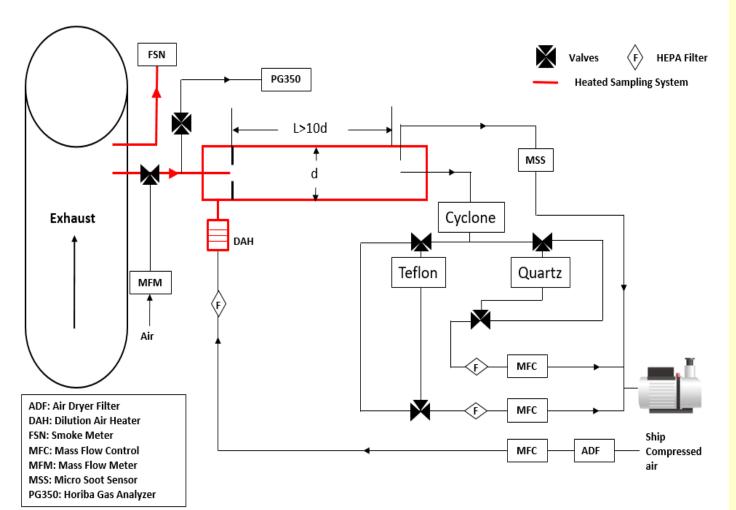
Comparison of Three Marine Black Carbon Measurement Methods

