

Recent SMOKE Enhancements and More

B.H. Baek, Catherine Seppanen, Zachariah Adelman

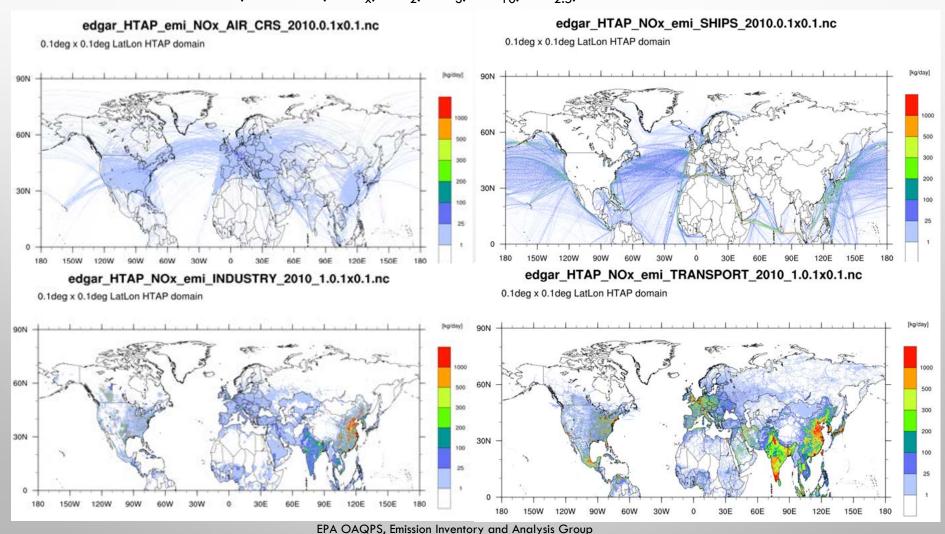
UNC at Chapel Hill

Alison Eyth, Madeleine Strum, Jeffrey Vukovich

U.S. EPA

Outlines

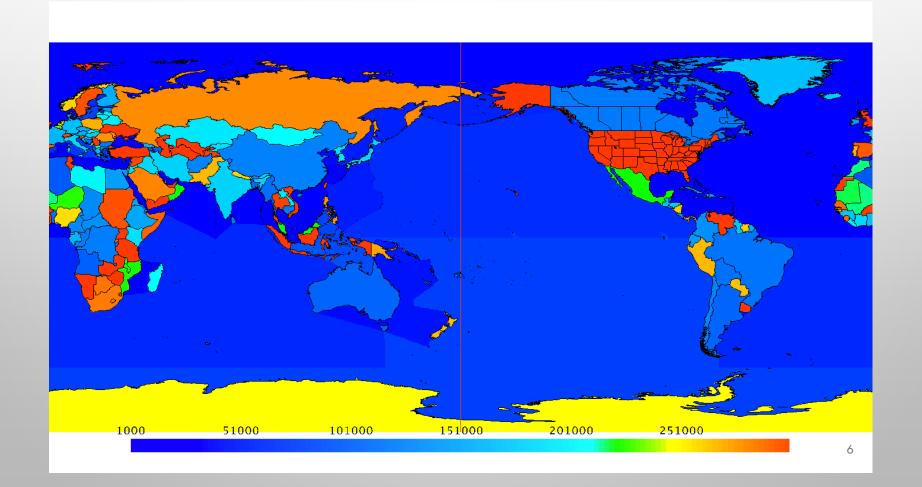
- Recent SMOKE v4.0 and 4.5 Release
 Updates
- Upcoming SMOKE and related Emissions
 Modeling updates
 - Q&A


SMOKE v4.0 and v4.5 Updates

- SMOKE v4.0 released on September 2016
 - Support Global Gridded Inventories (i.e., EDGAR, HTAP,,,)
 Processing
 - Parallelization of SMOKE Programs using OpenMP
- SMOKE v4.5 released on April 2017
 - SMOKE4AERMOD Development
- New Link-level Inventory dataset Processing
 - Annual Link Inventory format: FF10_LINK
 - Hourly Link Inventory format: FF10_LINK_HOURLY

