sulfur dioxide Pb - lead O₃ - ozone PM₁₀ - particulate matter of 10 micrometers or less PM_{2.5} - particulate matter of 2.5 micrometers or less VOC - volatile organic compound ^{*}United States Census Bureau population estimates as of July 1, 2016 Area is classified as a micropolitan statistical area and not subject to SLAMS requirements ²Area does not fall within a metropolitan or micropolitan statistical area. No population data is available for Big Bend National Park. Only primary monitors included in Appendix A are included in this table. ## Appendix C ## Nitrogen Dioxide and Total Reactive Nitrogen Monitoring Requirements Texas Commission on Environmental Quality 2017 Annual Monitoring Network Plan ## Appendix C: Nitrogen Dioxide and Total Reactive Nitrogen Monitoring Requirements | Core Based Statistical
Areas | 2016
Population
Estimates ¹ | Area-Wide
Monitors | Required NO ₂
RA-40
Monitors | Required NO ₂ Near
Road Monitors | Required NO ₂
PAMS Monitors | Required High
Sensitivity NO _y
NCore Monitors | Required High
Sensitivity NO _y
PAMS Monitors | Total
Required NO ₂
and NO _y
Monitors ³ | Total Current NO ₂ and NO _y Monitors ² | |--------------------------------------|--|-----------------------|---|--|---|--|---|---|---| | Dalla - Fast Wastle | | | | Dallas LBJ Freeway | | | | | | | Dallas-Fort Worth- | 7 222 222 | | Municipal | and Fort Worth | Delle - Hinton | Delle e Hinton | Dalla a Illinda | 7 | 1.5 | | Arlington | 1,233,323 | Dallas Hinton | Airport | California Parkway | Dallas Hinton | Dallas Hinton | Dallas Hinton | / | 15 | | Houston-The Woodlands-
Sugar Land | 6,772,470 | | Clinton | | Houston Deer
Park #2 | Houston Deer
Park #2 | Houston Deer
Park #2 | 7 | 19 | | San Antonio-New | | San Antonio | | San Antonio | | | | | | | Braunfels | 2,429,609 | | None | Interstate 35 | None | None | None | 2 | 3 | | | | Austin | | Austin North | | | | _ | _ | | Austin-Round Rock | 2,056,405 | Northwest | None | Interstate 35 | None | None | None | 2 | 2 | | McAllen-Edinburg-Mission | 849,843 | None | None | None | None | None | None | 0 | 0 | | El Paso | 841,971 | | | None | | El Paso Chamizal | None | 3 | 4 | | Corpus Christi | 454,726 | | | None | | None | None | 0 | 0 | | Killeen-Temple | 435,857 | None | None | None | None | None | None | 0 | 0 | | Brownsville-Harlingen | 422,135 | None | None | None | None | None | None | 0 | 0 | | Beaumont-Port Arthur | 409,968 | Nama | Nederland High
School | Nama | Nama | Nama | None | 4 | 4 | | Lubbock | 314,840 | | None | None
None | None
None | None
None | None | 0 | 0 | | | 271,193 | | | None | | None | None | 0 | 0 | | Laredo | 265,207 | | None
None | None | None | None | None | 0 | 0 | | Waco
Amarillo | 263,207 | | | None | None
None | None | None | 0 | 0 | | College Station-Bryan | 254,928 | | None | None | None | None | None | 0 | 0 | | Tyler | 225,290 | | None | None | None | None | None | 0 | 1 | | Longview | 217,446 | | None | None | None | None | None | 0 | 1 | | Abilene | 170,364 | | | None | | None | None | 0 | 0 | | Midland | 168,288 | | | None | None | None | None | 0 | 0 | | Odessa | 157,462 | | | None | None | None | None | 0 | 0 | | Wichita Falls | 150,734 | | None | None | None | None | None | 0 | 0 | | Texarkana | 150,098 | | None | None | None | None | None | 0 | 0 | | Sherman-Denison | 128,235 | | None | None | None | None | None | 0 | 0 | | San Angelo | 119,943 | | | None | None | None | None | 0 | 0 | | Victoria | 99,984 | | None | None | None | None | None | 0 | 0 | | Marshall* | 66,534 | | None | None | None | None | None | 0 | 1 | | Total | 22,30 | 4 | | 6 | 3 | 3 | 2 | 22 | 51 | ¹United States Census Bureau population estimates as of July 1, 2016 PAMS - Photochemical Assessment Monitoring Stations NCore - National Core Multipollutant Monitoring Stations RA-40 - Regional Administrator 40 NO₂ - nitrogen dioxide NO_{Υ} - total reactive nitrogen compounds $^{^2\}mbox{Monitors}$ may fulfill multiple monitoring requirements but are only counted once ³Total required monitors is a count of individual requirements for area-wide, RA-40, near-road, PAMS, and high sensitivity monitors. Deployed monitors can fulfill multiple monitoring requirements. ^{*}Area is classified as a micropolitan statistical area and not subject to SLAMS requirements # Appendix D ## **Sulfur Dioxide Monitoring Information** Texas Commission on Environmental Quality 2017 Annual Monitoring Network Plan **Table 1: Sulfur Dioxide PWEI Monitoring Requirements** | Table 1. 3u | ii ui Dioxiu | E PWEI MOIII | toring KC | quirement | .3 | | | | | | | | |------------------------------------|---------------|----------------------------------|----------------------------------|------------------------|----------------------------|--|---------|--|--|--|--|------------------------| | Core Based
Statistical
Area | County | 2016
Population
Estimates* | 2014
Point
Source
(tpy) | 2014 NEI
Data (tpy) | 2015 Point
Source (tpy) | 2014 NEI Non-
Point Source Data
with 2015 Point
Source Data (tpy) | PWEI | Required
PWEI SO ₂
Monitors | Required SO ₂
DRR Monitors
in CBSAs | Required
High
Sensitivity
SO ₂ NCore
Monitors | Total
Required
SO ₂
Monitors | Existing
Monitors** | | Amarillo | | 263,342 | | | | 15,414.17 | 4,059 | О | 1 | |) 1 | 2 | | | Armstrong | 1,876 | 0.32 | 1.25 | 0.05 | | • | | | | | | | | Carson | 6,057 | 0.23 | 18.19 | | | | | | | | | | | Potter | 120,832 | 15,474.50 | | 15,187.40 | | | | | | 1 | | | | Randall | 132,501 | 118.52 | 137.36 | 100.30 | - | | | | | | | | | Oldham | 2,076 | | | N/A | | | | | | | | | Austin-Round | o i a i a i i | 2,0,0 | ,, | 0 | | G | | | | | | | | Rock | | 2,056,405 | | | | 2,711.02 | 5,575 | 1 | 0 | c | 1 | 1 | | | Bastrop | 82,733 | 288.17 | 305.17 | 296.48 | | | | | | | | | | Caldwell | 41,161 | 330.80 | 363.63 | 322.52 | | | | | | | | | | Hays | 204,470 | | 1,365.29 | 1,103.60 | • | | | | | | | | | Travis | 1,199,323 | 62.94 | 837.06 | 62.65 | | | | | | | | | | Williamson |
528,718 | 0.40 | 63.94 | 3.49 | 67.03 | | | | | | | | Beaumont-
Port Arthur | | 409,968 | | | | 17,697.78 | 7,256 | 1 | 2 | | 3 | 4 | | | Hardin | 56,322 | 1.22 | 17.20 | 1.00 | | | | | | | | | | Jefferson | 254,679 | 13,291.56 | 13,619.47 | 12,054.59 | 12,382.50 | | | | | | | | | Orange | 84,964 | 6,188.20 | 6,242.40 | | | | | | | | | | | Newton | 14,003 | 11.46 | 14.96 | 15.39 | 18.89 | | | | | | | | Dallas-Fort
Worth-
Arlington | | 7,233,323 | | | | 4,867.79 | 35,210 | 1 | 0 | 1 | 2 | 4 | | | Collin | 939,585 | 23.58 | 173.72 | 21.24 | | | | | | | | | | Dallas | 2,574,984 | 315.64 | 1,096.99 | 321.70 | | | | | | | | | | Denton | 806,180 | 453.44 | 547.41 | 503.90 | | | | | | | | | | Ellis | 168,499 | | 4,082.03 | 2,193.63 | 2,267.02 | | | | | | | | | Hunt | 92,073 | 0.16 | 63.40 | | | | | | | | | | | Kaufman | 118,350 | | 130.60 | | 119.75 | | | | | | | | | Rockwall | 93,978 | | 11.14 | 0.03 | | | | | | | | | | Johnson | 163,274 | 88.39 | 137.40 | | | | | | | | | | | Parker | 129,441 | 154.39 | 185.49 | | | | | | | | | | | Tarrant | 2,016,872 | 22.98 | | 25.71 | 44.39 | | | | | 1 | | | | Wise | 64,455 | 16.06 | 34.36 | 109.41 | 127.71 | | ļ | | ļ | 1 | | | | Hood | 56,857 | 11.96 | 19.17 | 9.05 | | | | | | 1 | | | | Somervell | 8,775 | 0.00 | 3.74 | N/A | N/A | | | | | | | | Houston-The
Woodlands- | | | | | | | | | | | | | | Sugar Land | A = 4! = | 6,772,470 | | | 74.10 | 56,158.32 | 380,331 | 2 | 0 | 1 | 3 | 8 | | | Austin | 29,758 | 83.76 | 136.20 | 74.43 | 126.88 | | 1 | | ļ | 1 | | | | Brazoria | 354,195 | | | | | | 1 | | ļ | 1 | | | | Chambers | 39,899 | | 262.98 | 392.40 | | | | | | 1 | | | | Fort Bend | 741,237 | 43,988.84 | 44,087.89 | 42,700.08 | - | | | | | 1 | | | 1 | Galveston | 329,431 | 1,178.00 | 2,642.64 | 1,326.05 | | | 1 | | | + | <u> </u> | | 1 | Harris | 4,589,928 | 7,780.28 | 9,671.86 | 7,239.94 | | | 1 | | | + | | | 1 | Liberty | 81,704 | 12.84 | 38.73 | 15.91 | | | 1 | | | + | | | | Montgomery | 556,203 | 10.97 | 103.94 | 13.45 | | | | | | 1 | | | | Waller | 50,115 | 1.46 | 23.27 | 0.31 | 22.12 | | | | | | | | Alsscoos | Core Based
Statistical
Area | County | 2016
Population
Estimates* | 2014
Point
Source
(tpy) | 2014 NEI
Data (tpy) | 2015 Point
Source (tpy) | 2014 NEI Non-
Point Source Data
with 2015 Point
Source Data (tpy) | PWEI | Required
PWEI SO ₂
Monitors | Required SO ₂
DRR Monitors
in CBSAs | Required
High
Sensitivity
SO ₂ NCore
Monitors | Total
Required
SO ₂
Monitors | Existing
Monitors** | |--|-----------------------------------|---|----------------------------------|----------------------------------|------------------------|----------------------------|--|--------|--|--|--|--|------------------------| | Rusk 52,722 53,903.48 53,962.25 23,175.02 22,223.79 | Longview | | | | | | 23,538.64 | 5,118 | 1 | О | 0 | 1 | 1 | | Upshur | | | | | | | | | | | | | | | San Antonio-New Revenue Revenu | | | | | | | | | | | | | | | New Reachest Rea | | Upsnur | 40,969 | 30.19 | 41.12 | 36.22 | 47.15 | | | | | | | | Alascosa | New | | 2 429 609 | | | | 19 701 25 | 47 866 | 1 | 1 | 0 |) 2 | 2 | | Bendera 21,776 0.12 3,70 0.18 3,76 | Diddilicis | Atascosa | | 6.944.87 | 8.558.17 | 5,596.43 | • | 47,000 | • | | | | | | Bexer 1,928,680 17,827,56 18,230,22 10,347,55 11,350,21 | | | 21,776 | 0.12 | | 0.18 | 3.76 | | | | | | | | Suadalupe | | | | | 18,230.22 | | | | | | | | | | Nerdail 42,540 0.04 10.08 0.01 10.05 | | | | | | | | | | | | | | | Medina | ļ | | | | | | | | | | | + | | | Abilene | | | | | | | | | | | | 1 | | | Abilene | l | | 49,283 | | | | | | | | | + | | | Callahan | | *************************************** | 10/100 | 555.52 | 000.00 | 021100 | 0.10.07 | | | | | | | | Callahan | Ahilene | | 170 364 | | | | /9 17 | Ω | 0 | ١ | | | o | | Jones 20,009 0.00 6.52 0.00 6.52 0.00 6.52 0.00 6.52 0.00 0.00 0.00 | Abilelle | Callahan | | 0.00 | 3 36 | N/A | | U | J | 0 | 0 | , . | | | Taylor 136,535 0.02 41.65 0.02 41.65 0.02 41.65 0.02 41.65 0.02 41.65 0.02 41.65 0.02 41.65 0.02 41.65 0.02 41.65 0.02 41.65 0.02 41.65 0.02 41.65 0.02 41.65 0.02 0.0 | | | | | | | | | | | | 1 | | | Harlingen | | | | 0.02 | | 0.02 | | | | | | | | | Cameron 422,135 0.25 86.21 0.25 86.21 0.25 86.21 0.25 86.21 0.25 86.21 0.25 86.21 0.25 86.21 0.25 86.21 0.25 86.21 0.25 86.21 0.25 86.21 0.25 86.21 0.25 86.21 0.25 86.21 0.25 86.21 0.25 86.21 0.25 | | | | | | | | | | | | | | | College Station-Bryan Brazos 220,417 12.62 98.88 11.59 9,237.00 2,355 0 1 0 1 Brazos 17,760 0.00 19.65 N/A N/A Robertson 16,751 13,166.20 13,208.73 9,096.62 9,139.15 Corpus Christi 454,726 0 967.52 440 0 0 0 0 0 Aransas 25,721 0.00 75.69 0.00 75.69 Nueces 361,350 790.35 881.53 694.49 785.67 San Patricio 67,655 29.18 107.48 27.86 106.16 El Paso 841,971 445.37 375 0 0 1 1 1 El Paso 837,918 262,73 405.31 295.14 437.72 Hudspeth 4,053 7.28 8,91 6.02 7.65 McAllen-Edinburg- Mission 849,843 50.30 169.16 57.79 176.65 150 0 0 0 0 0 Midland 162,868 2,872.73 43.23 1,398.86 16.97 1,872.60 1
Martin 5,723 43.23 1,898.86 16.97 1,872.60 1 McLennan 247,934 3,196.71 3,320.10 1,786.72 1,910.11 507 0 0 0 0 | Harlingen | | | | | 0.05 | | 36 | 0 | 0 | 0 | 0 | 0 | | Station-Bryan 254,928 9,237.00 2,355 0 1 0 1 0 1 1 1 1 1 1 1 1 | | Cameron | 422,135 | 0.25 | 86.21 | 0.25 | 86.21 | | | | | | | | Burleson | - | | | | | | | 2,355 | 0 | 1 | o |) 1 | 1 | | Robertson | | | | | | | | | | | | | | | Aransas | | | | | | | | | | | | 1 | | | Aransas 25,721 0.00 75.69 0.00 75.69 0.00 75.69 0.00 75.69 0.00 75.69 0.00 75.69 0.00 75.69 0.00 75.69 0.00 75.69 0.00 75.69 0.00 75.69 0.00 75.69 0.00 75.69 0.00 75.69 0.00 75.69 0.00 0 | | Robertson | 10,731 | 13,100.20 | 13,208.73 | 7,070.02 | 7,137.13 | | | | | | | | Nueces 361,350 790.35 881.53 694.49 785.67 | Corpus Christi | | | | 75.69 | 0.00 | | 440 | 0 | 0 | О | 0 0 | 3 | | El Paso 841,971 445.37 375 0 0 1 1 1 | | Nueces | 361,350 | | | | | | | | | | | | El Paso 837,918 262.73 405.31 295.14 437.72 | | San Patricio | 67,655 | 29.18 | 107.48 | 27.86 | 106.16 | | | | | | | | Hudspeth | El Paso | 51.0 | | 0.00.70 | | 005.44 | | 375 | 0 | 0 | 1 | 1 | 3 | | McAllen-Edinburg-Mission 849,843 176.65 150 | | | | | | | | | | | | | | | Midland 168,288 2,872.73 483 0 0 0 0 0 Midland 162,565 415.03 1,304.59 110.56 1,000.12 1,000.12 1,872.60 1,872.60 1,872.60 1,872.60 1,872.60 <td>Edinburg-</td> <td>riduspetti</td> <td></td> <td>7.20</td> <td>8.91</td> <td>0.02</td> <td></td> <td>150</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> | Edinburg- | riduspetti | | 7.20 | 8.91 | 0.02 | | 150 | 0 | 0 | 0 | | 0 | | Midland 162,565 415.03 1,304.59 110.56 1,000.12 Martin 5,723 43.23 1,898.86 16.97 1,872.60 Waco 265,207 1,910.11 507 0 0 0 McLennan 247,934 3,196.71 3,320.10 1,786.72 1,910.11 1,910.11 1,910.11 | | Hidalgo | | 50.30 | 169.16 | 57.79 | | | | | | | | | Midland 162,565 415.03 1,304.59 110.56 1,000.12 Martin 5,723 43.23 1,898.86 16.97 1,872.60 Waco 265,207 1,910.11 507 0 0 0 McLennan 247,934 3,196.71 3,320.10 1,786.72 1,910.11 1,910.11 1,910.11 | Midland | | 168,288 | | | | 2,872.73 | 483 | 0 | 0 | 0 | | 0 | | Waco 265,207 1,910.11 507 0 0 0 McLennan 247,934 3,196.71 3,320.10 1,786.72 1,910.11 0 | | Midland | | 415.03 | 1,304.59 | 110.56 | | | | | | | | | McLennan 247,934 3,196.71 3,320.10 1,786.72 1,910.11 | | Martin | 5,723 | 43.23 | 1,898.86 | 16.97 | 1,872.60 | | | | | | | | | Waco | Molongon | | 2 107 71 | 2 200 42 | 1 70/ 70 | • | 507 | 0 | 0 | 0 | 0 0 | 1 | | | | McLennan
Falls | 247,934 | 3,196.71 | 3,320.10
11.43 | 1,786.72
N/A | 1,910.11
N/A | | | | | + | | | Core Based
Statistical
Area | County | 2016
Population | 2014
Point
Source
(tpy) | 2014 NEI
Data (tpy) | 2015 Point | 2014 NEI Non-
Point Source Data
with 2015 Point
Source Data (tpy) | PWEI | Required
PWEI SO ₂
Monitors | Required SO ₂
DRR Monitors
in CBSAs | Required
High
Sensitivity
SO ₂ NCore
Monitors | Total
Required
SO ₂
Monitors | Existing
Monitors** | |-----------------------------------|------------|--------------------|----------------------------------|------------------------|------------|--|-------|--|--|--|--|------------------------| | Big Spring ¹ | | 38,022 | | | | 3,510.69 | 133 | 0 | 1 | 0 | 1 | 1 | | Dig opinig | Glassock | 1,314 | | | | 0,010.07 | | | • | | | • | | | Howard | 36,708 | 7,219.21 | 7,523.95 | 7,593.99 | 7,898.73 | | | | | | | | Marshall ¹ | | 66,534 | | | | 3,510.69 | 234 | 0 | 1 | 0 | 1 | 1 | | | Harrison | 66,534 | 3,555.97 | 3,625.92 | 3,440.74 | 3,510.69 | | | | | | | | Corsicana ¹ | | 48,523 | | | | 3,787.05 | 184 | 0 | 1 | 0 | 1 | 1 | | | Navarro | 48,523 | 3,628.73 | 3,667.92 | 3,747.86 | 3,787.05 | | | | | | | | Mount | | | | | | | | | | | | | | Pleasant ¹ | | 32,592 | | | | 32,684.48 | 1,065 | 0 | 1 | 0 | 1 | 1 | | | Titus | 32,592 | 38,740.15 | 38,776.12 | 32,648.51 | 32,684.48 | | | | | | | | Borger ¹ | | 21,511 | | | | 9,162.95 | 197 | 0 | 1 | 0 | 1 | 1 | | | Hutchinson | 21,511 | 10,645.70 | 10,664.05 | 9,144.60 | 9,162.95 | | | | | | | | N/A | | 24,871 | | | | 22,733.35 | | 0 | 1 | 0 | 1 | 1 | | | Milam | 24,871 | 24,202.56 | 24,215.79 | 22,720.12 | 22,733.35 | | | | | | | | Total Monitor | rs | | | | | | | 7 | 11 | 3 | 21 | 36 | ^{*}United States Census Bureau population estimates as of July 1, 2016 DRR - Data Requirements Rule NCore - National Core Multipollutant Monitoring Stations N/A - not applicable NEI - National Emissions Inventory PWEI - population weighted emission index (Population *[2014 NEI non-point source data and 2015 point source data]/1,000,000) SO₂ - sulfur dioxide tpy - tons per year ^{**} Individual monitors may fulfill more than one monitoring requirement but are only counted once. ¹Micropolitan statistical area **Table 2: Sulfur Dioxide Emissions Inventory Evaluation** | Regulated
Entity
Number
(RN) | Facility Name | County | 2015 SO ₂
Emissions
(tons per
year) | Characterization
Method | |---------------------------------------|--|------------|---|----------------------------| | RN100217975 | Calaveras Plant | Bexar | 10,181 | Monitoring | | RN100888312 | WA Parish Electric Generating Station | Fort Bend | 42,690 | Modeling | | RN101198059 | Big Brown Steam Electric Station | Freestone | 49,837 | Modeling | | RN100214287 | AEP Pirkey Power Plant | Harrison | 2,957 | Monitoring | | RN100226026 | Big Spring Carbon Black | Howard | 6,307 | Monitoring | | RN100542927 | Limestone Electric Generation Station | Limestone | 17,218 | Modeling | | RN100224534 | Tolk Station | Lamb | 16,080 | Modeling | | RN100222413 | Borger Carbon Black Plant (Sid Richardson) | Hutchinson | 4,968 | Monitoring | | RN100209659 | Borger Carbon Black Plant (Orion) | Hutchinson | 3,105 | Monitoring | | RN100209287 | Oxbow Calcining | Jefferson | 9,968 | Monitoring | | RN102147881 | Sandow Steam Electric Station | Milam | 20,929 | Monitoring | | RN100226919 | Coleto Creek Power Station | Goliad | 8,261 | Modeling | | RN105369805 | Sandow 5 Generating Plant | Milam | 1,791 | Monitoring | | RN100226539 | San Miguel Electric Plant | Atascosa | 5,521 | Modeling | | RN100211283 | Streetman Plant | Navarro | 3,475 | Monitoring | | RN100209386 | Echo Carbon Black Plant | Orange | 3,240 | Monitoring | | RN100226570 | Twin Oaks | Robertson | 4,494 | Modeling | | RN100224849 | Harrington Station Power Plant | Potter | 15,107 | Monitoring | | RN100216191 | Oak Grove Steam Electric Station | Robertson | 4,603 | Monitoring | | RN102583093 | Martin Lake Electrical Station | Rusk | 22,930 | Modeling | | RN102285921 | Monticello Steam Electric Station | Titus | 18,399 | Modeling | | RN100213370 | Welsh Power Plant | Titus | 14,249 | Monitoring | | RN104136700 | Sandy Creek Energy Station | McLennan | 1,602 | Modeling | | RN101062255 | Oklaunion Power Station | Wilbarger | 1,480 | Modeling | | RN102579307 | Baytown Refinery | Harris | 1,452 | Exempt | SO₂ - sulfur dioxide #### Sulfur Dioxide Monitor Locations Recommended for Decommission This section provides a visual model of the SO_2 monitoring network in the El Paso, Houston, and Dallas regions, where monitors are proposed for decommission. The maps below show the locations of existing SO_2 monitors relative to the location of the monitors recommended for decommission. A list of the SO_2 monitoring stations recommended for decommission is in the narrative of this network plan, along with design value trends and supporting information. Figure 1: SO₂ Monitors in El Paso, Texas **Appendix D: Sulfur Dioxide Monitoring Information** Jersey Village Sheldon Lake SP Highlands (Herman) Park Cloverleat Channelview. Jacinto City Houston' Еххоп Galena Park West Baytown University Westpark-Twy Place Bellaire Pasadena Deer Park NRG South Houston La Porte Sugar Land Sims Bayou Stafford
Missouri City S-Sam Houston-Tlwy-W-S-Sam-Houston-TlwY Amand Bayou O SO2 Monitor Nature Reserve SO2 Monitor Recommended Seabrook for Decommission Figure 2: SO₂ Monitors in Houston, Texas **Appendix D: Sulfur Dioxide Monitoring Information** Saginaw. ₹1X-183-W Haltom City ROCKWALL Irving 6 Trinita Mesquite US-80-E Dallas White Settlement Fort Worth Grand Prairie Arlington -US-80-W-Terrell Benbrook Seagoville Duncanville Inc Crandall Pool Luke Cedar Hill Kaufm an Combine Mansfield Burleson 862 ft. erris 995 ft Red Oak 1054.11 MidtShran US-67-4 & Alvarado 8 -Waxahachie Cleburne Ennis Grandview Italy Arm Creek Corsicana SO2 Monitor SO2 Monitor Recommended for Decommission Figure 3: SO₂ Monitors in Dallas, Texas # Appendix E ## Sulfur Dioxide Data Requirements Rule Monitor Placement Evaluations Texas Commission on Environmental Quality 2017 Annual Monitoring Network Plan #### Introduction On August 21, 2015, the United States (U.S.) Environmental Protection Agency (EPA) finalized the sulfur dioxide (SO_2) Data Requirements Rule (DRR) for the 2010 one-hour SO_2 primary National Ambient Air Quality Standard (NAAQS). The DRR requires air agencies to characterize current air quality in areas around sources that emit 2,000 tons per year (tpy) or more of SO_2 and that are not located in an area already designated nonattainment. The DRR gives air agencies the option to characterize air quality using either modeling of actual source emissions or using appropriately sited ambient air quality monitors. Air agencies are required to locate the source-oriented SO_2 monitors in locations of expected maximum one-hour concentrations. The EPA designated areas surrounding three sources, Big Brown Steam Electric Station, Martin Lake Electrical Station, and Monticello Steam Electric Station nonattainment for SO_2 , effective January 12, 2017. The TCEQ intends to deploy monitoring stations to characterize SO_2 concentrations near these sources. A request for reconsideration of all three designations was submitted to the EPA in February 2017. The TCEQ collectively considered several parameters to determine viable sites for source-oriented SO_2 monitors: predominant wind flow, modeling analyses, property owner agreement, and logistical constraints, such as space, power availability, terrain, grade, and drainage. This appendix includes information, specific to each source, used in determining locations for source-oriented SO₂ monitors. #### Appendix E Table of Contents | Big Brown Steam Electric Station | E-3 | |-----------------------------------|------| | Martin Lake Electrical Station | E-25 | | Monticello Steam Electric Station | E-49 | #### Big Brown Steam Electric Station #### Source Information - · Name: Big Brown Steam Electric Station (Big Brown) (Figure 2) - · Owner: Luminant Generation Company, LLC - · Facility function: electric generation - Location: 31.81989, -96.05457, TCEQ Region 9, Freestone County, Texas - · SO₂ emissions data: 62,494 tons (2013), 57,460 tons (2014), 49,837 tons (2015) - Long-term emissions trend: decreasing, 20 percent (%) decrease from 2013 to 2015 - · Emission profile: operational year-round - Stack height(s): two stacks, S-1 and S-2, each 122 meters (m) high, currently active - · SO₂ emission controls: miscellaneous fabric filters and electrostatic precipitators - Permit related data: Federal Operating Permit number 065 #### **Existing Air Monitoring Sites** The TCEQ operates three ambient air monitoring sites within a 100 kilometer (km) radius of Big Brown. Table 1 details these monitoring sites in order of proximity. While many factors affect where maximum SO_2 ground level concentrations would be expected to occur, generally they are expected to occur closer to the emission source. Although two of these locations are currently monitoring SO_2 , none of the existing sites are within a reasonable proximity to the source to characterize expected maximum SO_2 ground level concentrations. **Table 1: Air Monitoring Sites Near Big Brown** | Site | Distance from
