Uinta Basin -Analyses on Emissions Data Sets to Improve 2014 Emission Inventory

US EPA 2017 International Emission Inventory Conference

8/15/17

Cindy Beeler EPA Region 8 Energy Advisor

Rate of O&G Growth

€PA

Rate of O&G Growth

Wintertime Ozone in the Uinta Basin

Emissions Comparative Analyses

- In-depth analysis within the Uinta Basin Emission Inventory (UBEI)
 - Used R, a software environment for statistical computing and graphics
 - Compare by-operator (e.g. #PC/well, VOC lb/bbl, operating hours, glycol circ. rate, VOC wt% ...)
 - Compare State land vs. Indian country
 - Screen for anomalies (e.g. negative values, zero emissions w/ oper. hours reported, etc.)
- In-depth comparative analysis <u>between</u> UBEI-Indian country vs. Tribal Minor Source Registrations
 - Focus on glycol dehydrators and tanks
 - UBEI 2014, Registrations 2011-2015
 - Normalized for production differences
 - Potential vs. actual low % of dehyds/tanks controlled, operating hours
- In-depth comparative analysis <u>between</u> UBEI State+Indian country vs. EPA Greenhouse Gas Reporting Program, subpart W (GHGRP-W)
 - Focus on pneumatic pumps and pneumatic controllers
 - UBEI 2014, GHGRP-W 2014

Approach - UBEI

~16,000 TPY

Pneum.Controllers 49%

Tribal Minor Source Registration Data

Emission Stream	Emission Source	Data Source	Data Use			
"Raw" gas	Fugitive leaksPneumatic controllersPneumatic Pumps	 Treater/separator gas "Wet gas" stream input to GlyCALC 	 Extended analyses - speciation 			
Tanks	Condensate tanksOil tanks	 E&P TANKS output GOR Flash Gas	 EF - Ib VOC/barrel oil EF - Ib VOC/barrel cond Extended analyses - speciation 			
Glycol Dehydrators	 Glycol Dehydrators – Regenerators/Still Vent 	 GlyCALC output 	 Extended analyses - speciation 			
19 Operators, 5243 Facilities, 5265 Registrations						

TOG Condensate Tank Emission Profiles: values reported in weight %										
Species	А	С	D	Н	I	J	К	L	Р	R
Methane	6.2997	26.4868	42.5441	13.0250	15.2277	18.8200	41.5324	15.5540	0.7173	12.5141
Ethane	11.2580	18.1956	18.1926	12.6239	24.9393	21.8901	21.2591	17.2700	5.1086	10.7620
Propane	26.8229	19.0308	11.9138	26.0258	31.2682	32.9904	17.4148	34.5372	30.5980	36.3504
Propylene	-	-	1	-	•	-		-		-
Isobutane (or 2-Methylp	11.6633	7.7761	3.0643	9.8883	5.0718	7.8964	4.3806	9.8265	18.0008	10.1963
N-butane	18.6914	11.8718	4.0404	13.5358	11.7698	9.1849	6.2354	13.2771	22.4188	14.9828
Isopentane (or 2-Methyll	7.4490	4.7392	1.9953	7.4246	3.1223	3.7800	2.6155	3.6517	7.8238	5.0941
N-pentane	5.4619	3.7033	1.9751	5.5026	3.8963	2.4515	2.1749	2.7245	4.9544	4.0176
N-hexane	2.3255	1.3176	2.3995	4.0770	0.7668	0.4988	0.4274	0.5787	1.4481	1.2907
Isomers of pentane	-	-	-		-	-	-	-	-	-
Isomers of hexane	3.6207	1.8203	7.2618	1.2800	1.1982	0.9608	0.1958	0.9225	3.1309	1.6971
Isomers of heptane	3.8975	2.8853	4.5450	4.6626	1.6431	0.8830	1.6757	1.2016	3.4996	2.0047
Isomore of octano	1 5104	1.0720	0.6245	0.5006	0.2100	0.2169	1 1 2 0 0	0 1425	1 2677	0 5657
Benzene	0.2076	0.2431	0.6298	0.5383	0.2493	0.1042	0.1344	0.0844	0.2276	0.2581
Toluene	0.3921	0.2763	0.5517	0.3972	0.2422	0.1524	0.4307	0.1068	0.3364	0.1565
Ethylbenzene	0.0231	0.0061	0.0040	0.0127	0.0091		0.0011	0.0038	0.0161	0.0000
Cumene			17.5	17-19	17-12	-	87.5	-	57.5	
trimethylbenzene	-	-	-	-	-	-	-	-	-	-
M, O, & p-xylene	0.1384	0.1494	0.0444	0.1057	0.0881	0.0187	0.1602	0.0388	0.1218	0.0549
z,z,4-trimetnyipentane	-	0.2	0.0	0.1	0.1		0.0	0.0374	0.0	
C7	575	575	87.5	87.8	17-12	87-8	57.5	57.5	17-12	57.5
C8	-	-	-	-	-	-	-	-	-	-
C9	0.2306	0.2473	0.1583	0.1167	0.0661	0.0508	0.2268	0.0327	0.2078	0.0549
C10+	0.0000	0.0264	0.0081	0.0460	0.0071	0.0010	0.0056	0.0098	0.0201	0.0000
C-5 Cycloparaffins			17-12	175	575	17-17	575	17-15	17-12	1.7.5
C-6 Cycloparaffins	-	-	-	-	-	-	-	-	-	-
C-7 Cycloparaffins			175	175	175		175	17	175	
C-8 Cycloparaffins	-	- 1	- 1	1.4	- 1	843	- 1	8-3	1-1	- 1
Unidentified	5-11	0-0	575	17-19	57.5	575	57.5	575	575	1.7
Total	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
Total M,E	17.558	44.682	60.737	25.649	40.167	40.710	62.792	32.824	5.826	23.276
API Gravity Sales Oil	62.0	52.0	51.4	50.7	50.1	47.4	44.1	63.7	57.0	54.6