Global Gridded HTAP Emissions

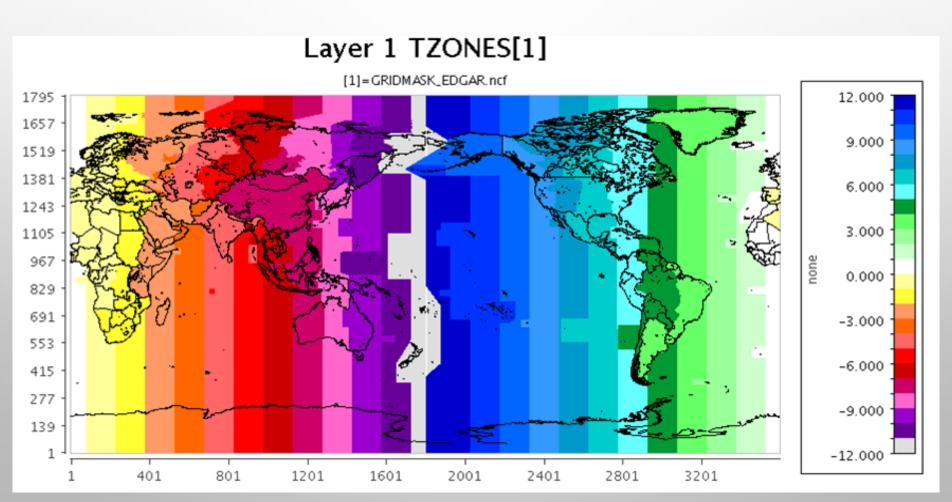
Sectors: aircraft, shipping, industry, energy, transportation, residential, and agriculture **Pollutants**: CO, NMVOC, NO_x, SO₂, NH₃, PM₁₀, PM_{2.5},BC and OC


EPA's Hemispheric Modeling Challenges

- Consistent Emissions Processing across various sectors from various sources/countries.
 - Temporal Allocation
 - Horizontal and Vertical Spatial Allocation
- Accurate country-specific Time Zone handling
 - Local time to GMT as well as holidays
- Accurate horizontal spatial allocations without any spatial surrogates
- Zeroing out option to mix US and Global gridded emissions to avoid any possible double counting
- Optional vertical allocations for aircraft emissions (Taxi-in/out, LTO, Cruise)
 using Layalloc program

EPA Northern Hemispheric Modeling

• **GRIDMASK** file that includes both the country and time zone by grid cell : used Arcmap zonal statistics to calculate the majority coverage in the cell



EPA Northern Hemispheric Modeling

GRIDMASK file maps grid cells to time zones

: Finer time zones/country assignment? Required to update the GRIDMASK

SMOKE v4.0 for Hemispheric Modeling

- Grid Cell = Inventory Source (6.48 millions sources : 1600*3600)
- **Smkinven** Updates to read and process the native NetCDF-formatted pregridded emissions inventory files (i.e., HTAP, EDGAR,,,,)
 - IMPORT_GRDNETCDF_YN: Process the native NetCDF pregridded Inventory files
 - NETCDF_INV_YEAR: Required to provide the year of emissions
 - NETCDF_POL_UNIT: Required to specify the modeling the unit of each pollutant

ARINV: Area Inventory List File

#LIST GRID

#SCC, Pollutant, Variable_Name, Month, File_location_name

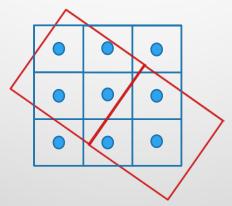
SOLVENT,VOC,emis_nmvoc,0,/nas/EDGAR/solvent/nmvoc/v42_2010.nc

SOLVENT,CH4,emis_ch4,0,/nas/EDGAR/solvent/ch4/v42_2010.nc

ENERGY,NOX ,emis_nox,0,/nas/EDGAR/energy/nox/v42_2010.nc

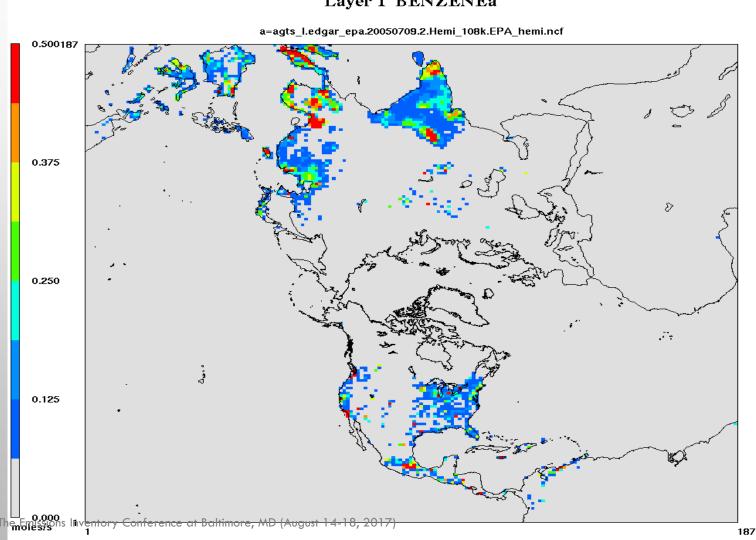
ENERGY,PM25,emis_pm25,0,/nas/EDGAR/energy/pm2.5/v42_2010.nc

ENERGY,NOX,emis_nmvoc,0,/nas/EDGAR/energy/nmvoc/v42_2010.nc


..,...,...,...