Big Brown | Current Sulfur
Dioxide (SO ₂)
Monitoring | SO ₂ Design Value
(2013–2015) | |----------------------------|----------------------------|--|---| | Corsicana Airport | 40 km northwest | Yes | 39 parts per billion (ppb) | | Tyler Airport
Relocated | 84 km southwest | No | Not applicable | | Waco Mazanec | 98 km northwest | Yes | 7 ppb | km – kilometer #### Settings and Surroundings The primarily rural area surrounding Big Brown is located in the northern portion of the Southern Post Oak Savanna ecoregion of the East Central Texas Plains. This area is characterized by a mix of post oak woods, improved pasture, and rangeland (Griffith et al. 2004). The elevation ranges from 91 m to 147 m as shown in Figure 1. The area is speckled with inactive oil and gas drilling pad sites with no access to electrical power. No significant changes to the landscape were noted during the reconnaissance as compared to the satellite image shown in Figure 6. Due to minimal geographical obstructions, wind patterns are highly consistent across the East Central Texas Plains area. Mountain and valley wind channeling, or other terrain related meteorological impacts, are not expected in the area surrounding Big Brown. Figure 1: Big Brown Area Elevation Map Figure 2: Big Brown Sulfur Dioxide (SO₂) Stacks and Emissions for 2013 TPY - tons per year #### Meteorological Data Figure 3 provides illustrations of local area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at the Corsicana Municipal Airport, located 40 km northwest of Big Brown. Figure 4 illustrates the 2012-2014 annual average wind speed. The length of each wind rose bar corresponds to the frequency of the wind coming from the indicated direction by percentage. Based on the analysis of the 2012-2014 wind data, the dominant wind flow direction for the area is 135 degrees southeast to 220 degrees south-southwest. Approximately 47% of the average area wind flows move from these directions. Over this three year period, calm winds [0-2 miles per hour (mph)] occurred on average 8% of the time, and wind speeds averaged 8.9 mph (Iowa Environmental Mesonet 2016). Figure 3: (From left to right) 2012, 2013, and 2014 Individual Wind Rose Plots Figure 4: 2012–2014 Combined Average Wind Rose Plot #### Modeling Analysis for Monitoring Site Placement The SO_2 NAAQS Designations Source-Oriented Monitoring Technical Assistance Document (Monitoring TAD) suggests that modeling is one technique that may be used to assist in identifying potential monitoring sites. The SO_2 NAAQS Designations Modeling Technical Assistance Document (Modeling TAD) notes that for area designations under the 2010 SO_2 National Ambient Air Quality Standard (NAAQS), the AERMOD modeling system should be used unless use of an alternative model can be justified. In developing area designations for the 2010 SO₂ NAAQS, the AERMOD modeling analysis provided by the Sierra Club in March 2016, was cited in the *Final Technical Support Document for the Designation Recommendations for the 2010 Sulfur Dioxide National Ambient Air Quality Standards (NAAQS) – Supplement for Four Areas in Texas Not Addressed in June 30, 2016, Version* (the United States [U.S.] Environmental Protection Agency [EPA] docket identification number, EPA-HQ-OAR-2014-0464-0434) as relevant information considered by the EPA in the Big Brown designation decision. Given the EPA's reliance on the 2016 Sierra Club modeling for designation purposes, the TCEQ has used this modeling as one tool to inform possible SO₂ monitor placement recommendations near Big Brown. The use of the 2016 Sierra Club modeling analysis for possible monitor placement decisions does not infer the TCEQ's concurrence with the use of this modeling analysis for any other purpose. Figure 5 illustrates the Sierra Club's predicted modeled impacts for the 2013-2015 actual facility emissions. In this figure, the TCEQ viable air monitoring sites are identified with green pins and non-viable sites are identified with red pins. Figure 5: Sierra Club's Predicted Modeled Impacts Using Actual Emissions from 2013-2015 for the Big Brown Area #### Siting Options and Criteria In 2016, the EPA designated the area surrounding Big Brown nonattainment for SO_2 . As a result, the TCEQ intends to deploy an ambient air monitor in the area to characterize SO_2 concentrations near the source. Presently, the TCEQ does not have SO_2 monitors located in the local area surrounding the source. In reviewing potential monitoring sites, the TCEQ focused on complying with the federal requirements listed in 40 Code of Federal Regulations (CFR) Part 58, Appendix E, regarding siting criteria. In addition, the TCEQ evaluated areas for a monitoring site location that would sufficiently characterize air quality around the SO_2 emissions source. This approach included utilizing multiple techniques and guidance provided in the Monitoring TAD, such as modeling, local wind roses that reflect data from 2012-2014, and area site reconnaissance. The TCEQ evaluated both meteorological data and modeling data to determine the location of an SO₂ monitor. Meteorological data (see Figures 3 and 4) indicate southerly winds predominate in the area, while northerly winds occurred less frequently. This meteorological assessment indicated that reconnaissance to the north of Big Brown should be a priority (since the prominent southerly wind directions would result in emissions from Big Brown more frequently being dispersed north of the facility), but potential sites to the west and south were also investigated. The modeling analysis results provided in Figure 5 supports the meteorological assessment and suggests that predicted off-property maximum SO_2 concentrations are expected to occur
northwest¹ of the Big Brown facility, with pockets of predicted higher and lower concentrations in broad areas to the north, west, and south. Further, the highest predicted modeled concentrations of SO_2 based on actual emissions from the facility is expected northwest of Big Brown, with concentrations above 300 micrograms per cubic meter ($\mu g/m^3$). After evaluating both the meteorological and modeling data, the TCEQ identified five primary areas of interest for an air monitoring site location: to the north, northwest, west, south-southwest, and south of Big Brown. Despite favorable meteorological and modeling data, some of these areas were excluded for varying reasons. The predicted highest modeled concentrations northwest of the facility (large yellow shaded area in Figures 5 and 8) are located in an area with active ongoing mining operations that would not allow for public access (see purple outlined areas in Figures 7 and 8) and on the private property of adverse property owners opposed to allowing monitors to be sited on their property (see yellow outlined areas in Figures 7 and 8). The area contains one private road with access restricted by a gate. The TCEQ was not granted access to the area beyond the gate. For these reasons, the properties contained within this area were excluded from monitor siting consideration. Additionally, many other areas, south, southwest, west, and northwest of the facility, where modeling predicted high SO₂ concentrations are not viable for monitoring site deployment due to a large water body south of Big Brown, lack of electrical power, lack of public access, dense vegetation, or adverse property owners. E-8 ¹ Cardinal directions are determined in relation to the Big Brown facility's SO₂ stacks. Outside of the areas preliminarily excluded, the TCEQ identified 23 potential monitoring sites in the general vicinity. Figures 5-8 depict the potential site locations (red and green pins) and the Big Brown permitted property line (black). For each of the potential sites, the TCEQ researched the property owners on the County Appraisal District website, obtaining all available contact information (including mailing addresses, phone numbers, and email addresses). Multiple attempts to contact each property owner were made via phone calls and messages, email, and mailed correspondence. Sites where the property owners declined monitor placement or were unresponsive to phone calls, mailings, or emails are deemed not viable. Of the 23 monitoring site options, 21 sites are not viable and are indicated by red pins (see Figures 5-8). Sites 12 and 21 are the only identified viable monitoring site options, indicated by green pins. Table 2 details each potential monitoring site's viability. Using meteorological analyses, the TCEQ identified several potential monitoring sites downwind of the facility to the north and northeast based on predominant wind direction, indicated by the corresponding pin numbers: 1, 6, 8, and 10. The sites identified using meteorological data are not viable locations for monitor siting. Although these areas meet siting criteria, these sites either lack power, lack public site access, are within the permitted property, are on property with active ongoing mining operations, are on privately-used property, or are on the property of owners who have denied access or have been unresponsive to site agreement requests. Analyzing the modeling data, the TCEQ identified several potential monitoring sites within areas of predicted high SO_2 concentrations, indicated by the corresponding pin numbers: 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and 23. Most of the sites identified using the predicted modeling data are not viable locations for monitor siting. The few areas that would meet siting criteria, with access to electrical power, are on private property with property owners who have denied access or have been unresponsive to site agreement requests (see Figures 7 and 8). There is also limited public access to the areas of interest. Two of the sites identified using modeling data (sites 12 and 21) are viable options for monitor placement. - · Site 12 is located 1.5 km to the west of Big Brown. This site is downwind of the source when winds are from the east, 16% of the year on average (see Figure 4). The site offers adequate space, available power, level ground, is close to the facility, and is easily accessible on public roads. Model predicted SO2 concentrations in the area surrounding this site fall within the 196 μ g/m3 to 250 μ g/m3 range. The property owner is amenable to a site agreement. (see Figures 5-8). - · Site 21 is located 5.2 km to the southwest of Big Brown. This site is downwind of the source when winds are from the northeast, 16% of the year on average (see Figure 4). The site offers adequate space, available power, level ground, is close to the facility, and is easily accessible on public roads. Model predicted SO2 concentrations in the area surrounding this site range from 196 $\mu g/m3$ up to 300 $\mu g/m3$ (see Figures 5–9). The property owner is amenable to a site agreement. A monitor located at either of the two viable sites is expected to characterize one-hour SO_2 concentrations for the area. Both sites are located in an area that modeling predicts high SO_2 concentrations. Data from both sites are expected to be similar; thus, placing a second monitor would not provide additional information. Consequently, only one site, Site 21, will be placed to characterize SO_2 concentrations for the area. Figure 6: Potential Monitoring Sites for the Big Brown Area Scale (purple line) – Properties located within he purple line contain active mining operations. (yellow line) – Properties located within the yellow line represent non-viable areas due to declining property owners and a lack of public road access. Figure 7: Non-Viable Areas Near Big Brown Figure 8: Non-Viable Areas Near Big Brown With Predicted Modeled SO₂ Concentrations Figure 9: Preferred Site 21 With Predicted Modeled SO₂ Concentrations #### **Summary** Logistics (e.g., electricity, vegetation, property access, and siting criteria) and adverse property owners were the most influential factors constraining site placement for the Big Brown area. Necessary siting logistics and property owner amenability are lacking in areas where modeling predicted the highest SO₂ concentrations (northwest of the facility). Based on current facility operations, available emissions data, logistics, meteorological data, and modeling analyses, Site 21 is the intended location for placement of a new source-oriented ambient SO_2 monitoring station. Historical meteorological data indicate that the area around Site 21 is downwind of Big Brown on average 16% of the year, and the site is located in an area with high predicted modeled SO_2 concentrations. Pursuant to 40 CFR Sections 51.1201 and 51.1203, the TCEQ will site an air monitoring station at Site 21 to collect air quality data for characterizing potential maximum one-hour ambient SO_2 concentrations near the Big Brown Steam Electric Station. Table 2: Potential Sites Assessment¹ | Site Number | Big Brown #1 | Big Brown #2 | Big Brown #3 | |--|---|--|---| | Location ² | 31.83006,
- 96.04986 | 31.84390,
- 96.08720 | 31.83373,
- 96.01967 | | Distance from SO ₂
Source ² | 1,085 m | 3,977 m | 3,742 m | | Wind Direction | SW, S, SE | SW, S, SE | SW, S, SE | | Grade | <1% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley
Winds | None | None | None | | Water Body Within
1,000 m | None | Yes; pond (S) | None | | Wind Channeling | None | None | None | | Downwind ² | Yes (NNE) | No (NW) | No (NE) | | Obstructions and Height | None | None | None | | Distance from Site to Obstructions | None | None | None | | Road/Site Access | No | No | No | | Electricity Available <18 m | Yes | Yes | No | | Pros | DownwindLevel groundPower availableSpace availableClose proximity to source | Level ground Power available Space available High predicted SO₂ concentrations | Level groundSpace available | | Cons | No public site access Heavy vehicle traffic Within permitted property Outside area of modeled impact Property owner declined | Not downwind No public site access Unresponsive property owner | Not downwind No power No public site access Area used for hunting Unresponsive property owner | | Viable Site (Yes, No, or Preferred) | No | No | No | | Site Number | Big Brown #4 | Big Brown #5 | Big Brown #6 | |---|---|---|---| | Location ² |
31.78939,
- 96.05603 | 31.78766,
- 96.03875 | 31.85023,
- 96.02919 | | Distance from SO ₂ Source ² | 3,301 m | 3,449 m | 3,771 m | | Wind Direction | SW, S, SE | SW, S, SE | SW, S, SE | | Grade | <1% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley
Winds | None | None | None | | Water Body Within 1,000 m | Yes; lake (W) | None | None | | Wind Channeling | None | None | None | | Downwind ² | No (S) | No (SSE) | No (NE) | | Obstructions and Height | None | Trees (7 m) | None | | Distance from Site to Obstructions | None | Trees (10 m) | None | | Road/Site Access | Yes | Yes | Yes | | Electricity Available <18 m | Yes | Yes | Yes | | Pros | Level ground Power available Space available Site access High predicted SO₂ concentrations | Level ground Power available Space available Site access High predicted SO₂ concentrations | Downwind Level ground Power available Space available Site access High predicted SO₂ concentrations | | Cons | Not downwindProperty owner declined | Not downwindLocal obstructionsDense vegetationProperty owner declined | Unresponsive property owner | | Viable Site (Yes, No, or Preferred) | No | No | No | | Site Number | Big Brown #7 | Big Brown #8 | Big Brown #9 | |--|---|---|---| | Location ² | 31.82308,
- 96.06875 | 31.83448,
- 96.05076 | 31.79449,
- 96.05867 | | Distance from SO ₂
Source ² | 1,274 m | 1,555 m | 3,009 m | | Wind Direction | SW, S, SE | SW, S, SE | SW, S, SE | | Grade | >2% | >2% | <1% | | Flood Plains | No | No | No | | Mountain/Valley
Winds | None | None | None | | Water Body Within
1,000 m | Yes; lake (S) | None | Yes; lake (W) | | Wind Channeling | None | None | None | | Downwind ² | No (WNW) | Yes (N) | No (S) | | Obstructions and
Height | Trees (30 m)
Water tanks (4 m) | None | Trees (6 m) | | Distance from Site to Obstructions | Trees (30 m W,
E, NNE)
Water tanks (38 m
SE) | None | Trees (15 m S) | | Road/Site Access | No | No | Yes | | Electricity Available <18 m | No | No | Yes | | Pros | Space available Close proximity to source High predicted SO₂ concentrations | Downwind Close proximity to source High predicted SO₂ concentrations | Level ground Power available Space available Site access High predicted SO₂ concentrations | | Cons | Not downwind Unleveled ground No power No public site access Local obstructions Heavy vehicle traffic Property owner declined | Unleveled ground No power No space available No public site access Within permitted property Property owner declined | Not downwind Local obstructions Property owner declined | | Viable Site (Yes, No, or Preferred) | No | No | No | | Site Number | Big Brown #10 | Big Brown #11 | Big Brown #12 | |--|---|---|--| | Location ² | 31.82743,
- 96.04744 | 31.82075,
- 96.07051 | 31.81998,
- 96.07038 | | Distance from SO ₂
Source ² | 1,030 m | 1,407 m | 1,421 m | | Wind Direction | SW, S, SE | SW, S, SE | SW, S, SE | | Grade | <1% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley
Winds | None | None | None | | Water Body Within 1,000 m | Yes; lake (S) | Yes; lake (SE) | Yes; lake (SE) | | Wind Channeling | None | None | None | | Downwind ² | Yes (NE) | No (WNW) | No (WNW) | | Obstructions and
Height | None | Power pole (7 m) | Trees (10 m) | | Distance from Site to Obstructions | None | Powerlines (7 m N,
NE, E, SE, S, SW, W,
NW) | Trees (27 m NW) | | Road/Site Access | No | Yes | Yes | | Electricity Available <18 m | Yes | Yes | Yes | | Pros | Downwind Level ground Power available Space available Close proximity to
the source | Level ground Power available Site access Close proximity to source High predicted SO₂ concentrations Agreeable property owner | Level ground Power available Space available Site access Close proximity to source High predicted SO₂ concentrations Agreeable property owner | | Cons | No public site access Heavy vehicle traffic Within permitted property Mining activity Outside area of model concentrations Property owner declined | Not downwind No space
available Local obstructions | Not downwind Local obstructions | | Viable Site (Yes, No, or Preferred) | No | No | Yes | | Site Number | Big Brown #13 | Big Brown #14 | Big Brown #15 | |--|--|---|---| | Location ² | 31.77501,
- 96.07069 | 31.85336,
- 96.09816 | 31.85419,
- 96.09998 | | Distance from SO ₂
Source ² | 5,007 m | 5,104 m | 5,620 m | | Wind Direction | SW, S, SE | SW, S, SE | SW, S, SE | | Grade | <1% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley
Winds | None | None | None | | Water Body Within 1,000 m | Yes; lake (N) | None | None | | Wind Channeling | None | None | None | | Downwind ² | No (S) | No (NW) | No (NW) | | Obstructions and Height | None | None | None | | Distance from Site to Obstructions | None | None | None | | Road/Site Access | Yes | Yes | Yes | | Electricity Available <18 m | No | Yes | Yes | | Pros | Level ground Site access Space available High predicted SO₂ concentrations | Level ground Power available Site access Space available High predicted SO₂ concentrations | Level ground Power available Site access Space available High predicted SO₂ concentrations | | Cons | Not downwindNo powerProperty owner declined | Not downwind Property owner declined | Not downwind Property owner declined | | Viable Site (Yes, No, or Preferred) | No | No | No | | Site Number | Big Brown #16 | Big Brown #17 | Big Brown #18 | |---|---|---|---| | Location ² | 31.82594,
- 96.12574 | 31.81929,
- 96.12007 | 31.80588,
- 96.09111 | | Distance from SO ₂ Source ² | 6,294 m | 6,325 m | 3,719 m | | Wind Direction | SW, S, SE | SW, S, SE | SW, S, SE | | Grade | <1% | <1% | >2% | | Flood Plains | None | None | Yes | | Mountain/Valley
Winds | None | None | None | | Water Body Within
1,000 m | None | None | None | | Wind Channeling | None | None | None | | Downwind ² | No (W) | No (W) | No (SW) | | Obstructions and Height | None | None | Trees (10 m) | | Distance from Site to Obstructions | None | None | Trees (10 m E) | | Road/Site Access | Yes | Yes | Yes | | Electricity Available <18 m | Yes | Yes | Yes | | Pros | Level ground Power available Space available Site access High predicted SO₂ concentrations | Level ground Power available Space available Site access High predicted SO₂ concentrations
 | Power available Space available Site access High predicted SO₂ concentrations | | Cons | Not downwind Property owner unresponsive | Not downwind Property owner unresponsive | Not downwind Unleveled ground Local obstructions Drainage issues/flood prone, property owner not contacted | | Viable Site (Yes, No, or Preferred) | No | No | No | | Site Number | Big Brown #19 | Big Brown #20 | Big Brown #21 | |--|---|---|---| | Location ² | 31.80517,
- 96.09028 | 31.80499,
- 96.09105 | 31.79778,
- 96.10314 | | Distance from SO ₂
Source ² | 3,675 m | 3,709 m | 5,160 m | | Wind Direction | SW, S, SE | SW, S, SE | SW, S, SE | | Grade | <1% | <1% | <1% | | Flood Plains | None | None | None | | Mountain/Valley
Winds | None | None | None | | Water Body Within 1,000 m | None | None | None | | Wind Channeling | None | None | None | | Downwind ² | No (SW) | No (SW) | No (SW) | | Obstructions and Height | None | None | None | | Distance from Site to Obstructions | None | None | None | | Road/Site Access | Yes | Yes | Yes | | Electricity Available <18 m | Yes | Yes | Yes | | Pros | Level ground Power available Space available Site access High predicted