BACKGROUND & MOTIVATION

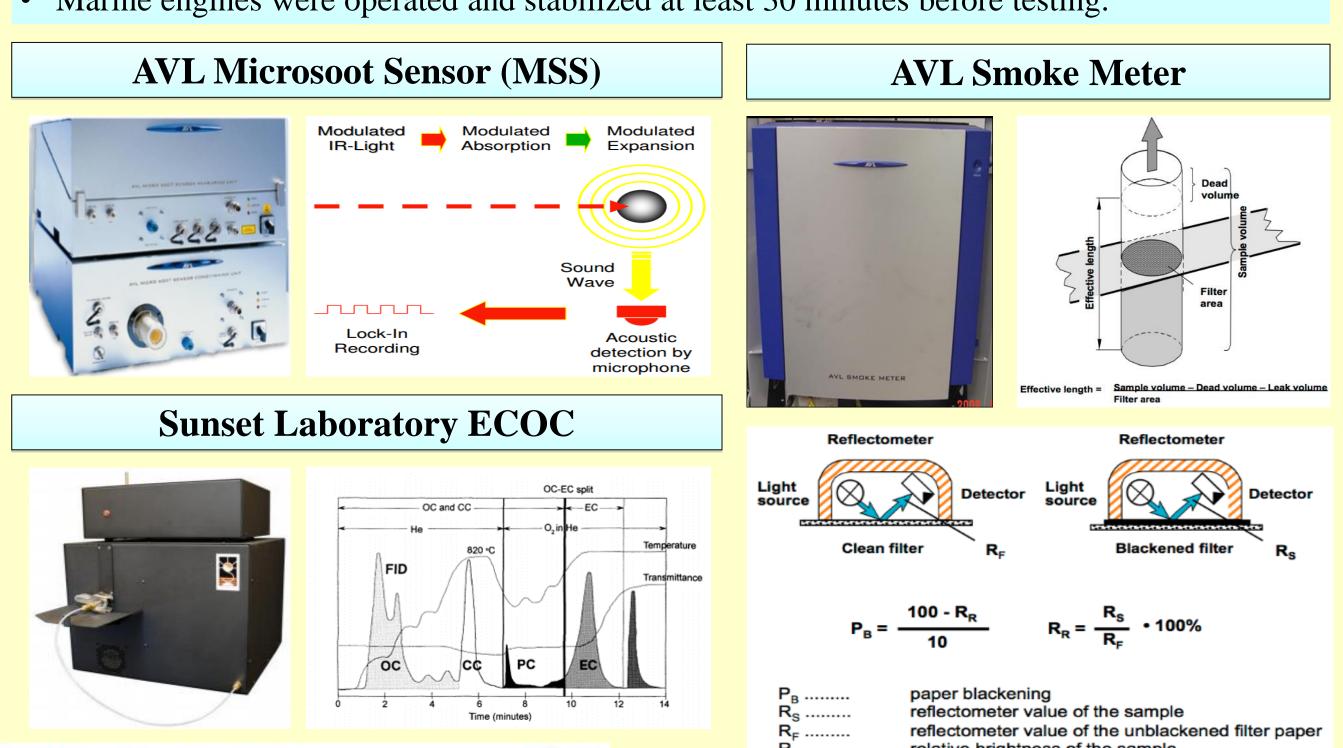

- Ship transportation plays a major role in the global economy and international trade by contributing to 80% of global trade by volume and over 70% of global trade by value.
- Marine Black Carbon
- Black carbon (BC) emissions from ocean going vessels (OGVs) have been a concern in terms of global warming and human health, especially in the Arctic area where BC is associated with the ice melting problems due to the light absorbing ability of BC deposits on ice. BC is the most strongly light-absorbing component of particulate matter (PM) and second to carbon dioxide as the largest contributor to human induced climate warming.
- Currently, ship-related BC emission factors range from 0.1 to 1 g/kg fuel. Further complicating the uncertainty in the reported BC emission factors is the use of a multitude of analytical instruments in measuring BC. Even though each instrument is properly set up and calibrated, since the scientific principle used for the measurement differs between. It is necessary to quantify and standard a way to measure BC emissions on OGVs.

