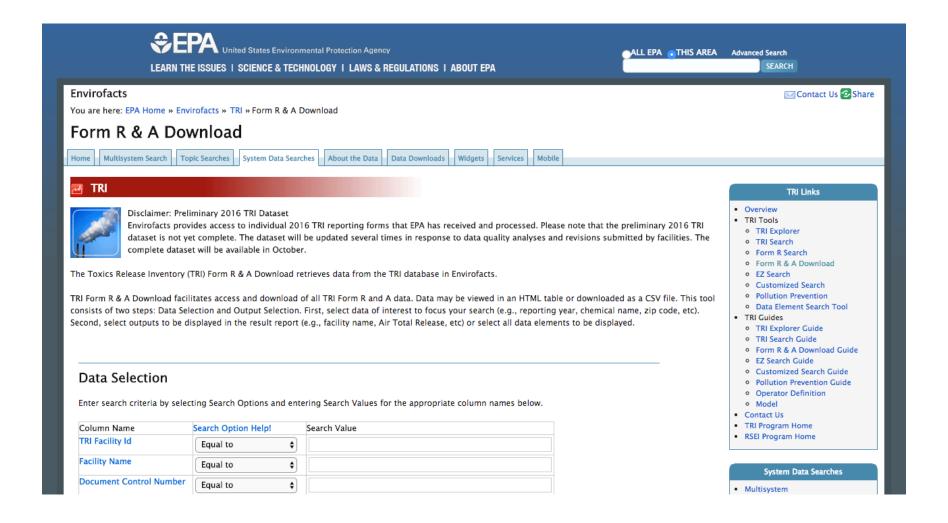
Demo of How to Pull TRI Data from EPA's Envirofacts

Kara Koehrn

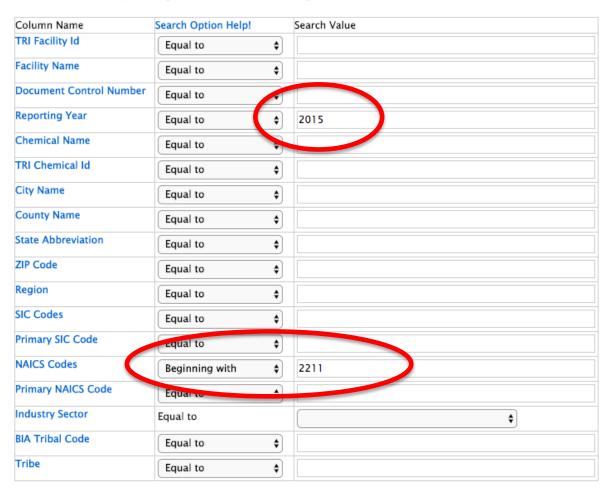
Method


- Envirofacts
 - Free, public data query tool
 - https://www3.epa.gov/enviro/
 - Use the Form R & A Download feature

- Example data pulls
 - How to find the method of calculation for air release estimate
 - How to find waste treatment method for gaseous waste streams

Method

- Elements to pull
 - Chemical information
 - Facility information
 - Air release information (stack and fugitive releases)
 - Release calculation estimation method code
 - Waste stream treated
 - Waste treatment method


Form R & A Download

Form R & A Download: Filter

Data Selection

Enter search criteria by selecting Search Options and entering Search Values for the appropriate column names below.

Output Selection

Chose desired output elements (columns) for the download by selecting one or more of the columns below by clicking on the square box next to the column name.

Please note: Some searches may take a long time to process, due to the limitations of your computer's resources. For best results, try limiting your column selections, whenever possible. 15 minutes of CPU time has been allotted for running the output searches. If your search exceeds this 15 minute threshold, the search will produce an error.

Select All

ACCURACY_SCORE	ACCURACY_VALUE	ACTIVE_DATE
ACTIVE_STATUS	ADDITIONAL_DATA_IND	ADDITIONAL_TEXT_8_11
ADDITIONAL_TEXT_9_1	NAICS ADJUSTED	AIR_TOTAL_RELEASE
ANCILLARY	ARTICLE_COMPONENT	ASGN_AGENCY
ASGN_DB_IND_1	ASGN_DB_IND_2	ASGN_FEDERAL_IND
ASGN_NPDES_IND_1	ASGN_NPDES_IND_2	ASGN_PARTIAL_IND
ASGN_PUBLIC_CONTACT	ASGN_PUBLIC_CONTACT_EMAIL	ASGN_PUBLIC_PHONE
ASGN_RCRA_IND_1	ASGN_RCRA_IND_2	ASGN_UIC_IND_1
ASGN_UIC_IND_2	BIA_CODE	BYPRODUCT
CAAC_IND	CARC_IND	CAS CHEM NAME
CAS_REGISTRY_NUMBER	CERTIF_DATE_SIGNED	CERTIF_NAME
CERTIF_OFFICIAL_TITLE	CERTIF_SIGNATURE	✓ CHEM_NAME
CHEM_PROCESSING_AID	CITY_NAME	COLLECT_DESC
COLLECT_MTH_CODE	CONVEYOR	COUNTY_NAME
NAICS COVERED	DB_ADD_IND	DB_NUM_1
DB_NUM_2	DIOXIN_DISTRIBUTION_1	DIOXIN_DISTRIBUTION_10