SO₂
concentrations | Level ground Power available Space available Site access High predicted
SO₂
concentrations | Level ground Power available Space available Site access High predicted SO₂ concentrations Agreeable property owner | | Cons | Not downwindProperty owner declined | Not downwindProperty owner declined | · Not downwind | | Viable Site (Yes, No, or Preferred) | No | No | Preferred | | | • | | |---|---|---| | Site Number | Big Brown #22 | Big Brown #23 | | Location ² | 31.80594, -96.09990 | 31.84816, -96.10015 | | Distance from SO ₂ Source ² | 4,535 m | 5,303 m | | Wind Direction | SW, S, SE | SW, S, SE | | Grade | <1% | Unknown | | Flood Plains | None | Unknown | | Mountain/Valley Winds | None | None | | Water Body Within 1,000 m | None | None | | Wind Channeling | None | None | | Downwind ² | No (SW) | No (NW) | | Obstructions and Height | None | Unknown | | Distance from Site to Obstructions | None | Unknown | | Road/Site Access | Yes | Yes | | Electricity Available <18 m | Yes | Yes | | Pros | Level ground Power available Space available Site access High predicted SO₂ concentrations | Power available Space available Site access High predicted SO₂ concentrations | | Cons | Not downwindPotential underground
lines and pipelinesProperty owner declined | Not downwind Property owner declined (site not evaluated further) | | Viable Site (Yes, No, or
Preferred) | No | No | $^{^{1}}$ Based on 40 Code of Federal Regulations Part 58 and SO $_{2}$ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document ²Based on Google Earth E - east m – meter N - north NE – northeast NNE - north-northeast NW - northwest S - south SE - southeast SO_2 – sulfur dioxide SSE – south-southeast SW - southwest W – west WNW - west-northwest > - greater than < - less than # - number % – percent #### References Griffith, G. E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L. Hatch, and D. Bezanson. *Ecoregions of Texas.* (2 sided color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia: U.S. Geological Survey, 2004. Scale 1:2,500,000. "IEM: Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. https://mesonet.agron.iastate.edu/sites/locate.php?network=TX ASOS. U.S. EPA Docket ID: EPA-HQ-OAR-2014-0464. Final Technical Support Document for the Designation Recommendations for the 2010 Sulfur Dioxide National Ambient Air Quality Standards (NAAQS) – Supplement for Four Areas in Texas Not Addressed in June 30, 2016, Version (EPA-HQ-OAR-2014-0464-0434). pp. 8-29. 2016. Accessed April 26, 2017. link https://www.regulations.gov/docket?D=EPA-HQ-OAR-2014-0464. #### Martin Lake Electrical Station #### **Source Information** - Name: Martin Lake Electrical Station (Martin Lake) (Figure 11) - Owner: Luminant Generation Company, LLC - · Facility function: electric generation - Location: 32.25965, -94.57033, TCEQ Region 5, Rusk County, Texas - · SO₂ emissions data: 62,735 tons (2013), 53,660 tons (2014), 22,930 tons (2015) - Long-term emissions trend: decreasing, 63 % decrease from 2013 to 2015 due to decreased operations - · Emission profile: operational year-round - Stack height(s): three stacks, S-1, S-2, and S-3, each 138 m high, currently active - SO₂ emission controls: multiple wet scrubbers, electrostatic precipitators, and fabric filters - Permit related data: Federal Operating Permit number 053 #### **Existing Air Monitoring Sites** The TCEQ operates three ambient air monitoring sites within a 100 km radius of Martin Lake. Table 3 details these monitoring sites in order of proximity. While many factors affect where maximum SO_2 ground level concentrations would be expected to occur, generally they are expected to occur closer to the emission source. Although one location currently monitors SO_2 , none of the existing sites are within a reasonable proximity to the source to characterize expected maximum SO_2 ground level concentrations. **Table 3: Air Monitoring Sites Near Martin Lake** | Site | Distance from
Martin Lake | Current Sulfur
Dioxide (SO ₂)
Monitoring | SO ₂ Design
Value (2013–
2015) | |----------------------------|------------------------------|--|---| | Longview | 18 km northwest | No | Not applicable | | Karnack | 60 km northeast | Yes | 46 parts per billion | | Tyler Airport
Relocated | 79 km west | No | Not applicable | km - kilometer #### Settings and Surroundings The primarily rural area surrounding Martin Lake is located in the southern portion of the Tertiary Uplands ecoregion of the South Central Plains. This area is the western edge of the southern coniferous forest belt and blanketed by dense pine and hardwood forests (Griffith et al. 2004). The elevation is roughly 122 m as shown in Figure 10. The area is speckled with inactive oil and gas drilling pad sites with limited power accessibility. During reconnaissance it was noted that the vegetation was significantly thicker and the trees were significantly taller in some locations as compared to the satellite image shown in Figure 16. Mountain and valley wind channeling, or other terrain related meteorological impacts, are not expected in the area surrounding Martin Lake. Figure 10: Martin Lake Area Elevation Map Figure 11: Martin Lake Sulfur Dioxide (SO₂) Stacks and Emissions for 2013 TPY - tons per year #### Meteorological Data Figure 12 provides illustrations of local area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at the Longview Airport, located 18 km northwest of Martin Lake. Figure 13 illustrates the 2012-2014 annual average wind speed. The length of each wind rose bar corresponds to the frequency of the wind coming from the indicated direction by percentage. Based on the analysis of the 2012-2014 wind data, the dominant wind flow direction for the area is 125 degrees southeast to 215 degrees south-southwest. Approximately 40% of the average area wind flows move from these directions. Over this three year period, calm winds (0-2 mph) occurred on average 19% of the time, and wind speeds averaged 6.9 mph (Iowa Environmental Mesonet 2016). Figure 12: (From left to right) 2012, 2013, and 2014 Individual Wind Rose Plots Figure 13: 2012-2014 Combined Average Wind Rose Plot #### **Modeling Analysis for Monitoring Site Placement** The Monitoring TAD suggests that modeling is one technique that may be used to assist in identifying potential monitoring sites. The Modeling TAD notes that for area designations under the $2010~SO_2$ NAAQS, the AERMOD modeling system should be used, unless use of an alternative model can be justified. In developing area designations for the 2010 SO₂ NAAQS, the AERMOD modeling analysis provided by the Sierra Club in March 2016, was cited in the *Final Technical Support Document for the Designation Recommendations for the 2010 Sulfur Dioxide National Ambient Air Quality Standards (NAAQS) – Supplement for Four Areas in Texas Not Addressed in June 30, 2016, Version (EPA docket identification number, EPA-HQ-OAR-2014-0464-0434)* as relevant information considered by the EPA in the Martin Lake
designation decision. Given the EPA's reliance on the 2016 Sierra Club modeling for designation purposes, the TCEQ has used this modeling as one of the tools to inform possible SO₂ monitor placement recommendations near Martin Lake. The use of the 2016 Sierra Club modeling analysis for possible monitor placement decisions does not infer the TCEQ's concurrence with the use of this modeling analysis for any other purpose. Figure 14 illustrates the Sierra Club's predicted modeled impacts for the 2013-2015 actual facility emissions. In this figure, the TCEQ viable air monitoring site is identified with a green pin and non-viable sites are identified with red pins. Figure 14: Sierra Club's Modeled Impacts Using Actual Emissions From 2013-2015 for the Martin Lake Area #### Siting Options and Criteria In 2016, the EPA designated the area surrounding Martin Lake as nonattainment. As a result, the TCEQ intends to site an ambient air monitor in the area to characterize SO_2 concentrations near the source. Presently, the TCEQ does not have SO_2 monitors located in the local area surrounding the source. In reviewing potential monitoring sites, the TCEQ focused on complying with the federal requirements listed in 40 CFR Part 58, Appendix E, regarding siting criteria. In addition, the TCEQ evaluated areas for a monitoring site location that would sufficiently characterize air quality around the SO_2 emissions source. This approach included utilizing multiple techniques and guidance provided in the Monitoring TAD, such as modeling, local wind roses that reflect data from 2012-2014, and area site reconnaissance. The TCEQ evaluated both meteorological data and modeling data to inform potential locations for an SO_2 monitor. Meteorological data (see Figures 12, 13, and 15) indicate winds predominate with a strong southerly component in the area while northwesterly and easterly winds occurred less often around 16% of the time. The easterly winds were consistently 2 to 15 mph and the northwesterly winds ranged up to over 20 mph. This meteorological assessment indicated that reconnaissance to the north of Martin Lake should be a priority (since the prominent southerly wind directions would result in emissions from Martin Lake more frequently being dispersed north of the facility), but potential sites to the west and southeast were also investigated. The modeling analysis results provided in Figures 14 and 17 predicted that off-property maximum SO_2 concentrations (i.e., average one-hour SO_2 concentrations greater than 196 $\mu g/m^3$) are expected to occur east, 2 southeast, southwest, west, northwest and north of Martin Lake, with isolated pockets of predicted higher and lower concentrations. Further, the highest predicted modeled concentrations of SO_2 based on source actual emissions was predicted to the southwest of Martin Lake, with predicted concentrations above 225 $\mu g/m^3$. (Modeled concentrations above 225 $\mu g/m^3$ were also predicted to the southeast and west of the facility). After evaluating both the meteorological and modeling data, the TCEQ identified five primary areas of interest for an air monitoring site location: to the north, northeast, southeast, southwest, and west of Martin Lake. Despite favorable meteorological and modeling data, some of these areas were excluded for varying reasons. The highest modeled concentrations predicted southwest and southeast of the facility are located on facility property or contain active mining operations that would not allow for public access; thus, these areas were excluded from monitor siting (see Figures 16 and 17). Other areas with projected high SO_2 concentrations are not viable for monitoring site deployment due to a large water body south of Martin Lake, lack of electrical power, dense vegetation, or adverse property owners. Specifically, areas to the west of Martin Lake property (west of pins 11, 12, 21 and 23 in Figures 16 and 17) lack the resources necessary for an ambient air monitoring station. This far western area of predicted modeled concentrations above the standard is heavily forested, lacks power, and lacks public road accessibility. E-30 ² Cardinal directions are determined in relation to the Martin Lake facility's SO₂ stacks. The TCEQ identified 29 potential monitoring sites in the general vicinity of the source, in areas not preliminarily excluded. Figures 14, 15, 16, and 17 depict the potential site locations (red and green pins) and the Martin Lake permitted property line (black). For each of the potential sites, the TCEQ researched the property owners on the County Appraisal District website, obtaining all available contact information (including mailing addresses, phone numbers, and email addresses). Multiple attempts to contact each property owner were made via phone calls and messages, email, and mailed correspondence. Sites where the property owners declined monitor placement or were unresponsive to phone calls, mailings, or emails are deemed not viable. Of the 29 monitoring site options, 28 sites (numbers 2–29) are not viable and are indicated by red pins (see Figures 14-17). Site 1 is the only identified viable monitoring site, indicated by a green pin. Table 4 details each potential monitoring site's viability. Using meteorological analyses, the TCEQ identified several potential monitoring sites downwind of the facility to the north based on predominant wind direction, indicated by the corresponding pin numbers: 1, 2, 3, 4, 5, 6, 7, 8, and 24. The area directly downwind of the facility contains a large water body surrounded by dense vegetation and trees of significant height to interfere with siting criteria. North of the water body there are some scattered public roads, isolated plots of cleared land, and occasional electricity sources. The few locations identified with the necessary electricity availability and public access were found to be unsuitable due to area obstructions (trees and dense vegetation), lack of access due to hunting lease or cell phone tower conflicts, or lacking sufficient space for monitor placement. Additionally, property owners in the non-forested areas were either not responsive or not amenable to site placement inquiries. Analyzing the modeling data, the TCEQ identified the following potential monitoring sites, indicated by the corresponding pin numbers: 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 25, 26, and 27. Siting an air monitor in an area with the highest predicted modeled off-property concentrations southeast or west of Martin Lake is not feasible. The area's extensive forest contains dense vegetation and trees of a sufficient height and leaf canopy density that would interfere with the normal airflow necessary to meet air monitoring station siting criteria. There is also limited public access to the areas of interest. The few areas that would meet siting criteria, with power, are on private property, and property owners have denied access or have been unresponsive to site agreement requests. In addition, areas to the southeast and southwest of the facility contain active mining operations in three large geographic areas with predicted modeled concentrations estimated greater than 196 $\mu g/m^3$ (see Figures 16 and 17). These active mining areas, to the southwest and to the southeast, prevent public accessibility and are not suitable for an ambient air monitoring station. Additionally, the TCEQ identified potential sites 19, 20, 28 and 29. Reconnaissance was performed on these sites because they aligned with the Sierra Club's 2015 predicted modeled concentrations for this area, published in the *Texas Technical Support Document* (EPA docket ID number, EPA-HQ-OAR-2014-0464-0144) (September 18, 2015). However, these sites are not suitable for monitor placement because they lack electrical power, are on private property with hunting leases, and the property owners were not amenable to monitor siting. Site 1, identified as a potential area of maximum concentrations using meteorological data, is considered viable and meets logistical and siting criteria. Site 1 is located approximately 2.2 km north of the Martin Lake facility. This site is downwind of the source when winds are from the south, approximately 40% of the year on average (see Figure 15). The site offers adequate space, available power, is close to the facility, and is easily accessible on public roads. The property owner has indicated interest and signed a site agreement. Although there are trees around the site, there is sufficient distance to meet and maintain siting criteria. More than one SO_2 monitor in the area would provide additional data to appropriately characterize SO_2 concentrations in multiple directions from the facility since the modeling indicates the predicted modeled concentrations are split between north, southeast, and southwest of the facility. However, no viable sites could be located southeast or southwest of the facility in areas of high predicted SO_2 concentrations; thus, only one site was selected. Site 1 is expected to sufficiently characterize the area SO_2 concentrations based on the proximity to the facility and meteorological data. Figure 15: 2012-2014 Wind Rose Overlay for the Martin Lake Area **Figure 16: Active Mining Areas Near Martin Lake** Figure 17: Active Mining Areas Near Martin Lake With Predicted Modeled SO₂ Concentrations #### **Summary** Logistics (e.g., electricity, vegetation, property access, and siting criteria) and adverse property owners were the most influential factors constraining site placement for the Martin Lake area. Necessary siting logistics and property owner amenability are lacking in areas where modeling predicted the highest SO₂ concentrations (southwest of the facility). Based on current facility operations, available emissions data, logistics, meteorological data, and modeling analyses, Site 1 is the intended location for placement of a new
source-oriented ambient SO_2 monitoring station. Historical meteorological data indicate that the area around Site 1 is downwind of Martin Lake on average 40% of the year and is close enough to the facility to characterize the SO_2 concentrations for the area. Pursuant to 40 CFR Sections 51.1201 and 51.1203, the TCEQ will site an air monitoring station near Martin Lake at Site 1 to collect air quality data for characterizing potential maximum one-hour ambient SO_2 concentrations near the Martin Lake Electrical Station. Table 4: Potential Sites Assessment¹ | | | I | | |---|--|---|---| | Site Number | Martin Lake #1 | Martin Lake #2 | Martin Lake #3 | | Location ² | 32.27808,
- 94.57084 | 32.27377,
- 94.56651 | 32.27591,
- 94.56296 | | Distance from SO ₂ Source ² | 2,200 m | 1,615 m | 1,940 m | | Wind Direction | SSW to SE | SSW to SE | SSW to SE | | Grade | <2% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley Winds | None | None | None | | Water Body Within
1,000 m | Yes; lake (S) | Yes; lake (S) | Yes; lake (S) | | Wind Channeling | None | None | None | | Downwind ² | Yes (N) | Yes (NNE) | Yes (NNE) | | Obstructions and Height | Trees (12 m) | Trees (30 m) | Trees (30 m) | | Distance from Site to Obstructions | Trees (43 m S, 24 m N, 107 m E) | Trees (21 m W, 63 m S) | Trees (21 m W, 63 m S) | | Road/Site Access | Yes | Yes | Yes | | Electricity
Available <18 m | Yes | Yes | No | | Pros | Downwind Power available Space available Site access Close proximity to source Agreeable property owner | DownwindLevel groundPower availableSite accessClose proximity
to source | DownwindLevel groundSpace availableSite accessClose proximity to source | | Cons | Local obstructionsUnleveled ground | No space
availableLocal obstructionsUnresponsive
property owner | No powerLocal obstructionsProperty owner
declined | | Viable Site (Yes,
No, or Preferred) | Preferred | No | No | | Site Number | Martin Lake #4 | Martin Lake #5 | Martin Lake #6 | |--|---|---|---| | Location ² | 32.27725,
- 94.56243 | 32.28261,
- 94.57066 | 32.28521,
- 94.56049 | | Distance from SO ₂
Source ² | 2,100 m | 2,600 m | 3,010 m | | Wind Direction | SSW to SE | SSW to SE | SSW to SE | | Grade | <1% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley
Winds | None | None | None | | Water Body Within 1,000 m | Yes; lake (S) | Yes; lake (S) | Yes; lake (S) | | Wind Channeling | None | None | None | | Downwind ² | Yes (NNE) | Yes (N) | Yes (NNE) | | Obstructions and Height | Trees (30 m) | Trees (12 m) | Trees (12 m) | | Distance from Site to Obstructions | Trees (35 m S, | Trees (62 m S, | Trees (20 m W, | | to obstructions | 68 m W) | 102 m W) | 35 m N, 26 m E) | | Road/Site Access | Yes | Yes | No | | Electricity
Available <18 m | No | No | No | | Pros | DownwindLevel groundSpace availableSite accessClose proximity to source | DownwindLevel groundSpace availableSite accessClose proximity to source | DownwindLevel groundSpace availableClose proximity
to source | | Cons | No power Local obstructions Property owner declined | No powerLocal obstructionsUnresponsive
property owner | No powerNo site accessDense vegetationLocal obstructionsUnresponsive property owner | | Viable Site (Yes,
No, or Preferred) | No | No | No | | Site Number | Martin Lake #7 | Martin Lake #8 | Martin Lake #9 | |--|---|--|---| | Location ² | 32.28478,
- 94.55883 | 32.28332,
- 94.58033 | 32.28060,
- 94.58543 | | Distance from SO ₂
Source ² | 3,000 m | 2,780 m | 2,710 m | | Wind Direction | SSW to SE | SSW to SE | SSW to SE | | Grade | <1% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley
Winds | None | None | None | | Water Body Within
1,000 m | Yes; lake (S) | Yes; lake (SW) | Yes; lake (SE) | | Wind Channeling | None | None | None | | Downwind ² | Yes (NNE) | Yes (NNW) | No (NW) | | Obstructions and
Height | Trees (12 m) | Trees (10 m) | Trees (15 m) | | Distance from Site to Obstructions | Trees (23 m SW, 22 m E) | Trees (62 m S, 46 m W) | Trees (75 m SE) | | Road/Site Access | Yes | No | Yes | | Electricity
Available <18 m | Yes | No | No | | Pros | DownwindLevel groundPower availableSite accessClose proximity to source | Downwind Level ground Space available Close proximity to source High predicted SO₂ concentrations | Level ground Space available Site access Close proximity to source High predicted SO₂ concentrations | | Cons | No space
available Dense vegetation Local obstructions Unresponsive
property owner | No powerNo site accessLocal obstructionsProperty owner declined | Not downwind No power Local obstructions Unresponsive property owner | | Viable Site (Yes,
No, or Preferred) | No | No | No | | Site Number | Martin Lake #10 | Martin Lake #11 | Martin Lake #12 | |--|--|---|--| | Location ² | 32.23796,
- 94.55886 | 32.26160,
- 94.61984 | 32.25520,
- 94.61596 | | Distance from SO ₂
Source ² | 2,650 m | 4,660 m | 4,240 m | | Wind Direction | SSW to SE | SSW to SE | SSW to SE | | Grade | <1% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley
Winds | None | None | None | | Water Body Within
