United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711 EPA 454/R-01-004 March 2001

EPA National Air Quality and Emissions Trends Report, 1999

1999 Annual Mean PM_{2.5} Concentrations (µg/m³)

Source: US EPA AIRS Data base as of 7/12/00 without data flagged as 1, 2, 3, 4, T, W, Y, or X.

Air

EPA 454/R-01-004

National Air Quality and Emissions Trends Report, 1999

U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Emissions Monitoring and Analysis Division Air Quality Trends Analysis Group Research Triangle Park, North Carolina 27711

March 2001

About the Cover

The map on the cover depicts nationwide annual mean $PM_{2.5}$ concentrations from the Federal Reference Method (FRM) monitoring network, as well as information on data completeness. Annual mean concentrations are generally above the level of the 1997 standard of 15 µg/m³ in much of the eastern United States and throughout California. Annual mean concentrations above 20 µg/m³ are seen in several major metropolitan areas including Pittsburgh, Cleveland, Atlanta, Chicago, and St. Louis and Los Angeles The western Great Plains and mountain regions show notably low annual mean concentrations, most below 10 µg/m³.

Data Source: U.S. EPA AIRS Data Base 1/30/01.

Disclaimer

This report has been reviewed and approved for publication by the U.S. Environmental Protection Agency's Office of Air Quality Planning and Standards. Mention of trade names or commercial products are not intended to constitute endorsement or recommendation for use.

Acknowledgments

The Trends Team would like to acknowledge the members of EPA's Office of Research and Development, Office of Atmospheric Programs, Office of Radiation and Indoor Air and Office of Transportation and Air Quality for peer reviewing this report prior to publication; Support for the statistical analyses of air toxics trends provided under EPA contract 68D70066; Colorado State University for providing summary data from the IMPROVE monitoring network; Support for desktop publishing and Web site development provided under EPA contract 68W99004; and the Trends Workgroup in EPA's Office of Air Quality Planning and Standards for providing comments throughout report development.

Preface

This is the 27th annual report on air pollution trends in the United States issued by the U.S. Environmental Protection Agency. The report is prepared by the Air Quality Trends Analysis Group (AQTAG) in Research Triangle Park, North Carolina and is directed toward both the technical air pollution audience and other interested parties and individuals.

The report can be accessed via the Internet at http://www.epa.gov/ airtrends/. AQTAG solicits comments on this report and welcomes suggestions regarding techniques, interpretations, conclusions, or methods of presentation. Comments can be submitted via the website or mailed to:

> Attn: Trends Team AQTAG (MD-14) U.S. EPA Research Triangle Park, NC 27711

Readers can access data from the Aerometric Information Retrieval System (AIRS) at http://www.epa.gov/airsdata/ and real time air pollution data at http://www.epa.gov/airnow/.

Contents

Chapter 1

Executive Summary	
Chapter 2	
Chapter 3	
Chapter 4	
Chapter 5	
Chapter 6	
Chapter 7	
References and Notes	7
Chapter 2	
Criteria Pollutants — National Trends	
Carbon Monoxide	
Lead	
Nitrogen Dioxide	
Ozone	
Particulate Matter	
Sulfur Dioxide	
References	
Chapter 3	
Criteria Pollutants — Metropolitan Area Trends	
Status: 1999	
Trends Analysis	
The Air Quality Index	
Summary of AQI Analyses	
References and Notes	
Chapter 4	
Criteria Pollutants — Nonattainment Areas	

Chapter 5

Air Toxics	
Background	
Health and Environmental Effects	79
National Air Toxics Control Program	
Air Toxics Emissions in 1996	
Trends in Air Toxics Emissions	
Ambient Monitoring	
Trends In Ambient Concentrations	
National Atmospheric Deposition Program/Mercury Deposition Network	
Integrated Atmospheric Deposition Network	
Chambon 6	
Visibility Tronds	00
Introduction	
Nature and Sources of the Problem	
Long Term Tronds (1081–1005)	
Descent Trends (1900, 1000) from IMDDOVE Data	
Recent Ifenus (1990–1999) Ifoli IIVIF KOVE Data	
The Components of PM Contributing to Trends in Visibility Impairment	104 105
Current Visibility Conditions	
Programs to Improve Visibility	113
References	114
Chapter 7	
Atmospheric Deposition of Sulfur and Nitrogen Compounds	115
Primary Atmospheric Deposition Monitoring Networks	116
National Atmospheric Deposition Network/National Trends Network	
Trends Analyses for Sulfate and Nitrogen Concentrations in Wet Deposition	
Clean Air Status and Trends Network	
Dry Deposition	
Concentration Trends Analysis at CASTNet Sites	
Seasonal Trends in SO ₂ Emissions and Related Air Quality	
Sulfur and Nitrogen Deposition	124
References	
Appendix A	
Data Tables	127
Appendix B	
Methodology	229
AIRS Methodology	229
Emissions Estimates Methodology	233
IMPROVE Methodology	
Air Toxics Methodology	
References	

Figures

Figure 2-1.	Trend in 2nd maximum non-overlapping 8-hour average CO concentrations, 1980–1999.	11
Figure 2-2.	Trend in 2nd maximum non-overlapping 8-hour average CO concentrations by type of location, 1980–1999	12
Figure 2-3.	Trend in CO 2nd maximum non-overlapping 8-hour concentrations by EPA region, 1980–1999.	12
Figure 2-4.	CO emissions by source category, 1999.	13
Figure 2-5.	Density map of 1999 carbon monoxide emissions, by county.	13
Figure 2-6.	Trend in national total CO emissions, 1980–1999.	14
Figure 2-7.	Highest 2nd maximum non-overlapping 8-hour average CO concentration by county, 1999	15
Figure 2-8.	Trend in maximum quarterly average Pb concentrations (excluding point-source oriented sites), 1980–1999	18
Figure 2-9.	Pb maximum quarterly mean concentration trends by location (excluding point-source oriented sites), 1980–1999	18
Figure 2-10.	Trend in Pb maximum quarterly mean concentration by EPA region, 1980–1999.	19
Figure 2-11.	National total Pb emissions trend, 1980–1999.	20
Figure 2-12.	Pb emissions by source category, 1999.	20
Figure 2-13.	Pb maximum quarterly concentration in the vicinity of Pb point sources, 1999.	21
Figure 2-14.	Highest Pb maximum quarterly mean by county, 1999	21
Figure 2-15.	Trend in annual NO ₂ mean concentrations, 1980–1999.	24
Figure 2-16.	Trend in annual mean NO ₂ concentrations by type of location, 1980–1999.	24
Figure 2-17.	Trend in NO ₂ maximum quarterly mean concentration by EPA region, 1980–1999.	25
Figure 2-18.	Trend in national total NO _x emissions, 1980–1999.	26
Figure 2-19.	NO _x emissions by source category, 1999.	26
Figure 2-20.	Density map of 1999 nitrogen dioxide emissions, by county.	27
Figure 2-21.	Highest NO ₂ annual mean concentration by county, 1999.	28
Figure 2-22.	Trend in annual 2nd-highest daily maximum 1-hour, and 4th-highest daily 8-hour O3 concentrations, 1980–1999	30
Figure 2-23.	Trend in 4th-highest daily 8-hour O3 concentrations, 1980–1999.	31
Figure 2-24.	Trend in 2nd highest daily 1-hour O3 concentration by EPA region, 1980–1999.	32
Figure 2-25.	Trend in 4th highest daily 8-hour O3 concentration by EPA region, 1980–1999.	32
Figure 2-26.	Trend in annual 2nd-highest daily maximum 1-hour O ₃ concentrations by location, 1980–1999.	33
Figure 2-27.	Comparison of actual and meteorologically adjusted 1-hour O3 trends, 1980–1999.	33
Figure 2-28.	Areas with PAMS networks.	34
Figure 2-29.	A comparison of the median change in summer morning concentrations of the most abundant VOC species measured at all PAMS sites and PAMS type 2 sites from 1995 and 1999.	1 34
Figure 2-30.	Trend in 4th-highest daily 8-hour O ₃ based on 34 CASTNet sites in the rural eastern United States, 1980–1999	35
Figure 2-31.	Trend in annual 4th-highest daily maximum 8-hour O ₃ concentrations in National Parks, 1980–1999	35
Figure 2-32.	Trend in national total anthropogenic VOC emissions, 1980–1999.	36
Figure 2-33.	Anthropogenic VOC emissions by source category, 1999.	36
Figure 2-34.	Density map of 1999 VOC emissions, by county.	38
Figure 2-35.	Highest second daily maximum 1-hour O ₃ concentration by county, 1999.	38
Figure 2-36.	Highest fourth daily maximum 8-hour O ₃ concentration by county, 1999.	39
Figure 2-37.	Trend in annual mean PM ₁₀ concentrations, 1990–1999.	42
Figure 2-38.	PM ₁₀ annual mean concentration trends by location, 1990–1999.	42
Figure 2-39.	National PM ₁₀ emissions trend, 1980–1999 (traditionally inventoried sources only).	43
Figure 2-40.	PM ₁₀ emissions from traditionally inventoried source categories, 1999.	43

Figure 2-41.	Total PM ₁₀ emissions by source category, 1999.	44
Figure 2-42.	PM ₁₀ emissions density by county, 1999.	45
Figure 2-43.	Trend in PM ₁₀ annual mean concentration by EPA region, 1990–1999.	45
Figure 2-44.	Highest 2nd maximum 24-hour PM ₁₀ concentration by county, 1999.	46
Figure 2-45.	Status of PM ₂₅ monitor network, as of May 2001.	47
Figure 2-46.	1999 annual mean PM_{25} concentrations (µg/m3).	
Figure 2-47.	1999 98th percentile 24-hour average PM ₂₅ concentrations (µg/m3).	48
Figure 2-48.	Urban PM ₂₅ monthly patterns by region, 1999.	49
Figure 2-49.	Rural PM ₂₅ monthly patterns by region, 1999.	50
Figure 2-50.	Class I Areas in the IMPROVE Network meeting the data completeness criteria in Appendix B.	51
Figure 2-51.	Annual mean PM_{25} concentrations in 1999.	52
Figure 2-52.	PM ₂₅ concentrations, 1992–1999 at eastern IMPROVE sites meeting trends criteria.	52
Figure 2-53.	PM ₂₅ concentrations, 1990–1999 at western IMPROVE sites meeting trends criteria.	53
Figure 2-54.	PM ₂₅ concentrations, 1990–1999 at the Washington D.C. IMPROVE site.	53
Figure 2-55.	PM ₂₅ ambient composition.	55
Figure 2-56.	PM ₂₅ emission sources.	56
Figure 2-57.	Direct PM ₂₅ emissions density by county, 1999.	57
Figure 2-58.	National direct PM ₂ = emissions trend, 1990–1999 (traditionally inventoried sources only).	58
Figure 2-59.	Direct PM ₂ emissions from traditionally inventoried source categories, 1999.	58
Figure 2-60.	Total direct PM ₂ , emissions by source category, 1999.	
Figure 2-61.	National ammonia emissions by principle source categories, 1999	59
Figure 2-62.	Estimated 1999 annual mean PM ₁₀ =2.5.	60
Figure 2-63.	Estimated 1999 98th percentile 24-hour average PM ₁₀ =2.5 developed from 1999 FRM monitor data	60
Figure 2-64.	Trend in annual mean SO ₂ concentrations, 1980–1999.	
Figure 2-65	Annual mean SO ₂ concentration by trend location 1980–1999	
Figure 2-66	National total SO ₂ emissions trend 1980–1999	63
Figure 2-67	SO ₂ emissions by source category 1999	63
Figure 2-68	Long-term ambient SO, trend 1980–1999	
Figure 2-69	Trend in SO, annual arithmetic mean concentration by EPA region 1980–1999	
Figure 2-70	Plants affected by the Δcid Rain Program	
Figure 2-70.	Highest 2nd maximum 24-bour SO concentration by county 1999	
Figure 3-1	Air Quality Index logo	
Figure 3-2	Number of days with AOI values > 100 as a percentage of 1990 value	
Figure 3-3	Porcent of days over 100 due to econo	73
Figure 4-1	Location of nonattainment areas for criteria pollutante Sontember 2000	
Figure 4-1.	Classified even ponetteinment areas	
Figure 4-2.	National contribution of source types to 1996 NTI emissions for the 188 HAPs	
Figure 5-1.	National contribution of source types to 1006 NTI emissions for the urban HAPs	
Figure 5-2.	National contribution by omission source types to 1990 N11 emissions for the urban HAPs and dissel particulate matter 1006	
Figure 5-3.	Individual contribution by emission source type for individual urban TIAI's and dieser particulate matter, 1990	
Figure 5-4.	Urban/rural splits by source type for the 1996 hational emissions of 22 urban HAPs.	04 04
Figure 5-5.	Change in matienal air taviae emissional heading (1000, 1002) to 1000	
Figure 5-6.	Change in national air toxics emissions – baseline (1990–1993) to 1996.	
Figure 5-7.	Locations for urban and rural air toxics monitors with long-term data.	
Figure 5-6a.	National trend in annual average benzene concentrations in metropolitan areas, 1994–1999.	
Figure 5-86.	National trend in annual average 1,3-butadiene concentrations in metropolitan areas, 1994–1999.	
Figure 5-8c. Element $5 - 8c$.	INational trend in annual average total suspended lead concentrations in metropolitan areas, 1994–1999.	
Figure 5-8d.	National trend in annual average perchloroetnylene concentrations in metropolitan areas, 1994–1999.	
Figure 5-8e.	National trend in annual average styrene concentrations in metropolitan areas, 1994–1999.	
Figure 5-8f. \mathbf{F}	INational trend in annual average toluene concentrations in metropolitan areas, 1994–1999.	
Figure 5-9a.	Irend in annual average benzene concentrations for metropolitan sites in California, 1990–1999.	