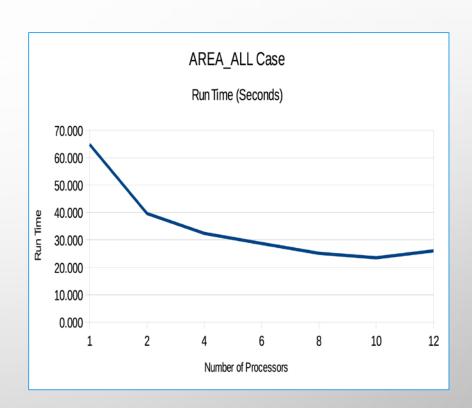
SMOKE v4.0 for Hemispheric Modeling

- Grdmat Updates to regrid the pregridded emissions into the output modeling domain without any spatial surrogate.
 - Built a new function to disaggregate the grid cell into multiple point and the regrid them into the new modeling domain.



- Spcmat used to assign a single chemical speciation profile by grid cell
- Cntlmat used to zero-out US emissions by Country-level

Example of Gridded HTAP Emissions



Parallelization of SMOKE

Open MP Parallelization in SMOKE

- Smkreport and Smkmerge
- Upto 2-2.5x Speed up
- Requires a complete restructuring

SMOKE v4.5 Updates

• **SMOKE4AERMOD** System Development

- Generating a set of AERMOD ready input files based on the NEI inventories used in for air quality modeling.
- Designed for NATA 2014 Studies to be consistent with air quality model ready emissions input.
- o Point Sources:
 - Point-EGU
 - Point-NonEGU
 - Airports with Runway (w/o Runway)
- Nonpoint Sources:
 - CMV, RWC,,,
- Nonroad Sources
- Onroad Mobiles Sources:
 - RPD, RPV, RPP, RPH

U.S. EPA OTAQ Aircraft Emissions

- Supports from OTAQ and OAQPS offices
- New NEI platform sector for aircraft with a fully trajectory emissions
- Landing-Take-off (LTO) and Cruising Altitude Treatment
- Altitude Cut-Off Method to control the maximum height of aircraft emissions (NEI aircraft inventory is based on up to 3,000ft)
- Converting MSL to AGL Altitudes Handling
- Annual Link Inventory format: FF10_LINK
- Hourly/seconds Link Inventory format: FF10_LINK_HOURLY (Optional)
 - Requires a new program called **Lnkmerge** to process Temporally and Spatially highly resolved link-level aircraft emissions inventory
- Based on several link-level inventory processing tools development from FAA and LADCO.

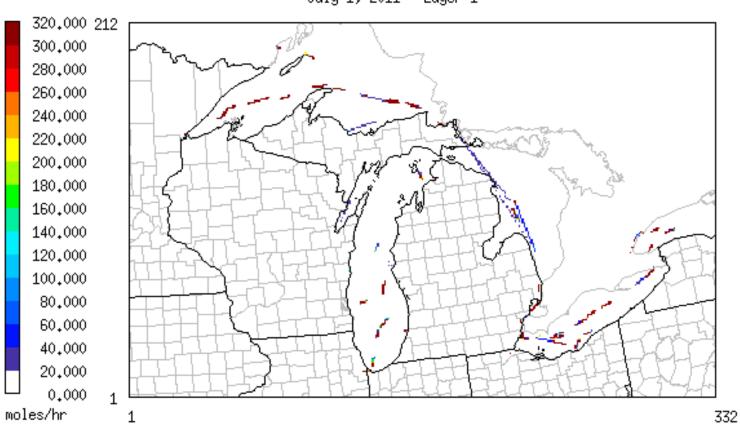
FF10_LINK: OTAQ Link-level Inventory Format