1,000 m | Yes; lake (W, N, NW) | No | No | | Wind Channeling | None | None | None | | Downwind ² | No (SE) | No (W) | No (W) | | Obstructions and
Height | Trees (12 m) | Barn (5 m) | Shipping container (3 m) | | Distance from Site to Obstructions | Trees (92 m NW) | Barn (12 m E) | Shipping container (8 m N) | | Road/Site Access | No | Yes | No | | Electricity
Available <18 m | No | Yes | Yes | | Pros | Level ground Space available Close proximity to source High predicted SO₂ concentrations | Level ground Power available Space available Site access High predicted SO₂ concentrations | Level ground Power available Space available High predicted SO₂ concentrations | | Cons | Not downwind No power Mining activity No site access Local obstructions Property owner declined | Not downwind Local obstructions Private hunting
lease Property owner
declined | Not downwind No site access Railroad to the east Local obstructions Property owner declined | | Viable Site (Yes,
No, or Preferred) | No | No | No | | Site Number | Martin Lake #13 | Martin Lake #14 | Martin Lake #15 | |--|---|---|--| | Location2 | 32.25564,
- 94.61095 | 32.25757,
- 94.60898 |
32.24769,
- 94.60595 | | Distance from SO2
Source2 | 3,820 m | 3,640 m | 3,560 m | | Wind Direction | SSW to SE | SSW to SE | SSW to SE | | Grade | <1% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley
Winds | None | None | None | | Water Body Within 1,000 m | No | No | No | | Wind Channeling | None | None | None | | Downwind2 | No (W) | No (W) | No (W) | | Obstructions and Height | None | None | None | | Distance from Site to Obstructions | None | None | None | | Road/Site Access | No | Yes | No | | Electricity
Available < 18 m | No | Yes | Yes | | Pros | Level ground High predicted
SO₂
concentrations Space available | Level ground Power available Space available Site access High predicted SO₂ concentrations | Level ground Power available Space available High predicted SO₂ concentrations | | Cons | Not downwindNo powerNo site accessProperty owner declined | Not downwind Unresponsive property owner | Not downwind No site access Property owner declined | | Viable Site (Yes,
No, or Preferred) | No | No | No | | Site Number | Martin Lake #16 | Martin Lake #17 | Martin Lake #18 | |--|---|--|--| | Location ² | 32.24522,
- 94.60680 | 32.25787,
- 94.60089 | 32.25731,
- 94.59395 | | Distance from SO ₂
Source ² | 3,760 m | 2,870 m | 2,240 m | | Wind Direction | SSW to SE | SSW to SE | SSW to SE | | Grade | <1% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley Winds | None | None | None | | Water Body Within
1,000 m | Yes; lake (S) | No | Yes; retention pond
(E) | | Wind Channeling | None | None | None | | Downwind ² | No (W) | No (W) | No (W) | | Obstructions and Height | None | Trees (10 m) | Trees (10 m) | | Distance from Site to Obstructions | None | Trees (16 m W) | Trees (16 m W, N, S) | | Road/Site Access | No | No | Yes | | Electricity
Available <18 m | No | Yes | Yes | | Pros | Level ground Space available High predicted SO₂ concentrations | Level ground Power available Space available High predicted SO₂ concentrations | Level ground Power available Close proximity to the source Space available Site access High predicted SO₂ concentrations | | Cons | Not downwindNo powerNo site accessProperty owner declined | Not downwindNo site accessLocal obstructionsUnresponsive property owner | Not downwindLocal
obstructionsUnresponsive
property owner | | Viable Site (Yes,
No, or Preferred) | No | No | No | | Site Number | Martin Lake #19 | Martin Lake #20 | Martin Lake #21 | |--|--|---|--| | Location ² | 32.28167,
- 94.52449 | 32.27272,
- 94.53505 | 32.26041,
- 94.61824 | | Distance from SO ₂
Source ² | 4,930 m | 3,640 m | 4,475 m | | Wind Direction | SSW to SE | SSW to SE | SSW to SE | | Grade | <1% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley
Winds | None | None | None | | Water Body Within 1,000 m | No | Yes; lake (SW) | Yes; pond (E) | | Wind Channeling | None | None | None | | Downwind ² | No (ENE) | No (ENE) | No (W) | | Obstructions and Height | None | None | Trees (15 m) | | Distance from Site to Obstructions | None | None | Trees (35 m E, 15 m W) | | Road/Site Access | Yes | Yes | Yes | | Electricity
Available <18 m | Yes | No | Yes | | Pros | Level groundPower availableSpace availableSite access | Level groundSpace availableSite access | Level ground Site access Power available High predicted SO₂ concentrations | | Cons | Not downwind Unresponsive property owner | Not downwindNo powerPrivate hunting
leaseProperty owner
declined | Not downwind Local obstructions No space available, property owner not contacted | | Viable Site (Yes,
No, or Preferred) | No | No | No | | Site Number | Martin Lake #22 | Martin Lake #23 | Martin Lake #24 | |--|--|--|---| | Location ² | 32.25520,
- 94.61363 | 32.24076,
- 94.61699 | 32.28699,
- 94.57995 | | Distance from SO ₂
Source ² | 4,115m | 4,870 m | 3,015 m | | Wind Direction | SSW to SE | SSW to SE | SSW to SE | | Grade | <1% | <1% | <1% | | Flood Plains | No | No | Unknown | | Mountain/Valley Winds | None | None | Unknown | | Water Body Within
1,000 m | No | Yes, pond (E), lake
(SE) | Yes; lake (S) | | Wind Channeling | None | None | None | | Downwind ² | No (W) | No (SW) | Yes (NNW) | | Obstructions and
Height | House (5 m) | None | None | | Distance from Site to Obstructions | House (12 m NW) | None | Unknown | | Road/Site Access | Yes | No | None | | Electricity
Available <18 m | Yes | Yes | None | | Pros | Level ground Power available Site access High predicted SO₂ concentrations | Level ground Power available Space available High predicted SO₂ concentrations | DownwindLevel groundPower availableSpace availableSite access | | Cons | Not downwind No space available Railroad to the east Local obstructions Property owner declined | Not downwind No public site access, property owner not contacted | Property owner declined during preliminary analysis | | Viable Site (Yes,
No, or Preferred) | No | No | No | | Site Number | Martin Lake #25 | Martin Lake #26 | Martin Lake #27 | |---|---|---|--| | Location ² | 32.27792,
- 94.58757 | 32.27437,
- 94.58828 | 32.28368,
- 94.59431 | | Distance from SO ₂ Source ² | 2,059 m | 2,389 m | 3,550 m | | Wind Direction | SSW to SE | SSW to SE | SSW to SE | | Grade | <1% | >2% | <1% | | Flood Plains | No | Yes | No | | Mountain/Valley
Winds | None | None | None | | Water Body Within 1,000 m | Yes; lake (S) | Yes; lake (S) | None | | Wind Channeling | None | None | None | | Downwind ² | No (NW) | No (NW) | No (NW) | | Obstructions and Height | None | None | None | | Distance from Site to Obstructions | None | None | None | | Road/Site Access | Yes | Yes | No | | Electricity
Available <18 m | Yes | No | Yes | | Pros | Level ground Power available Space available Site access High predicted SO₂ concentrations | Space available Site access High predicted SO₂ concentrations | Level ground Power available Space available High predicted SO₂ concentrations | | Cons | Not downwind Property owner declined | Not downwind Unleveled ground No power Existing gas pipelines Property owner declined | Not downwindDifficult site accessProperty owner unresponsive | | Viable Site (Yes,
No, or Preferred) | No | No | No | | Site Number | Martin Lake #28 | Martin Lake #29 | | |---|---|--|--| | Location ² | 32.25960, -94.59063 | 32.264311, -94.53917 | | | Distance from SO ₂ Source ² | 1,973 m | 3,124 m | | | Wind Direction | SSW to SE | SSW to SE | | | Grade | NA | <1% | | | Flood Plains | NA | No | | | Mountain/Valley
Winds | None | None | | | Water Body Within
1,000 m | Yes; lake (S) | Yes (W) | | | Wind Channeling | None | None | | | Downwind ² | No (W) | No (E) | | | Obstructions and Height | None | Trees (20-30 m) | | | Distance from Site to
Obstructions | None | Tree (27 m NE), tree (32 m SE), tree (27 m NW) | | | Road/Site Access | Yes | Yes | | | Electricity Available <18 m | Yes | No | | | Pros | Power availableSite access | Level groundSpace availableSite access | | | Cons | Not downwind Property owner declined | Not downwindNo power, property owner not contactedLocal obstructions | | | Viable Site (Yes, No, or Preferred) | No | No Company Colored Maritanian Tradicion | | $^{^{1}}$ Based on 40 Code of Federal Regulations Part 58 and SO $_{2}$ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document E – east m - meter N – north NE - northeast NNE - north-northeast ENE - east-northeast NNW - north-northwest NW – northwest S – south SE - southeast SO₂ - sulfur dioxide SW - southwest SSW - south-southwest W - west > - greater than < - less than # - number % - percent ²Based on Google Earth #### References Griffith, G. E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L. Hatch, and D. Bezanson. *Ecoregions of Texas.* (2 sided color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia: U.S. Geological Survey, 2004. Scale 1:2,500,000. "IEM: Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. <u>link https://mesonet.agron.iastate.edu/sites/locate.php?network=TX_ASOS</u> U.S. EPA. EPA Docket ID: EPA-HQ-OAR-2014-0464. Final Technical Support Document for the Designation Recommendations for the 2010 Sulfur Dioxide National Ambient Air Quality Standards (NAAQS) – Supplement for Four Areas in Texas Not Addressed in June 30, 2016, Version (EPA-HQ-OAR-2014-0464-0434). pp. 51–77. 2016. Accessed April 13, 2017. link https://www.regulations.gov/docket?D=EPA-HQ-OAR-2014-0464. #### Monticello Steam Electric Station #### **Source Information** - Name: Monticello Steam Electric Station (Monticello) (Figure 20) - Owner: Luminant Generation Company, LLC - · Facility function: electric generation - Location: 33.09132, -95.03759, TCEQ Region 5, Titus County, Texas - · SO₂ emissions data: 24,396 tons (2013), 20,515 tons (2014), 18,399 tons (2015) - Long-term emissions trend: decreasing, 63% decrease from 2010 to 2014 - Emission profile: operational seasonally (from May–September, annually), permitted to operate year-round - Stack height(s): three stacks, S-1 and S-2 122 m high, S-3 140 m high, each currently active - · SO₂ emission controls: limestone wet-scrubbing - Permit related data: Federal Operating Permit number 064 #### **Existing Air Monitoring Sites** The TCEQ operates five ambient air monitoring sites within a 100 km radius of Monticello. Table 5 details these monitoring sites in order of proximity. While many factors affect where maximum SO_2 ground level concentrations would be expected to occur, generally they are expected to occur closer to the emission source. Although one location currently monitors SO_2 , none of the existing sites are within a reasonable proximity to the source to characterize expected maximum SO_2 ground level concentrations. **Table 5: Air Monitoring Sites Near Monticello** | Site | Distance from
Monticello | Current Sulfur
Dioxide (SO ₂)
Monitoring | SO ₂ Design
Value (2013–
2015) | |-------------------------|-----------------------------|--|---| | Tyler Airport Relocated | 90 km southwest | No | Not applicable | | Karnack | 94 km southeast | No | Not applicable | | Texarkana | 97 km northeast | No | Not applicable | | Longview | 100 km southeast | Yes | 46 parts per billion | | Greenville | 100 km west | No | Not Applicable | km - kilometer #### Settings and Surroundings The primarily rural area surrounding Monticello is located in the eastern most portion of the Floodplains and Low Terraces ecoregions of the East Central Texas Plains. This area is characterized by a mix of dense hardwood forests of oak, ash, pecan, and cedar elm, as well as cleared pastures (Griffith et al. 2004). The elevation ranges from 91 m to 142 m, as shown in Figure 19. No significant changes to the landscape were noted during the reconnaissance as compared to the satellite image shown in Figure 24. Thick elevated vegetation is a factor that may affect wind patterns across the East Central Texas Plains area. Mountain and valley wind channeling, and other terrain related meteorological impacts, are not expected in the area surrounding Monticello. Figure 19: Monticello Area Elevation Map Figure 20: Monticello Sulfur Dioxide (SO₂) Stacks and Emissions, 2013 TPY - tons per year #### Meteorological Data Figure 21 provides illustrations of local area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at the Mount Pleasant Airport, located 7 km east of Monticello. Figure 22 illustrates the 2012-2014 annual average wind speed. The length of each wind rose bar corresponds to the frequency of the wind coming from the indicated direction by percentage. Based on the analysis of the 2012-2014 wind data, the dominant wind flow direction for the area is 105 degrees southeast to 190 degrees south. Approximately 32% of the average area wind flows move from these directions. Over this three-year period, calm winds (0-2 mph) occurred on average 27% of the time, and wind speeds averaged 5.8 mph (Iowa Environmental Mesonet 2016). Figure 21: (From right to left) 2012, 2013, and 2014 Individual Wind Rose Plots Figure 22: 2012-2014 Combined Average Wind Rose Plot #### Modeling Analysis for Monitoring Site Placement The Monitoring TAD suggests that modeling is one technique that may be used to assist in identifying potential monitoring sites. The Modeling TAD notes that for area designations under the $2010~SO_2~NAAQS$, the AERMOD modeling system should be used, unless use of an alternative model can be justified. In developing area designations for the 2010 SO₂ NAAQS, the AERMOD modeling analysis provided by the Sierra Club in March 2016, was cited in the *Final Technical Support Document for the Designation Recommendations for the 2010 Sulfur Dioxide National Ambient Air Quality Standards (NAAQS) – Supplement for Four Areas in Texas Not Addressed in June 30, 2016, Version (EPA docket identification number, EPA-HQ-OAR-2014-0464-0434)* as relevant information considered by the EPA in the Monticello designation decision. Given the EPA's reliance on the 2016 Sierra Club modeling for designation purposes, the TCEQ has used this modeling as one of the tools to inform possible SO₂ monitor placement recommendations near Monticello. The use of the 2016 Sierra Club modeling analysis for possible monitor placement decisions does not infer the TCEQ's concurrence with the use of this modeling analysis for any other purpose. Figure 23 illustrates the Sierra Club's modeled impacts for the 2013-2015 actual facility emissions. In this figure, the locations that are viable for a TCEQ air monitoring site are identified with green pins and non-viable sites are identified with red pins. Figure 23: Sierra Club's Modeled Impacts Using Actual Emissions From 2013-2015 for the Monticello Area #### Siting Options and Criteria In 2016, the EPA designated the area surrounding Monticello as nonattainment. As a result, the TCEQ intends to site an ambient air monitor in the area to characterize SO_2 concentrations near the source. Presently, the TCEQ does not have SO_2 monitors located in the area surrounding the source. In reviewing potential monitoring sites, the TCEQ focused on complying with the federal requirements listed in 40 CFR Part 58, Appendix E, regarding siting criteria. In addition, the TCEQ evaluated areas for a monitoring site location that would sufficiently characterize air quality around an SO_2 emissions source. This approach included utilizing multiple techniques and guidance provided in the Monitoring TAD, such as modeling, local wind roses that reflect data from 2012-2014, and area site reconnaissance. The TCEQ evaluated meteorological data, modeling data, and areas in a reasonable proximity to the source to determine potential locations for an SO_2 monitor. Meteorological data (see Figures 21, 22 and 25) indicate winds predominate with a strong southeasterly component. Easterly winds alone occurred approximately 20% of the time and were consistently 2 to 15 mph. This meteorological assessment indicated that reconnaissance to the north and northwest of Monticello should be a priority (since the prominent southeasterly wind directions would result in emissions from Monticello more frequently being dispersed north and northwest of the facility), but potential sites to the west, northeast, and east were also investigated. The modeling analysis results provided in Figure 23 suggest that predicted off-property maximum SO_2 concentrations (i.e., average one-hour SO_2 concentrations greater than 196 $\mu g/m^3$) are expected to occur west³ of Monticello. Further, the predicted highest modeled SO_2 concentrations based on source actual emissions are also expected to occur to the west of Monticello, with predicted concentrations above 210 $\mu g/m^3$. After evaluating both the meteorological and modeling data, the TCEQ identified four primary areas of interest for an air monitoring site location: to the north, northeast, west, and northwest of Monticello. Despite favorable meteorological and modeling data, some of these areas were excluded for various reasons. The predicted highest
modeled concentrations expected west of the facility are located in heavily-forested areas, lacking power and public road accessibility (see purple outlined area in Figures 26 and 27) and are on the private property of adverse property owners (see yellow outlined area in Figures 26 and 27). The accessible public roads in the modeled area are lined with tall trees and dense vegetation, making these areas unsuitable for siting a monitor. These areas do not meet siting criteria and lack the electrical resources necessary for an ambient air monitoring station; thus, they were excluded from monitor siting. The TCEQ identified 16 potential monitoring sites in the general vicinity, in areas not preliminarily excluded. Figures 23-25 depict the potential site locations (red and green pins). For each of the potential sites, the TCEQ researched the property owners on the County Appraisal District website, obtaining all available contact information (including mailing addresses, phone numbers, and email addresses). Multiple attempts to contact each property owner were made via phone calls and messages, email, and ³ Cardinal directions are determined in relation to the Monticello facility's SO₂ stacks. mailed correspondence. Sites where the property owners declined monitor placement or were unresponsive to phone calls, mailings, or emails are deemed not viable. Of the 16 monitoring site options, 12 sites are not viable and are indicated by red pins (see Figures 23-27). Four viable monitoring sites (sites 1, 2, 6, and 8) were identified. Table 6 details each potential monitoring site's viability. Using meteorological analyses, the TCEQ identified several potential monitoring sites downwind of the facility to the north and northwest based on predominant wind direction, indicated by the corresponding pin numbers: 1, 3, 9, 10, 11 and 12. Only one of these sites (Site 1) is a viable option for monitor placement. Site 1 is located 2.5 km to the north of Monticello. This site is downwind of the source when winds are from the south, 27% of the year on average (see Figures 22 and 25). The site is easily accessible and offers level ground, adequate space, and available power. The property owner has signed a site agreement. The rest of the sites identified using meteorological data are not viable locations for monitor siting. The area's extensive forest contains dense vegetation and trees of a sufficient height and leaf canopy density that would interfere with the normal airflow necessary to meet air monitoring station siting criteria. The few areas that would meet siting criteria, with power, are on private property, and property owners have denied access or have been unresponsive to site agreement requests. There is also limited public access to the areas of interest. Analyzing the modeling data, the TCEQ identified several potential monitoring sites within areas of predicted high SO_2 concentrations, indicated by the corresponding pin numbers: 13, 14, and 15. Most of the sites identified using the modeling data are not viable locations for monitor siting. The few areas that would meet siting criteria, with power, are on private property, and property owners have denied access or have been unresponsive to site agreement requests (see Figures 26 and 27). There is also limited public access to the areas of interest. In locating sites in close proximity to Monticello, the TCEQ identified sites 2, 4, 5, 6, 7, 8, and 16. These sites neither correspond directly with meteorological data nor with modeling data, but are in close proximity to the facility. Three of these sites (sites 2, 6, and 8) are viable options for monitor placement. - Site 2 is positioned 2.9 km to the north-northeast of Monticello. This site is downwind of the source when winds are from the southwest, 14% of the year on average (see Figure 22). The site offers level ground, adequate space, and is easily accessible. - · Site 6 is positioned 3.2 km to the north-northeast of Monticello. This site is downwind of the source when winds are from the southwest, 14% of the year on average (see Figure 22). The site offers level ground, adequate space, available power, and is easily accessible. - Site 8 is positioned 2.4 km to the southwest of Monticello. This site is downwind of the source when winds are from the east, 20% of the year on average (see Figure 22) and is located slightly east of the predicted highest modeled SO_2 concentrations areas shown in Figures 23 and 27. The site offers level ground, adequate space, available power, and is easily accessible. The property owner is amenable to a site agreement. The remaining sites identified based on proximity to the facility are not suitable locations for monitor placement due to lack of power, local obstructions, and adverse property owners. Although all four viable sites are outside the area of predicted modeled concentrations, Site 1 is the most favorable site based on meteorological data. Site 1 is located approximately 2.5 km north of the Monticello facility. This site is downwind of the source when winds are from the south, approximately 27% of the year on average (see Figure 25). The site offers adequate space, available power, is close to the facility, and is easily accessible on public roads. The property owner has signed a site agreement. Although there are trees around the site, there is sufficient distance to meet and maintain siting criteria. Due to the small geographic area of predicted high modeled concentrations, one monitor should sufficiently characterize the area. Site 1 is expected to sufficiently characterize area SO_2 concentrations based on the proximity to the facility and meteorological data. Figure 24: Potential Monitoring Sites for the Monticello Area Figure 25: 2012-2014 Wind Rose Overlay for the Monticello Area **Appendix E: Sulfur Dioxide Data Requirements Rule Monitor Placement Evaluations** <u>Scale</u> (purple line) - Properties located within the purple line indicates heavily forested areas lacking power and public road accessibility. (yellow line) - Properties located within the yellow line represent property owners who have declined monitor placement or were unresponsive to monitor placement requests. **Figure 26: Non-Viable Areas Near Monticello** Figure 27: Non-Viable Areas Near Monticello With Predicted Modeled SO₂ Concentrations #### **Summary** Logistics (e.g., electricity, vegetation, property access, and siting criteria) and adverse property owners were the most influential factors constraining site placement for the Monticello area. Necessary siting logistics and property owner amenability are lacking in areas where modeling predicted the highest SO_2 concentrations (west of the facility). Based on current facility operations, available emissions data, logistics, and meteorological data, Site 1 is the intended location for placement of a new source-oriented ambient SO_2 monitoring station. Historical meteorological data indicate that the area around Site 1 is downwind of Monticello during southerly winds on average 27% of the year. Pursuant to 40 CFR Sections 51.1201 and 51.1203, the TCEQ will site an air monitoring station near Monticello at Site 1 to collect air quality data for characterizing potential maximum one-hour ambient SO_2 concentrations near the Monticello Steam Electric Station. **Table 6: Potential Sites Assessment¹** | Site Number | Monticello #1 | Monticello #2 | Monticello #3 | | |---|--|---|--|--| | Location ² | 33.11425,