• Marine NOx emissions

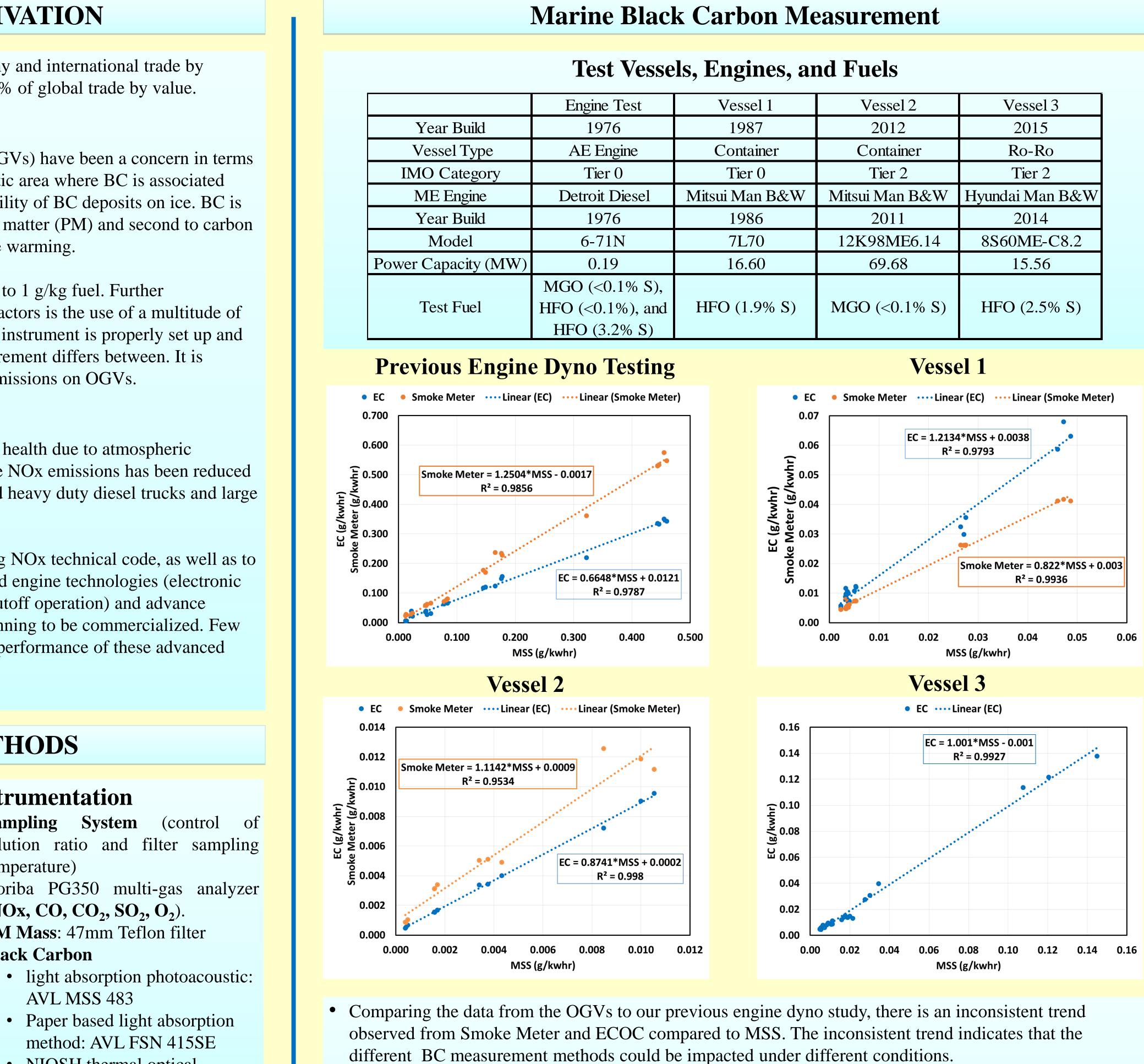
- NOx emissions from OGVs have been a concern of human health due to atmospheric reactions for O_3 formation. It is more of a concern since the NOx emissions has been reduced significantly by the application of SCR systems for on-road heavy duty diesel trucks and large off-road equipment.
- To address the IMO low sulfur regulation and the upcoming NOx technical code, as well as to improve the fuel economy of the marine shipping, advanced engine technologies (electronic controlled fuel and lube oil injection, EGR, turbocharger cutoff operation) and advance aftertreatment technologies (scrubber, SCR, DPF) are beginning to be commercialized. Few studies have been done in this area to understand the NOx performance of these advanced engine and aftertreatment technologies.

