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Motivation
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• The 2007 Energy Independence & Security Act (EISA) mandated renewable fuel use in the transportation sector

• EPA sets Renewable Fuel Standards (RFS) annually (flexibility)

• 36 billion gallons of renewable fuels by 2022

Category Volumea Range

Cellulosic biofuel 17x106 gal 8-30x106 gallons

Biomass-based diesel (FAMEs) 1.3x109 gal 1.3x109 galb

Advanced biofuel (non-corn EtOH) 2.2x109 gal 2.0-2.5x109 gal 

∑Renewable fuel 15.2x109 gal 15.0-15.5x109 gal

aAll volumes are ethanol-equivalent, except for biomass-based diesel which is actual
bEPA is requesting comment on alternative approaches and higher volumes

Volumes Used to Determine the Proposed 2014 Percentage Standards

• As part of these requirements, EPA must:
• Assess the impacts of changes in ethanol volume and other fuel properties on emissions and ambient 
concentrations of air toxics and criteria pollutants
• Ensure “anti-backsliding” of air quality impacts and propose regulations to mitigate any adverse air quality 
impacts

www.epa.gov/otaq/fuels/renewablefuels
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Biodiesel study facts

• Roughly, 150 x 109 L of on-highway diesel produced annually in the U.S. of which 5 x 109 is biodiesel
• In many cases, biodiesel use actually reduces criteria pollutant emissions 
• Water-soluble OC in PM can increase producing toxicological concerns
• To date, limited emphasis on the gas-phase SVOC emissions and the effect of increasing fuel oxidants
• MOVES model requires emissions information from this engine class
• As of 2016, greater than half of all vehicle miles travelled were for trucks with catalytic control for NOx and PM.  

MOVES – Motor Vehicle Emissions Simulator
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active regeneration passive regeneration



Experimental – HD Vehicles (6.7L)
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• 2011 Dodge Ram 2500
• GVWR = 9,600 lb
• DOC/NAC/CDPF
• 35,498 km
• HDV2B

• 2011 Ford F550
• GVWR = 19,500 lb
• DOC/SCR/CDPF
• 4,333 km
• HDV5

• 2011 Ford F750
• GVWR = 25,999 lb
• DOC/SCR/CDPF
• 5850 km
• HDV6

George et al. (2014) ES&T, Vol. 48, Iss. 24, p. 14782

Active CDPF regeneration



Experimental – Testing
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• Test variables
• Fuels: ULSD and B20 (soy)
• Weight: laden/unladen (F550)
• Temperature:  -7 ºC and 22 ºC (F750)
• Regeneration (WS-UDDS only)
• Operating cycles (CS and WS-UDDS) 
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constant volume sampler
1:10 dilution

collected CS and UDDS-WS phases over N ≥3

• 47 mm quartz fiber filter-PUFs

• OC-EC (mod. NIOSH Method 5040)

• SVOC, particle-phase and gas-phase 
speciation (TE- and SE-GC-MS)

• Artifact using (Qb)

Experimental – Sampling and Dilution

8/22/2017



Experimental – Chemical Analysis
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Thermal optical analysis (TOA; Sunset Labs)

Thermal optical transmission 
(TOT; NIOSH 5040 modification)

OC – EC

Q
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• OC is likely gas-phase due to Qb

• Some background contribution
• EC slightly underestimated
• Limited if any pyrolysis
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• more organic matter for this vehicle
• less EC in general
• More OC associated with UDDS-WS
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Experimental – Chemical Analysis (Qf)

sample introduction (> 6 μg of OC) 
(deactivated, pre-conditioned quartz tube)

TE oven – programmable temperature control 
ramped at 50 °C/min from 25 to 325 °C  

He flow (50 cc/min)

GC-cooled, programmable temperature vaporization inlet system 
(CIS-PTV); quartz wool packed; −80 °C during thermal extraction; 
heated to 300 °C at 720 °C/min) splitless transfer modes (TE, CIS-PTV)
MS used in SIM mode

Thermal extraction system (TE; Gerstel Inc.)

Liquid N2 coolant maintains tube at 25 °C 
before and after extraction step  

Short-path (152 mm) heated 
(325 °C) transfer line (SilcoSteel)

Hays, M. D. and R. J. Lavrich (2007). TrAC Trends Anal. Chem. 26(2): 88-102.

Q

10



Experimental – Chemical Analysis (PuF)

• Manual solvent extraction
• DCM:hexanes:acetone [20:50:30]

• GC-MS (qqq) in MRM mode
• ~200 target analytes (n-, c-, and b-alkanes, PAH, oxy-PAH, 

Steranes/hopanes, aromatic acids, etc.)

• Focus on non-polar compounds
• All data are background subtracted 11



Data distribution frequencies

• For OC-EC analysis:
• N = 64
• Cycle and fuel data evenly distributed
• DPF data not represented

• For SVOCs:
• N = 4574
• Missing values = 3474
• B20 slightly more data (300 data points) 
• PAH and alkanes drive analysis
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Test-averaged, carbon-based pollutant emissions factors

• Outlier – red circle
• Mean – bold line
• Median – thin line 
• 25th and 75th percentiles – box end
• 10th and 90th percentiles - whiskers
• ∑SVOCs – identified Q-Puf array

• Classic emissions trend
• Reduced/oxidized species show anti-correlation

• THC includes CH4 and likely some OC and SVOC 
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OC-EC emissions trends – by Temp, fuel, and vehicle

• EC decreases with B20 on average
• lower chamber T -- higher mean EC emissions
• higher chamber T – wider EC range
• EC,  CS > UDDS-WS
• mostly Dodge RAM 2500 data
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Chemical Analysis – Results (T, VTW, fuel, and vehicle combined )
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Chemical Analysis – SVOC class trends (combined by VTW and fuel)

• Gas-phase SVOC emissions dominate (90% w/w)
• CS >>> WS-UDDS
• Lower test T produce higher SVOC emissions

• PAH/alkanes were most sensitive
• Active regeneration had no effect on SVOCs
• Switch to B20 had no effect on SVOCs
• VTW had no effect
• 538 µg/km mean sum
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Multi-study heavy-PAH emissions comparison

• Tests conducted over several decades
• PAH emissions are highly variable
• Dynamometer emissions projections may be biased low

• Cao et al. 2017
• Past studies indicated DPF sufficiently control PAH
• Our study shows PAH at the low-end of the uncontrolled emissions
• Passive CDPF regeneration systems show potentially significant PAH 

emissions 
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Conclusions for L/MHDDVs used presently

I. CO2 dominates vehicle emissions and may have increased due to DOCs
II. Carbonaceous particle emissions are muted following CDPF after-treatment
III. For SVOCs: [gas-phase] >> [particle-phase]
IV. Driving cycle and T strongly affect SVOC emissions -- CS >> UDDS-WS
V. VTW, fuel, and regeneration had limited, if any, influence on SVOC emissions
VI. Passive CDP regeneration potentially increase PAH emissions
VII. Continue on-road testing to complement dynamometer studies

8/22/2017 18