-95.03701 | 33.11688,
-95.02874 | 33.11030,
-95.06006 | | | Distance from SO ₂ Source ² | 2,544 m | 2,952 m | 2,970 m | | | Wind Direction | S, SE | S, SE | S, SE | | | Grade | <1% | <1% | <1% | | | Flood Plains | No | No | No | | | Mountain/Valley
Winds | None | None | None | | | Water Body Within
1,000 m | Yes; lake (S) | None | Yes; lake (W, SW, S) | | | Wind Channeling | None | None | None | | | Downwind ² | Yes (N) | No (NNE) | Yes (NW) | | | Obstructions and | Trees (30 m), | Trees (7 m) | Bush (3 m), | | | Height | Structure (9 m) | | Trailer (3 m) | | | Distance from Site to Obstructions | Trees (258 m S) Structure (42 m S) | Trees (65 m N, 64
m NE, 21 m E, 33 m
S, 28 m W) | Bush (20 m N)
Trailer (15 m W) | | | Road/Site Access | Yes | Yes | Yes | | | Electricity Available <18 m | Yes | Yes | Yes | | | Pros | Downwind Level ground Power available Space available Site access Close proximity to facility Agreeable property owner | Level groundPower availableSpace availableSite accessAgreeable property owner | Downwind Level ground Power available Space available Site access Close proximity to facility | | | Cons | Local obstructions | Not downwind Local obstructions | Property owner declinedLocal obstructions | | | Viable Site (Yes,
No, or Preferred) | Preferred | Yes | No | | | Site Number | Monticello #4 | Monticello #5 | Monticello #6 | |---|--
---|---| | Location ² | 33.11387,
-95.01232 | 33.11128,
-95.02306 | 33.11950,
-95.02337 | | Distance from SO ₂ Source ² | 3,520 m | 2,640 m | 3,440 m | | Wind Direction | S, SE | S, SE | S, SE | | Grade | >2% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley
Winds | None | None | None | | Water Body Within 1,000 m | None | None | None | | Wind Channeling | None | None | None | | Downwind ² | No (NE) | No (NNE) | No (NNE) | | Obstructions and
Height | Trees (10 m) | Trees (6 m) | Fence (1 m) | | Distance from Site to Obstructions | Trees (32 m N,
61 m SE) | Trees (15 m SE) | Fence (1 m SE, SW) | | Road/Site Access | Yes | No | Yes | | Electricity
Available <18 m | Yes | Yes | Yes | | Pros | Power availableSpace availableSite access | Level ground Power available | Level groundPower availableSpace availableSite accessAgreeable property owner | | Cons | Not downwind Unleveled ground Water main under property Property owner declined Local obstructions | Not downwind No space available Heavy industry No site access Property owner declined Local obstructions | Not downwind Local obstructions | | Viable Site (Yes,
No, or Preferred) | No | No | Yes | | Site Number | Monticello #7 | Monticello #8 | Monticello #9 | |---|---|---|---| | Location ² | 33.08961,
-95.01497 | 33.08441,
-95.06082 | 33.10517,
-95.05396 | | Distance from SO ₂ Source ² | 2,121 m | 2,297 m | 2,168 m | | Wind Direction | S, SE | S, SE | S, SE | | Grade | <1% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley Winds | None | None | None | | Water Body Within
1,000 m | Yes; lake (N, E, S, W) | Yes; lake (N, E, SE) | Yes; lake (SW) | | Wind Channeling | None | None | None | | Downwind ² | No (E) | No (WSW) | Yes (NW) | | Obstructions and Height | None | Trees (12 m) | None | | Distance from Site to Obstructions | None | Trees (70 m SE, 81 m S) | None | | Road/Site Access | Yes | Yes | No | | Electricity
Available <18 m | No | Yes | Yes | | Pros | Level groundSpace availableSite accessClose proximity
to facility | Level groundPower availableSpace availableSite accessAgreeable property owner | DownwindLevel groundPower availableSpace available | | Cons | Not downwind Power available
at a considerable
distance Property owner
declined | Not downwind Local obstructions declined | | | Viable Site (Yes,
No, or Preferred) | No | Yes | No | | Site Number | Monticello #10 | Monticello #11 | Monticello #12 | | |--|---|--|---|--| | Location ² | 33.11039,
-95.05194 | 33.10321,
-95.03708 | 33.11194,
-95.06110 | | | Distance from SO ₂
Source ² | 2,505 m | 1,323 m | 3,171 m | | | Wind Direction | S, SE | S, SE | S, SE | | | Grade | <1% | <1% | <1% | | | Flood Plains | No | No | No | | | Mountain/Valley
Winds | None | None | None | | | Water Body Within 1,000 m | Yes; lake (S) | Yes; lake (E) | Yes; lake (W) | | | Wind Channeling | None | None | None | | | Downwind ² | Yes (NW) | Yes (N) | Yes (NW) | | | Obstructions and Height | Trees (12 m) | None | None | | | Distance from Site to Obstructions | Trees (15 m W, 13 m
N, 50 m SW) | None | None | | | Road/Site Access | Yes | No | No | | | Electricity
Available <18 m | Yes | No | No | | | Pros | DownwindLevel groundPower availableSite accessClose proximity to facility | DownwindLevel groundSpace availableClose proximity to facility | DownwindLevel groundClose proximity to facility | | | Cons | Heavily wooded areaLocal obstructionsProperty owner declined | No powerNo site accessLocated on landfill siteProperty owner declined | No powerNo site accessHeavily wooded areaProperty owner declined | | | Viable Site (Yes,
No, or Preferred) | No | No | No | | | Site Number | Monticello #13 | Monticello #14 | Monticello #15 | |---|---|---|---| | Location ² | 33.09106,
- 95.08651 | 33.08950,
- 95.07091 | 33.08926,
- 95.07154 | | Distance from SO ₂ Source ² | 4,569 m | 3,090 m | 3,107 m | | Wind Direction | S, SE | S, SE | S, SE | | Grade | <1% | <1% | <1% | | Flood Plains | No | No | No | | Mountain/Valley Winds | None | None | None | | Water Body Within
1,000 m | None | Yes; lake (N) | Yes; lake (N) | | Wind Channeling | None | None | None | | Downwind ² | No (W) | No (W) | No (W) | | Obstructions and Height | None | None | None | | Distance from Site to Obstructions | None | None | None | | Road/Site Access | Yes | Yes | Yes | | Electricity
Available <18 m | Yes | Yes | Yes | | Pros | Level ground Power available Space available Site access High predicted SO₂ concentrations | Level ground Power available Space available Site access High predicted SO₂ concentrations | Level ground Power available Space available Site access High predicted SO₂ concentrations | | Cons | Not downwindProperty owner unresponsive | Not downwindProperty owner unresponsive | Not downwindProperty owner unresponsive | | Viable Site (Yes,
No, or Preferred) | No | No | No | | Site Number | Monticello #16 | |--|--| | Location ² | 33.08116, -95.06948 | | Distance from SO ₂
Source ² | 3,169 m | | Wind Direction | S, SE | | Grade | <1% | | Flood Plains | No | | Mountain/Valley Winds | None | | Water Body Within 1,000 m | Yes; Lake (NE) | | Wind Channeling | None | | Downwind ² | No (WSW) | | Obstructions and Height | None | | Distance from Site to Obstructions | None | | Road/Site Access | Yes | | Electricity Available <18 m | Yes | | Pros | Level groundPower availableSpace availableSite access | | Cons | Not downwind Property owner unresponsive | | Viable Site (Yes, No, or Preferred) | No | Based on 40 Code of Federal Regulations Part 58 and SO_2 NAAQS Designations Source-Oriented Monitoring Technical Assistance Document ²Based on Google Earth E - east m - meter N - north NA - not applicable NE – northeast NNE - north northeast NW - northwest S - south SE - southeast SO_2 – sulfur dioxide SW – southwest W – west > - greater than < - less than # – number % – percent #### References Griffith, G. E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L. Hatch, and D. Bezanson. *Ecoregions of Texas.* (2 sided color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia: U.S. Geological Survey, 2004. Scale 1:2,500,000. "IEM: Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. <u>link</u> <u>https://mesonet.agron.iastate.edu/sites/locate.php?network=TX ASOS.</u> U.S. EPA Docket ID: EPA-HQ-OAR-2014-0464. Final Technical Support Document for the Designation Recommendations for the 2010 Sulfur Dioxide National Ambient Air Quality Standards (NAAQS) – Supplement for Four Areas in Texas Not Addressed in June 30, 2016, Version (EPA-HQ-OAR-2014-0464-0434). pp. 30-50. 2016. Accessed April 24, 2017. link https://www.regulations.gov/docket?D=EPA-HQ-OAR-2014-0464. # Appendix F ### **Ozone Monitoring Requirements** Texas Commission on Environmental Quality 2017 Annual Monitoring Network Plan #### **Appendix F: Ozone Monitoring Requirements** | Metropolitan Statistical
Area | 2016
Population
Estimates ¹ | 2014-2016
8-Hour
Design Value
(parts per | Design Value
as Percent of
NAAQS ² | Total
Required
SLAMS
Monitors | Total
Required
PAMS
Monitors | Total
Required
NCore
Monitors | Total
Required
Monitors ³ | Total Existing
Monitors⁴ | |--------------------------------|--|---|---|--|---------------------------------------|--|--|-----------------------------| | Dallas-Fort Worth-Arlington | 7,233,323 | 80 | 114% | 3 | 1 | 1 | 5 | 19 | | Houston-The Woodlands-Sugar La | 6,772,470 | 79 | 113% | 3 | 1 | 1 | 5 | 20 | | San Antonio-New Braunfels | 2,429,609 | 73 | 104% | 2 | 0 | 0 | 2 | 3 | | Austin-Round Rock | 2,056,405 | 66 | 94% | 2 | 0 | 0 | 2 | 2 | | McAllen-Edinburg-Mission | 849,843 | 55 | 79% | 1 | 0 | 0 | 1 | 1 | | El Paso | 841,971 | 71 | 101% | 2 | 0 | 1 | 3 | 6 | | Corpus Christi | 454,726 | 65 | 93% | 2 | 0 | 0 | 2 | 2 | | Killeen-Temple | 435,857 | 67 | 96% | 2 | 0 | 0 | 2 | 2 | | Brownsville-Harlingen | 422,135 | 57 | 81% | 1 | 0 | 0 | 1 | 2 | | Beaumont-Port Arthur | 409,968 | 68 | 97% | 2 | 0 | 0 | 2 | 7 | | Lubbock | 314,840 | N/A | N/A | 0 | 0 | 0 | 0 | 0 | | Laredo | 271,193 | 54 | 77% | 0 | 0 | 0 | 0 | 1 | | Waco | 265,207 | 63 | 90% | 1 | 0 | 0 | 1 | 1 | | Amarillo | 263,342 | N/A | N/A | 0 | 0 | 0 | 0 | 0 | | College Station-Bryan | 254,928 | N/A | N/A | 0 | 0 | 0 | 0 | 0 | | Tyler | 225,290 | 65 | 93% | 1 | 0 | 0 | 1 | 1 | | Longview | 217,446 | 66 | 94% | 1 | 0 | 0 | 1 | 1 | | Abilene | 170,364 | N/A | N/A | 0 | 0 | 0 | 0 | 0 | | Midland | 168,288 | N/A | N/A | 0 | 0 | 0 | 0 | 0 | | Odessa | 157,462 | N/A | N/A | 0 | 0 | 0 | 0 | 0 | | Wichita Falls | 150,734 | N/A | N/A | 0 | 0 | 0 | 0 | 0 | | Texarkana | 150,098 | N/A | N/A | 0 | 0 | 0 | 0 | 0 | | Sherman-Denison | 128,235 | N/A | N/A | 0 | 0 | 0 | 0 | 0 | | San Angelo | 119,943 | N/A | N/A | 0 | 0 | 0 | 0 | 0 | | Victoria | 99,984 | 65 | 93% | 1 | 0 | 0 | 1 | 1 | | Marshall* | 66,534 | 62 | 89% | 0 | 0 | 0 | 0 | · · | | Totals | N/A | N/A | N/A | 24 | 2 | 3 | 29 | 70 | ¹United States Census Bureau population estimates as of July 1, 2016 N/A - not applicable PAMS - Photochemical Assessment Monitoring Stations SLAMS - State or Local Air Monitoring Stations NCore - National Core Multipollutant Monitoring Stations ²2015 eight-hour ozone National Ambient Air Quality Standard (NAAQS) is .070 parts per million ³Total Required Monitors is a count of individual requirements for SLAMS, PAMS, and NCore. ⁴Individual monitors may fulfill more than one monitoring requirement. ^{*}Classified as Micropolitan Statistical Area and does not apply to SLAMS requirements # Appendix G # Carbon Monoxide Monitoring Requirements Texas Commission on Environmental Quality 2017 Annual Monitoring Network Plan #### **Appendix G: Carbon Monoxide Monitoring Requirements** | Core Based Statistical
Areas | 2016
Population
Estimates ¹ | Required CO Near-Road
Monitors | Required CO NCore
Monitors ² | Total Required
Monitors | Total Current
Monitors ³ | |---------------------------------|--|-----------------------------------|--|----------------------------|--| | Dallas-Fort Worth-Arlington | 7.233.323 | Fort Worth California Parkway | Dallas Hinton | 2 | 2 | | Houston-The Woodlands- | ., | | | _ | _ | | Sugar Land | 6,772,470 | Houston North Loop | Houston Deer Park #2 | 2 | 3 | | San Antonio-New Braunfels | 2,429,609 | San Antonio Interstate 35 | N/A | 1 | 1 | | Austin-Round Rock | 2,056,405 | Austin North Interstate 35 | N/A | 1 | 1 | | McAllen-Edinburg-Mission | 849,843 | N/A | N/A | 0 | 0 | | El Paso | 841,971 | N/A | El Paso Chamizal | 1 | 3 | | Corpus Christi | 454,726 | N/A | N/A | 0 | 0 | | Killeen-Temple | 435,857 | N/A | N/A | 0 | 0 | | Brownsville-Harlingen | 422,135 | N/A | N/A | 0 | 1 | | Beaumont-Port Arthur | 409,968 | N/A | N/A | 0 | 1 | | Lubbock | 314,840 | N/A | N/A | 0 | 0 | | Laredo | 271,193 | N/A | N/A | 0 | 2 | | Waco | 265,207 | N/A | N/A | 0 | 1 | | Amarillo | 263,342 | N/A | N/A | 0 | 0 | | College Station-Bryan | 254,928 | N/A | N/A | 0 | 0 | | Tyler | 225,290 | N/A | N/A | 0 | 0 | | Longview | 217,446 | N/A | N/A | 0 | 0 | | Abilene | 170,364 | N/A | N/A | 0 | 0 | | Midland | 168,288 | N/A | N/A | 0 | 0 | | Odessa | 157,462 | | N/A | 0 | 0 | | Wichita Falls | 150,734 | N/A | N/A | 0 | 0 | | Texarkana | 150,098 | N/A | N/A | 0 | 0 | | Sherman-Denison | 128,235 | | N/A | 0 | 0 | | San Angelo | 119,943 | N/A | N/A | 0 | 0 | | Victoria | 99,984 | N/A | N/A | 0 | Ŭ. | | Total | | 4 | 3 | 7 | 15 | ¹United States Census Bureau population estimates as of July 1, 2016 NCore - National Core Multipollutant Monitoring Stations N/A - not applicable ²High sensitivity CO monitors are recommended at NCore sites ³Monitors may fulfill multiple monitoring requirements, but are only counted once in the total monitor counts. CO - carbon monoxide # **Appendix H** ## Particulate Matter of 10 Micrometers or Less Monitoring Requirements, Monitor Locations, and Method Codes Texas Commission on Environmental Quality 2017 Annual Monitoring Network Plan #### **Appendix H: Particulate Matter of 10 Micrometers or Less** ## Monitoring Requirements, Monitor Locations, and Method Codes Table 1: Particulate Matter of 10 Micrometers or Less Monitoring Requirements and Monitor Locations | | 2016 Population | iomeoring requirements and Frome | 2014-2016 Maximum | Percent of | Required | | |---|-----------------|---|-----------------------|------------|-------------|-------------------| | Metropolitan Statistical Area | Estimates* | Site Name | Concentration (µg/m³) | NAAQS** | Monitors*** | Existing Monitors | | Dallas-Fort Worth-Arlington | 7,233,323 | | | | 4-8 | 4 | | | | Earhart | 132 | 88 | | | | | | Convention Center (collocated pair) | 93 | 62 | | | | | | Dallas North #2 | 74 | 49 | | | | | | Stage Coach | 72 | 48 | | | | Houston-The Woodlands-Sugar Land | 6,772,470 | | | | 4-8 | 7 | | | | Clinton (collocated pair) | 130 | 87 | | | | | | Houston Monroe | 99 | 66 | | | | | | Houston Westhollow | 95 | 63 | | | | | | Lang | 94 | 63 | | | | | | Texas City Fire Station (collocated pair) | 92 | 61 | | | | | | Houston Deer Park #2 (collocated pair) | 91 | 61 | | | | | | Houston Aldine | 89 | 59 | | | | San Antonio-New Braunfels | 2,429,609 | | | | 2-4 | . 2 | | | | Selma | 78 | 52 | | | | | | Frank Wing Municipal Court | 77 | 51 | | | | Austin-Round Rock | 2,056,405 | | | | 2-4 | . 2 | | | | Austin Webberville Rd | 99 | 66 | | | | | | Austin Audubon Society | 76 | 51 | | | | El Paso | 841,971 | | | | 2-4 | . 5 | | | | Socorro Hueco (collocated pair) | 130 | 87 | | | | | | Riverside | 87 | 58 | | | | | | Ojo De Agua (collocated pair) | 91 | 61 | | | | | | Van Buren | 81 | 54 | | | | | | Ivanhoe | 87 | 58 | | | | McAllen-Edinburg-Mission | 849,843 | | | | 1-2 | 2 | | | | Mission | 79 | 53 | | | | | | Edinburg East Freddy Gonzalez Drive | 74 | 49 | | | | Corpus Christi | 454,726 | | | | 0-1 | 1 | | | | Dona Park | 83 | 55 | | | | Laredo | 271,193 | | | | 0-1 | 2 | | | | Laredo Vidaurri | 65 | 43 | | | | | | Laredo Bridge | 56 | 37 | | | | Marshall (Micropolitan Statistical Area) | 66,534 | 3 | | | C | 1 | | (morepontari otatisticai rii ca) | 00,004 | Karnack | 66 | 44 | | | | Killeen-Temple | 435,857 | | | 0 | 0-1 | | | Brownsville-Harlingen | 422,135 | | | 0 | 0-1 | | | Beaumont-Port Arthur | 409,968 | | | 0 | 0-1 | | | Lubbock | 314,840 | | | 0 | 0-1 | | | Amarillo | 263,342 | | | 0 | 0-1 | | | College Station-Bryan | 254,928 | | | 0 | 0-1 | | | Waco | 265,207 | | | 0 | 0-1 | | | Totals | 203,207 | | | 0 | 15 - 38 | | | This list does not include Metropolitan Statistical Ave | | | | | 15 - 38 | 1 26 | This list does not include Metropolitan Statistical Areas with zero requirements and zero monitors. NAAQS - National Ambient Air Quality Standards μg/m³ - micrograms per cubic meter PM₁₀ - particulate matter of 10 micrometers or less ^{*}United States Census Bureau population estimates as of July 1, 2016 ^{**}Current PM₁₀ NAAQS is 150 µg/m³ ^{***}Required monitor count is based on population, percent of NAAQS, and maximum concentration #### Appendix H: Particulate Matter of 10 Micrometers or Less Monitoring Requirements, Monitor Locations, and Method Codes Table 2: Particulate Matter of 10 Micrometers or Less Monitor and Method Codes | AQS Number | Site Name | Method
Code | 2014-2016
Maximum
Concentration
(ug/m³) | 2016 Annual
Mean
Concentration
(ug/m³) | 2015 Annual
Mean
Concentration
(ug/m³) ² | 2014 Annual
Mean
Concentration
(µq/m³) | |------------|---|----------------|--|---|--|---| | 482011035 | Clinton (collocated pair) | 64 | 130 | 32.2* | 44.4* | 42.4* | | 481410038 | Riverside | 62 | 87 | 32.2* | 22.8 | 25.8* | | 482150043 | Mission | 141 | 79 | 29.5* | 26.3* | 27.0* | | 481410057 | Socorro Hueco (collocated pair) | 62 | 130 | 29.0* | 24.5* | 31.6* | | 482151046 | Edinburg East Freddy Gonzalez Drive | 141 | 74 | 26.2* | 22.2 | N/A | | 481130050 | Convention Center (collocated pair) | 141 | 93 | 25.9* | 24.0* | 26.9* | | 484530021 | Austin Webberville Rd | 141 | 99 | 24.1* | 23.6 | 25.7* | | 481411021 | Ojo De Agua (collocated pair) | 62 | 91 | 24.1* | 23.6* | 17.7 | | 481130061 | Earhart | 141 | 132 | 23.4 | 24.1* | 25.1* | |
481410029 | Ivanhoe | 62 | 87 | 22.9 | 18.6 | 19.9 | | 482010062 | Houston Monroe | 64 | 99 | 22.3 | 25.2* | 24.4 | | 484790016 | Laredo Vidaurri | 62 | 65 | 21.8 | 19.6 | 23.3 | | 482010047 | Lang | 64 | 94 | 21.7 | 25.1* | 23.8 | | 480290060 | Frank Wing Municipal Court | 141 | 77 | 20.8 | 21.9 | 25.1* | | 484790017 | Laredo Bridge | 62 | 56 | 20.7 | 19.5 | 19.6 | | 483550034 | Dona Park | 141 | 83 | 20.4 | 23.3 | 24.4 | | 482010024 | Houston Aldine | 141 | 89 | 20.0 | 22.9 | 23.6 | | 481410693 | Van Buren | 62 | 81 | 19.6 | 14.0 | 19.8 | | 480290053 | Selma | 141 | 78 | 19.3 | 18.4 | 22.7 | | 482010066 | Houston Westhollow | 64 | 95 | 17.8 | 20.6 | 20.0 | | 482030002 | Karnack | 141 | 66 | 16.8 | 15.3 | 15.4 | | 484393010 | Stage Coach | 64 | 72 | 16.6 | 17.2 | 19.7 | | 481130075 | Dallas North #2 | 141 | 74 | 16.5 | 18.5 | 18.3 | | 482011039 | Houston Deer Park #2 (collocated pair) | 141 | 91 | 16.4 | 19.5 | 19.4 | | 484530020 | Austin Audubon Society | 141 | 76 | 15.7 | 16.8 | 18.8 | | 481670004 | Texas City Fire Station (collocated pair) | 63 | 92 | 11.4 | 18.5 | 19.5 | *sites having annual mean particulate matter concentration among the highest 25 percent AQS - Air Quality System PM₁₀ - particulate matter of 10 micrometers or less μg/m³ - micrograms per cubic meter N/A - not applicable # Appendix I ## Particulate Matter of 2.5 Micrometers or Less Monitoring Requirements, Monitor Locations, and Method Codes Texas Commission on Environmental Quality 2017 Annual Monitoring Network Plan ## Appendix I: Particulate Matter of 2.5 Micrometers or Less Monitoring Requirements, Monitor Locations, and Method Codes Table 1: Particulate Matter of 2.5 Micrometers or Less Monitoring Requirements | Metropolitan Statistical
Area | 2016
Population
Estimates ¹ | 2014-2016
DV
(μg/m3)
Annual | 2014-2016
DV (µg/m3)
24-Hour | Percent
of
NAAQS
Annual ² | Percent
of NAAQS
24-Hour ³ | FRM/FEM
Samplers
Required
Monitors ⁴ | Existing | Speciation
Required
Monitors ⁴ | Speciation
Existing
Monitors ⁵ | Continuous
Required
Monitors ⁴ | Continuous
Existing
Monitors ⁵ | Totals
Required
Monitors ⁴ | Totals
Existing