EXPERIMENTAL METHODS

Ship Sampling System



Instrumentation


- Sampling System (control of dilution ratio and filter sampling temperature)
- Horiba PG350 multi-gas analyzer
- $(NOx, CO, CO_2, SO_2, O_2).$
- **PM Mass**: 47mm Teflon filter Black Carbon
- - AVL MSS 483 • Paper based light absorption
 - method: AVL FSN 415SE
 - NIOSH thermal optical

Test Protocol

- ISO E2 test cycle for the main engine (ME) uses a weighting value of 0.2, 0.5, 0.15, and 0.15 for the 100%, 75%, 50%, 25% load points.
- Marine engines were operated and stabilized at least 30 minutes before testing.

Jiacheng Yang^{1,2}, Kent C. Johnson^{1,2}, J. Wayne Miller^{1,2} Thomas D. Durbin^{1,2}, Yu Jiang^{1,2}, Georgios Karavalakis^{1,2}, David R. Cocker III^{1,2} ¹Department of Chemical & Environmental Engineering, Bourns College of Engineering, University of California, Riverside ²College of Engineering-Center for Environmental Research & Technology, University of California, Riverside

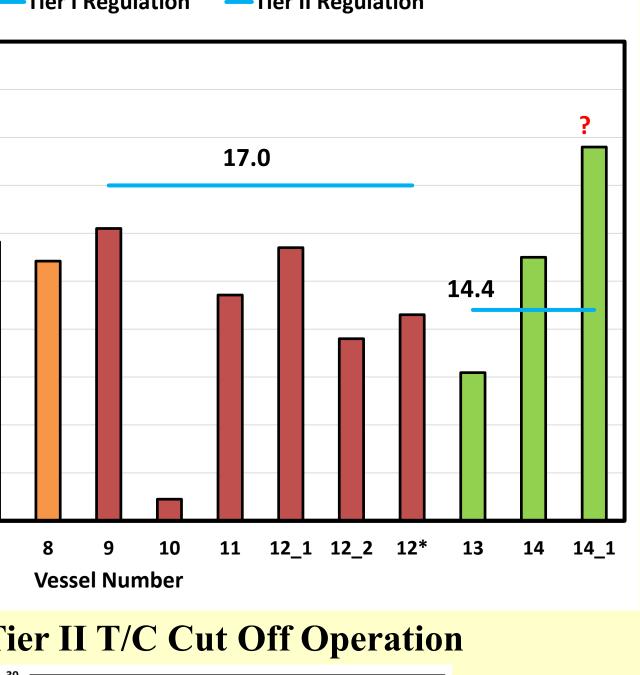
method: Quartz ECOC Filter

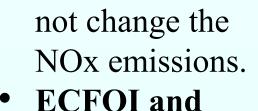
- The results from OGVs indicate that the sulfur content in the fuel seems to be the reason for the inconsistencies, although this trend was not observed in the engine dyno study.
- Looking into the filter PM composition, it appears that the filters from engine dyno study are mostly EC and OC. In contrast, PM composition from large 2-stroke marine engines with high sulfur fuel show sulfate ion to be the dominating species.
- The sulfate PM on the filters is known to exist in its hydrophilic compound form $(H_2SO4*6.65H_20)$. It is not surprising the inclusion of water due to the hygroscopic property of the sulfuric acid.
- Sulfate PM on the filters is determined to impact the different BC measurement methods.

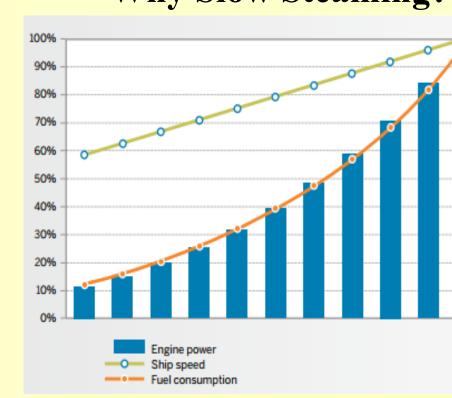
Compound (µg/filter)	Engine Test	Vessel 1	Vessel 2	Vessel 3
EC	4 - 476	2 - 82	2 - 44	8 - 147
OC	9 - 515	55 - 493	167 - 600	240 - 599
SO4 ⁻	1 - 100	102 - 3380	-	122 - 1830

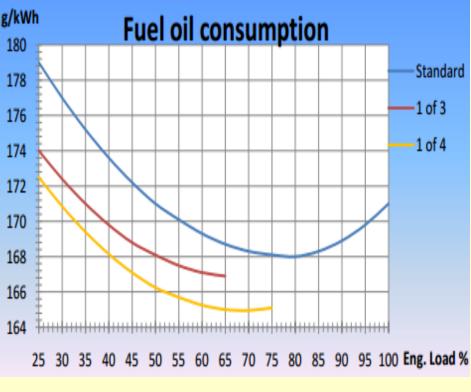
- The high concentrations of sulfate PM on the filters could potentially uptake water from OC, along with forming sulfonated organics **Smoke Meter (Paper Based Light Absorption)** compounds, at low temperatures. The sulfonated organics are able to absorb • Smoke Meter uses reflectometer method with PM loaded filters red laser, which subsequently impacts the ECOC split point. This could lead compounds are loaded on the filters, the reflectometer value to higher EC levels.
- Once heavy amounts of sulfuric acid water hydrophilic
- of the sample (Rs) will go up, as well as the relative brightness of the sample (R_R) value, which then leads to a lower paper blackening value (P_B) .
- This could explain why the Smoke Meter has a lower value in high sulfur fuel.

Vessel 2	Vessel 3
2012	2015
Container	Ro-Ro
Tier 2	Tier 2
Mitsui Man B&W	Hyundai Man B&W
2011	2014
12K98ME6.14	8S60ME-C8.2
69.68	15.56
MGO (<0.1% S)	HFO (2.5% S)


ECOC (Thermal Optical)


