

Maryland Department of the Environment

Unique Uses for Emissions Inventories in Maryland

Roger Thunell, Chief A@ Planning Division, MDE - EPA EI Conference - August 2017

Welcome to Baltimore

- During Your Visit
- Crab Cakes
- Microbrews
- Burger Cookies
- Camden Yards

- Use of CAMD data as a Regulatory Mechanism
- Locomotive Survey
- Temporal Improvements for Small EGUs in Modeling Inventories

- Focused on coal-fired EGUs with SCR or SNCR post-combustion controls
- Baseline Starting Point The year with the lowest recorded NO_x emission rate for an entire ozone season
- Using Daily CAMD data, compute the 123 30-day rolling averages for that ozone season.

– (Ozone Season = 153 Days)

- Selected the highest maximum 30-day rolling average from this 123 value dataset.
- This max 30-day rolling NO_x emission rate represents an "achievable" emission rate for the unit
 - Some have referred to this as "optimization" of the unit. We would disagree and refer to it as "achievable"
 - Since the unit has demonstrated that it is capable of hitting this rate over an entire ozone season

- What can you do with this unit-specific "achievable" NO_x rate
 - Design/Set permissible NO_x rates per Unit
 - MDE has done this by setting "Indicator Rates" within our latest NO_x regulation for coal-fired EGUs
 - The "Indicator Rates" are not identical to the "Achievable" rates but they are similar
 - Requires EGU owner/operators to explain why they were unable to meet the "Indicator Rates"
 - Compare current NO_x rates to the "achievable" rate
 - How well are controls being run at the unit

- What can you do with this unit-specific "achievable" NO_x rate
 - Moving outside of Maryland
 - Proposed a Grading System for Coal-fired EGUs to OTC
 - How well are controls being run at the unit
 - How was the Grading System Developed
 - Used the same methodology
 - Expanded the analysis to all Coal-fired EGUs with post combustion controls in the modeling domain

- Placed individual units into three bins based upon the above rate comparisons
 - BIN 1 Review not needed
 - Equal or better performance compared to past optimization underway
 - **BIN 2** Review needed but lower priority
 - Emission Rate is worse than the "Achievable" Rate but not Double
 - BIN 3 High priority for review
 - Emission Rate is more that Double the "Achievable" Rate

- BIN 3 Units Further Analysis
 - BIN 3A NO_X Rate more than double but less than 0.1 lb NO_X/ mmBtu
 - BIN 3B NO $_{\rm X}$ Rate more than double and between 0.1 0.2 lb NO $_{\rm X}$ / mmBtu
 - BIN 3C NO_x Rate more than double and greater than 0.2 lb NO_x / mmBtu
 - Units of greatest concern

- MDE has proposed the following grading system to the OTC
 - SCR Units
 - SNCR Units

- What can you do with this unit-specific "achievable" NO_x rate
 - Calculate excess NO_X emissions using the achievable rate instead of the actual rate reported to CAMD
 - Potential Lost Reductions NO_x Ozone Season Total Emission
 - Potential Lost Reductions NO_X Ozone Season Tons per Operating Day

- Improvement of the major source categories of NO_X with the highest uncertainty.
- Survey of Rail Companies that Operate in MD Letters were sent to:
 - Amtrak, Canton Railroad, CSX, Bay Coast Railroad
 - MD and Delaware, Maryland Midland Railway
 - Norfolk and Southern Railway
 - Western Maryland Scenic Railroad
 - Winchester and Western Railroad
 - MARC (Maryland Area Regional Commuter Train)
 - Walkersville Southern Railroad

- Information Asked For Survey Questions
 - Number of track miles used by the company for each Maryland County
 - Total Fuel used for line haul engines in Maryland Counties
 - The number of line locomotives
 - The number of Yard engines
 - Total Fuel used by the Yard engines per County
 - Type of Line Haul or Yard Engine
 - Tier 0, Tier 1 or Tier 2
 - Retrofits
 - Auxiliary Power Units

- Information Received 2014
 - In general the response was good
 - Estimated Fuel Use Per County
 - Track Miles Utilized per County
 - Number of Switchers
 - Number of Line Haul
- Hoping to receive additional data in 2017

Small EGU Temporalization for Modeling Inventories

- Poster Session
 - Hannah Ashenafi, Emily Bull
 - Use EMF to Develop Temporal Profiles for Non-CAMD EGUs
 - EMF Emissions Modeling Framework that MARAMA has developed

Small EGU Temporalization for Modeling Inventories

- Background
 - Attempt to Improve Peak Day Emissions within modeling inventories
- Method
 - Use Annual Emissions for the Non-CAMD
 EGUs Focus on NO_x Emissions
 - Develop Temporal Profiles of the Non-Baseload CAMD EGUs

- Analyze 2011 operating patterns of large peaking EGUs > 25 MW (using CAMD data) to create 12 "peaking profiles"
 - 4 regions: MANE-VU, LADCO, SESARM, CenSARA
 - 3 fuel bins: coal, oil, gas
- Summed the daily heat input for all units in each region/fuel bin, and divided by the total annual emissions to determine a fraction of annual heat input per day.

- The Temporal Profile is year-specific, region-specific and fuel-specific.
- Select Units from the ptnonipm source files
 - Complicated Procedure Query created within SMOKE to identify the correct SCCs
- Application of the Temporal Profile
- Please see Hannah Ashenafi and Emily Bull Poster Session for detailed questions
 - Hannah Ashenafi
 <u>hannah.ashenafi@maryland.gov</u>
 - Emily Bull <u>emily.bull@maryland.gov</u>

- Maryland is looking at ways to apply all of the detailed emissions data that is collected
 - Using CAMD data for regulatory and compliance issues
- Maryland is looking to improve the major sources of NO_x with the highest uncertainty.
 - Locomotives
- Maryland is looking to improve our modeling inventories by the application of known hourly/daily emission profiles to sources with high variability
 - Small non-CAMD EGUs

Discussion