Monitors ⁵ | |--|--|--------------------------------------|------------------------------------|---|---|--|----------|---|---|---|---|---|---| | Dallas-Fort Worth-Arlington | 7,233,323 | 9.5 | 19 | 79 | 54 | 4 | 7 | 1 | 2 | 2 | 6 | 7 | 15 | | Houston-The Woodlands-
Sugar Land | 6,772,470 | 11.3 | 22 | 94 | 63 | 5 | 7 | 1 | 2 | 5 | 9 | 11 | 18 | | San Antonio-New Braunfels | 2,429,609 | 8.4 | 22 | 70 | 63 | 3 | 3 | 0 | 0 | 2 | 5 | 5 | 8 | | Austin-Round Rock | 2,056,405 | 9.6 | 19 | 80 | 54 | 3 | 2 | 0 | 0 | 0 | 3 | 3 | 5 | | McAllen-Edinburg-Mission ⁷ | 849,843 | 10.1 | 25 | 84 | 71 | 2 | 2 | 0 | 0 | 1 | 1 | 3 | 3 | | El Paso | 841,971 | 9.4 | 25 | 78 | 71 | 2 | 2 | 1 | 1 | 2 | 4 | 5 | 7 | | Corpus Christi | 454,726 | 9.9 | 25 | 83 | 71 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 4 | | Killeen-Temple | 435,857 | N/A | N/A | N/A | N/A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Brownsville-Harlingen ⁷ | 422,135 | 10.7 | 25 | 89 | 71 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 2 | | Beaumont-Port Arthur | 409,968 | N/A | N/A | N/A | N/A | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 3 | | Lubbock | 314,840 | N/A | N/A | N/A | N/A | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | Laredo | 271,193 | N/A | N/A | N/A | N/A | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | Waco | 265,207 | N/A | N/A | N/A | N/A | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | Amarillo | 263,342 | N/A | N/A | | N/A | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | Odessa | 157,462 | N/A | N/A | | N/A | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | Texarkana | 150,098 | 8.5 | 17 | 71 | 49 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 2 | | Marshall ⁶ | 66,534 | 8.8 | 17 | 73 | 49 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 3 | | Eagle Pass ⁶ | 57,685 | N/A | N/A | N/A | N/A | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | Corsicana ⁶ | 48,523 | N/A | N/A | N/A | N/A | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | Big Bend National Park ⁸ | N/A | N/A | N/A | N/A | N/A | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | Fayette County ⁸ | N/A | N/A | N/A | N/A | N/A | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | Totals **United States Census Bureau popu | 1-41 | of hills 1, 2017 | | | | 21 | 28 | 3 | 7 | 17 | 44 | 41 | 79 | ¹United States Census Bureau population estimates as of July 1, 2016 µg/m3 - micrograms per cubic meter DV - Design Value FEM - federal equivalent method FRM - federal reference method N/A - not applicable NAAQS - National Ambient Air Quality Standards This list does not include Metropolitan Statistical Areas with no requirement and no monitors. ²Current PM_{2.5} Annual NAAQS is 12 micrograms per cubic meter (µg/m³) ³Current PM_{2.5} 24-hour NAAQS is 35 μg/m³ ⁴Required monitors include State or Local Air Monitoring Stations (SLAMS), National Core (NCore), Near-road, Regional Background, Regional Transport and Regional Haze requirements. ⁵Individual monitors may fulfill one or more requirements. ⁶Area is classified as a micropolitan area, and is not subject to SLAMS requirements. ⁷Site annual values do not meet completeness criteria. ⁸Sites do not fall within a metropolitan or micropolitan statistical area. #### Appendix I: Particulate Matter of 2.5 Micrometers or Less Monitoring Requirements, Monitor Locations, and Method Codes Table 2: Particulate Matter of 2.5 Micrometers or Less Method Codes | AQS Number | PM _{2.5} FRM/FEM Site Name | Current Method Code | Method Code Updated | |-------------------|--|----------------------------|---------------------| | 480290032 | San Antonio Northwest | 145 | - | | 480290059 | Calaveras Lake | 145 | - | | 480291069 | San Antonio Interstate 35 | 145 | - | | 480370004 | Texarkana | 145 | - | | 480610006 | Brownsville (relocating to Harlingen Teege (AQS# 480611023) in 2017) | 145 | 209 | | 481130050 | Convention Center | 145 | - | | 481130069 | Dallas Hinton (collocated pair and continuous FEM) | 145, 145, 170 | - | | 481390016 | Midlothian OFW | 145 | - | | 481410037 | EI Paso UTEP | 145 | - | | 481410044 | El Paso Chamizal (collocated pair and continuous FEM) | 145, 145, 170 | - | | 481671034 | Galveston 99th Street | 145 | - | | 482010024 | Houston Aldine | 145 | - | | 482010058 | Baytown | 145 | 209 | | 482011035 | Clinton (collocated pair) | 145 | - | | 482011039 | Houston Deer Park #2 (and continuous FEM) | 145, 170 | - | | 482011052 | Houston North Loop | 145 | - | | 482030002 | Karnack | 145 | - | | 482150043 | Mission | 145 | - | | 482151046 | Edinburg East Freddy Gonzalez Drive | 145 | - | | 483550032 | Corpus Christi Huisache (collocated pair) | 145 | - | | 483550034 | Dona Park | 145 | - | | 484391002 | Fort Worth Northwest | 145 | - | | 484391006 | Haws Athletic Center | 145 | - | | 484391053 | Fort Worth California Parkway North | 145 | - | | 484530020 | Austin Audubon Society | 145 | - | | 484530021 | Austin Webberville Road (collocated method 209 with method 145) | 145 | 145, 209 | | 484531068 | Austin North Interstate 35 | 145 | - | | 480430101 | *Bravo Big Bend | 702 (non-regulatory) | 209 | | 482450022 | *Hamshire | 702 (non-regulatory) | 209 | | 484790313 | *World Trade Bridge | 702 (non-regulatory) | 209 | ^{*}Not an FRM site, but method code changed in 2017 AQS - Air Quality System FRM/FEM - federal reference method/federal equivalent method $PM_{2.5}$ - particulate matter of 2.5 micrometers or less # Appendix J ### **Acronym and Abbreviation List** Texas Commission on Environmental Quality 2017 Annual Monitoring Network Plan ### **Appendix J: Acronym and Abbreviation List** | # – number | |---| | % – percent | | > - greater than | | < - less than | | μg/m³ – micrograms per cubic meter | | AADT – annual average daily traffic | | AERMOD – American Meteorological Society/Environmental Protection Agency Regulatory Model | | AMNP – annual monitoring network plan | | AQS – Air Quality System | | autoGC – automated gas chromatograph | | BAM – beta attenuation mass (monitor) | | CBSA – core based statistical area | | CFR - Code of Federal Regulations | | CO – carbon monoxide | | CSN – Chemical Speciation Network | | DRR - Data Requirements Rule | | EI – emissions inventory | | EPA - Environmental Protection Agency | | FEM – federal equivalent method | | FRM – federal reference method | | LLC – limited liability company | | MSA – metropolitan statistical area | | NAAQS - National Ambient Air Quality Standards | | NATTS - National Air Toxics Trends Stations | | NCore - National Core Multipollutant Monitoring Stations | | NEI - National Emissions Inventory | | NO ₂ – nitrogen dioxide | | NO – nitric oxide | | NO _y – total reactive nitrogen compounds | | O_3 – ozone | | PAMS – Photochemical Assessment Monitoring Stations | | Ph – lead | ppb – parts per billion ppm - parts per million PM₁₀ - particulate matter of 10 micrometers or less in diameter PM_{2.5} – particulate matter of 2.5 micrometers or less in diameter $PM_{10-2.5}$ – coarse particulate matter PWEI – population weighted emissions index QA - quality assurance RA-40 - Regional Administrator 40 Rd - road SE - southeast SETRPC - South East Texas Regional Planning Committee SIP - state implementation plan **SLAMS - State or Local Air Monitoring Stations** SO₂ - sulfur dioxide SPM - special purpose monitor STN - Speciation Trends Network TAD - technical assistance document TCEQ - Texas
Commission on Environmental Quality TEOM - tapered element oscillating microbalance tpy - tons per year TSP - total suspended particulate U.S. - United States UTEP - University of Texas at El Paso UV - ultraviolet VOC - volatile organic compound # Appendix K ## **Sulfur Dioxide Ongoing Data Requirements Annual Report** Texas Commission on Environmental Quality 2017 Annual Monitoring Network Plan # Appendix K: Sulfur Dioxide Ongoing Data Requirements Annual Report As required by 40 Code of Federal Regulations (CFR) Part 51.1205(b), this report provides the Texas Commission on Environmental Quality's (TCEQ) first annual assessment of sulfur dioxide (SO_2) emissions changes for areas designated unclassifiable/attainment for the 2010 SO_2 National Ambient Air Quality Standard (NAAQS), where the designations were based on modeling actual SO_2 emissions. For the seven Texas counties currently designated unclassifiable/attainment for the 2010 SO_2 NAAQS, six were designated based on modeled actual SO_2 emissions. Table 1 provides the most recent (2015) quality assured data available showing total actual SO_2 emissions from relevant sources in each of these six counties. The table includes actual emissions from the previous year (2014) and the decrease in these SO_2 emissions from 2014 to 2015. The emissions decrease in each of these counties provides reasonable assurance that these sources continue to meet the 2010 SO_2 NAAQS based on the modeling previously conducted. The TCEQ recommends that no additional modeling is needed to characterize SO_2 air quality in any of the six Texas counties listed in Table 1. McLennan County, Texas, was designated unclassifiable/attainment for the 2010 SO_2 NAAQS based on modeled allowable SO_2 emissions from the Sandy Creek Energy Station. Pursuant to 40 CFR 51.1205(c), this area is not subject to ongoing data requirements, and Texas is not required to report future annual SO_2 emissions assessments for McLennan County because allowable emissions were used for the modeling. A modeling analysis of the Oklaunion Power Station location in Wilbarger County, Texas, was submitted to the United States Environmental Protection Agency (EPA) in January 2017. Wilbarger County has not yet been designated for the 2010 SO₂ NAAQS; however, the modeling based on actual 2013-2015 emissions that was submitted demonstrates all receptor values are at less than 50 percent of the NAAQS. If the EPA designates this area unclassifiable/attainment as expected, it will not be subject to ongoing data requirements, and Texas will not be required to submit any annual reports for Wilbarger County per 40 CFR 51.1205(b)(2). **Table 1: 2014 to 2015 Emission Comparison** | County | Relevant Source | 2014 Actual
SO ₂ (tpy) | 2015 Actual
SO ₂ (tpy) | Difference
2014 to 2015 | |-----------|--|--------------------------------------|--------------------------------------|----------------------------| | Goliad | Coleto Creek Power
Station | 16,934.04 | 8,261.1 | -8,672.94 | | Limestone | Limestone Electric
Generating Station | 27,862.28 | 17,218.49 | -10,643.79 | | Atascosa | San Miguel Electric Plant | 6,909.49 | 5,520.56 | -1,388.93 | | Lamb | Tolk Station Power Plant | 16,752.94 | 16,080.38 | -672.56 | | Robertson | Twin Oaks Power Station | 5,761.77 | 4,493.91 | -1,267.86 | | Fort Bend | W.A. Parish Electric
Generating Station | 43,980.80 | 42,689.83 | -1,290.97 | tpy - tons per year # Appendix L ### TCEQ Response to Comments Received on the 2017 Annual Monitoring Network Plan Texas Commission on Environmental Quality 2017 Annual Monitoring Network Plan #### Introduction As required by 40 Code of Federal Regulations (CFR) Part 58.10, the Texas Commission on Environmental Quality (TCEQ) posted the 2017 Annual Monitoring Network Plan (AMNP) for public inspection for 30 days prior to submittal to the United States (U.S.) Environmental Protection Agency (EPA). During the public comment period from May 1, 2017, to May 31, 2017, the TCEQ received three comments from seven respondents regarding the posted document. The comments included a request for additional analysis of whether ozone (O₃) monitors in the Corpus Christi area were meeting federal requirements, requests for additional ambient air monitoring in San Patricio County, and reconsideration of proposed changes for the air monitors in the Austin area. #### **Summary and Response** **Comment 1:** The Hillcrest Residents Association (HRA), a neighborhood advocacy group representing communities in the Corpus Christi airshed, expressed concern about a lack of information about five continuous air monitoring stations (CAMS) in Corpus Christi. According to the HRA, the AMNP does not provide adequate information to ascertain whether the O_3 monitors at the Corpus Christi West (CAMS 4) and Corpus Christi Tuloso (CAMS 21) sites are meeting federal siting requirements. Specifically, the HRA commented that the AMNP failed to provide an analysis on the site locations to ensure that these sites meet the following criteria: - "(1) measure peak air pollution levels in the airshed, that is, are they located downwind from ozone precursors and transport areas, where the highest ozone levels should occur; - (2) are situated to measure typical levels in populated areas, since the CAMS are not located in densely populated areas; - (3) are located to best measure transport of ozone precursors from areas expected to produce ozone in the region, for instance in areas where emissions from Houston and Eagle Ford shale production are likely to affect air quality; - (4) sufficiently measure high ozone spikes caused by to emissions of specific ozone-enhancing VOCs of local refineries." The HRA also stated that the AMNP does not provide sufficient analysis of the ozone monitors at the Holly Road (CAMS 660), Violet (CAMS 664), and Ingleside (CAMS 685) sites for the EPA to better understand the air quality for the Corpus Christi airshed. **Response 1:** The TCEQ appreciates the input from the Hillcrest Residents Association and supports the interest in air monitoring site information. The EPA defines requirements for the scope of the AMNP in 40 CFR Part 58.10. The AMNP is required to provide the implementation and maintenance framework for the TCEQ ambient air quality monitoring network; the monitoring plan presents the current Texas network along with recommended changes. Background siting analysis does not fall within the scope of the AMNP. Detailed evaluations of spatial scales, changes in population density, and other site considerations that contribute to monitoring objectives are described in the Texas Five-Year Ambient Monitoring Network Assessment, published in 2015 and scheduled again for 2020. Currently, CAMS 4 and CAMS 21 both meet federal requirements for appropriate siting scales outlined in 40 CFR Part 58, Appendix D. The Texas Five-Year Ambient Monitoring Network Assessment is publicly available on the TCEQ webpage. The AMNP pertains to the existing TCEQ network of federally-funded, regulatory ambient air quality monitors. The AMNP does not include an explanation of monitors that are owned and operated by local entities or operated for purposes other than complying with federal monitoring requirements. CAMS 660, 664, and 685 are owned by the City of Corpus Christi and operated by Texas A&M Kingsville. Analysis of these monitoring stations does not fall within the scope of the AMNP. Site information and real-time data for all monitoring sites hosted by the TCEQ, including CAMS 660, 664, and 685, are available through the Texas Air Monitoring Information System: http://www17.tceq.texas.gov/tamis/index.cfm?fuseaction=report.site_list. **Comment 2:** Portland Citizens United, a grassroots organization opposed to the construction of the new EXXON/SABIC petrochemical facility seeking permits to operate near Portland, Texas, and several private citizens commented on the 2017 AMNP to express concern for the lack of ambient air monitors in San Patricio County. San Patricio County is located north of Nueces Bay within the Corpus Christi urban airshed. Data provided by the commenters indicate that San Patricio County is located downwind of several industrial facilities in the area. To assist in health effects evaluations in vulnerable populations and evaluations of O3 precursor emissions, the commenters request that air monitors be located in San Patricio County to detect carbon monoxide (CO), oxides of nitrogen (NO_x), and particulate matter of 2.5 micrometers or less (PM_{2.5}). Commenters also noted concerns regarding the components of soot emissions found in PM_{2.5} particles. Portland Citizens United provided a summary of emissions information for CO, NO_x , $PM_{2.5}$, particulate matter of 10 micrometers or less (PM_{10}) , sulfur dioxide (SO_2) , and volatile organic compounds (VOCs) from fourteen facilities. Data provided by the commenters indicate that schools and populated neighborhoods are directly downwind from and within three miles of three of the identified facilities. Additionally, commenters expressed concern regarding exceedance of allowable emissions by specific industrial facilities in the region. **Response 2:** The TCEQ appreciates the comments and will investigate the need for ambient air monitoring in San Patricio County. Portland Citizens United correctly indicated that the TCEQ currently does not monitor for CO, NO_x , or $PM_{2.5}$ in San Patricio County. The City of Corpus Christi does monitor for O_3 and collects meteorological data in Ingleside, which is in San Patricio County. The TCEQ operates five monitoring sites in the Corpus Christi area monitoring O_3 , SO_2 , $PM_{2.5}$ (including $PM_{2.5}$ mass and particulate speciation analysis), PM10, solar radiation, and meteorological parameters that evaluate compliance with the National Ambient Air Quality
Standards (NAAQS). In addition, the TCEQ operates three, state initiative, monitoring sites in the Corpus Christi area monitoring speciated VOCs by canister and by automated gas chromatography, hydrogen sulfide, relative humidity, and meteorological parameters. The speciated VOC analyses at the special purpose state initiative sites evaluate and provide information regarding public health impacts, O_3 precursors, population exposure, and pollutant concentrations. Speciated VOC analysis measures a panel of pollutants, to evaluate source emissions and air toxics. The majority of these monitoring sites are strategically sited downwind of significant industrial sources along the Nueces Bay and are expected to measure the highest emissions concentrations in the region. There are no CO monitors present in the Corpus Christi region, due to a lack of federal regulatory requirements and observed need for CO monitoring. The commenter noted that the 2016 maximum allowable CO emissions for voestalpine Texas LLC, an iron making facility in San Patricio County, are 4,308.6 tons per year. The actual CO emissions reported for 2016 were 1,821.98 tons per year (2016 data are preliminary and still under review by the TCEQ). CO monitors averaged throughout the state display a one-hour average design value of 2.04 parts per million (ppm), less than 6 percent of the one-hour NAAQS (35 ppm); and 1.31 ppm for the eight-hour average design value, less than 15 percent of the eight-hour NAAQS (9 ppm). Despite CO emissions from local sources, the TCEQ does not agree with the need for ambient CO monitoring in the Corpus Christi region at this time. The TCEQ Monitoring Division works closely with the Toxicology and Air Quality divisions, data validation experts, and the EPA when analyzing the existing Texas ambient air monitoring network. Recommendations for monitoring sites from internal and external stakeholders are reviewed based on air modeling and emissions analysis, meteorological data, regional CAMS data validation, exceptional event analysis, state initiatives, and federal monitoring requirements. As cited in the 2015 Texas Five-Year Ambient Monitoring Network Assessment plan and previous AMNPs, the TCEQ has historically determined that the existing air monitoring network in the Corpus Christi region is adequate to meet the needs of San Patricio County. However, with consideration to the comments submitted to this AMNP and given the industry and population growth in the Portland-Gregory area, the TCEQ Monitoring Division, Toxicology Division, Air Quality Division, and Corpus Christi Regional Office are evaluating the potential placement of additional ambient monitors in San Patricio County. The TCEQ appreciates the commenters' concerns regarding exceedance of allowable emissions. While permit compliance falls outside of the scope of this plan, the TCEQ Monitoring Division provided these comments to the appropriate division of the TCEQ Office of Compliance and Enforcement. Further concerns may be directed to the TCEQ Regional Office in Corpus Christi for assistance regarding public health or permit compliance issues. The Corpus Christi staff can be reached at: 361-825-3100. **Comment 3:** The Capital Area Council of Governments (CAPCOG) Central Texas Clean Air Coalition submitted a comment with four points regarding the placement and decommissioning of monitors in the Austin area: - Reconsideration of the reduction of monitoring resources for non-federally required monitors in the Austin area. CAPCOG posits that population growth should serve as a criterion the TCEQ utilizes to determine equitable distribution of discretionary monitoring resources "on a per capita basis." - Decommission of other samplers not used to meet federal requirements in lieu of decommissioning the particulate matter of 2.5 micrometers or less in diameter ($PM_{2.5}$) sampler at the Austin Northwest site (CAMS 3). - Maintain the current number of $PM_{2.5}$ monitors in the Austin area. If decommissioning equipment is necessary, decommission the $PM_{2.5}$ sampler at the Austin Audubon site (CAMS 38) rather than CAMS 3. - Deployment of an O₃ monitor at the Webberville Road site (CAMS 171). **Response 3:** The TCEQ appreciates the comments on the air monitoring network in the Austin area. Population is one factor used in the network design criteria for ambient air monitoring outlined in 40 CFR Part 58, Appendix D, and also used by the TCEQ when determining monitor placement. However, the TCEQ does not agree that monitoring resources should be evaluated primarily based on equitable distribution per capita. Monitoring resources may not be distributed equally "on a per capita basis" if a region demonstrates the need for additional monitors beyond population requirements due to proximity to industrial sources, high emissions concentrations, public health