Figure 5-9b.	Trend in annual average 1,3-butadiene concentrations for metropolitan sites in California, 1990–1999.	. 92
Figure 5-9c.	Trend in annual average total suspended lead concentrations for metropolitan sites in California, 1990–1999.	. 93
Figure 5-9d.	Trend in annual average perchloroethylene concentrations for metropolitan sites in California, 1990–1999.	. 93
Figure 5-9e.	Trend in annual average styrene concentrations for metropolitan sites in California, 1990–1999.	. 94
Figure 5-9f.	Trend in annual average toluene concentrations for metropolitan sites in California, 1990–1999.	. 94
Figure 6-1.	IMPROVE sites meeting data completeness requirements for sites operating in 1999.	100
Figure 6-2.	Comparison of the three visibility metrics (extinction, deciview and visual image).	101
Figure 6-2a.	Images of Shenandoah National Park and Yosemite National Park.	101
Figure 6-3.	Shenandoah National Park on clear and hazy days and the effect of adding 10 ug/m3 of fine particles to each.	102
Figure 6-4	Long-term trends for 75th percentile light extinction coefficient from airport visual data (July-September).	103
Figure 6-5a.	Visibility trends for 10 eastern U.S. Class I areas for clearest, middle, and haziest 20 percent days in the distribution, 1992–1999.	104
Figure 6-5b.	Visibility trends for 26 western U.S. Class I areas for clearest, middle, and haziest 20 percent days in the distribution, 1992–1999.	104
Figure 6-6a.	Aerosol light extinction in 10 eastern Class I areas for the clearest 20 percent of the days in the distribution, 1992–1999.	105
Figure 6-6b.	Aerosol light extinction in 10 eastern Class I areas for the middle 20 percent of the days in the distribution, 1992–1999.	105
Figure 6-6c.	Aerosol light extinction in 10 eastern Class I areas for the haziest 20 percent of the days in the distribution, 1992–1999.	105
Figure 6-6d.	Aerosol light extinction in 26 western Class I areas for the clearest 20 percent of the days in the distribution, 1990–1999.	106
Figure 6-6e.	Aerosol light extinction in 26 western Class I areas for the middle 20 percent of the days in the distribution, 1990–1999.	106
Figure 6-6f.	Aerosol light extinction in 26 western Class I areas for the haziest 20 percent of the days in the distribution, 1990–1999.	106
Figure 6-7a.	Class I area significant trends in deciviews for the clearest 20 percent, middle 20 percent, and haziest 20 percent days as summarized in Table 6-1.	108
Figure 6-7b.	Class I area significant trends light extinction due to sulfate for the clearest 20 percent, middle 20 percent, and haziest 20 percent days as summarized in Table 6-1.	108
Figure 6-7c.	Class I area significant trends for light extinction due to organic carbon for the clearest 20 percent, middle 20 percent, and haziest 20 percent days as summarized in Table 6-1.	109
Figure 6-8a.	Aerosol light extinction in (Mm-1) for the clearest 20 percent days and contribution by individual particulate matter constituents, based on 1997–1999 IMPROVE data.	110
Figure 6-8b.	Aerosol light extinction in (Mm-1) for the middle 20 percent days and contribution by individual particulate matter constituents, based on 1997–1999 IMPROVE data.	110
Figure 6-8c.	Aerosol light extinction in (Mm-1) for the haziest 20 percent days and contribution by individual particulate matter constituents, based on 1997–1999 IMPROVE data.	111
Figure 6-9a.	Current visibility impairment expressed in deciviews for the clearest 20 percent days based on 1997–1999 IMPROVE data.	112
Figure 6-9b.	Current visibility impairment expressed in deciviews for the middle 20 percent days based on 1997–1999 IMPROVE data.	112
Figure 6-9c.	Current visibility impairment expressed in deciviews for the haziest 20 percent days based on 1997–1999 IMPROVE data.	113
Figure 7-1.	The National Atmospheric Deposition Program/National Trends Network.	116
Figure 7-2.	Annual mean sulfate deposition from precipitation, 1990–1992 vs. 1997–1999.	117
Figure 7-3.	Annual mean ammonium deposition from precipitation, 1990–1992 vs. 1997–1999.	118
Figure 7-4.	Annual mean nitrate deposition from precipitation, 1990–1992 vs. 1997–1999.	119
Figure 7-5.	Rural annual mean SO ₂ concentrations from CASTNet, 1990–1992 vs. 1997–1999.	120
Figure 7-6.	Rural annual average sulfate concentrations from CASTNet, 1990–1992 vs. 1997–1999.	121
Figure 7-7.	CASTNet and subset of 34 long-term monitoring sites used for 1990–1999 trends analysis.	121
Figure 7-8.	Trend in ambient sulfates in the rural eastern United States, based on CASTNet monitoring data, 1990–1999.	122
Figure 7-9.	Trend in ambient sulfur dioxide in the rural eastern United States, based on CASTNet monitoring data, 1990–1999.	122
Figure 7-10	Rural annual mean ammonium concentrations from CASTNet. 1990–1992 vs. 1997–1999.	123
Figure 7-11	Rural annual mean total nitrate concentrations from CASTNet. 1990–1992 vs. 1997–1999.	123
Figure 7-12	Trend in annual mean ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and	
	regional SO ₂ emissions from electric utilities in rural eastern United States, 1990–1999.	124

Figures 7-13a.	and Figure 7-13b. Trend in annual mean ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SQ, emissions from electric utilities in rural eastern United States by calendar quarter	
	1990–1999.	. 124
Figures 7-13c.	and 7-13d. Trend in annual mean ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SO ₂ emissions from electric utilities in rural eastern United States by calendar quarter, 1990–1999	. 125
Figure 7-14.	Wet and dry components of sulfur deposition, 1999.	. 126
Figure 7-15.	Wet and dry components of nitrogen deposition, 1999	. 126
Figure A-1.	(Multiple NA areas within a larger NA area) Two SO2 areas inside the Pittsburgh-Beaver Valley ozone NA.	. 226
Figure A-2.	(Overlapping NA areas) Searles Valley PM ₁₀ NA partially overlaps the San Joaquin Valley ozone NA	. 226
Figure B-1.	Carbon monoxide monitoring network, 1999.	. 230
Figure B-2.	Lead monitoring network, 1999.	. 230
Figure B-3.	Nitrogen dioxide monitoring network, 1999.	. 231
Figure B-4.	Ozone monitoring network, 1999.	. 231
Figure B-5.	PM ₁₀ monitoring network, 1999.	. 232
Figure B-6.	Sulfur dioxide monitoring network, 1999.	. 232
Figure B-7.	Class I Areas in the Improve Network meeting data completeness criteria.	. 234

Tables

Table 2-1.	NAAQS in effect as of December 1999.	9
Table 2-2.	Milestones in Motor Vehicle Emissions Control	14
Table 2-3.	Summary of Changes in Summer 6-9 a.m. Mean Concentrations of NO _x and TNMOC at PAMS Sites	34
Table 2-4.	Biogenic Sources of VOC Emissions By Region	37
Table 2-5.	Percent Contribution to PM ₂₅ by Component, 1999	52
Table 2-6.	Total SO ₂ Emissions from Phase I and Non-Phase I Acid Rain Sources: 1990–1999 (million tons).	64
Table 3-1.	Summary of MSA Trend Analyses by Pollutant, 1990–1999	70
Table 3-2.	AQI Categories, Colors, and Ranges	72
Table 4-1.	Areas Redesignated Between September 1999 and September 2000	77
Table 5-1.	List of 33 Urban Air Toxics Strategy HAPs	81
Table 5-2.	National Summary of Ambient HAP Concentration Trends in Metropolitan Areas, 1994-1999	87
Table 5-3.	National Summary of Ambient HAP Concentration Trends in Rural Areas, 1994–1999	95
Table 6-1.	Summary of Class I Area Trend1 Analysis	. 107
Table A-1a.	National Air Quality Trends Statistics for Criteria Pollutants, 1980–1989	. 128
Table A-1b.	National Air Quality Trends Statistics for Criteria Pollutants, 1990–1999	. 130
Table A-2.	National Carbon Monoxide Emissions Estimates, 1970, 1975, 1980, 1985, 1989–1999 (thousand short tons)	. 132
Table A-3.	National Lead Emissions Estimates, 1970, 1975, 1980, 1985, 1989–1999 (short tons)	. 136
Table A-4.	National Nitrogen Oxides Emissions Estimates, 1970, 1975, 1980, 1985, 1989–1999 (thousand short tons)	. 138
Table A-5.	National Volatile Organic Compounds Emissions Estimates, 1970, 1975, 1980, 1985, 1989–1999 (thousand short tons) 142
Table A-6.	National PM ₁₀ Emissions Estimates, 1970, 1975, 1980, 1985, 1989–1999 (thousand short tons)	. 148
Table A-7.	Miscellaneous and Natural PM ₁₀ Emissions Estimates, 1970, 1975, 1980, 1985, 1989–1999 (thousand short tons)	. 152
Table A-8.	National Sulfur Dioxide Emissions Estimates, 1970, 1975, 1980, 1985, 1989–1999 (thousand short tons)	. 153
Table A-9.	National PM _{2.5} Emissions Estimates, 1990–1999 (thousand short tons)	. 156
Table A-10.	National Ammonia Emissions Estimates, 1990–1999 (thousand short tons)	. 160
Table A-11.	National Long-Term Air Quality Trends, 1980–1999	. 162
Table A-12a.	National Air Quality Trends by Monitoring Location, 1980–1989	. 163
Table A-12b.	National Air Quality Trends by Monitoring Location, 1990–1999	. 164
Table A-13a.	National Air Quality Trends Statistics by EPA Region, 1980–1989	. 165
Table A-13b.	National Air Quality Trends Statistics by EPA Region, 1990–1999	. 167
Table A-14.	Maximum Air Quality Concentrations by County, 1999	. 169
Table A-15.	Maximum Air Quality Concentrations by Metropolitan Statistical Area, 1999	. 188
Table A-16.	Metropolitan Statistical Area Air Quality Trends, 1990–1999	. 194
Table A-17.	Number of Days with AQI Values Greater Than 100 at Trend Sites, 1990–1999, and All Sites in 1999	. 219
Table A-18.	(Ozone only) Number of Days with AQI Values Greater Than 100 at Trend Sites, 1990–1999, and All Sites in 1999	. 221
Table A-19.	Condensed Nonattainment Areas List(a)	. 223
Table A-20.	Trend in 8-hr ozone concentrations (ppm) exceedances at National Park and National Monument sites, 1990–1999.	. 227
Table A-21.	Onroad and Nonroad Emissions of 21 Mobile Source Air Toxics, 1996	. 228
Table B-1.	Number of Ambient Monitors Reporting Data to AIRS	. 229