Speciation profiles
 for condensate tank
 emissions from E&P
 TANKS

TOG Glycol Dehydrator Profiles: values reported in weight %								
Species	D	Н	J	К	L	0	Q	
Methane	35.1081	70.2166	2.3921	5.1952	4.7237	7.0977	32.4064	
Ethane	6.0119	4.6730	0.9287	1.0633	2.9450	2.1288	5.1459	
Propane	5.5688	2.2560	1.0283	0.9727	3.9224	5.0649	6.0543	
iso-butane	1.8251	1.1025	1.0107	0.4236	1.5972	1.6909	1.5343	
n-butane	3.1199	1.0694	0.9905	0.6419	2.9889	5.0614	3.4084	
iso-pentane	1.5603	0.7675	1.1281	0.4032	1.6175	2.0513	1.3302	
n-pentane	1.5158	0.4858	0.6800	0.3854	1.4671	2.8849	1.8152	
n-hexane	1.1044	0.3586	0.8094	1.0153	1.3915	2.3667	0.8794	
isomers of pentane	-	-	-	÷	-	-	-	
isomers of hexane	1.2714	0.6131	1.4415	0.8268	1.4196	2.3253	1.4090	
isomers of heptane	2.4693	0.8790	2.8676	2.8166	4.3165	5.6727	0.3634	
isomers of octane	-	-	-		-	-	-	
C-5 Compounds	-	-	-	÷.	-	-	<i></i>	
C-6 Compounds	10-2 ¹	2	728	4	2	142	-	
C-7 Compounds	-	-		¥.	-	-	·	
C8+	7.9572	2.3245	10.6949	39.8952	16.8508	2.1291	10.5201	
Benzene	4.6812	4.4616	35.7903	9.2118	8.7877	18.8657	7.7701	
Isomers of propyl benzene	-	12 I	123	2 j	12.4	-		
Isomers of butyl benzene	1.5	-	1.5	-	-		-	
Toluene	12.0282	5.7070	29.1334	16.1865	22.1154	21.3574	13.2197	
Cumene	-	-	1-1	-	-	-	-	
1,2,4-trimethylbenzene	-	-	-		-	-	-	
Ethyl-Benzene	0.5441	0.1968	0.7627	0.4152	0.7902	1.7069	2.5963	
Xylenes	9.3590	3.1154	6.4650	14.1930	15.2746	6.5196	9.6954	
224 Trimethylpentane	0.0928	0.0292	0.0644	0.0839	0.1378	0.2763	0.0230	
C-5 cycloparaffins	-			-		-	-	
C-6 cycloparaffins	2.0008	0.6167	1.0848	2.1937	3.9102	5.9079	0.9689	
C-7 cycloparaffins	3.7817	1.1273	2.7274	4.0767	5.7438	6.8926	0.8601	
Total	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	
Total M,E	41.1200	74.8896	3.3209	6.2585	7.6688	9.2265	37.5523	