Column	Variable	Туре	Description
1	COUNTRY	Chars (3)	Country code; default to "US" (required)
2	FIPS	Chars (6)	Geographical code to represent geographical location of aircraft [ex: 0NC001 for Alamance County in NC, CURISE for aircraft crusing mode,,,,]
3	TRIBAL	Chars (3)	Tribal code (optional)
4	LINK_ID	Chars (15)	Link Identification Code (required)
5	SCC	Chars (20)	Source Category Code (SCC) (required)
6	DEPART_ID	Chars (15)	Link-specific Departure ICAO Airport Code (required)
7	ARRIVAL_ID	Chars (15)	Link-specific Arrival ICAO Airport Code (required)
8	EXH_HGT	Real	Link-specific Exhaust Height from the ground (ft) (optional)
9	EXH_DIAM	Real	Link-specific Exhaust Diameter (ft) (optional)
10	EXH_TEMP	Real	Link-specific Exhaust Gas Exit Temperature (°F) (optional)
- 11	EXH_FLOW	Real	Link-specific Exhaust Flow Rate (ft3/sec) (optional; automatically calculated by Smkinven from velocity and diameter if not given in file)
12	EXH_VEL	Real	Link-specific Exhaust Gas Exit Velocity (ft/sec) (optional)
13	STR_LON	Real	Starting Link ID Longitude (degrees) (optional)
14	STR_LAT	Real	Starting Link ID Latitude (degrees) (optional)
15	END_LON	Real	Ending Link ID Longitude (degrees) (optional)
16	END_LAT	Real	Ending Link ID Latitude (degrees) (optional)
17	POL_NAME	Chars (16)	Pollutant Code (CAS) (required)
18	EMIS_VALUE	Chars (16)	Total emissions per link ID in unit of short tons per year (required)
19	Comments	Chars (256)	Comments 14

FF10_HOURLY_LINK: OTAQ Aircraft Link-level Format

Column	Variable \\	Туре	Description
1	COUNTRY	Chars (3)	Country code; default to "US" (required)
2	FIPS	Chars (6)	Geographical code to represent geographical location of aircraft [ex: 037001 for Alamance County in NC,,,,,,] (required)
3	TRIBAL	Chars (3)	Tribal code (optional)
4	LINK_ID	Chars (15)	Link Identification Code (required)
5	SCC	Chars (20)	Source Category Code (SCC) (required)
6	SEGMENT_ID	Chars (15)	Link-specific Segment ID [Taxi_out,,,,,Taxi_in] (required)
7	SEG_YEAR	Integer	Year of Segment ID (required)
8	SEG_MON	Integer	Month of year (required)
9	SEG_DAY	Integer	Day of month (required)
10	SEG_HOUR	Integer	Hour (required)
- 11	SEG_MIN	Integer	Minutes (required)
12	SEG_TZONE	Chars (3)	Link-specific time zone [ex: GMT,,,,,] (required)
13	SEG_DURATION	Integer	Segment Duration Time (seconds) (required)
14	SEG_DISTANCE	Integer	Segment Distance (feet) (optional)
15	STR_LON	Real	Starting Segment ID Longitude (degrees) (required)
16	STR_LAT	Real	Starting Segment ID Latitude (degrees) (required)
17	STR_ALT	Real	Starting Segment ID Altitude above MSL (feet) (optional)
18	END_LON	Real	Ending Segment ID Longitude (degrees) (required)
19	END_LAT	Real	Ending Segment ID Latitude (degrees) (required)
20	END_ALT	Real	Ending Segment ID Altitude above MSL (feet) (optional)
21	POL_NAME	Chars (16)	Pollutant Code (CAS) (required)
22	EMIS_VALUE	Chars (16)	Total emission in unit of short tons per segment ID (required)
23	Comments	Chars (256)	Comments

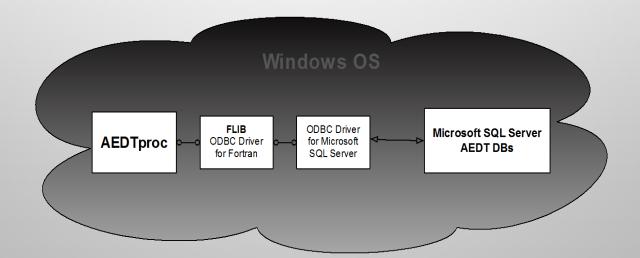
CMV Link-Level Emissions Processing


- LADCO's Commercial Marine Vessels (CMV) Link-Level Emissions
 - Real-time CMV Transponder Data measured by Automatic Identification System (AIS)
 - Vessel identity, type, position, course, speed, navigational status, and other
 - LADCO developed an AIS-based 2014 CMV Inventory
 - Processes: Cruising, Maneuvering and Hoteling
 - Link-level (starting and ending coordinates)
 - Temporal Resolution: Few seconds to Months
- LinkProc is a stand-alone Emissions Modeling Processor
 - Generates gridded/speciated/hourly emissions for AQ models
 - No multiple steps like SMOKE programs