Acronyms

AIRS	Aerometric Information Retrieval System	NARSTO	North American Research Strategy for Tropospheric Ozone
AQRV	Air-Quality Related Values	NESCAUM	Northeast States for Coordinated Air
AIRMoN	Atmospheric Integrated Assessment		Use Management
<u></u>	Monitoring Network	NLEV	National Low Emission Vehicle
CAA	Clean Air Act	NMOC	Non-Methane Organic Compound
CAAA	Clean Air Act Amendments	NO_2	Nitrogen Dioxide
CARB	California Air Resources Board	NO _x	Nitrogen Oxides
CASAC	Clean Air Scientific Advisory	NPS	National Park Service
CACTNEL	Committee	NTI	National Toxics Inventory
CASINE	Clean Air Status and Trends Network	O ₃	Ozone
CEMs	Continuous Emissions Monitors	OTAG	The Ozone Transport Assessment
CFR	Code of Federal Regulations		Group
CO	Carbon Monoxide	PAHs	Polyaromatic Hydrocarbons
CMSA	Consolidated Metropolitan Statistical Area	PAMS	Photochemical Assessment Monitoring Stations
DST	Daylight Savings Time	PAN	Peroxyacetyl Nitrate
EPA	Environmental Protection Agency	Pb	Lead
FRM	Federal Reference Method	PBTs	Persistent and Bioaccumulative Toxics
GDP	Gross Domestic Product	PCBs	Polychlorinated Biphenyls
GLM	General Linear Model	PM_{10}	Particulate Matter of 10 micrometers
HAPs	Hazardous Air Pollutants	PM	Particulate Matter of 2.5 micrometers
IADN	Integrated Atmospheric Deposition Network	1 IVI _{2.5}	in diameter or less
I/M	Inspection and Maintenance	POM	Polycyclic Organic Matter
	Programs	ppm	Parts Per Million
IMPROVE	Interagency Monitoring of PROtected	PSI	Pollutant Standards Index
	Environments	RFG	Reformulated Gasoline
MACT	Maximum Achievable Control	RVP	Reid Vapor Pressure
MARAMA	Mid-Atlantic Regional Air	SLAMS	State and Local Air Monitoring Stations
	Management Association	SNMOC	Speciated Non-Methane Organic
MDN	Mercury Deposition Network		Compound
MSA	Metropolitan Statistical Area	SO ₂	Sulfur Dioxide
MDL	Minimum Detectable Level	SO _x	Sulfur Oxides
NAAQS	National Ambient Air Quality Standards	TNMOC	Total Non-Methane Organic Compound
NADP/NTN	National Atmospheric Deposition	TRI	Toxic Release Inventory
NIANO	Program/National Irends Network	TSP	Total Suspended Particulate
NAM5	National Air Monitoring Stations	UATMP	Urban Air Toxics Monitoring Program
NAPAP	INational Acid Precipitation	VMT	Vehicle Miles Traveled
	Assessment i rogram	VOCs	Volatile Organic Compounds
		µg/m³	Micrograms Per Cubic Meter

Executive Summary

http://www.epa.gov/oar/aqtrnd99/chapter1.pdf

Criteria pollutants are those pollutants for which the United States Environmental Protection Agency has established National Ambient Air Quality Standards (NAAQS). They include carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO₂), ozone (O₃), particulate matter (PM), and sulfur dioxide (SO₂).

Percent Decrease in National Air Quality Concentrations

1980–199	9	1990–1999
57	Carbon Monoxide	36
94	Lead	60
25	Nitrogen Dioxide	10
20	Ozone*	4
_	Particulate Matter (PM	l ₁₀) 18
50	Sulfur Dioxide	36

* based on 1-hour level.

Air quality concentrations are based on actual measurements of pollutant concentrations in the air at selected monitoring sites across the country.

Fine particulate matter, or PM_{2.5}, are those particles whose aerodynamic diameter is less than or equal to 2.5 micrometers.

Worth Noting:

20-YEAR TRENDS

- National levels of all the criteria pollutants are down.
- Visibility has improved in the East.

10-YEAR TRENDS

$PM_{2.5}$

- In the rural east, sulfates (which comprise approximately 50 percent of PM_{2.5}) are down 24 percent over the last 10 years and in 1999 have returned to 1996–1997 levels, after higher levels in 1998.
- At the Class I areas, PM₂₅ levels, on average, are also back down in 1999.

Visibility

- Overall, the eastern Class I sites do not appear to be getting any worse.
- The eastern Class I sites as an aggregate, showed a 15-percent improvement for the haziest days from 1992–1999. The light extinction due to sulfates reached its lowest level of the 1990s.

Ozone

• While national levels improved in the last 10 years, 1-hour ozone levels in selected regions increased, and 8-hour levels in rural areas increased.

Air Toxics

• Large national emission reductions have been achieved in air toxics (also known as hazardous air pollutants) between the baseline period (1990–1993) and 1996. Improvements come from "major" stationary sources and highway vehicles.

INTRODUCTION

This is the 27th annual report documenting air pollution trends in the United States.^{1–25, 27} This document highlights the Environmental Protection Agency's (EPA's) most recent assessment of the nation's air quality, focusing on the 20-year period from 1980–1999. It features comprehensive information for the criteria pollutants and hazardous air pollutants, as well as relevant ambient air pollution information for visibility impairment and acid rain.

Discussions throughout this report are based on the principle that many of the programs designed to reduce ambient concentrations of the criteria pollutants also aid in reducing pollution that contributes to air toxics pollution, visibility impairment, and acid rain. Likewise, requirements under the various air toxics, visibility, and acid rain programs can also help reduce emissions that contribute to ambient concentrations of the criteria pollutants.

CHAPTER 2

CRITERIA POLLUTANTS — NATIONAL TRENDS

EPA tracks trends associated with the criteria pollutant standards. The national and regional air quality trends, along with supporting emissions data, are presented in this chapter. National levels of all criteria pollutants are down over the last 20 years. Over the last 20 years, ozone (O₃) (1-hour and 8-hour) levels nationally have improved considerably. Some parts of the country show increases in levels over the last 10 years, due mainly to increased NO_x emissions and weather conditions favorable to O_3 formation. Rural O_3 levels appear to be increasing in the short term. However, O_3 levels in urban areas where O₃ problems have historically been the most severe have shown marked improvement in response to stringent controls. Over the last 20 years, urban NO₂ concentrations across the country have decreased. All areas of the country that once violated the NAAQS for NO₂ now meet this standard. Since 1988 represents the first complete year of PM₁₀ data for most monitors, a 20-year trend is not available. However, the most recent 10-year period (1990– 1999) shows that the national average of annual mean PM₁₀ concentrations decreased 18 percent. The national composite average of SO₂ annual mean concentrations decreased 36 percent between 1990-1999 with the largest singleyear reduction occurring between 1994 and 1995. Nationally carbon monoxide (CO) levels for 1999 are the lowest recorded in the last 20 years and this air quality improvement is consistent across all regions of the country. Presently only six areas of the country have CO levels violating the NAAQS. From 1980–1999, there has been a 94-percent decrease in lead (Pb) emissions with a corresponding 94-percent decrease in maximum quarterly average Pb concentrations at population oriented monitors. There are only six areas in the country in nonattainment for Pb and these are associated with specific point sources.

Summary of MSA Trend Analyses by Pollutant, 1990–1999

	Trend Statistic	Total # MSAs	# MSAs Up	# MSAs Down	# MSAs with No Significant Change
со	second max 8-hour	138	0	107	31
Lead	max quarterly mean	69	1	44	24
NO ₂	arithmetic mean	99	3	41	55
Ozone	fourth max 8-hour	207	25	10	172
Ozone	second daily max 1-hour	207	17	14	176
PM_{10}	90th percentile	216	1	113	102
PM ₁₀	weighted annual mean	216	2	126	88
SO ₂	arithmetic mean	148	1	86	61
SO ₂	second max 24-hour	149	1	82	66

CHAPTER 3

CRITERIA POLLUTANTS -METROPOLITAN AREA TRENDS Chapter 3 characterizes air quality on a more local level, using three different indicators. First, this chapter lists the 1999 peak air quality concentrations for metropolitan statistical areas (MSAs). Second, 10-year trends are assessed for each area using a statistical method to measure whether the trend is up or down. The results show that of the 263 areas examined: 1) 214 had downward trends in at least one of the criteria pollutants; 2) 34 had upward trends; 3) 41 areas had no significant trends. A closer look at the

34 areas with upward trends reveals that most were exceeding the level of the 8-hour ozone standard.

The third way in which local air quality is evaluated is by looking at the Air Quality Index (AQI) in the nation's 94 largest metropolitan areas. Ozone accounts for majority of the days with AQI values over 100. Between 1990 and 1999, the total number of days with AQI values greater than 100 decreased 62 percent in southern California but actually rose 25 percent in the remaining major cities across the United States.

CHAPTER 4

CRITERIA POLLUTANTS -OFFICIAL NONATTAINMENT AREAS

> Chapter 4 summarizes the current status of nonattainment areas, which are those officially designated areas not meeting the NAAQS for at least one of the six criteria pollutants. As of September 2000, 114 areas are designated nonattainment. These areas are displayed on a map in this chapter. A second map depicts the current ozone nonattainment areas, color-coded to indicate the severity of the ozone problem in each area. The condensed list of nonattainment areas as of September 2000 is presented in Table A-19.

CHAPTER 5

AIR TOXICS

Chapter 5 presents information on Hazardous Air Pollutants (HAPs), commonly called air toxics. These are pollutants known to cause or suspected of causing cancer or other serious human health effects or ecosystem damage. As of the date of this publication, the 1996 National Toxics Inventory (NTI) contains the most complete, up-to-date air toxics emission estimates available for 188 HAPs. For purposes of this report, the information in the NTI has been divided into four overarching source types: 1) large industrial or "major" sources; 2) "area and other sources," which include smaller industrial sources, such as small drycleaners and gasoline stations, as well as natural sources, such as wildfires; 3) "onroad" mobile, including highway vehicles; and 4) "nonroad" mobile sources, like aircraft, locomotives, and lawn mowers. Summaries of the 1996 emissions provide detail that includes contributions of source types to the 188 HAPs, the subset of 33 urban HAPs as well as the recently designated 21 mobile source air toxics.

A comparison of the 1996 NTI to the baseline period (1990–1993) shows that large national emission reductions have been achieved. For 188 HAPs, there is a 23-percent reduction between the baseline and 1996. For the 33 urban HAPs, there is a 30-percent reduction between the baseline and 1996. Improvements come from "major" stationary sources and highway vehicles. Further reductions are expected from both existing programs and planned future efforts.

Although there is currently no national air toxics monitoring network, there are approximately 300 monitoring sites currently producing ambient data on some of the HAPs. Although the sites are not necessarily at locations which represent the highest area-wide concentrations, they can still be used to provide useful information on trends in ambient air toxics. Ambient monitoring results generally reveal downward trends for most pollutants. The most consistent improvements are apparent for benzene and for total suspended lead. From 1994–1999, annual average concentrations for these two HAPs declined 40 and 47 percent respectively. EPA is working together with state and local air monitoring agencies to build upon the existing monitoring sites to develop a national monitoring network.

CHAPTER 6

VISIBILITY TRENDS

The Clean Air Act (CAA) authorizes EPA to protect visibility, or visual air quality, through a number of programs. These programs include the National Visibility Program under sections 169a and 169b of the Act, the Prevention of Significant Deterioration Program for the review of potential impacts from new and modified sources, the secondary National Ambient Air Quality Standards (NAAQS) for PM₁₀ and PM_{2.5}, and the Acid Rain Program under section 401. The National Visibility Program, established in 1980, requires the protection of visibility in 156 mandatory federal Class I areas across the country (primarily national parks and wilderness areas). The CAA established as a national visibility goal "the prevention of any future, and the remedying of any existing, impairment of visibility in mandatory federal Class I areas in which impairment results from man-made air pollution." The Act also calls for state programs to make "reasonable progress" toward the national goal.

The trends analyses presented in this chapter are based on data from the IMPROVE network. There were 34 sites having data adequate for assessing trends between 1990 and 1999. The network recently has been expanded to provide complete coverage of all mandatory federal Class I areas.

Because of the significant regional variations in visibility conditions, the trends are grouped into eastern and western regions, rather than a national aggregate. The trends are presented in terms of the annual average values for the "clearest," "typical," and "haziest" days monitored each year.

The results show that, in general, visibility is worse in the East than in the West. In fact, visibility impairment for the worst days in the West is close to the level of impairment for the best day in the East.

This year's analyses show that the 10 eastern U.S. Class I sites as an aggregate show improvement for the haziest days over the 1992–1999 timeframe primarily due to reduced levels of sulfate. The 26 western U.S. Class I sites as an aggregate show improvement for the clearest 20 percent and middle 20 percent of days over 1990–1999 timeframe.

Long-term visibility trends (1990–1999) illustrated in the figures show that summer visibility in the eastern United States improved between 1991–1995. This trend follows overall trends in sulfur dioxides emissions discussed in Chapter 2.

CHAPTER 7

ATMOSPHERIC DEPOSITION OF SULFUR AND NITROGEN COMPOUNDS

Sulfur and nitrogen oxides are emitted into the atmosphere primarily from the burning of fossil fuels. These emissions react in the atmosphere to form compounds that are transported long distances and are subsequently deposited in the form of pollutants such as particulate matter (sulfates, nitrates) and related

Long-term Trends for 75th Percentile Light Extinction Coefficient from Airport Visual Data (July–September)

gases (nitrogen dioxide, sulfur dioxide and nitric acid). Nitrogen oxides will also interact with volatile organic compounds to form ozone. The effects of atmospheric deposition include acidification of lakes and streams, nutrient enrichment of coastal waters and large river basins, soil nutrient depletion and decline of sensitive forests, agricultural crop damage, and impacts on ecosystem biodiversity. Toxic pollutants and metals can also be transported and deposited through atmospheric processes.