Speciation profiles for glycol dehydrator regenerator emissions from GRI-GLYCalc

> >1800 uncontrolled glycol dehydrators!

Set EPA

Comparative Analysis Within UBEI

Started high-level ... dug further into details to understand emissions

UDOGM vs. UBEI	- 2014				
UD		GM	UBEI		GHGRP-W
	IC	State	IC	State	
#Wells	9,123	2,311	9,324	2,766	11,753
Oil Prod (MMbbls)	15.9	17.0	12.9	16.7	
Cond Prod (MMbbls)	15.5	17.0	3.0	0.1	
Gas Prod (Bcf)*	326.7	33.6	141.0	30.6	
Oil-Cond bbls/well	1,744	7,372	1,702	6,075	Sec.

* Utah Division of Oil, Gas & Minerals (UDOGM) data is gas produced; UBEI data is gas processed thru a dehydrator

✓ Universe looks to be covered

Set EPA

Comparative Analysis Within UBEI

UBEI: Indian Country vs. State							
	UBEI						
	IC	State					
#Wells/Facility	1.39	1.53					
VOC TPY/Well	6 31	5.81					
Overall	0.01	0.01					
#Dehydrators	1,895	8					
Tanks VOC lb/bbl	1 13	0.45					
Overall	1.10	0.40					
#PCs/Well	3.67	4.61					
#Pumps/Well	0.91	0.03					
#Uncontrolled	0.27	0.59					
Engines/Well	0.27	0.00					
#Separators-	1.16	1.07					
Heaters/Well							
Fugitive VOC	1.49	0.91					
TPY/Well							
Truck Loading VOC	0.09	0.29					
I PY/Well							

Comparative Analysis Within UBEI

Comparative Analysis – Registration vs. UBEI

	U&O Registration Data	UBEI - Indian country
Number of Facilities	5,169	6,729
Avg Facility-Wide VOC (tpy)	12.25	8.74
Avg Dehyds and Tanks VOC (tpy)	8.15	1.91
# Facilities VOC (tpy) < 5	1,759	1,916

GLYCOL DEHYDRATORS

- Number of glycol dehydrators about the same
- Overall VOC emissions decreased 76%
- 97% of dehyds in UBEI uncontrolled
- 67% reported 8,760 hrs/year or close to it
- 1,137 dehyds reported glycol circulation rate of 0.102 gpm

OIL/CONDENSATE TANKS

- Overall VOC lb/bbl from 1.82 to 1.13
- 88% of tanks in UBEI uncontrolled
- Variability by-Operator on UBEI > or < Registration for VOC lb/bbl
- Comparison of tank temperature and separator pressure fairly close

Comparative Analysis – GHGRP-W vs. UBEI

	GHGRP-W	UB EI	DIFF
# Wells	11,753	12,090	(337)
# Dehyds	1,860	1,903	(43)
# Pneum.Pump	11,614	8,535	3,079
# PCs	38,566	46,944	(8,378)
#Dehyds/Well	0.16	0.16	1%
#Pumps/Well	0.99	0.71	29%
#PCs/Well	3.28	3.88	-18%

Set EPA

Comparative Analysis – GHGRP-W vs. UBEI

Action from the Comparative Analyses

- Want the best UBEI we can get, but need to balance with resources required
- Endeavor to target and resolve the bigger issues
- Communicate with some operators individually to better understand specific UBEI emission questions
- Adjust UBEI, as appropriate

Take-Away Message ...

Oil & Gas Inventory work needs DATA ANALYSTS!!

Alexas Gilbert, EPA Access, Excel

Whitney Oswald, UDAQ

Excel, Python, SQLite

Aaron Zull, EPA R, Excel, SQL, Access