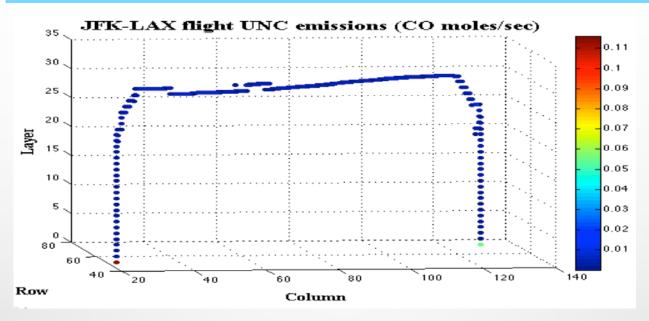
LADCO CMV Link-level Emissions

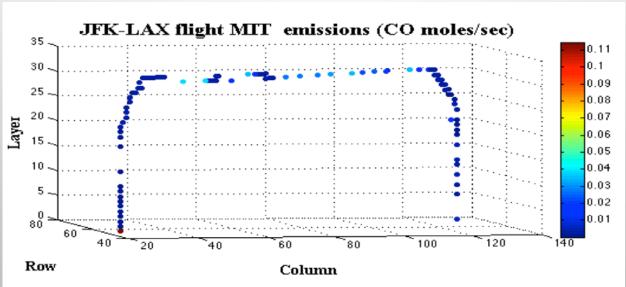
CO Emissions from all CMV Sources

Great Lakes 4km Test Domain July 1, 2011 - Layer 1

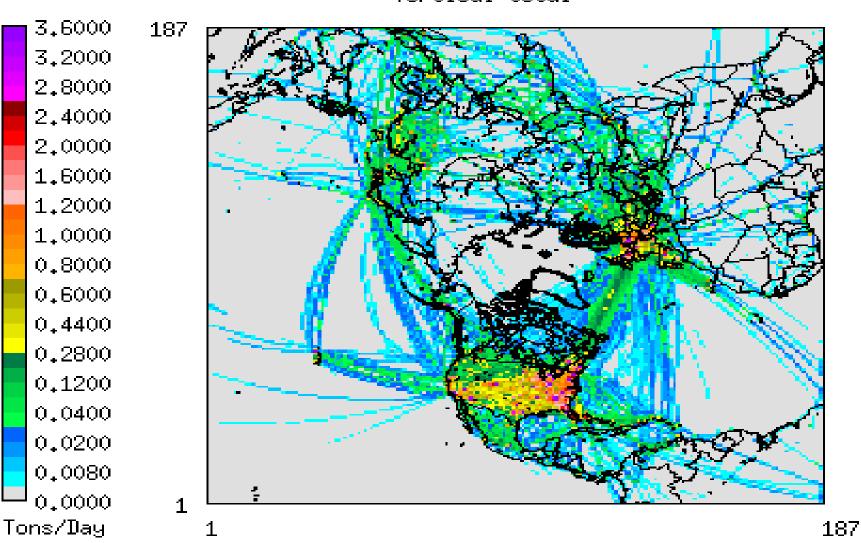

The Emissions Inventory Conference at Baltimore, MD (August 1418, 2011 0:00:00

17




FAA AEDT Gridder Development

- FAA Aviation Environmental Design Tool (AEDT) version 2.0
 - Full trajectory link-level aircraft emissions in realtime
- AEDTProc was developed on 2010 and currently used to generate the 3-D aircraft emissions for air quality models
- New AEDT-Gridder Development:
 - Direct connection to MS SQL DBs Server to retrieve the aircraft emissions from SQL DBs using FLIB library that allows Fortran to talk to the DBs
 - Expanding to support global climate models (CamChem, Geos-Chem,,,) and the next generation air quality platform MPAS (Model for Prediction Across Scale)



Daily Total CO

HEMI108 flights 108km (20060103) Vertical total

Ongoing SMOKE Updates

- New Spatial Allocator Based on PostgreSQL/PostGIS
 - Easier, Faster and Simpler
- Improving Fire-related plume algorithms for a better vertical and horizontal allocations
 - New fires grouping for a better horizontal allocation
 - New Fire plume algorithms for a better vertical allocation
- The Integration of the SMOKE setup structures between
 NEI Modeling Platform and CMAS SMOKE release versions
 - Restructuring the current CMAS version of SMOKE system
 - NEI platform updates are needed.

Acknowledgement

- U.S. EPA
 - Office of Air Quality Planning and Standards (OAQPS)
 - Office of Transportation and Air Quality (OTAQ)

- LADCO (Lake Michigan Air Director Consortium)
- FAA (Federal Aviation Administration)