Both local and long-range emission sources contribute to atmospheric deposition. Total atmospheric deposition is determined using both wet and dry deposition measurements. Wet deposition is the portion dissolved in cloud droplets and is deposited during rain or other forms of precipitation. Dry deposition includes both gas and particle transfer to surfaces during periods of no precipitation. Although the term "acid rain" is widely recognized, the dry deposition portion can range from 20–60 percent of total deposition.

EPA is required by several Congressional and other mandates to assess the effectiveness of air pollution control efforts. These mandates include Title IX of the 1990 Clean Air Act Amendments (the National Acid Precipitation Assessment Program), the Government Performance and Results Act, and the U.S./Canada Air Quality Agreement. One measure of effectiveness of these efforts is whether sustained reductions in the amount of atmospheric deposition over broad geographic regions are occurring. However, permanent changes in SO₂ emissions happen very slowly and atmospheric trends are often obscured by the wide variability of measurements and climate. Numerous years of continuous and consistent data are required to overcome this variability, making long-term monitoring networks especially critical for characterizing deposition levels and identifying relationships among emissions, atmospheric loadings and effects on human health and the environment.

Sulfate concentrations in precipitation have decreased over the past two decades. The reductions were relatively large in the early 1980s followed by more moderate declines until 1995. These reductions in wet sulfates are similar to changes in SO₂ emissions. In 1995 and 1996, however, concentrations of sulfates in precipitation over a large area of the eastern United States exhibited a dramatic and unprecedented reduction. Sulfates in rain have been estimated to be 10-25 percent lower than levels expected with a continuation of 1983-1994 trends. The wet sulfate deposition levels in the 1990–1992 and 1997–1999 time periods, together with the absolute change, are illustrated in the figure. This important reduction in acid precipitation is directly related to the large regional decreases in SO₂ emissions resulting from phase I of the Acid Rain Program (See "Trends in SO₂" in Chapter 2 of this report). The largest reductions in sulfate deposition occurred along the Ohio River Valley and in states to the north and immediately downwind of this region. Nitrogen trends paint a different picture. Nitrate and ammonium deposition derived from National Atmospheric Deposition Program measurement sites reveal 10-year improvement in some areas, including eastern TX, MI, PA and NY. Increased deposition is estimated for the Plains states; and the Western Ohio River and Central Mississippi River Valleys. From ammonium in rain, increases are also noted for eastern NC. However, nitrogen levels for most areas of the county in 1997-1999 were not appreciably different from historical levels.

REFERENCES AND NOTES

- 1. The National Air Monitoring Program: Air Quality and Emissions Trends-Annual Report, EPA-450/1-73-001a and b, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, July 1973.
- Monitoring and Air Quality Trends Report, 1972, EPA-450/1-73-004, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, December 1973.
- 3. Monitoring and Air Quality Trends Report, 1973, EPA-450/1-74-007, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, October 1974.
- 4. Monitoring and Air Quality Trends Report, 1974, EPA-450/1-76-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, February 1976.
- National Air Quality and Emissions Trends Report, 1975, EPA-450/1-76-002, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, November 1976.
- National Air Quality and Emissions Trends Report, 1976, EPA-450/1-77-002, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, December 1977.
- National Air Quality and Emissions Trends Report, 1977, EPA-450/2-78-052, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, December 1978.
- 1980 Ambient Assessment-Air Portion, EPA-450/4-81-014, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, February 1981.
- National Air Quality and Emissions Trends Report, 1981, EPA-450/4-83-011, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, April 1983.
- National Air Quality and Emissions Trends Report, 1982, EPA-450/4-84-002, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, March 1984.
- National Air Quality and Emissions Trends Report, 1983, EPA-450/4-84-029, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, April 1985.
- National Air Quality and Emissions Trends Report, 1984, EPA-450/4-86-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, April 1986.
- National Air Quality and Emissions Trends Report, 1985, EPA-450/4-87-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, February 1987.
- 14. National Air Quality and Emissions Trends Report, 1986, EPA-450/4-88-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, February 1988.
- 15. National Air Quality and Emissions Trends Report, 1987, EPA-450/4-89-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, March 1989.
- National Air Quality and Emissions Trends Report, 1988, EPA-450/4-90-002, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, March 1990.

- National Air Quality and Emissions Trends Report, 1989, EPA-450/4-91-003, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, February 1991.
- National Air Quality and Emissions Trends Report, 1990, EPA-450/4-91-023, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, November 1991.
- National Air Quality and Emissions Trends Report, 1991, EPA-450/R-92-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, October 1992.
- National Air Quality and Emissions Trends Report, 1992, EPA-454/R-93-031, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, October 1993.
- National Air Quality and Emissions Trends Report, 1993, EPA-454/R-94-026, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, October 1994.
- National Air Quality and Emissions Trends Report, 1994, EPA-454/R-95-014, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, October 1995.
- 23. National Air Quality and Emissions Trends Report, 1995, EPA-454/R-96-005, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, October 1996.
- National Air Quality and Emissions Trends Report, 1996, EPA-454/R-97-013, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, January 1998.
- National Air Quality and Emissions Trends Report, 1996, EPA-454/R-97-013, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, January 1998.
- 26. Based on the level of the 8-hour ozone standard (0.08 ppm).
- National Air Quality and Emissions Trends Report, 1998, EPA-454/R-00-003, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, March 2000.

Criteria Pollutants — National Trends

http://www.epa.gov/oar/aqtrnd99/chapter2.pdf

This chapter presents national and regional trends for each of the pollutants for which the United States Environmental Protection Agency (EPA) has established National Ambient Air Quality Standards (NAAQS). NAAQS are in place for the following six criteria pollutants: carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO₂), ozone (O₃), particulate matter (PM), and sulfur dioxide (SO₂). Table 2-1 lists the NAAQS for each pollutant in terms of the level and averaging time of the standard used to evaluate compliance.

There are two types of standards: primary and secondary. Primary standards protect against adverse human health effects, whereas secondary standards protect against welfare effects such as damage to crops, ecosystems, vegetation, buildings, and decreased visibility. There are primary standards for all of the criteria pollutants. Some pollutants (PM and SO₂) have primary standards for both long-term (annual average) and short-term (24 hours or less) averaging times. Short-term standards most directly protect people from adverse health effects associated with peak short-term exposures to air pollution, while long-term standards can protect people from adverse health effects associated with short- and long-term exposures to air pollution.

Table 2-1. NAAQS in effect as of December 2000.

Pollutant	tant Primary Standard (Health Related)		Secondary Standard (Welfare Related)	
	Type of Average	Standard Level Concentration ^a	Type of Average	Standard Level Concentration
со	8-hour ^b	9 ppm (10 mg/m ³)	No Secondary Sta	andard
	1-hour ^b	35 ppm (40 mg/m ³)	No Secondary St	andard
Pb	Maximum Quarterly Average	1.5 µg/m ³	Same as Primary	Standard
NO ₂	Annual Arithmetic Mean	0.053 ppm (100 μg/m ³)	Same as Primary	Standard
03	Maximum Daily 1-hour Average ^c	0.12 ppm (235 μg/m³)	Same as Primary	Standard
	4th Maximum Daily ^o 8-hour Average	ⁱ 0.08 ppm (157 μg/m³)	Same as Primary	Standard
PM ₁₀	Annual Arithmetic Mean	50 µg/m ³	Same as Primary	Standard
	24-hour ^b	150 µg/m³	Same as Primary	Standard
PM _{2.5}	Annual Arithmetic Mean ^e	15 µg/m³	Same as Primary	Standard
	24-hour ^f	65 µg/m³	Same as Primary	Standard
SO ₂	Annual Arithmetic Mean	0.03 ppm (80 µg/m ³)	3-hour ^b	0.50 ppm (1,300 μg/m ³)
	24-hour ^b	0.14 ppm (365 µg/m ³)		

^a Parenthetical value is an approximately equivalent concentration. (See 40 CFR Part 50).

^b The short-term (24-hour) standard of 150 μg/m³ is not to be exceeded more than once per year on average over three years.

^c The standard is attained when the expected number of days per calendar year with maximum hourly average concentrations above 0.12 ppm is equal to or less than one, as determined according to Appendix H of the Ozone NAAQS.

^d Three-year average of the annual 4th highest daily maximum 8-hour average concentration.

e Spatially averaged over designated monitors.

^f The form is the 98th percentile.

Secondary standards have been established for each criteria pollutant except CO. Secondary standards are identical to the primary standards, with the exception of SO₂. Approximately 125 million people in the United states reside in counties that did not meet the primary standard for at least one of the criteria pollutants for the single year 1999.

Number of people living in counties with air quality concentrations above the level of NAAQS in 1999.

On July 18, 1997, EPA revised the ozone and PM NAAQS. The averaging time of the ozone standard changed from a 1-hour average to an 8-hour average to protect against longer exposure periods that are of concern for both human health and welfare. The primary PM standards were revised to change the form of the PM_{10} standards and to add two new $PM_{2.5}$ standards to protect against fine particles.

In May 1999, however, the U.S. Court of Appeals for the D.C. Circuit issued an opinion affecting these revised standards. In particular, the court remanded the ozone standard back to EPA for further consideration. The court also vacated the revised PM₁₀ standard and remanded the PM_{2.5} standards back to EPA for further consideration. Following the denial of a petition for a rehearing by the D.C. Circuit, the Justice Department has filed a petition for review before the Supreme Court. Refer to http://www.epa.gov/airlinks for upto-date information concerning actions surrounding the revised standards.

The trends information presented in this chapter is based on two types of data: ambient concentrations and emissions estimates. Ambient concentrations are measurements of pollutant concentrations in the ambient air from monitoring sites across the country. This year's report contains trends data accumulated from 1990–1999 on the criteria pollutants at thousands of monitoring stations located throughout the United states. The trends presented here are derived from the composite average of these direct measurements. The averaging times and air quality statistics used in the trends calculations relate directly to the NAAQS.

The second type of data presented in this chapter are national emissions estimates. These are based largely on engineering calculations of the amounts and kinds of pollutants emitted by automobiles, factories, and other sources over a given period. In addition, some emissions estimates are based on measurements from continuous emissions monitors (CEMs) that have recently been installed at major electric utilities to measure actual emissions. This report incorporates data from CEMs collected between 1994 and 1999 for NO_x and SO₂ emissions at major electric utilities. [The emissions data summarized in this chapter and in Appendix A were obtained from the National Emission Inventory data located at http://www.epa.gov/ttn/ chief. For assistance call INFO CHIEF (919 541-1000).]

Changes in ambient concentrations do not always track changes in national emissions estimates. There are five known reasons for this. First, because most monitors are positioned in urban, population-oriented locales, air quality trends are more likely to track changes in urban emissions rather than changes in total national emissions. Urban emissions are generally dominated by mobile sources, while total emissions in rural areas may be dominated by large stationary sources such as power plants and smelters.

Second, emissions for some pollutants are calculated or measured in a different form than the primary air pollutant. For example, concentrations of ozone are caused by VOC emissions as well as NO_x emissions.

Third, the amount of some pollutants measured at monitoring locations depends on what chemical reactions, if any, occur in the atmosphere during the time it takes the pollutant to travel from its source to the monitoring station.

Fourth, meteorological conditions often control the formation and buildup of pollutants in the ambient air. For example, peak ozone concentrations typically occur during hot, dry, stagnant summertime conditions. CO is predominately a cold weather problem. Also, the amount of rainfall can affect particulate matter levels.

Finally, emission estimates have uncertainties and may not reflect actual emissions. In some cases, estimation methods are not consistent across all 20 years presented in this report.

For a more detailed discussion of the methodology used to compute the trend statistics in this chapter, please refer to Appendix B.

Carbon Monoxide

Air Quality 1980–99 1990–99	Conc 57% 36%	entrations decrease decrease
1998–99	3%	decrease
Emissions		
Emissions 1980–99	21%	decrease
Emissions 1980–99 1990–99	21% 2%	decrease decrease
Emissions 1980–99 1990–99 1998–99	21% 2% 1%	decrease decrease increase

Worth Noting

• Nationally, carbon monoxide (CO) levels for 1999 are the lowest recorded in last 20 years and this air quality improvement is consistent across all regions of the country.

• Presently, only six areas have CO levels violating the NAAQS (three of these are previous nonattainment areas).

• The National Academy of Sciences is currently initiating a study of persistent CO problem in Fairbanks, Alaska.