ENERGY_OFFSITE_SECD_YR_NA	ENERGY_OFFSITE_SECD_YR_QTY	ENERGY_ONSITE_CURR_YR_NA
ENERGY_ONSITE_CURR_YR_QTY	ENERGY_ONSITE_FOLL_YR_NA	ENERGY_ONSITE_FOLL_YR_QTY
ENERGY_ONSITE_PREV_YR_NA	ENERGY_ONSITE_PREV_YR_QTY	ENERGY_ONSITE_SECD_YR_NA
ENERGY_ONSITE_SECD_YR_QTY	ENTIRE_FAC	EST_ANNUAL_REDUCT_1
EST_ANNUAL_REDUCT_S	EST_ANNUAL_REDUCT_3	EST_ANNUAL_REDUCT_4
FACILITY_NAME	FAC_CLOSED_IND	FEDERAL_FAC_IND
FEDS_IND	FORMULATION_COMPONENT	FORM_TYPE_IND
FRS_ID	FUGITIVE_BASIS_EST_CODE	FUGITIVE_RELEASE_NA
FUGITIVE_RELEGISE_RANGE_CODE	FUGITIVE_TOT_REL	GENERIC_CHEM_NAME
GOCO_FLAG	NDATUM_DESC	IMPORTED
INACTIVE_DATE	INDUSTRY_CODE	INDUSTRY_DESCRIPTION
LANDF_8795_BASIS_EST_CODE	LANDF_8795_RELEASE_NA	LANDF_8795_RELEASE_RANGE_CODE
LANDF_8795_TOT_REL	LAND_TOTAL_RELEASE	LAND_TREA_BASIS_EST_CODE
LAND_TREA_RELEASE_NA	LAND_TREA_RELEASE_RANGE_CODE	LAND_TREA_TOT_REL
LATITUDE	LONGITUDE	MAIL_CITY
MAII COUNTRY	MAII NAME	MAII STATE ARRR

ONS_INFLUENT_CONC_RANGE_2	ONS_INFLUENT_CONC_RANGE_3	ONS_INCLUENT_CONC_RANGE_4
ONS_INFLUENT_CONC_RANGE_5	ONS INFLUENT_GONC_RANGE_6	ONS_INFLUENT_CONC_RANGE_X
ONS_INFLUENT_CONC_SANGE_8	ONS_INFLUENT_CONC_RANGE 9	ONS_METHOD_CODES_1
ONS_METHOD_CODES_2	ONS_METHOD_CODES_3	ONS_METHOD_CODES_4
ONS_METHOD_CODES_5	ONS_METHOD_CODES_6	ONS_METHOD_CODES_7
ONS_METHOD_CODES_8	ONS_METHOD_CODES_9	ONS OPERATING_DATA PED_1
ONS_COPERATING_SATA_IND_2	ONS_OFFRATING_DAYA_IND_3	ONS_OPERATING_DATA_IND_4
ONS_OPERATING_DATA_IND_5	ONS_OPERATING_DATA_IND_6	ONS_OPERATING_DATA_IND_7
ONS_OPERATING_DATA_IND_8	ONS_OPERATING_DATA_IND_9	ONS_SEQUENTIAL_TREAT_87_90_1
ONS_SEQUENTIAL_TREAT_87_90_2	ONS_SEQUENTIAL_TREAT_87_90_3	ONS_SEQUENTIAL_TREAT_87_90_4
ONS_SEQUENTIAL_TREAT_87_90_5	ONS_SEQUENTIAL_TREAT_87_90_6	ONS_SEQUENTIAL_TREAT_87_90_7
ONS_SEQUENTIAL_TREAT_87_90_8	ONS_SEQUENTIAL_TREAT_\$7_90_9	ONS_WASTESTREAM_ADD_IND
ONS_WASTESTREAM_CODE_	ONS_WASTESTREAM_CODE_2	ONS_WASTESTREAM_CODE_3
ONS_WASTESTREAM_CODE_4	ONS_WASTESTREAM_CODE_5	ONS_WASTESTREAM_CODE_6
ONS_WASTESTREAM_COD7	ONS_WASTESTREAM_CODE_8	ONS_WASTESTREAM_CODE_9
ORIG_F CSTMAKK	ORIG_RECEIVED	OTH_DISP_BASIS_EST_CODE
OTH_DISP_RELEASE_NA	OTH_DISP_RELEASE_RANGE_CODE	OTH_DISP_TOT_REL
OTH_LANDF_BASIS_EST_CODE	OTH_LANDF_RELEASE_NA	OTH_LANDF_RELEASE_RANGE_CODE
		ni .