Marine NOx Emission Factor										
Test Vessels, Engines, and Fuels										
	Vessel Type	IMO Category	ME Engine	Year Build	Model	Power Capacity (MW)	Test Fuel	Special Technology on ME	NOx (g/kwhr)	Sources
1	Container	Tier 0	Man B&W	1995	11K90MC-C	5.03	HFO (2.05% S)	None	18.21	CECERT: Harshit_2008_AE
2	Container_RoRo		Kincaid B&W	1985 NA	6L90 GBE	20.20	HFO (1.97% S)	None	14.22	Moldanova_2009_AE
3	Crude Oil Tanker Container	Tier 0 Tier 0	Sulzer Hitachi Man B&W	NA 1998	6RTA72 12K90MC	15.75 5.48	HFO (2.85% S) HFO (3.01% S)	None	19.87 19.77	CECERT: Harshit_2008_EST CECERT: Harshit_2010_JGR
5	container	Tier 0	Sulzer	1997	9RTA84C	36.74	HFO (2.15-3.14% S)	None	19.45	CECERT: Khan_2013_JAWMA
6	Container	Tier 0	Samsung Man B&W	2000	12K90MC	55.66	HFO (0.95% S) and MGO (0.3% S)	None	20.25	CECERT
7	Container	Tier 0 Tier 0	Mitsui B&W	1987	7L70	16.58	HFO (1.88% S)	Scubber	15.82	CECERT
8	Container Container	Tier 0	NA Hyundai B&W	1985 2009	NA 11K98ME7	17.50 68.53	HFO (2.4% S) HFO (2.51% S) and MGO (0.17% S)	NA None	15.42 16.1	Fridell_2008_AE CECERT: Khan_2012_EST
10	Crude Oil Tanker	Tier 1	Man B&W	2006	6L48/60	6.30	LSHFO and MGO (<0.1% S)	Variable Injection Timing (VVT)	10.45	 CECERT: Gysel_2017_EST
11	RoRo	Tier 1	NA	2004	NA	20.07	HFO (2.2% S)	None	14.71	Fridell_2008_AE
12 12*	RoRo RoRo	Tier 1 Tier 1	Man B&W Man B&W	2006 2006	9L60MC-C 9L60MC-C	21.06 21.06	HFO (2.3% S) HFO (2.2% S)	Scrubber Scrubber	15.7-13.8 14.3	Fridell_2014_JEME Danish EPA_2012
13	RoRo	Tier 2	Hyundai B&W	2000	8560ME-C8	15.56	HFO (2.5% S)	Electronic Controlled Fuel and Oil Injection; Scrubber	13.1	CECERT
14	Container	Tier 2	Man B&W	2011	12K98ME6.1	69.68	MGO <(0.1% S)	Electronic Controlled Fuel and Oil Injection; Turbocharger cut off fuel economy operation	15.5 or 17.8	CECERT
	20							2	N	ot change the IOx emissions. C CFOI and
NOx Fmissions (ه/kwhr)	18 17 16 15 14 13 12 11 10 1								th e: c p c te T S C	VT: Reduce ne NOx missions by ontrolling the eak ombustion emperature. VC Cut for low Steaming Dperation:
]	Vessel Number could potentially									
Ther II Normal Operation Tier II T/C Cut Off Operation increase Nox emissions.										
Dual Engine Mapping ISO E2 Weight Factor 0.15 0.15 0.50 0.20 Engine Load 0% 25% 50% 75% 100% Normal Operation Why T/C Cut Off?										
T/C Cut Off Operation Image: Second Construction Image:										
	-							178		Standard
• Slow Steaming: The easiest way to reduce this cost is to reduce										


the ship's speed • Turbocharger (T/C) Cut Off Operation for Slow Steaming: When the engine is operating at part load, one of the turbochargers is intentionally cut off to increase scavenging air pressure, compression air pressure, and maximum combustion pressure.


This pressure increase boosts thermal efficiency.

- Cooperation from marine shipping company and their port agencies.
- Tak Chan from Environment and Climate Change Canada (ECCC).
- Bob Cary from Sunset Laboratory.
- Monica Tutuianu from AVL •
- contributions in conducting the emissions testing for this program.

ACKNOWLEDGEMENTS

Funding from the Climate & Clean Air Coalition (CCAC), International Council on Clean Transportation (ICCT), US Maritime Administration (MARAD), and California Air Resource Board (CARB).

Kevin Thomas and Stephanie Gagne from National Research Council Canada (NRC).

Eddie O'Neal, Mark Villela, Don Pacocha from the University of California, Riverside for their

For more information, contact jyang055@ucr.edu