Nature and Sources

Carbon monoxide is a colorless, odorless, and (at much higher levels) poisonous gas, formed when carbon in fuels is not burned completely. It is a product of motor vehicle exhaust, which contributes about 60 percent of all CO emissions nationwide. High concentrations of CO generally occur in areas with heavy traffic congestion. In cities, as much as 95 percent of all CO emissions may emanate from automobile exhaust. Other sources of CO emissions include industrial processes, non-transportation fuel combustion, and natural sources such as wildfires. Woodstoves, cooking, cigarette smoke, and space heating are sources of CO in indoor environments. Peak CO concentrations typically occur during the colder months of the year when CO

Figure 2-1. Trend in 2nd maximum non-overlapping 8-hour average CO concentrations, 1980–1999.

automotive emissions are greater and nighttime inversion conditions are more frequent.

Health Effects

Carbon monoxide enters the bloodstream through the lungs and reduces oxygen delivery to the body's organs and tissues. The health threat from lower levels of CO is most serious for those who suffer from cardiovascular disease, such as angina pectoris. At much higher levels of exposure, CO can be poisonous, and healthy individuals may also be affected. Impairment of cognitive skills, vision and work capacity may occur at elevated CO levels in healthy individuals.

Primary Standards

There are two primary NAAQS for ambient CO: a 1-hour average of 35 ppm, and an 8-hour average of 9 ppm. These concentrations are not to be exceeded more than once per year. There currently are no secondary standards for CO.

National Air Quality Trends

Nationally, CO concentrations have consistently declined over the last 20 years. Figure 2-1 reveals a 57-percent improvement in composite average ambient CO concentrations from 1980 to 1999 and a 36 percent reduction over the last 10 years.¹ Following an upturn in 1994, the nation has experienced year-to-year reductions in peak 8-hour CO concentrations through the remainder of the decade. In fact, the 1999 CO levels are generally the lowest recorded during the past 20 years of monitoring. Exceedances of the 8-hour CO NAAQS (which are simply a count of the number of times the level of the standard is exceeded) have declined 93 percent since 1990.

Long-term reductions in ambient CO concentrations have been measured across all monitoring environments—rural, suburban, and urban sites. Figure 2-2 shows that on average, urban monitoring sites record higher CO concentrations than suburban sites, with the lowest levels found at 16 rural sites. During the past 20 years, the 8-hour CO concentrations decreased 65 percent at 16 rural monitoring sites, 54 percent at 289 suburban sites, and 57 percent at 381 urban sites.

Regional Air Quality Trends

The map in Figure 2-3 shows regional trends in ambient CO concentrations during the past 20 years, 1980–1999. All 10 EPA Regions recorded 20-year improvements in CO levels as measured by the regional composite mean concentrations. Significant 20-year concentration reductions of 50 percent or more are evidenced across the nation except in **Figure 2-2.** Trend in 2nd maximum non-overlapping 8-hour average CO concentrations by type of location, 1980–1999. Concentration, ppm

Note: When the total number of rural, suburban, and urban sites are summed for either the 1980–89 or 1990–99 time periods in Figure 2-2, this number may not equal the total number of sites shown in Figure 2-1for the same time periods. This is due to a few monitoring sites falling outside the definitions of rural, suburban, or urban sites.

Figure 2-3. Trend in CO 2nd maximum non-overlapping 8-hour concentrations by EPA region, 1980–1999.

Alaska is in EPA Region 10; Hawaii, EPA Region 9; and Puerto Rico, EPA Region 2. Concentrations are ppm.

the Midwest where reductions were only slightly smaller.

National Emissions Trends

Figure 2-4 shows that the transportation category, composed of onroad and nonroad sources, accounted for 77 percent of the nation's total CO emissions in 1999. Figure 2-5 presents the broad geographic distributions of 1999 CO emissions based on the tonnage per square mile for each county. This visualization clearly shows that the eastern third of the country and the west coast emitted more CO (on a density basis) than the western two-thirds of the continental United States. National total CO emissions have decreased 21 percent since 1980 as shown in Figure 2-6.2 Despite a 57-percent increase in vehicle miles traveled (VMT), emissions from onroad vehicles decreased 56

Figure 2-5. Density map of 1999 carbon monoxide emissions, by county.

percent during the past 20 years as a result of automotive emissions control programs. However, emissions from all transportation sources have decreased only 23 percent over the same period, primarily due to a 42--percent increase in off-road emissions, which has offset the gains realized in reductions of onroad vehicle emissions.

Table 2-2 lists some of the major milestones in the control of emissions from automobiles starting with the Clean Air Act (CAA) of 1970. At the national level, these measures, which have led to reductions in emissions of CO as well as other pollutants, include establishing national standards for tailpipe emissions, new vehicle technologies, and clean fuels programs. State and local emissions reduction measures include inspection and maintenance (I/M) programs and transportation management programs.

In the area of clean fuels, the 1990 Clean Air Act Amendments (CAAA) require oxygenated gasoline programs in several regions of the country during the winter months. Under the program regulations, a minimum oxygen content (2.7 percent by weight) is required in gasoline to ensure more complete fuel combustion.^{3,4} Of the 36 CO nonattainment areas that initially implemented the program in 1992, 17 areas participated in the program during 1999.5

Blue Ribbon Panel on Oxygenates in Gasoline

In November 1998, in response to the public concern regarding the detection of MTBE (methyl tertiary butyl ether-one of two fuel oxygenates used in reformulated gasoline to help improve air quality) in water, EPA announced the creation of a blue

Figure 2-6. Trend in national total CO emissions, 1980–1999.²

Emission estimation methods continue to evolve and improve over time. Methods have changed for many significant categories beginning with the years 1985, 1990, and 1996 and consequently are not consistent across all years in this trend period. See Appendix B Emissions Estimates Methodology for additional information.

Table 2-2. Milestones in Motor Vehicle Emissions Control

1970	New Clean Air Act sets auto emissions standards.	1990	CAAA set new tailpipe standards.
1971	Charcoal canisters appear to meet evaporative standards.	1992	Oxyfuel introduced in cities with high CO levels.
1973	EGR valves appear to meet NO _x standards.	1993	Limits set on sulfur content of diesel fuel.
1974 1975	Fuel economy standards are set. The first catalytic converters	1994	Phase-in begins of new vehicle standards and technologies.
1770	appear for hydrocarbon, CO. Unleaded gas appears for use in	1995	On-board diagnostic systems in 1996 model year cars.
1981	catalyst equipped cars. 3-way catalysts with on-board	1995	Phase I Federal Reformulated Gasoline sales begin in worst
	computers and O ₂ sensors appear.	1998	ozone nonattainment areas. Sales of 1999 model year
1983	I/M programs are established in 64 cities.		California emissions equipped vehicles begin in the Northeast.
1989	Fuel volatility limits are set for RVP.		

ribbon panel of leading experts from the public health and scientific communities, automotive fuels industry, water utilities, and local and state governments to review the important issues posed by the use of MTBE and other oxygenates in gasoline. The Panel's final report stated that "the

Wintertime Oxyfuel Program continues to provide a means for some areas of the country to come into, or maintain, compliance with the carbon monoxide standard. Los Angeles areas continue to use MTBE in this program. In most areas today, ethanol can, and is, meeting these winter-

Figure 2-7. Highest 2nd maximum non-overlapping 8-hour average CO concentration by county, 1999.

time needs for oxygen without raising fuel volatility concerns given the season of the year. The Panel recommends that the Wintertime Oxyfuel program be continued (a) for as long as it provides a useful compliance and/or maintenance tool for the affected states and metropolitan areas, and (b) assuming that the clarification of state and federal authority described above is enacted to enable states, where necessary, to regulate and/or eliminate the use of gasoline additives that threaten drinking supplies."6 The Panel's Executive Summary and final report entitled Achieving Clean Air and Clean Water: The Report of the Blue Ribbon Panel on Oxygenates in Gasoline can be found on the Panel's homepage at: http:// www.epa.gov/otaq/consumer/fuels/ oxypanel/blueribb.htm.

Additionally, on March 20, 2000, the Clinton Administration, based on the recommendations of the Blue Ribbon Panel, announced a set of legislative principles to address concerns about the continued use of MTBE. The Administration recommended that Congress:

- Amend the CAA to provide the authority to significantly reduce or eliminate the use of MTBE.
- Ensure that air quality gains associated with the use of MTBE are not diminished.
- Replace the existing oxygen requirement contained in the CAA with a renewable fuel standard for all gasoline.

The Administration stated that it believed that the principles would provide an environmentally sound and cost effective approach to addressing the risks posed by the current use of MTBE. Coincident with issuance of the legislative principles, EPA issued an Advance Notice of Proposed Rulemaking under Section 6 of the Toxic Substances Control Act (TSCA) to initiate a regulatory process to address MTBE risks using current authorities in the event that Congress did not act to amend the CAA.⁶

1999 Air Quality Status

The map in Figure 2-7 shows the variations in CO concentrations across the country in 1999. The air quality indicator is the largest annual second maximum 8-hour CO concentration measured at any site in each county. The bar chart to the left of the

map displays the number of people living in counties within each concentration range. The colors on the map and bar chart correspond to the colors of the concentration ranges displayed in the map legend. Only four of the 526 monitoring sites reporting ambient CO data to the Aerometric Information Retrieval System (AIRS) failed to meet the CO NAAQS in 1999. These four sites are located in three counties—Los Angeles County, CA; Fairbanks Borough, AK; and Imperial County, CA (Calexico, CA). The site in this latter area is located just north of the border crossing with Mexicali, Mexico. There are 9 million people living in these three counties, compared to the 1998 count of six counties with a total population of 10 million people.

Lead

Air Quality	Conc 94%	entrations decrease
1990–99	60%	decrease
1998–99		no change
Emissions		
Emissions 1980–99	94%	decrease
Emissions 1980–99 1990–99	94% 16%	decrease decrease

Worth Noting

• From 1980–1999, there has been a 94-percent decrease in lead emissions with a corresponding 94-percent decrease in maximum quarterly average lead concentrations at population-oriented monitors.

• Lead emissions are slightly increasing from 1998–1999 even though lead air quality continues its "no-change" status from previous years. Probable cause for the small emissions increase is increased use of aviation fuel, which can still contain large amounts of lead.

• In 1999, only two areas across the country were violating the lead NAAQS, but six are still nonattainment for lead. These areas tend to contain the lead point sources that had one or more source-oriented monitors that violated the NAAQS. These point sources are in Missouri (Doe Run/ Herculeneum plant) and Illinois (Chemetco facility).

Nature and Sources

Twenty-five years ago, automotive sources were the major contributor of lead emissions to the atmosphere. As a result of EPA's regulatory efforts to reduce the content of lead in gasoline, however, the contribution from the transportation sector, and particularly the automotive sector, has greatly declined. Though aviation fuels still contain relatively large amounts of lead, industrial processes (primarily metals processing) are the major source of lead emissions to the atmosphere today. The highest ambient air concentrations of lead are found in the vicinity of ferrous and nonferrous smelters, battery manufacturers, and other stationary sources of lead emissions.

Health and Environmental Effects

Exposure to lead occurs mainly through inhalation and through ingestion of lead in food, water, soil, or dust. It accumulates in the blood, bones, and soft tissues. Lead can also adversely affect the kidneys, liver, nervous system, and other organs. Excessive exposure to lead may cause neurological impairments such as seizures, mental retardation, and/or behavioral disorders. Lead may be a factor in high blood pressure and subsequent heart disease. Additionally, at low doses, fetuses and children may suffer from central nervous system damage. Neurobehavioral changes (i.e., low I.Q.) may result from lead exposure during the child's first years of life.

Airborne lead can also have adverse impacts on the environment. Wild and domestic grazing animals may ingest lead that has deposited on plant or soil surfaces or that has been absorbed by plants through leaves or roots. At relatively low concentrations (2–10 μ g/m³), lead can inhibit plant growth and result in a shift to more tolerant plant species growing near roadsides and stationary source emissions. See also the Toxics chapter in this report for a discussion of the long-term impact of lead on ecosystem function and stability.

Primary and Secondary Standards

The primary as well as secondary NAAQS for lead is a quarterly average concentration not to exceed $1.5 \ \mu g/m^3$.

National Air Quality Trends

The statistic used to track ambient lead air quality is the maximum quarterly mean concentration for each year. From 1980–1989, a total of 216 ambient lead monitors met the trends completeness criteria; and a total of 175 ambient lead monitors met the trends data completeness criteria for the 10-year period 1990– 1999. Point-source oriented monitoring data were omitted from all ambient trends analysis presented in this section to avoid masking the underlying urban trends.