SOURCE_REDUCTION_IND	SOURCE_REDUCTION_METHODS_1	SOURCE_REDUCTION_METHODS_2
SOURCE_REDUCTION_MEH-ODS_3	SOURCE_REDUCTION_METHODS_4	SRS_ID
STACK_BASIS_EST_CODE	STACK_RELEASE_NA	STACK_RELEASE_RANGE_CODE
STACK_TOT_REL	STANDARDIZED_PARENT_COMPANY	STATE_ABBR
STATE_COUNTY_HIPS_CODE	STORM_WATER_PERCENT_1	STORM_WATER_PERCENT_2
STORM_WATER_PERCENT_3	STREET_ADDRESS	SUB_SURF_IMP_BASIS_EST_CODE
SUB_SURF_IMP_RELEASE_NA	SUB_SURF_IMP_TOT_REL	SUB_SURF_RELEASE_RANGE_CODE
SURF_IMP_BASIS_EST_CODE	SURF_IMP_RELEASE_NA	SURF_IMP_TOT_REL
SURF_RELEASE_RANGE_CODE	TOTAL_OFF_SITE_RELEASE	TOTAL_ON_OFFSITE_RELEASE
TOTAL_ON_SITE_RELEASE	TOTAL_PRODUCTION_RELATED_WASTE	TRADE_SECRET_IND
TREATED_OFFSITE_CURR_YR_NA	TREATED_OFFSITE_CURR_YR_QTY	TREATED_OFFSITE_FOLL_YR_NA
TREATED_OFFSITE_FOLL_YR_QTY	TREATED_OFFSITE_PREV_YR_NA	TREATED_OFFSITE_PREV_YR_QTY
TREATED_OFFSITE_SECD_YR_NA	TREATED_OFFSITE_SECD_YR_QTY	TREATED_ONSITE_CURR_YR_NA
TREATED_ONSITE_CURR_YR_QTY	TREATED_ONSITE_FOLL_YR_NA	TREATED_ONSITE_FOLL_YR_QTY
TREATED_ONSITE_PREV_YR_NA	TREATED_ONSITE_PREV_YR_QTY	TREATED_ONSITE_SECD_YR_NA
TREATED_ONSITE_SEGQ_YR_QTY	TRIBE	TRI_CHEM_ID
☑ TRI_FACILITY_ID	UIC_ADD_IND	LUC NUM 1
SIS NUM 2	UNINJ_8795_BASIS_EST_CODE	UNINJ_8795_RELEASE_NA
UNINJ_8795_RELEASE_RANGE_CODE	UNINJ_8795_TOT_REL	UNINJ_IIV_BASIS_EST_CODE
UNINJ_IIV_RELEASE_NA	UNINJ_IIV_RELEASE_RANGE_CODE	UNINJ_IIV_TOT_REL
UNINJ_I_BASIS_EST_CODE	UNINJ_I_RELEASE_NA	UNINJ_I_RELEASE_RANGE_CODE
UNINI_I_TOT_REL	UNINI_TOTAL_RELEASE	USED_PROCESSED

Form R & A Download: Output

Output Example

CHEM_NAME	FACILITY_NAME	▼ ST	ACK_BASIS_ES-T	STACK_TOT_REL
VANADIUM COMPOUNDS	BARRY STEAM PLANT	E1		2000
COPPER COMPOUNDS	BARRY STEAM PLANT	E1		129.7
ZINC COMPOUNDS	DUKE ENERGY INDIANA INC	- CA E2		555
HYDROCHLORIC ACID (1995 AND AFT	EF DUKE ENERGY INDIANA INC	- CA E2		787
POLYCYCLIC AROMATIC COMPOUND	COMMONWEALTH UTILITIES	CC E1	•	0
NICKEL COMPOUNDS	BRUNNER ISLAND STEAM EL	ECT E1		0.0050546
DIOXIN AND DIOXIN-LIKE COMPOUN	DS BRUNNER ISLAND STEAM EL	ECT E1	•	205
1 2 4-TRIMETHYLBENZENE	FPL ENERGY WYMAN LLC W	F W E1	•	5.6
SULFURIC ACID (1994 AND AFTER "AC	TIL FPL ENERGY WYMAN LLC W	F W E1		0.002572

