

Leveraging receptor modeling to evaluate oil and gas speciation profiles in the Colorado Front Range

Shannon Capps¹, Kent Kurashima², Gokulram Paranjothi², Gordon Pierce³, and Jana B. Milford²

¹Drexel University ²University of Colorado Boulder ³Colorado Department of Public Health & Environment

Aims

- Estimate the relative influence of oil & gas emissions and other sources on ozone production and BTEX concentrations
- 2. Assess the level of agreement between observationbased factors and speciation profiles

Location of Interest

Google Maps

Wells*

Cities

Platteville measurement site

Denver measurement site

from COGCC Interactive Map (Oct 2016) *actual directional/horizontal well bottomhole

Measurement Overview

- Conducted by Colorado
 Department of Public Health
 & Environment (CDPHE) Air
 Pollution Control Division
 Ozone Precursor Study
- 3-hr samples acquired from 6

 a.m. to 9 a.m. local time in
 Summa canisters and
 analyzed for 79 non-methane
 organic compounds
 - co-elution of 1-butene and isopentane in sampling led to their exclusion

- methane was also analyzed from the Summa canisters and carbonyls were measured on DNPH cartridges these species were excluded
- two samples (10 Apr 2013, 16 Feb 2014) at Platteville were excluded due to very high isobutane values

Platteville Measurement Site

Platteville Measurement Site

85

Platteville

85

66

Google Maps

Denver Measurement Site

BALLPARK

- JUENETEEST

Coors Field 😂

Meadowlark Kitchen

" Snarf's

Great Divide Brewing

2105 Broadway

E 20th Ave

CURTIS PARK

FIVE F

Union Station Track 1 📃 🕞 Union Station

LODO

Wenerta St

Union Station Track 2

Museum of Contemporary Art...

Union Station 📃 🛛

W 33rd Ave

20th St

🐸 Pepsi Center

Blvd

Google Maps

Downtown Denver
 Partnership

Denver Measurement Site

Google Street View

Aim 1:

Estimate the relative influence of oil & gas emissions and other sources on ozone production and BTEX concentrations

Total Identified VOC Concentration

For context, the time series of the sum of the identified VOCs at each site is shown.

Positive Matrix Factorization (PMF) finds a constrained, weighted least squares solution:

$$E_{ik} = \sum_{j=1}^{p} A_{ij} B_{jk} + \varepsilon_{ik} \quad i = 1, 2, ..., m; k = 1, 2, ..., n$$

- A_{ij}, source profile: loading of compound *i* on factor *j*
- B_{jk}, normalized source contribution: jth factor's contribution for the total kth observation
- p, total factors
 - [3-5 evaluated]
- *m*, compounds observed and attributed
 - [50 NMVOCs]
- *n*, observations
 - [~46 per site per year]

Composition of Factors

Composition of Factors

Composition of Factors

Contribution of Factors to VOCs

Estimating Ozone Formation from VOCs

Carter (1995) and updates from cert.ucr.edu/carter

Contribution of Factors to MIR-based O₃

Average Contribution of Factors to C or O₃

Average Contribution of Factors to BTEX

Aim 2: Assess the level of agreement between observation-based factors and speciation profiles

Comparison of Factors to Emissions Speciation Profiles

- MOVES speciation profiles including cold start, exhaust, diurnal evaporation, and hot soak
- Colorado State University (CSU) speciation of emissions from production, fracking, liquids load out, and flowback processes
- Western Regional Air Partnership (WRAP) Phase III Oil & Gas Speciation Profiles from surveys of producers in the Intermountain West basins for *flashed gas* and *produced gas* emissions
- Condensate speciation profiles from Brantley et al. with VOC emissions from oil & natural gas well pads using mobile remote and on-site direct measurements [*averaged of twenty unique profiles*]

Comparison to Speciation Profiles

	heavy		light		
	oil & gas	industrial	oil & gas	biogenic	traffic
Exhaust Cold Start	0.09	0.45	0.09	0.24	0.64
EXHST1	0.14	0.57	0.11	0.18	0.65
Diurnal RVP7	0.31	0.70	0.17	0.12	0.13
Diurnal RVP10	0.77	0.32	0.76	0.05	0.46
HOTSOK	0.56	0.50	0.55	-0.03	0.39
CSU Production	0.85	0.17	0.88	-0.04	0.56
CSU Fracking	0.04	0.56	0.00	-0.02	0.49
CSU Liquids Load Out	0.94	-0.04	0.99	-0.01	0.52
CSU Flowback	0.86	0.20	0.76	0.09	0.34
WRAP Flash	0.93	-0.04	0.97	-0.01	0.49
WRAP Produced Gas	0.88	0.03	0.87	0.03	0.40
EPA Tanks Only, Average, n = 20	0.99	0.04	0.98	0.03	0.46

Correlation coefficient (*R*) of carbon-based fraction of factors with speciation profiles neglecting ethane and propane.

Heavy Oil & Gas Well Correlated with EPA Condensate

Light Oil & Gas Well Correlated with Multiple Profiles

Industrial Best Correlated with **Diurnal Evaporative Emissions**

Traffic Best Correlated with Exhaust Emissions

Summary & Conclusions

- 2013-2016 observations of factors composed of VOCs characteristic of oil & gas development were much higher in Platteville than in Denver with the light oil & gas factor declining from 2013 to 2016.
- Though the Platteville oil & gas contributions to total VOC concentrations dominate, MIR reactivity suggests that the ozone impact is not solely from these factors.
- The BTEX contributions are equally significant from the traffic and industrial factors in Denver as heavy oil & gas and traffic factors in Platteville.
- The normalized speciation profiles of the light and heavy oil & gas factors correlated with recent speciation profiles very well, even better than the traffic factor correlated with exhaust emissions.

Acknowledgements

- Gordon Pierce of Colorado Department of Public Health & Environment (CDPHE) Air Pollution Control Division for Ozone Precursor Study data
- Adam Eisele and Tom Moore for emissions speciation profiles
- Funding from NSF Sustainability Research Network AirWaterGas program