Figure 2-8 indicates that between 1990 and 1999, maximum quarterly average lead concentrations decreased 60 percent at populationoriented monitors. Between 1998 and 1999, national average lead concentrations (approaching the minimum detectable level) remained unchanged. The effect of the conversion to unleaded gasoline usage in vehicles on ambient lead concentrations is most evident when viewed over a longer period, such as illustrated in Figure 2-8. Between 1980 and 1999, ambient monitor data indicate that concentrations of lead declined 94 percent. This large decline tracks well with overall lead emissions, which also declined 94 percent between 1980 and 1999.

Figure 2-9 looks at urban, rural, and suburban 20-year trends sepa-

rately. The overall downward trend in lead concentrations can be noted for all locations from 1980-1999. The one slight oddity in Figure 2-9 is the slight upturn in Pb concentration seen at the rural sites in 1995. One of the rural sites in Louisiana (in St. John the Baptist parish) showed a concentration of 5.8 µg/m³ in December 1995 causing the overall average to increase to 0.411 (up from normal levels of about $0.05 \,\mu\text{g/m}^3$). Region 6 has been consulted regarding this issue and they, in turn, contacted the Louisiana Department of Environmental Quality (LDEQ) to confirm the high lead reading that occurred on December 17, 1995. LDEQ personnel have stated that this is a true reading and that the sampler must have been influenced by lead-rich plumes emitted by the industrial operations that took place at two nearby facilities: Bayou Steel and a recycling business.

Regional Air Quality Trends

Figure 2-10 segregates the ambient trend analysis by EPA region. Although most regions showed large concentration reductions between 1980 and 1999, there were some intermittent upturns including a rather large upturn in the Region 1 trends plot. Most of these "bumps" in the trends graphs can be attributed to the inherent variability and noise associated with data reported near minimum detectable levels.

National Emission Trends

The lead emission estimates presented are a result of data developed for the National Emission Trends (NET) criteria database. Lead emissions for 1996 were also estimated in the National Toxics Inventory (NTI) and were used in the nationwide disper-

Concentration, µg/m

Figure 2-9. Pb maximum quarterly mean concentration trends by location (excluding point-source oriented sites), 1980–1999.

Concentration, µg/m3

urban sites.

Figure 2-10. Trend in Pb maximum quarterly mean concentration by EPA Region, 1980–1999.

Alaska is in EPA Region 10; Hawaii, EPA Region 9; and Puerto Rico, EPA Region 2. Concentrations are $\mu g/m^3.$

sion modeling as part of EPA's National Air Toxics Assessment (NATA). For 1996, the NTI estimates would be the preferred source for data. In the future, the criteria emissions database (formerly the NET) will be combined with air toxics estimates (formerly in the NTI) in a single data base called the National Emissions Inventory (NEI).

Because of the phase-out of leaded gasoline, lead emissions (and concentrations) decreased sharply during the 1980s and early 1990s. Figure 2-11 indicates that total lead emissions decreased 16 percent between 1990 and 1999. Figure 2-11 also shows that lead emissions decreased 94 percent between 1980 and 1999. The large ambient and emission reductions in lead going from 1980– 1990 can be largely attributed to the phasing out of leaded gasoline for automobiles. The magnitude of lead emission reductions after 1990 is a waning result of the phase-out of leaded gasoline use in automotive sources. The 4-percent increase in lead emissions from 1998–1999 is largely attributable to increased use of aviation gasoline. Aviation gasoline is not regulated for lead content and can use significant amounts of lead to comply with octane requirements for aviation fuel.

Figure 2-12 shows that industrial processes were the major source of lead emissions in 1999, accounting for 75 percent of the total. The transportation sector (which includes both onroad and nonroad sources) now accounts for only 13 percent of the total 1999 lead emissions, with most of that coming from aircraft.

1999 Air Quality Status

The large reductions in long-term lead emissions from transportation sources have changed the nature of the ambient lead problem in the United States. Because industrial processes are now responsible for all violations of the lead standard, the lead monitoring strategy now focuses on emission from these point sources. The map in Figure 2-13 shows the lead monitors located in the vicinity of major sources of lead emissions. In 1999, two lead point sources had one or more source-oriented monitors that violated the NAAQS. These two sources are the Chemetco plant in Illinois and the Doe Run (Herculeneum) plant in Missouri. It should be noted that the Franklin smelter in Pennsylvania, which in the past has emitted large amounts of lead, was shut down in 1997. These point sources are ranked in Figure 2-13 according to the site with the greatest maximum quarterly mean. Various enforcement and regulatory actions are being actively pursued by EPA and the states for cleaning up these sources.

The map in Figure 2-14 shows the highest quarterly mean lead concentration by county in 1999. Two areas, with a total population of approximately 0.42 million, and containing the point sources identified in Figure 2-13, did not meet the lead NAAQS in 1999.

Monitoring Status

Due to the shift in ambient air monitoring focus from mobile-source emissions to stationary point sources of lead air pollution, EPA revised the lead air monitoring regulations by publishing a new rule on January 20, 1999. This action was taken at the direct request of numerous states and local agencies whose onroad mobilesource oriented lead monitors have been reporting peak lead air pollution values that are many times less than the quarterly lead NAAQS of 1.5 µg/m³ for a number of consecutive years.

The previous regulation required that each urbanized area with a population of 500,000 or more operate at least two lead National Air Monitoring Stations (NAMS). The new rule allows state and local agencies more flexibility. The rule substantially reduces the requirements for measuring lead air pollutant concentrations near major highways,

Figure 2-11. National total Pb emissions trend, 1980–1999.

Notes: Emissions data not available for consecutive years 1980-1989.

Emission estimation methods continue to evolve and improve over time. Methods have changed for many significant categories beginning with the years 1985, 1990, and 1996 and consequently are not consistent across all years in this trend period. See Appendix B Emissions Estimates Methodology for additional information.

Figure 2-13. Pb maximum quarterly concentration in the vicinity of Pb point sources, 1999.

Figure 2-14. Highest Pb maximum quarterly mean by county, 1999.

thus shifting the focus to point sources and their impact on neighboring populations. The regulation also allows states to reduce the number of NAMS from approximately 85 to approximately 15. This reduction will still retain adequate monitoring to ensure attainment of the NAAQS, but it allows efficient refocusing of available monitoring.

Nitrogen Dioxide

Air Quality	Conc	entrations	
1960–99	25%	decrease	
1990–99	10%	decrease	
1998–99		no change	
Emissions			
1980–99	4%	increase	
1990–99	5%	increase	
	/		

Worth Noting

• Over the past 20 years, nitrogen dioxide (NO₂) concentrations across the country have decreased significantly.

• All areas of the country that once violated the national air quality standard for NO_2 now meet that standard.

• The last NO₂ nonattainment area, Los Angeles, was redesignated to attainment in July 1998.

Nature and Sources

Nitrogen dioxide is a reddish brown, highly reactive gas that is formed in the ambient air through the oxidation of nitric oxide (NO). Nitrogen oxides (NO_x) , the term used to describe the sum of NO, NO2 and other oxides of nitrogen, play a major role in the formation of ozone in the atmosphere through a complex series of reactions with volatile organic compounds (VOCs). A variety of NO_x compounds and their transformation products occur both naturally and as a result of human activities. Anthropogenic (i.e., man-made) emissions of NO_x account for a large majority of all nitrogen inputs to the environment. The major sources of anthropogenic NO_x emissions are high-temperature combustion processes, such as those occurring in

automobiles and power plants. Most of NO_x from combustion sources (about 95 percent) is emitted as NO; the remainder is largely NO₂. Because NO is readily converted to NO₂ in the environment, the emissions estimates reported here assume nitrogen oxides are in the NO₂ form. Natural sources of NO_x are lightning, biological and abiological processes in soil, and stratospheric intrusion. Ammonia and other nitrogen compounds produced naturally are important in the cycling of nitrogen through the ecosystem. Home heaters and gas stoves also produce substantial amounts of NO2 in indoor settings.

Health and Environmental Effects

Nitrogen dioxide is the most widespread and commonly found nitrogen oxide and is a matter of public health concern. The health effects of most concern associated with shortterm exposures (i.e., less than three hours) to NO₂ at or near the ambient NO₂ concentrations seen in the United States, include cough and increased changes in airway responsiveness and pulmonary function in individuals with preexisting respiratory illnesses, as well as increases in respiratory illnesses in children 5-12 years old.^{7,8} Evidence suggests that long-term exposures to NO₂ may lead to increased susceptibility to respiratory infection and may cause structural alterations in the lungs.

Atmospheric transformation of NO_x can lead to the formation of ozone and nitrogen-bearing particles (e.g., nitrates and nitric acid). As discussed in the ozone and PM sections of this report, exposure to both PM and ozone is associated with adverse health effects.

Nitrogen oxides contribute to a wide range of effects on public welfare and the environment, including global warming and stratospheric ozone depletion. Deposition of nitrogen can lead to fertilization, eutrophication, or acidification of terrestrial, wetland and aquatic (e.g., fresh water bodies, estuaries, and coastal water) systems. These effects can alter competition between existing species, leading to changes in the number and type of species (composition) within a community. For example, eutrophic conditions in aquatic systems can produce explosive algae growth leading to a depletion of oxygen in the water and/or an increase in levels of toxins harmful to fish and other aquatic life.

Primary and Secondary Standards

The level for both the primary and secondary NAAQS for NO_2 is 0.053 ppm annual arithmetic average (mean), not to be exceeded. In this report, the annual arithmetic average (mean) concentration is the metric used to evaluate and track ambient NO_2 air quality trends.

National Air Quality Trends

Nationally, annual mean NO_2 concentrations have decreased approximately 25 percent since 1980.⁹ As discussed in previous sections of this report, long-term national ambient air quality trends are difficult to assess because few monitoring sites have operated continuously in the same location for 20 years. Figure 2-15 presents 20-year trends in ambient NO_2 concentrations by combining two separate 10-year trends databases, 1980–1989 (156 sites) and 1990–1999 (230 sites). Annual mean NO_2 concentrations declined in the early
1980s, were relatively unchanged during the mid-to-late 1980s, and resumed their decline in the 1990s. Figure 2-15 shows that the national composite annual mean NO₂ concentration in 1999 is 10 percent lower than that recorded in 1990, and is unchanged from the 1998 level. Except for 1994, NO₂ concentrations have decreased, or remained unchanged, each year since 1989.

Figure 2-16 reveals how the trends in annual mean NO₂ concentrations vary among rural, suburban and urban locations. The highest annual mean NO₂ concentrations are typically found in urban areas, with significantly lower annual mean concentrations recorded at rural sites. The 1999 composite mean at 137 urban sites is 24 percent lower than the 1980 level, compared to a 27-percent reduction at 180 suburban sites. At 66 rural sites, the composite mean NO₂ concentration in 1999 is the same as it was in 1980.

Interestingly, at the same time the nation has experienced these significant decreases in NO₂ air quality, nitrogen oxide emissions are increasing, as described in more detail later in this section of the chapter. One possible explanation involves the location of the majority of the nation's NO₂ monitors. Most NO₂ monitoring sites are mobile-source oriented sites in urban areas, and the 20-year decline in ambient NO₂ levels closely tracks the 19-percent reduction in emissions from gasoline powered vehicles over the same time period. However, nitrogen chemistry in the atmosphere is non-linear and, therefore, a change in NO_x emissions may not have a proportional change in ambient concentrations of NO₂. The relationship between emissions and ambient air quality levels is deFigure 2-15. Trend in annual NO₂ mean concentrations, 1980–1999.

Concentration, ppm

Note: When the total number of rural, suburban, and urban sites are summed for either the 1980–89 or 1990–99 time periods in Figure 2-16, this number may not equal the total number of sites shown in Figure 2-15 for the same time periods. This is due to a few monitoring sites falling outside the definitions of rural, suburban, or urban sites.

Figure 2-17. Trend in NO₂ maximum quarterly mean concentration by EPA Region, 1980–1999.

Alaska is in EPA Region 10; Hawaii, EPA Region 9; and Puerto Rico, EPA Region 2. Concentrations are ppm.

pendent on a number of factors such as concentrations of compounds which react with NO_x emissions (e.g., free radicals and VOCs) as well as the form and concentration of various nitrogen compounds in the area being monitored. For example, an area could experience improving NO2 air quality in conjunction with increased NO_x emissions, if the emissions are rapidly converted to nitrates, a form of atmospheric nitrogen not detected by the NO₂ monitors. Alternatively, if levels of the compounds which react with NO_x emissions to form ambient NO2 are declining, increased NO_x emissions may not translate into elevated levels of converted NO₂.

Regional Air Quality Trends

The map in Figure 2-17 provides regional trends in NO_2 concentra-

tions during the past 20 years, 1980-1999 (except Region 10 which does not have any NO₂ trend sites). The trends statistic is the regional composite mean of the NO₂ annual mean concentrations across all sites with at least eight years of ambient measurements. The largest reductions in NO₂ concentrations occurred in the south coast of California and the New England states. Smaller reductions in mean NO₂ concentrations were recorded in the Mid-Atlantic, Southeast, and Southwest. Interestingly, NO₂ concentrations have actually increased in both the North Central and Midwest states. This increase in air quality levels coincides with increases in nitrogen oxide emissions from transportation (both onroad and nonroad) as well as power plants in

selected states with NO_2 monitors in these areas.