M1	Estimate is based on continuous monitoring data or measurements for the EPCRA Section 313 chemical.
M2	Estimate is based on periodic or random monitoring data or measurements for the EPCRA Section 313 chemical.
С	Estimate is based on mass balance calculations, such as calculation of the amount of the EPCRA Section 313 chemical in streams entering and leaving process equipment.
E1	Estimate is based on published emission factors, such as those relating release quantity to through-put or equipment type (e.g., air emission factors).
E2	Estimate is based on-site specific emission factors, such as those relating release quantity to through-put or equipment type (e.g., air emission factors).
0	Estimate is based on other approaches such as engineering calculations (e.g., estimating volatilization using published mathematical formulas) or best engineering judgment. This would include applying estimated removal efficiency to a waste stream, even if the composition of the stream before treatment was fully identified through monitoring data.

Output Example

CHEM_NAME	T	FACILITY_NAME	V	ONS_METHOD_C	ONS_METHOD_CODES_
VANADIUM COMPOUNDS		BARRY STEAM PLANT		A05	A07
COPPER COMPOUNDS		BARRY STEAM PLANT		A05	A07
ZINC COMPOUNDS		DUKE ENERGY INDIANA INC -	· CA	H123	H123
HYDROCHLORIC ACID (1995 AND AF	TEI	DUKE ENERGY INDIANA INC -	· CA	H123	
POLYCYCLIC AROMATIC COMPOUND)S	COMMONWEALTH UTILITIES	CO		
NICKEL COMPOUNDS		BRUNNER ISLAND STEAM EL	ECT	H123	
DIOXIN AND DIOXIN-LIKE COMPOUN	IDS	BRUNNER ISLAND STEAM EL	ECT	H123	
1 2 4-TRIMETHYLBENZENE		FPL ENERGY WYMAN LLC WE	W		
SULFURIC ACID (1994 AND AFTER "A	CIE	FPL ENERGY WYMAN LLC WE	W		

A01	Flare
A02	Condenser
A03	Scrubber
A04	Absorber
A05	Electrostatic Precipitator
A06	Mechanical Separation
A07	Other Air Emission Treatment
H040	Incinerationthermal destruction other than use as a fuel
H071	Chemical reduction with or without precipitation
H073	Cyanide destruction with or without precipitation
H075	Chemical oxidation

H076	Wet air oxidation
H077	Other chemical precipitation with or without pre-treatment
H081	Biological treatment with or without precipitation
H082	Adsorption
H083	Air or steam stripping
H101	Sludge treatment and/or dewatering
H103	Absorption
H111	Stabilization or chemical fixation prior to disposal
H112	Macro-encapsulation prior to disposal
H121	Neutralization
H122	Evaporation
H123	Settling or clarification

Basis of Estimate Codes

M1	Estimate is based on continuous monitoring data or measurements for the EPCRA Section 313 chemical.
M2	Estimate is based on periodic or random monitoring data or measurements for the EPCRA Section 313 chemical.
С	Estimate is based on mass balance calculations, such as calculation of the amount of the EPCRA Section 313 chemical in streams entering and leaving process equipment.
E1	Estimate is based on published emission factors, such as those relating release quantity to through-put or equipment type (e.g., air emission factors).
E2	Estimate is based on-site specific emission factors, such as those relating release quantity to through-put or equipment type (e.g., air emission factors).
0	Estimate is based on other approaches such as engineering calculations (e.g., estimating volatilization using published mathematical formulas) or best engineering judgment. This would include applying estimated removal efficiency to a waste stream, even if the composition of the stream before treatment was fully identified through monitoring data.

Waste Stream Codes

Α	Gaseous (gases, vapors, airborne particulates)
W	Wastewater (aqueous waste)
L	Liquid waste streams (non-aqueous waste)
S	Solid waste streams (including sludges and slurries)

Waste Treatment Codes

A01	Flare
A02	Condenser
A03	Scrubber
A04	Absorber
A05	Electrostatic Precipitator
A06	Mechanical Separation
A07	Other Air Emission Treatment
H040	Incinerationthermal destruction other than use as a fuel
H071	Chemical reduction with or without precipitation
H073	Cyanide destruction with or without precipitation
H075	Chemical oxidation