concerns, or other factors. Although the population in the Austin area exceeds that of some regions with a higher proportion of air monitoring sites, Austin has fewer industrial facilities and emissions concerns than those regions. The TCEQ evaluated emissions inventories during the five-year assessment in 2015, and did not identify a need for additional monitoring in the Austin area. TCEQ air monitoring sites have increased proportionately with Austin population as required by 40 CFR Part 58, Appendix D. As described in the AMNP, the TCEQ air monitoring network is meeting or exceeding all monitoring requirements. The TCEQ will continue to evaluate the needs of the Austin area as the region grows, including the need for additional populationbased monitors. The TCEQ researched the Austin area $PM_{2.5}$ monitoring network in response to comments received, and concluded that the CAMS 3 $PM_{2.5}$ continuous monitor should remain in operation. CAMS 3 is strategically sited to provide the public with air quality data due to its location at a school and the surrounding area population density. This change will be reflected in the final version of the 2017 AMNP. The TCEQ performs an annual evaluation of the PM_{2.5} continuous network by region to assess and determine if the existing network of monitors should be added, moved, or decommissioned to best understand and evaluate air quality on a regional and statewide basis given resource availability. CAPCOG commented, "It is important not to decrease the level of TCEQ monitoring resources for the Austin area." The recommended air monitoring changes to an area are not determined based on increasing or decreasing local area total monitoring resources. During the 2017 PM_{2.5} continuous network evaluation, it was determined that the network monitoring needs changed for several areas, including Austin-Round Rock. PM_{2.5} design values for this area have remained consistently below the annual and 24-hour PM_{2.5} NAAQS as shown in the 2015 *Texas Five-Year Ambient Monitoring Network Assessment* plan. The PM_{2.5} design value decreasing trend in this area does not indicate a need to maintain the current number of PM_{2.5} continuous monitors, allowing the TCEQ to better utilize resources in other areas. The TCEQ will recommend to decommission the PM_{2.5} monitor at CAMS 38 in lieu of CAMS 3 (as described above). The TCEQ acknowledges the request for additional O_3 monitoring in East Austin, where CAMS 171 is currently located. The TCEQ evaluates recommendations for additional monitors by reviewing current federal requirements, the local need for monitors to assess public health impacts, and available resources. The TCEQ maintains that there is no regulatory benefit for O_3 monitor placement in East Austin at this time. CAPCOG correctly identified that the TCEQ operates two O_3 monitors, located downwind of the Austin urban core; these two monitors are expected to represent the highest O_3 concentrations in the Austin area. The TCEQ supports eight additional non-regulatory O_3 monitors operated by CAPCOG, and St. Edward's University operates one O_3 monitor upwind of the urban core. This extensive network provides a total of $11\ O_3$ monitors equitably distributed around the Austin region, including east and southeast Austin. Non-regulatory monitors do not provide data that can be directly compared to the NAAQS, but these data are valuable in identifying air quality issues that may necessitate additional regulatory monitors. Data provided by non-regulatory O_3 monitors in the Austin area do not support the need for additional regulatory monitors at this time. The TCEQ determined that the current number and placement of O_3 monitors in the Austin area is sufficient to fulfill regulatory requirements and provide the public with appropriate representation of O_3 values throughout the region. The evaluation remains consistent with the response provided in the 2016 AMNP. Evaluation of monitoring needs will continue in the future and any recommended changes will be published in the 2018 AMNP. #### **Comment from Portland Citizens United** May 19, 2017 Texas Commissions on Environmental Quality Ms. Holly Landuyt, MC-165 P.O. Box 13087 Austin, Texas 78711-3087 Via email to: monops@tceq.texas.gov Dear Ms. Landuyt: The following comments are provided by Portland Citizens United, an active grassroots organization that was formed primarily to oppose the construction of the new EXXON/SABIC petrochemical facility that is currently seeking air and water permits to operate just beyond the city limits of Portland. Since its formation just eight months ago, our advocacy has extended beyond this single facility to include a broader approach and critical analysis of the industrial growth encroaching upon Portland and neighboring communities and the impact of this unprecedented growth to the quality of our air, and concomitantly, our health and quality of life. Many citizens in San Patricio County are concerned about the lack of and
need for ambient air monitoring on the north side of Nueces Bay within the Corpus Christi Urban Airshed. While considering the Port of Corpus Christi industries to the south, in addition to the recent industrial growth in San Patricio County along Corpus Christi Bay, the predominant south, southwest, and southeast winds position the cities of Gregory, Portland, Ingleside, and Taft downwind of many industrial pollutant point sources while lacking ambient air monitoring by TCEQ. The Texas Commission on Environmental Quality 2017Annual Monitoring Network Plan does not contain any ambient air monitors in San Patricio County. The attached chart shows the reported or permitted annual amount of pollutants emitted in San Patricio County along Corpus Christi Bay as well as the point source proximity to schools and housing. The elementary schools in Gregory and Portland are directly downwind from pollutants as well as homes in the communities (IE: Bay Ridge and Northshore subdivisions). It is in the public interest that ambient air monitors are placed in areas that can detect CO, NOx, and PM. We request that air monitors are appropriately sited for both health effects evaluations and evaluation of ozone precursor emissions. Air monitors provide relevant data to assess concentrations in a populated area as well as vulnerable populations such as children. According to the *Texas Five-Year Ambient Monitoring Network Assessment-2015*, since the last five-year network assessment, no significant changes to the ozone monitoring networks have occurred and there are no NOx monitors in the Corpus Christi Airshed. In the proposed 2017Annual Monitoring Network Plan there appears to be no planned monitoring of the emissions in San Patricio County. Considering new industrial construction and wind direction and noting that NOx is a contributor to PM2.5 and ozone formation, a NOx monitor in San Patricio County would aid in achieving established monitoring objectives. According to modeling contained in the Corpus Christi Liquefaction permit, predicted NOx concentrations exceed the PDS NAAQS and extend northwest of the facility past the fence line. The Radius of Impact was rounded up to 5.5 miles. The subdivision of Bay Ridge, East Cliff Elementary school and Stephen F Austin Elementary school are all northwest of the CCL facility and at a distance of 1.37 miles, 1.68 miles, and 2.29 miles, respectively. PM_{2.5} is measured at three sites in the Corpus Christi area and not in San Patricio County. The TCEQ currently operates a monitor at the Corpus Christi Huisache site and a continuous monitor at the Dona Park site. In addition to these monitors, a supplemental speciation monitor is located at the Dona Park site and a continuous PM_{2.5} monitor is located at the National Seashore site. In light of the recent large amount of fine, metallic particles being deposited in the Bay Ridge and Northshore subdivisions and the TCEQ investigation, installing a real-time fine particle PM_{2.5} monitor would enable TCEQ to estimate benzo-alpha-pyrene emissions and other PAHs known to be present in soot emissions. The subdivision of Bay Ridge, East Cliff Elementary school and Stephen F Austin Elementary school are northwest of the Voestalpine facility and at a distance of 0.75 miles, 1.03 miles, and 2.16 miles respectively. The Northshore subdivision is 0.6 miles from Voestalpine. Voestalpine maximum allowable emission for CO is 4308.8 TPY. As additional air permits in San Patricio County are being sought by heavy industry at a rapid rate, the air around existing populations encompassed by these facilities should be closely monitored for air pollutants by the Texas Commission on Environment Quality to "protect our state's public health and natural resources consistent with sustainable economic development. Our goal is clean air, clean water, and the safe management of waste", too. Respectfully submitted, Portland Citizens United Errol A Summerlin By: Errol A. Summerlin 1017 Diomede Portland, Tx. 78374 (361) 960-5313 summerline@verizon.net cc: Senator Judith Zaffirini cc: Representative J.M. Lozano | | SUMMARY OF POLLUT | ANTS EMI | TTED / | ANNUA | LLY IN | EAST S | SAN PA | ATRICI | o col | JNTY | | | |--------------------------------|--|----------------------|----------|----------|--------------|---------------|------------|------------|-------|--------------------------|---------|----------------------------| | TCEQ
REGISTRATION
NUMBER | COMPANY | SITE | со тру | Nox TPY | PM 10
TPY | PM 2.5
TPY | SO2
TPY | VOC
TPY | | MILES
TO BAY
RIDGE | IVIILLO | MILES TO
NORTH
SHORE | | RN102203445 | GULF MARINE FAB INC | SOUTH YARD | 2.298 | 10.664 | 6.074 | 3.113 | 0.706 | 12.1259 | | | | | | RN101623254 | CHEMOURS CO FC LLC | CHEMOURS | 6.2874 | 9.5974 | 1.7777 | 1.7395 | 0.2237 | 8.1517 | | | | | | RN102594678 | SOUTHCROSS GATHERING LTD | GREGORY | 112.05 | 100.16 | 4.8591 | 4.8591 | 0.3474 | 41.6797 | | | | | | RN102318847 | SHERWIN ALUMINA CO LLC | SHERWIN PLAN | 148.72 | 32.3801 | 124.7641 | 41.2472 | 13.663 | 40.316 | | | | | | RN100222744 | FLINT HILLS RESOURCES CC LLC | INGLESIDE TER | 15.482 | 17.5529 | 1.5643 | 1.3598 | 0.0466 | 45.2087 | | | | | | RN100211176 | OCCIDENTAL CHEMICAL CORP | INGLESIDE PLA | 100.14 | 524.844 | 101.4462 | 38.8672 | 2.2898 | 42.4926 | | | | | | RN102547957 | GREGORY POWER PARTNERS LP | GREGORY POW | 30.06 | 499.35 | 133.0789 | 130.657 | 9.3816 | 4.9218 | | | | | | RN102582392 | CANTERA ENERGY LLC | EAST WHITEPO | 3.5825 | 59.01 | 0.01 | 0.01 | 0.001 | 10.2092 | | | | | | RN102905064 | KIEWITT OFFSHORE SER LTD | FABRICATION Y | 0 | 0 | 0.756 | 0.1174 | 0 | 33.0294 | | | | | | RN105835318 | EOG RESOURCES INC | NUECES BAY | 4.7835 | 11.9159 | 0.0969 | 0.0969 | 0.0083 | 14.1777 | | | | | | RN106408628 | XTO ENERGY INC | MCKAMEYTAN | 10.06 | 6.8074 | 0.15 | 0.15 | 0.0093 | 11.9443 | | | | | | RN106224447 | TPCO AMERICA CORP | TPCO TX | 1.429 | 1.704 | 0.129 | 0.129 | 0.0735 | 0.093 | 2.25 | 1.48 | 0.77 | 2.39 | | RN104104716 | CC LIQUEFACTION LLC | GREGORY | 505.36 | 418.49 | | 4.82 | 9.62 | 48.47 | 1.68 | 1.37 | 2.29 | 1.37 | | RN106597875 | VOESTALPINE | LA QUINTA | 4308.6 | 394.51 | 63.53 | 33.51 | 34.82 | 35.76 | 1.03 | 0.75 | 2.16 | 0.6 | | TOTAL | | | 5248.8 | 2086.98 | 438.2362 | 260.676 | 71.191 | 348.58 | | | | | | CCL (CHENIERE | MPANIES 1-12WERE SELF-REPOR
) DATA IS EMISSIONS PROJECTED | FROM MODEL | ING IN P | ERMIT IN | 2014 | | | | | | | | | VOESTALPINE D | PATA IS MAXIMUM ALLOWABLE EI | MISSION IN PER | 2016 | | | | | | | | | | ## Comment from Kristen Howard From: Kristen-Prokitesurf **Sent:** Monday, May 22, 2017 3:17 PM To: MONOPS **Subject:** Air quality monitoring in San Patricio County Ms. Landuyt, I urge you and your agency to immediately put measures into place to monitor the air quality in San Patricio County, Texas. In addition to the noise and light pollution that has been emitted by voestalpine during the past 9+ months, those of us living in Portland and throughout San Patricio County have recently become aware that they are contaminating the air with a metallic dust that is blowing across portions of our city, as your agency has been made aware. It is extremely disheartening that an industry can set up shop in our backyard (from another country in this case) and display no regard for the citizens living there. Voestalpine has demonstrated throughout the last 9+ months that they have no concern for the well-being of the many thousands of citizens who are directly impacted by their actions. This latest disregard for quality of life will undoubtedly manifest in health repercussions for the citizens of Portland and San Patricio county. Thank you for your time, Kristen Howard #### **Comment from Annette Hedemann** From: Hedemann, Annette **Sent:** Wednesday, May 24, 2017 10:27 AM To: MONOPS **Subject:** Air Monitoring in the Portland Texas Area To those living in this area the need for such monitoring is blatantly obvious. There are days when my neighbors children can't play outside without coughing violently. My white vehicle can't be left out overnight without being coated in a mix of morning dew and a thick layer of dust that has to be hosed off so I can see out of the windows. This portion of the Texas Gulf Coast is rapidly becoming too polluted to sustain a healthy life. Portland is in the process of building a sports complex/park very near the new proposed Exxon/SABIC plant. Pollution poses a real danger to the children and adults that will be making use of the area. I have read all of the information that has been made public, for and against the new plant. We can, however make positive changes to the large industry that has already established itself here in the area. I am POSITIVE they have and are violating the allowable pollutants set forth in the clean air act. I have brought this up more than once but I will do so again. The area between the proposed Exxon/SABIC plant floods easily. The homes in this area have been flooded multiple times and many of the homes have flood barriers and flood doors. The area proposed for the plant was deeply flooded this morning, after the storm last night. I would guess that the plan is to elevate the landscape before construction, thus compounding the flooding in the immediate area, including the streets, highway and residences. I have heard the they plan a sort of berm with trees etc. to help contain particulate matter. As this build in the soil, a heavy rain will wash it into homes, schools and eventually our precious bays. If there is any data on the proposed solution to this issue, please send me in the right direction. Exxon has already stated on their application that the best measures to avoid polluting the area would be too costly. I think putting any person that has chosen to live in this area at risk for innumerable health problems, is too
costly. Please monitor the Portland Texas area and thank you for any information you can steer me to about the very real flooding issue. #### Annette LaBadie Hedemann Buyer - Dept of Marine Science University of Texas at Austin Marine Science Institute 750 Channel View Dr. Port Aransas, TX 78373 Phone (361) 749-6785 Fax (361) 749-6707 # **Comment from Scott Hagarty** To whom it may concern, I am a resident of Portland Texas and I am profoundly concerned about the total lack of air monitors in San Patricio county. The Texas Commission on Environmental Quality 2017Annual Monitoring Network Plan makes no mention of adding any ambient air monitors in San Patricio County. I believe there is a sufficient need for air monitors in our county. I local resident and friend has compiled some compelling data showing this need, and that table of data is contained below. As I'm sure the TCEQ would be aware, the chart below shows the reported or permitted annual amount of pollutants emitted in San Patricio County along Corpus Christi Bay as well as the point source proximity to schools and housing. The elementary schools in Gregory and Portland are directly downwind from pollutants as well as homes in the communities (IE: Bay Ridge and Northshore subdivisions). It is in the public interest that ambient air monitors are placed in areas that can detect CO, NOx, and PM. We request that air monitors are appropriately sited for both health effects evaluations and evaluation of ozone precursor emissions. Air monitors provide relevant data to assess concentrations in a populated area as well as vulnerable populations such as children. According to the *Texas Five-Year Ambient Monitoring Network Assessment-2015*, since the last five-year network assessment, no significant changes to the ozone monitoring networks have occurred and there are no NOx monitors in the Corpus Christi Airshed. In the proposed 2017Annual Monitoring Network Plan there appears to be no planned monitoring of the emissions in San Patricio County. Considering new industrial construction and wind direction and noting that NOx is a contributor to PM2.5 and ozone formation, a NOx monitor in San Patricio County would aid in achieving established monitoring objectives. According to modeling contained in the Corpus Christi Liquefaction permit, predicted NOx concentrations exceed the PDS NAAQS and extend northwest of the facility past the fence line. The Radius of Impact was rounded up to 5.5 miles. The subdivision of Bay Ridge, East Cliff Elementary school and Stephen F Austin Elementary school are all northwest of the CCL facility and at a distance of 1.37 miles, 1.68 miles, and 2.29 miles, respectively. PM2.5 is measured at three sites in the Corpus Christi area and not in San Patricio County. The TCEQ currently operates a monitor at the Corpus Christi Huisache site and a continuous monitor at the Dona Park site. In addition to these monitors, a supplemental speciation monitor is located at the Dona Park site and a continuous PM2.5 monitor is located at the National Seashore site. In light of the large amount of fine, metallic particles being deposited in the Bay Ridge and Northshore subdivisions and the TCEQ investigation, installing a real-time fine particle PM2.5 monitor would enable TCEQ to estimate benzo-alpha-pyrene emissions and other PAHs known to be present in soot emissions. The subdivision of Bay Ridge, East Cliff Elementary school and Stephen F Austin Elementary school are northwest of the Voestalpine facility and at a distance of 0.75 miles, 1.03 miles, and 2.16 miles respectively. The Northshore subdivision is 0.6 miles from Voestalpine. Voestalpine maximum allowable emission for CO is 4308.8 TPY. As additional air permits in San Patricio County are being sought by heavy industry at a rapid rate, the air around existing populations encompassed by these facilities should be closely monitored for air pollutants by the Texas Commission on Environment Quality to "protect our state's public health and natural resources consistent with sustainable economic development. Our goal is clean air, clean water, and the safe management of waste", too. Respectfully submitted, ## **Scott Hagarty** | | SUMMARY OF POLLUT | ANTS EMIT | TED A | NNUA | LLY IN | EAST S | AN PA | ATRICI | o cou | NTY | | | |--------------------------------|------------------------------|--------------------|----------|-----------|--------------|---------------|------------|------------|-----------------------------------|------|----------------------------------|----------------------------| | | | | | | | | | | | | | | | TCEQ
REGISTRATION
NUMBER | COMPANY | SITE | СО ТРУ | Nox TPY | PM 10
TPY | PM 2.5
TPY | SO2
TPY | VOC
TPY | MILES
TO EAST
CLIFF
ELEM | | MILES
TO SF
AUSTIN
ELEM | MILES TO
NORTH