National Emissions Trends

Nationally, emissions of nitrogen oxides have increased over the last 20 years by 4 percent and by 5 percent over the most recent 10-year period from 1990 to 1999. Figure 2-18 shows the temporal trend in NO_x emissions nationwide. These increases are the result of a number of factors, the largest being an increase in nitrogen oxides emissions from transportation sources.

Figure 2-19 indicates that the two primary sources of NO_x emissions are stationary source fuel combustion and transportation. Together, these two sources comprise 95 percent of 1999 total NO_x emissions. Emissions from transportation sources have increased over the last 20 years (16 percent) and during the past 10 years (17 percent). For both light duty gasoline vehicles and light duty gasoline trucks, NO_x emissions peaked in 1994, and then began a steady decrease through 1999. This decrease can be attributed primarily to the implementation of the Tier 1 emission standards which lowered NO_x emissions from new cars and light duty trucks. In contrast, NO_x emissions from heavy duty vehicles, both gasoline and diesel increased significantly over the 10-year period (50 percent for gasoline and 61 percent for diesel). A portion of this increase is due to the increase in VMT for these categories (104 percent for heavy duty gasoline vehicles and 99 percent for heavy duty diesel trucks). In addition, emissions from heavy duty diesel vehicles increased over this period due to the identification of "excess emissions" in many of these vehicles. New emission standards will lead to reductions in emissions from heavy duty vehicles in the future. Further, emissions from offroad vehicles particularly those diesel-fueled have steadily increased over the last 10 years.

Reductions in NO_x emissions from fuel combustion have partially offset the impact of increases in the transportation sector. Emissions from electric utility fuel combustion sources have declined over the 20-year period 1980-1999 (11 percent) and over the 10-year period from 1990–1999 (8 percent). The Acid Deposition Control provisions of the CAA (Title IV) required EPA to establish NO_x annual emission limits for coal-fired electric utility units in two phases resulting in NO_x reductions of approximately 400,000 tons per year during Phase I (1996-1999) and two million

Figure 2-18. Trend in national total NO_x emissions, 1980–1999.

Notes: Emissions data not available for consecutive years 1980-1989.

Emission estimation methods continue to evolve and improve over time. Methods have changed for many significant categories beginning with the years 1985, 1990, and 1996 and consequently are not consistent across all years in this trend period. See Appendix B Emissions Estimates Methodology for additional information.

Figure 2-20. Density map of 1999 nitrogen dioxide emissions, by county.

tons per year in Phase II (year 2000 and subsequent years).¹⁰

Figure 2-20 shows the geographic distribution of 1999 NO_x emissions based on the tonnage per square mile for each county. This map illustrates that the eastern half of the country and the west coast emit more NO_x (on a density basis) than the western half of the continental United States.

1999 Air Quality Status

All monitoring locations across the nation, including Los Angeles, met the NO_2 NAAQS in 1999. This is reflected on the map in Figure 2-21 that displays the highest annual mean NO_2 concentration measured in each county.

Figure 2-21. Highest NO₂ annual mean concentration by county, 1999.

Ozone

Air Quality	Conc	entrations
1980–99	20%	decrease (1-hr
	12%	decrease (8-hr
1990–99	4%	decrease (1-hr
		no change (8-hr)
1989–99	3%	decrease (1-hr
	1%	decrease (8-hr

Emissions	(Anthro	pogenic VOCs
1980–99	31%	decrease
1990–99	14%	decrease
1998–99	3%	decrease

Worth Noting

• Over the last 20 years, ozone (O₃) levels (1-hour and 8-hour) have improved considerably nationwide.

• Rate of improvement, however, appears to have slowed recently.

- Some parts of the country show increases in O_3 levels over the last 10 years, due largely to increased NO_x emissions and weather conditions favorable to O_3 formation.

• Trends for selected urban areas after adjusting for meteorological conditions show slowing progress since the mid-1990s.

• O₃ levels in urban areas, however, where the O₃ problem has historically been the most severe, have shown marked improvement in response to stringent control programs.

- Rural O_3 levels appear to be increasing in the short term.

- 1-hour levels are higher than those seen in urban areas for the second consecutive year.
- 8-hour levels increasing nationally over the last 10 years.
- Trends in 8-hour levels at CASTNet sites up since 1990.
- 8-hour levels in a number of the nation's national parks are showing significant increases since 1990.

Nature and Sources

Ground level O₃ remains a pervasive pollution problem in the United States. Ozone is readily formed in the atmosphere by the reaction of VOCs and NO_x in the presence of heat and sunlight, which are most abundant in the summer. VOCs are emitted from a variety of sources including: motor vehicles, chemical plants, refineries, factories, consumer and commercial products, other industries, and natural (biogenic) sources. Nitrogen oxides are emitted from motor vehicles, power plants, and other sources of combustion, and natural sources including lightning and biological processes in soil. Changing weather patterns contribute to yearly differences in O₃ concentrations. Ozone and the precursor pollutants that cause O₃ also can be transported into an area from pollution sources located hundreds of miles upwind.

Health and Environmental Effects

Ozone occurs naturally in the stratosphere and provides a protective layer high above the Earth. However, at ground level, it is the prime ingredient of smog. Short-term (1–3 hours) and prolonged (6–8 hours) exposures to ambient O_3 concentrations have been linked to a number of health effects of concern. For example, increased hospital admissions and emergency room visits for respiratory causes have been associated with ambient O_3 exposures.

Exposures to O_3 result in lung inflammation, aggravate preexisting respiratory diseases such as asthma, and may make people more susceptible to respiratory infection. Other health effects attributed to short-term and prolonged exposures to O_3 , generally while individuals are engaged in moderate or heavy exertion, include significant decreases in lung function and increased respiratory symptoms such as chest pain and cough. Children active outdoors during the summer when O₃ levels are at their highest are most at risk of experiencing such effects. Other atrisk groups include adults who are active outdoors, such as outdoor workers, and individuals with preexisting respiratory disorders such as asthma and chronic obstructive lung disease. Within each of these groups are individuals who are unusually sensitive to O_3 . In addition, repeated long-term exposure to O₃ presents the possibility of irreversible changes in the lungs which could lead to premature aging of the lungs and/or chronic respiratory illnesses.

Ozone also affects sensitive vegetation and ecosystems. Specifically, O₃ can lead to reductions in agricultural and commercial forest yields, reduced survivability of sensitive tree seedlings, and increased plant susceptibility to disease, pests, and other environmental stresses such as harsh weather. In long-lived species, these effects may become evident only after several years or even decades. As these species are out-competed by others, long-term effects on forest ecosystems and habitat quality for wildlife and endangered species occurs. Furthermore, O₃ injury to the foliage of trees and other plants can decrease the aesthetic value of ornamental species as well as the natural beauty of our national parks and recreation areas.

Primary and Secondary 1-hour Ozone Standards

In 1979, EPA established 1-hour primary and secondary standards for O_3 . The level of the 1-hour primary and secondary O₃ NAAQS is 0.12 ppm daily maximum 1-hour concentration that is not to be exceeded more than once per year on average. To encourage an orderly transition to the revised O₃ standards (promulgated in 1997; see following section for more information), EPA initiated a policy in which the 1-hour standards would no longer apply once an area experienced air quality data meeting the 1-hour standards. In 1998 and early 1999, EPA revoked the 1-hour O₃ NAAQS in 2,942 counties in the United States, leaving 201 counties where the 1-hour standard still applies.11, 12, 13 However, due to unresolved legal challenges, the Agency is unable to enforce and effectively implement the 8-hour standard. As a result, many areas were without applicable air quality standards adequate to ensure public health and welfare. Therefore, in July 2000, EPA reinstated the 1-hour standard nationwide to alleviate this unanticipated policy outcome and provide protection of public health and welfare.14

Primary and Secondary 8-hour Ozone Standards

On July 18, 1997, EPA strengthened the O₃ NAAQS based on the latest scientific information showing adverse effects from exposures allowed by the then existing standards. The standard was set in terms of an 8-hour averaging time.¹⁵ Numerous industry and environmental petitioners, including the American Trucking Associations (ATA), challenged the O_3 and the new PM₂₅ standards in the United States Court of Appeals for the District of Columbia Circuit. On May 14, 1999, a three-judge panel of that court concluded that EPA's interpretation of the Clean Air Act unconstitutionally delegated legisla-

tive power to EPA and remanded the standards to EPA. EPA appealed that ruling, and on February 27, 2001, the Supreme Court unanimously upheld the constitutionality of Clean Air Act section 109 and affirmed EPA's ability to set NAAQS based solely on public health and welfare factors, without consideration of costs. which are considered in the implementation of the standards. The court rejected the D.C. Circuit's conclusion that EPA's interpretation of the implementation provisions violated the statute's clear terms, but nevertheless remanded the implementation policy to EPA on the basis that EPA's policy was not a reasonable interpretation of ambiguous statutory language. Because the D.C. Circuit originally remanded, but did not vacate the O₃ and PM_{2.5} standards, they have remained legally effective throughout the ongoing litigation. The case has now been returned to the Court of Appeals,

where the remaining issues are to be considered in accordance with the decision of the Supreme Court.

For a variety of reasons, EPA has not yet taken actions to implement either standard. EPA is currently reviewing the results of the litigation and will be conferring with states and other interested parties to determine the approach and schedule for moving forward with implementing the O₃ NAAQS. Refer to **http:// www.epa.gov/airlinks** for up-to-date information concerning actions surrounding the revised standards.

Air Quality Trends

Because the 1-hour and 8-hour NAAQS have different averaging times and forms, two different statistics are used in this report to track ambient O_3 air quality trends. For the 1-hour O_3 NAAQS, this report uses the composite mean of the annual second-highest daily maximum Figure 2-23. Trend in 4th-highest daily 8-hour O₃ concentrations, 1980–1999.

1-hour O_3 concentration as the statistic to evaluate trends. For the 8-hour O_3 NAAQS, the report relies on the annual fourth-highest 8-hour daily maximum O_3 concentration as the statistic of interest to assess trends.

National Air Quality Trends

Figure 2-22 clearly shows that, over the past 20 years, peak 1-hour O_3 concentrations have declined considerably at monitoring sites across the country. From 1980 to 1999, national 1-hour O₃ levels improved 20 percent with 1980, 1983, 1988 and 1995 representing peak years for this pollutant. Because only a few sites have monitored continuously for two decades, the 20-year trends line in Figure 2-22 is composed of two segments-441 sites with complete data during the first 10 years (1980-1989) and 705 sites meeting the data completeness criteria in the most recent 10 years (1990-1999). It is important to interpret such long-term, quantitative ambient O_3 trends carefully given changes in network design, siting criteria, spatial coverage and monitoring instrument calibration procedures during the past two decades. More recently, national 1-hour O_3 levels have continued to improve but the progress has been less rapid evidenced by the 4-percent decrease from 1990–1999.

Figure 2-23 shows the national trend in 8-hour O_3 concentrations across the same sites used to estimate the national 1-hour O_3 trends. As was the case with the 1-hour graphic, the 20-year trends line in Figure 2-23 is composed of two segments—441 sites with complete data during the first 10 years (1980–1989) and 705 sites meeting the data completeness criteria in the most recent 10 years (1990–1999). Nationally, 8-hour levels have decreased 12 percent over the last 20 years with even more

substantial improvement (18 percent) at higher concentration sites (as shown by the 90th percentile). However, just as is true for the 1-hour levels, the progress in 8-hour O_3 levels over last 10 years has dampened with no change in national levels between 1990 and 1999. The trend in the 8-hour O_3 statistic is similar to the trend in the 1-hour values, although the concentration range is smaller.

Regional Air Quality Trends

The maps in Figures 2-24 and 2-25 examine the trend in 1-hour and 8-hour O₃ concentrations during the past 20 years by geographic region of the country. The O₃ levels (both 1-hour and 8-hour) in all areas have generally followed the pattern of declining trends since 1980 similar to that of the national observations. However, the magnitude of improvement has not been consistent across all Regions. The most pronounced declines in O₃ levels have occurred in the Northeast and West, while the Southeast has evidenced the least improvement. Further, over the last 10 years, O₃ concentrations (both 1-hour and 8-hour) in the Mid-Atlantic, Southeast, Midwest and North Central regions of the country have actually increased. These increases appear to be explained by weather conditions more conducive to O_3 formation (i.e., higher summer temperatures and drier conditions) in 1999 relative to 1990 paired with increased NO_x emissions in many of the affected states (except the Mid-Atlantic region which seems to have been most affected by more conducive meteorological conditions).