SHORE | | RN102203445 | GULF MARINE FAB INC | SOUTH YARD | 2.298 | 10.664 | 6.074 | 3.113 | 0.706 | 12.1259 | | | | | | RN101623254 | CHEMOURS CO FC LLC | CHEMOURS | 6.2874 | 9.5974 | 1.7777 | 1.7395 | 0.2237 | 8.1517 | | | | | | RN102594678 | SOUTHCROSS GATHERING LTD | GREGORY | 112.05 | 100.16 | 4.8591 | 4.8591 | 0.3474 | 41.6797 | | | | | | RN102318847 | SHERWIN ALUMINA CO LLC | SHERWIN PLAN | 148.72 | 32.3801 | 124.7641 | 41.2472 | 13.663 | 40.316 | | | | | | RN100222744 | FLINT HILLS RESOURCES CC LLC | INGLESIDE TERM | 15.482 | 17.5529 | 1.5643 | 1.3598 | 0.0466 | 45.2087 | | | | | | RN100211176 | OCCIDENTAL CHEMICAL CORP | INGLESIDE PLAI | 100.14 | 524.844 | 101.4462 | 38.8672 | 2.2898 | 42.4926 | | | | | | RN102547957 | GREGORY POWER PARTNERS LP | GREGORY POW | 30.06 | 499.35 | 133.0789 | 130.657 | 9.3816 | 4.9218 | | | | | | RN102582392 | CANTERA ENERGY LLC | EAST WHITE PO | 3.5825 | 59.01 | 0.01 | 0.01 | 0.001 | 10.2092 | | | | | | RN102905064 | KIEWITT OFFSHORE SER LTD | FABRICATION Y | 0 | 0 | 0.756 | 0.1174 | 0 | 33.0294 | | | | | | RN105835318 | EOG RESOURCES INC | NUECES BAY | 4.7835 | 11.9159 | 0.0969 | 0.0969 | 0.0083 | 14.1777 | | | | | | RN106408628 | XTO ENERGY INC | MCKAMEY TAN | 10.06 | 6.8074 | 0.15 | 0.15 | 0.0093 | 11.9443 | | | | | | RN106224447 | TPCO AMERICA CORP | TPCO TX | 1.429 | 1.704 | 0.129 | 0.129 | 0.0735 | 0.093 | 2.25 | 1.48 | 0.77 | 2.39 | | RN104104716 | CC LIQUEFACTION LLC | GREGORY | 505.36 | 418.49 | | 4.82 | 9.62 | 48.47 | 1.68 | 1.37 | 2.29 | 1.37 | | RN106597875 | VOESTALPINE | LA QUINTA | 4308.6 | 394.51 | 63.53 | 33.51 | 34.82 | 35.76 | 1.03 | 0.75 | 2.16 | 0.6 | | TOTAL | | | 5248.8 | 2086.98 | 438.2362 | 260.676 | 71.191 | 348.58 | | | | | | | MPANIES 1-12 WERE SELF-REPOR | | | | | | | | | | | | | CCL (CHENIERE) | DATA IS EMISSIONS PROJECTED | FROM MODELIN | G IN PER | MIT IN 20 | 14 | | | | | | | | | VOESTALPINE D | ATA IS MAXIMUM ALLOWABLE E | MISSION IN PER | 2016 | | | | | | | | | | ## **Capital Area Council of Governments** 6800 Burleson Road, Building 310, Suite 165 Austin, Texas 78744-2306 (p) 512.916.6000 (f) 512.916.6001 www.capcog.org BASTROP BLANCO BURNET CALDWELL FAYETTE HAYS LEE LLANO TRAVIS WILLIAMSON May 24, 2017 Holly Landuyt Texas Commission on Environmental Quality (TCEQ) P.O. Box 13087, MC-165 Austin, Texas 78711-3087 RE: Comments on TCEQ's 2017 Annual Monitoring Network Plan Dear Ms. Landuyt: The Capital Area Council of Governments (CAPCOG) Central Texas Clean Air Coalition (CAC) appreciates this opportunity to comment on the TCEQ's 2017 Annual Monitoring Network Plan. The CAC respectfully submits the following comments on the Plan: - The TCEQ is already dedicating significantly fewer of its discretionary monitoring resources (samplers not used to meet federal requirements) to the Austin area on a per capita basis than it is dedicating to most of the other metro areas of the state: the CAC urges you to reconsider plans to further reduce the resources it dedicates to our region. - 2. The CAC strongly encourages TCEQ to decommission other samplers not used to meet federal requirements rather than decommission the continuous fine particulate matter (PM2.5) sampler at Continuous Air Monitoring Station (CAMS) 3, given its role in measuring population exposure to PM2.5 the ability to conduct co-pollutant analysis using this sampler in conjunction with the other samplers at this station, the population and population growth of the region, and the high value of continuous PM2.5 measurements for air quality forecasting. - 3. The CAC believes that it is important not to decrease the level of TCEQ monitoring resources for the Austin area in light of the region's population and air pollution levels, but if resource constraints make it necessary to decommission a continuous PM₂₅ sampler in the region, the CAC would prefer that the TCEQ target the continuous sampler at CAMS 38 instead of the continuous sampler at CAMS 3. - 4. The CAC reiterates its request that TCEQ consider co-locating an ozone monitor at CAMS 171. A detailed justification for each of these points is attached. We appreciate your consideration of these comments and welcome any discussion TCEQ staff may wish to have with us on air monitoring in the region. Sincerely, Sarah Eckhardt Travis County Judge, Chair of the Central Texas Clean Air Coalition 1. The TCEQ is already dedicating significantly fewer of its discretionary monitoring resources (samplers not being used to meet federal requirements) to the Austin area on a per capita basis than it is dedicating to most of the other metro areas of the state: the CAC urges you to reconsider plans to further reduce the resources it dedicates to our region. TCEQ's only stated rationale for proposing to decommission the continuous PM_{2.5} sampler at CAMS 3 is that it exceeds the area's regulatory requirements. However, as Appendix I to the *2017 Annual Monitoring Network Plan* shows, the TCEQ is currently operating 26 other continuous PM_{2.5} samplers that are not being used to meet regulatory requirements, and as Appendix B shows, the TCEQ is operating a total of 140 samplers that are
not being used to meet federal requirements. To the extent that TCEQ has discretion over the deployment of these 140 samplers, the CAC believes that current population and population growth should be considered in how these resources are distributed throughout the state and the TCEQ ought to ensure a greater degree equity in resource distribution in this regard. The following table highlights the current disparity in resource distribution in terms of current population coverage. The Austin-Round Rock metro area also continues to significantly outpace all of the other metro areas in the state in growth. The region's population grew by 2.9% between 2015 and 2016, which is a third faster than the next-fastest growing metro area in the state, and significantly ahead of the 2.0% growth in the Dallas-Fort Worth (DFW) and San Antonio-New Braunfels metro areas and the 1.9% in the Houston-the Woodlands-Sugarland metro area. This means that without additional resources, the Austin-Round Rock area's coverage per capita will continue to decline relative to other metro areas of the state, and a decrease in monitoring resources will further increase the existing disparity. While the number of monitors per million residents is certainly not the only way to measure the equity in resource distribution, and other factors such as the regions' design values are arguably just as relevant to that decision, it is not obvious from looking at the regions' design values why the Austin-Round Rock metro area should only be getting 1.46 extra monitors per million people (which would decrease to 0.96 extra monitors per million people), while other areas of the state are getting many times that level of resources despite not necessarily having appreciably higher design values than the Austin area. 2. The CAC strongly encourages TCEQ to decommission other samplers not used to meet federal requirements rather than decommission the continuous fine particulate matter ($PM_{2.5}$) sampler at Continuous Air Monitoring Station (CAMS) 3, given its role in measuring population exposure to $PM_{2.5}$, the ability to conduct co-pollutant analysis using this sampler in conjunction with the other samplers at this station, the population and population growth of the region, and the high value of continuous $PM_{2.5}$ measurements for air quality forecasting As previously mentioned, the TCEQ's only stated rationale for proposing to decommission the PM_{2.5} sampler at CAMS 3 is that it exceeds area requirements. The CAC does not believe that this is a sufficient rationale for decommissioning this sampler, given that there are numerous samplers that TCEQ maintains across the state that also exceed area requirements that are not being targeted for decommissioning. One potential basis TCEQ could point to for this proposal would be its evaluation that that this sampler only has a "medium" value in its 2015 Texas Five-Year Ambient Monitoring Network Assessment. However, there are a total of 17 continuous PM_{2.5} samplers that TCEQ rated as having a "medium" value across the state in this Assessment, but the TCEQ targeted CAMS 3 and only one other sampler for decommissioning in the 2017 Annual Monitoring Network Plan, without explaining why these two were targeted rather than the other 15. In its 2015 Texas Five-Year Ambient Monitoring Network Assessment, the TCEQ described PM_{2.5} sampling at CAMS 3 as follows: "PM_{2.5} monitors at the Austin Northwest, CPS Pecan Valley, Old Highway 90, Palo Alto, and Selma sites are located in populated urban core areas and continue to provide meaningful data on ambient PM_{2.5} concentrations in areas frequented by the public, as well as PM_{2.5} movement throughout the area." - "Although the number of continuous monitors in these areas exceeds minimum requirements, all of these monitors are considered of at least medium value because of the spatial coverage, historical trends, and unique data they provide" - "None of the monitor pairs had a strong correlation (Pearson's coefficient >0.976, relative difference <0.1). The Austin Northwest (AQS-48-453-0014) and Austin Audubon Society (AQS-453-0020) monitors were moderately correlated (Person's coefficient = 0.976, relative difference=0.128), but were located 18 kilometers apart. All four continuous PM_{2.5} monitors allow for spatial coverage throughout the greater Austin area." TCEQ's 2017 Annual Monitoring Network Plan does not provide an explanation as to why the logic that was used in the 2015 Network Assessment is no longer valid. The TCEQ has also not indicated that there is any external reason for decommissioning these samplers, such as an EPA recommendation or a budgetary constraint. It is not obvious from this plan what TCEQ would be able to afford to do by decommissioning the PM_{2.5} sampler at CAMS 3 that would be of higher value than leaving it in service. It is also not obvious that the PM_{2.5} data being collected at CAMS 3 is less valuable than data that is being collected at any of the other 139 samplers that TCEQ is operating throughout the state that are also not being used to meet federal requirements. The TCEQ should conduct an analysis of how the various monitoring objectives EPA identifies in its *Ambient Air Monitoring Assessment Guidance* would be affected by decommissioning the continuous PM_{2.5} sampler at CAMS 3 compared to decommissioning a different sampler elsewhere. Relevant objectives include: - Develop scientific understanding of air quality by supporting other types of assessments or analyses - Understand historical trends in air quality - Characterize specific geographic locations or emissions sources - Track the spatial distribution of air pollutants - Evaluate population exposures to air pollutants The CAC also notes that the EPA specifically identifies continuous $PM_{2.5}$ monitors as being "very valuable" for forecasting assistance in this guidance, and that therefore the loss of a continuous $PM_{2.5}$ monitor in the Austin area would be expected to diminish the ability of TCEQ to provide accurate $PM_{2.5}$ forecasts for the region. 3. The CAC believes that it is important not to decrease the level of TCEQ monitoring resources for the Austin area, but if resource constraints make it necessary to decommission a continuous PM_{2.5} sampler in the region, the CAC would prefer that the TCEQ target the continuous sampler at CAMS 38 instead of the continuous sampler at CAMS 3. We understand that in a phone conversation between TCEQ staff and CAPCOG's Director of Regional Services on May 5, 2017, TCEQ staff provided some explanation for the agency's thinking in proposing to decommission the continuous $PM_{2.5}$ sampler at CAMS 3. It is our understanding that TCEQ staff communicated that one of the primary reasons that the continuous $PM_{2.5}$ sampler at CAMS 3 was targeted for decommissioning was TCEQ staff's belief that its data would be duplicative of the data that started being collected at CAMS 1068 earlier in 2017. While CAMS 3 is relatively close to CAMS 1068 (6.5 kilometers away), this assertion does not account for the difference in the purposes, spatial scales, and temporal scales of these samplers. Appendix A to TCEQ's 2017 Annual Monitoring Network Plan includes the following information on the five sites within the CAPCOG region with PM_{2.5} sampling: Table 1. PM_{2.5} Monitoring Stations in the CAPCOG Region in Appendix A | Station | Continuous PM _{2.5} Sampling? | Location Setting | Monitoring Objective | Spatial Scale | | |-----------------------------|--|--------------------------|---|----------------|--| | CAMS 3 | Yes | Suburban | Population Exposure | Neighborhood | | | CAMS 38 | Yes | Rural | Population Exposure | Neighborhood | | | CAMS 171 Yes Urban and City | | Urban and Center
City | Population Exposure | Neighborhood | | | CAMS 601 Yes Ru | | Rural | Regional Transport; Source-
Oriented | Regional Scale | | | | | Urban and Center
City | Maximum Precursor Emissions
Impact | Microscale | | As the table above shows, while CAMS 3 is located somewhat close to CAMS 1068, the PM_{2.5} sampler currently located at CAMS 1068 is not duplicative of CAMS 3 in terms of each PM_{2.5} sampler's temporal scale, location setting, monitoring objective supported, or spatial scale. As is stated above, the CAC generally disagrees that it is either necessary or appropriate to reduce the level of monitoring resources TCEQ is providing to the Austin area. However, to the extent that this comment period provides an opportunity for the CAC to communicate its priorities for the deployment of monitoring resources within the region and help limit the harm we think such a decrease in monitoring resources would entail, we wish to encourage TCEQ to re-prioritize the three stations with continuous $PM_{2.5}$ samplers. Among the three CAMS that collect continuous $PM_{2.5}$ measurements in Travis County in order to measure population exposure, the CAC would prioritize them as follows, based both on the population within 0.5-4.0 kilometers (the spatial scale corresponding to the "neighborhood" scale described in 40 CFR Part 58, Appendix D) and the 3-year average annual $PM_{2.5}$ concentrations at each site. Each of these metrics suggests that CAMS 171 should be the highest priority continuous PM2.5 sampler, followed by CAMS 3, followed by CAMS 38. Table 2. CAC Priority Ranking for Continuous PM2.5 Sampling for Population Exposure in the Austin-Round Rock Metro Area | Station | Priority
Rank | Location Setting | Population
within 0.5
km of Station | Population
within 4.0
km of
Station | 3-Year Annual PM _{2.5} Concentration Avg. (µg/m³) | | |-----------------|------------------|-----------------------|---|--
--|--| | CAMS 171 | 1 | Urban and Center City | 1,741 | 99,754 | 9.6 | | | CAMS 3 | 2 | Suburban | 1,338 | 62,239 | 7.8 | | | CAMS 38 | 3 | Rural | 161 | 22,004 | 7.7 | | And whereas the only other pollutant parameters measured at CAMS 38 are ozone and PM_{10} , other parameters at CAMS 3 include ozone, nitrogen oxides, and sulfur dioxide sampling as well. CAMS 171 is equipped with PM_{10} and a VOC canister sampler. Continuous $PM_{2.5}$ sampling at CAMS 3 and 171 therefore provides more extensive opportunities for multipollutant analysis than continuous sampling at CAMS 38. #### 4. The CAC reiterates its request that TCEQ consider co-locating an ozone monitor at CAMS 171. In response to TCEQ's 2016 Annual Monitoring Network Plan, the CAC had proposed that TCEQ deploy at least one additional regulatory ozone monitor in the Austin area using its own resources, and that CAMS 171 would be an appropriate location to put it. Points in support of this suggestion included the following: - Adding ozone sampling to CAMS 171 would enable additional multi-pollutant analysis, due to existing PM and VOC sampling at the site - An ozone sampler at CAMS 171 would not be expected to be as "highly correlated" to measurements at CAMS 3 or CAMS 38 as the ozone measurements at these sites are with each other - An ozone sampler at CAMS 171 would not be expected to adversely affect the region's design value due to its location upwind of the urban core on most high ozone days, but could prove useful in better representing the spatial distribution of ozone within the Austin urbanized area and transport within the region In response to the CAC's comments, the TCEQ stated the following: "The TCEQ evaluated likely sources of precursor emissions and area topographical and meteorological information in order to select both an upwind location (to evaluate transport into the urban core) and a downwind location that was the most likely to observe the highest O_3 concentrations in the Austin-Round Rock metropolitan statistical area (MSA). The TCEQ agrees with CAPCOG's assertion that East Austin is upwind of the urban core on virtually all days when the region traditionally sees high O_3 measurements, and therefore does not agree that there is a regulatory benefit for monitor placement in East Austin at this time. The placement of these regulatory monitors, in addition to the supplemental information provided by non-regulatory monitors, provides a high degree of certainty that the monitored O_3 concentrations are representative of the entire Austin-Round Rock MSA. At this time, TCEQ has no information that additional monitoring is needed in East Austin." The CAC would like to point out that TCEQ does not currently operate any O₃ monitors upwind of the Austin urban core as described above. The CAC would also like to point out that the work plan that TCEQ recently approved for CAPCOG's near-nonattainment area grant for the 2018-2019 biennium envisions a substantial reduction in CAPCOG's ozone monitoring budget, which could reduce the number of ozone monitors CAPCOG will be operating from eight to five, redirecting these resources to other projects. The CAC suggests that the TCEQ consider deploying an upwind monitor for the Austin area, possibly at CAMS 171, and make that decision independent of the resources that CAPCOG chooses to dedicate to ozone monitoring or where those resources might deployed in 2018 and 2019, since those decisions have not yet been made. # **Comment from Joyce Bjork** From: joycebjork **Sent:** Saturday, May 27, 2017 5:04 PM **To:** MONOPS > Subject: AIR QUALITY TESTING IN SAN PATRICIO COUNTY We need air quality testing in San Patricio County which will be in the vicinity of the Voestalpine plant. What we have been seeing lately is quite alarming. And with the advent of the SABIC/Exxon-Mobil plant, air quality testing will be even more important. The future of our children is at stake. The rest of us count, too. Thank you. Joyce Bjork 102 Marie Place Portland TX 78374 361-643-6816 # LAW OFFICE OF TEXAS RIOGRANDE LEGAL AID, INC. Corpus Christi - Pueblo Law Center 3825 Agnes St. Corpus Christi, TX 78405 Telephone (361) 880-5420 Toll Free (800) 840-3379 Fax (361) 883-7615 May 31, 2017 Texas Commission on Environmental Quality Ms. Holly Landuyt, MC-165 P.O. Box 13087 Austin, Texas 78711-3087 Via email to: monops@tceq.texas.gov Re: Comments to Texas Annual Monitoring Plan for 2017 Dear Ms. Landuyt: The Hillcrest Residents Association (HRA) is a neighborhood group that has advocated for quality of life in Corpus Christi's historically black Hillcrest neighborhood for decades. Because of Hillcrest's proximity to Corpus Christi's Refinery Row, HRA is concerned about air quality and the effects of elevated ozone levels on residents with respiratory sensitivities. We respectfully submit these comments on the Texas Annual Monitoring Plan for 2017. These comments are specific to ozone (O₃) continuous air monitors (CAMS) for the Corpus Christi airshed, CAMS 4 and CAMS 21, and to the omission of research grade monitors CAMS 660, 664, and 685 from the plan. The 2017 annual plan does not provide enough information to demonstrate that the monitoring network meets the siting requirements of Appendix D to 40 C.F.R. 58. The plan does not discuss why the O₃ monitors in the Corpus Christi airshed are sited where they are or provide analysis of whether they are located in places that meet regulatory standards. Appendix D to 40 C.F.R. 58 1.1.1. requires: "Monitoring sites must be capable of informing managers about many things including the peak air pollution levels, typical levels in populated areas, air pollution transported into and outside of a city or region, and air pollution levels near specific sources." The annual monitoring plan for 2017 does not provide sufficient basis to show that the monitoring sites meet these specific standards. Specifically, TCEQ has not provided any information so that HRA can comment on whether CAMS 4 and CAMS 21: - (1) measure peak air pollution levels in the airshed, that is, are they located downwind from ozone precursors and transport areas, where the highest ozone levels should occur; - (2) are situated to measure typical levels in populated areas, since the CAMS are not located in densely populated areas; - (3) are located to best measure transport of ozone precursors from areas expected to produce ozone in the region, for instance in areas where emissions fro Houston and Eagle Ford shale production are likely to affect air quality; (4) sufficiently measure high ozone spikes caused by to emissions of specific ozone-enhancing VOCs of local refineries. The 2017 plan provides conclusions without analysis and does not demonstrate that CAMS 4 and CAMS 21 meet the standards of 40 CFR 58. The 2017 annual plan also does not adequately demonstrate that the monitors meet the other criteria of the appendices to 40 C.F.R. 58. Under 40 C.F.R. 58.10(a)(1), the annual monitoring plan "shall include a statement of whether the operation of each monitor meets the requirements of appendices A, B, C, D, and E of this part, where applicable." While the site list in Appendix A lists the information required by 40 C.F.R. 58.10(b), at least where it is relevant to ozone monitoring, the 2017 plan from TCEQ includes only a statement that all monitors meet the standards instead of individually discussing the monitors. The plan would benefit from a more detailed analysis of each monitor. Finally, the annual plan does not include information about the research grade monitors operated in the Corpus Christi airshed by the University of North Texas and Texas A&M University—Kingsville. These monitors are CAMS 660, CAMS 664, and CAMS 685. Appendix D to 40 C.F.R. 58 explains that research grade monitors are part of the national air monitoring network and are worthy of discussion "due to their important role in supporting the air quality management program." 40 C.F.R. 58 App. D Sec. 2(b). CAMS 660, 664, and 685 all record ozone levels and meet high scientific standards. TCEQ currently receives ozone monitoring data from these CAMS and reports it on its website. A map of those monitors is attached as Exhibit A to these comments. The information from these monitors contributes to an understanding in particular of transport of ozone from other regions. To better assist the EPA's understanding of air quality in the region, TCEQ should also include information about these monitors in its annual plan. The 2017 annual monitoring plan is not sufficiently detailed to allow HRA to provide comments regarding whether the ozone monitors in Corpus Christi meet the relevant scientific and legal standards. HRA cannot review TCEQ's analysis because only conclusions are provided in the plan. TCEQ should add analysis of the monitor locations, explain whether they provide the best possible regulatory information, and allow the public to comment on the reasoning of the agency and support for its conclusions. HRA requests an opportunity to comment on such a reasoned analysis. In addition, TCEQ should include a discussion of the scientific ozone research monitors in the Corpus Christi airshed, CAMS 660, 664, and 685, which will aid EPA in developing a clear picture of the region's air quality status. HRA thanks you for considering these comments and hopes they will help to improve public understanding of the ozone monitoring network. Respectfully, Rachel Zummo Amy Johnson Cc: Hillcrest Residents Association