In Figure 2-26, the national 1-hour O_3 trend is disaggregated to show the 20-year change in ambient O_3 concentrations among rural, suburban, and

Figure 2-24. Trend in 2nd highest daily 1-hour O₃ concentration by EPA Region, 1980–1999.

Alaska is in EPA Region 10; Hawaii, EPA Region 9; and Puerto Rico, EPA Region 2. Concentrations are ppm.

Figure 2-25. Trend in 4th highest daily 8-hour O₃ concentration by EPA Region, 1980–1999.

regional concentrations.

Alaska is in EPA Region 10; Hawaii, EPA Region 9; and Puerto Rico, EPA Region 2. Concentrations are ppm.

Figure 2-26. Trend in annual 2nd-highest daily maximum 1-hour O_3 concentrations by location, 1980–1999.

Note: When the total number of rural, suburban, and urban sites are summed for either the 1980–89 or 1990–99 time periods in Figure 2-26, this number may not equal the total number of sites shown in Figure 2-22 for the same time periods. This is due to a few monitoring sites falling outside the definitions of rural, suburban, or urban sites.

Figure 2-27. Comparison of actual and meteorologically adjusted 1-hour O_3 trends, 1980–1999.

Concentration, ppm

urban monitoring sites. The highest ambient O_3 concentrations are typically found at suburban sites, consistent with the downwind transport of emissions from the urban center. During the past 20 years, O_3 concentrations decreased by 20 percent at 540 suburban sites, and 25 percent at 217 urban sites. However, at 360 rural sites, 1-hour O_3 levels for 1999 are only 14 percent lower than the 1980 level and, for the second consecutive year, are greater than the level observed for urban sites.

Urban Area Air Quality Trends

Figure 2-27 presents the meteorologically-adjusted trend in 1-hour O₃ concentrations for 53 metropolitan areas between 1980 and 1999. Ambient O₃ trends are influenced by yearto-year changes in meteorological conditions, population growth, changes in emissions levels from ongoing control measures as well as the relative levels of O₃ precursors VOCs and NO_x. As discussed in previous Trends Reports, EPA uses a statistical model to adjust data on the annual rate of change in O₃ from individual metropolitan areas to account for meteorological impacts, including surface temperature and wind speed.¹⁶ As seen in this figure, after adjusting for meteorological conditions, 1-hour O₃ levels in these selected areas show steady improvement from 1980 through the mid-1990s. The adjusted O_3 levels decreased an average of 1 percent annually through 1994. However, beginning in 1994, the improvement appears to slow. Since the mid-1990s, national 1-hour O₃ levels adjusted to account for variable weather conditions are nearly unchanged.

However, urban areas with the most severe and persistent O₃ prob-

lems (i.e., those classified as extreme, severe, and serious O₃ nonattainment areas) show decreases in 1-hour O₃ concentrations between 1990 and 1999 (12 percent) and between 1995 and 1999 (10 percent). These declines, based on data from sites in the areas required to operate the Photochemical Assessment Monitoring Stations (PAMS) network, are consistent with, but more pronounced than, the 4-percent improvement seen nationwide (at the 705 trend sites).¹⁷ Areas with PAMS networks are shown in Figure 2-28. In addition to

Table 2-3.Summary of Changes inSummer 6-9 a.m.Mean Concentrationsof NOx and TNMOC at PAMS Sites

	Total	# of Up	Down	Median Change		
1998–99 (al	1998–99 (all sites)					
NOx	58	10	11	2%		
TNMOC	42	2	14	-8%		
1995–99 (all sites)						
NOx	34	9	9	-6%		
TNMOC	17	0	10	-24%		
1995–99 (type 2 sites)						
NOx	17	3	5	-4%		
TNMOC	11	0	6	-24%		

Note: 1. The numbers shown in the "Up" and "Down" columns refer to the number of sites in which the change in summer 6–9 a.m. mean concentrations between 1995 and 1999 is statistically significant. The total number of sites ("Total") may not equal the sum of the corresponding "Up" and "Down" categories.

2. PAMS type 2 sites are monitoring sites located to detect the maximum downwind ozone precursor emissions impacts.

measuring O_3 levels, PAMS sites include measurements of NO_x , total non-methane organic compounds (TNMOC), a target list of VOC species including several carbonyls, plus surface and upper air meteorology during summer months when weather conditions are most conducive to O_3 formation. Table 2-3 shows

Figure 2-28. Areas with PAMS networks.

Figure 2-29. A comparison of the median change in summer morning concentrations of the most abundant VOC species measured at all PAMS sites and PAMS type 2 sites from 1995 and 1999.

 Results for formaldehyde and acetaldehyde (both carbonyl compounds) were not included in this analysis because of sampling issues with carbonyl compounds in the PAMS network. EPA is continuing to assess the issues for further comparison of the measurements.

3. Results for acetone and isoprene were not included due to lack of consistency in analytic results.

Concentration (ppb) $120 \cdot$ - 90th Percentile -- Median 34 Sites - Mean 110 - 10th Percentile 100 90 80 70 97 98 99 90 91 92 93 94 95 96

Figure 2-30. Trend in 4th-highest daily 8-hour O3 based on 34 CASTNet sites in the

rural eastern United States, 1980-1999.

changes in summer 6:00-9:00 a.m. TNMOC and NO_x concentrations for selected PAMS sites.18 Morning NO_x concentrations showed a median decline of 6 percent between 1995 and 1999 across 34 PAMS sites, while summer morning TNMOC concentrations registered a median decline of 24 percent across 17 PAMS sites. Figure 2-29 presents the median changes in summer morning concentrations of the most abundant VOC species measured at PAMS sites.19 All 24 compounds included in this analysis showed declines in median values between 1995 and 1999.

Rural Area Air Quality Trends

Figure 2-30 presents the trend in 8-hour O₃ concentrations for 34 rural sites from the Clean Air Status and Trends Network (CASTNet) for the

Figure 2-31. Trend in annual 4th-highest daily maximum 8-hour O₃ concentrations in National Parks, 1980–1999.

1 Indicates a statistically significant upward trend. Otherwise the trend was not statistically significant. Concentrations are ppm.

most recent 10-year period, 1990– 1999.²⁰ The 8-hour O_3 concentrations at these eastern sites, which were the highest during the hot and dry summers of 1991 and 1998, have increased 2 percent over the last 10 years and register no significant change from 1997–1998. This trend in 8-hour O_3 levels at 34 selected sites is mirrored at other rural sites nationwide. Across the nation, rural 8-hour O_3 levels improved 9 percent from 1980–1999, but increased by 2 percent over the last 10 years.²¹

Figure 2-31 further examines patterns in rural O₃ levels by presenting the 10-year trends in the 8-hour O_3 concentrations at seven selected National Park Service (NPS) sites.22 These sites are located in Class I areas, a special subset of rural environments (all national parks and wilderness areas exceeding 5,000 acres) accorded a higher degree of protection under the CAA provisions for the prevention of significant deterioration. There are more than 26 NPS sites nationally; however, this analysis focuses on the specific sites with sufficient data to evaluate 10-year trends. Over the last 10 years, 8-hour O₃ concentrations in 25 of our national parks increased nearly 8 percent. Nine monitoring sites in eight of these parks experienced statistically significant upward trends in 8-hour O₃ levels: Great Smoky Mountain (TN), Big Bend (TX), Cape Romain (SC), Cowpens (SC), Denali (AK), Everglades (FL), Mammoth Cave (KY), and Voyageurs (MN). For the remaining 17 parks, 8-hour O₃ levels at eight increased only slightly between 1990 and 1999, while seven showed decreasing levels and two were unchanged.

Figure 2-32. Trend in national total anthropogenic VOC emissions, 1980–1999.

Notes: Emissions data not available for consecutive years 1980-1989.

Emission estimation methods continue to evolve and improve over time. Methods have changed for many significant categories beginning with the years 1985, 1990, and 1996 and consequently are not consistent across all years in this trend period. See Appendix B Emissions Estimates Methodology for additional information.

Table 2-4. Biogenic Sources of VOC Emissions By Region

Region	VOC	Source
Southwestern United States	Isoprene	Oak (mostly), citrus, eucalyptus
	Monoterpenes	Pine, citrus, eucalyptus
Northeastern United States	Isoprene	Oak (mostly), spruce
	Monoterpenes	Maple, hickory, pine, spruce, fir, cottonwood

National Emissions Trends

Figure 2-32 shows that national total VOC emissions (which contribute to O_3 formation) from anthropogenic (man-made) sources decreased 31 percent between 1980 and 1999, and 14 percent over the last 10 years. National total NO_x emissions (the other major precursor to O_3 formation) increased 4 percent and 5 percent respectively over the same two periods.

Nationally, the two major sources of VOC emissions are industrial processes (44 percent) and transportation sources (47 percent) as shown in Figure 2-33. Solvent use comprises 60 percent of the industrial process emissions category and 26 percent of total VOC emissions. Industrial VOC emissions have decreased 21 percent since 1990, in part due to the implementation of MACT controls that affect specific chemical and solvent industries. The VOC emissions totals by source category and year are presented in Table A-5 in Appendix A. Recent control measures to reduce transportation sector emissions include regulations to lower fuel volatility and to reduce NO_x and VOC emissions from tailpipes.²³ The effectiveness of these control measures is reflected in a decrease in VOC emissions from highway vehicles. VOC emissions from highway vehicles have declined 18 percent since 1990, while highway vehicle NO_x emissions have increased 19 percent over the same period.

The nonroad methodology for estimating emissions was changed this year with the use of an improved nonroad model for the years 1996 and later. However, this model was not used for the earlier years resulting in a "discontinuity" of about 40 percent for VOC emissions going from 1995–1996.

As required by the CAA, the Federal Reformulated Gasoline Program (RFG) implemented in 1995 has resulted in emissions reductions that exceed those required by law.24, 25 However, the discovery of MTBE (one of two fuel oxygenates used in reformulated gasoline to help improve air quality) in the water supplies around the country has required examination of the approach used in this program. As previously described in the CO section of this report, in November 1998, EPA announced the creation of a blue ribbon panel of leading experts from the public health and scientific communities, automotive fuels industry, water utilities, and local and state government to review the important

issues posed by the use of MTBE and other oxygenates in gasoline. The Panel concluded that RFG provides considerable air quality improvements and benefits for millions of U.S. citizens. However, due to MTBE's persistence and mobility in water, and its likelihood to contaminate ground and surface water, the Panel recommended that its use in gasoline be substantially reduced.²⁶ Additionally, on March 20, 2000, the Clinton Administration, based on the recommendations of the Blue Ribbon Panel, announced a set of legislative principles to address concerns about the continued use of MTBE. The Administration recommended that Congress:

- Amend the CAA to provide the authority to significantly reduce or eliminate the use of MTBE.
- Ensure that air quality gains associated with the use of MTBE are not diminished.
- Replace the existing oxygen requirement contained in the CAA with a renewable fuel standard for all gasoline.

In addition to anthropogenic sources of VOC and NO_x, there are natural or biogenic sources of these compounds as well. Table 2-4 shows the different predominant plant species responsible for VOC emissions in different parts of the country for two major biogenic species of concern, isoprene and monoterpenes. Though it is not possible to control the level of these natural emissions, when developing O₃ control strategies, their presence is an important factor to consider. Biogenic NO_x emissions are associated with lightning and biological processes in soil. On a regional basis, biogenic VOC emissions can be greater than anthropogenic VOC emissions. Biogenic NO_x emissions,

Figure 2-34. Density map of 1999 anthropogenic VOC emissions, by county.

Figure 2-35. Highest second daily maximum 1-hour O₃ concentration by county, 1999.

Figure 2-36. Highest fourth daily maximum 8-hour O₃ concentration by county, 1999.

on the other hand, are less than 10 percent of total NO_x emissions.²⁷

Figure 2-34 shows the geographic distribution of 1999 VOC emissions based on the tonnage per square mile for each county. This map illustrates that the eastern half of the country and the west coast emit more VOC (on a density basis) than the western half of the continental United States.

Air Quality Status

The map in Figure 2-35 presents second highest daily maximum 1-hour O_3 concentrations by county in 1999. The accompanying bar chart to the left of the map reveals that in 1999 approximately 54 million people lived in 101 counties where O_3 concentrations were above the level of the 1-hour O_3 NAAQS. These numbers represent a slight increase from the totals reported last year (51 million people living in 92 counties) with O_3 concentrations above the level of the O_3 NAAQS in 1998. The map in Figure 2-35 shows large spatial differences, with higher O_3 concentrations typically found in Southern California, the Gulf Coast, and the Northeast and North Central states. Historically, the highest 1-hour concentrations have been found in Los Angeles; however, in 1999, Harris County, TX has the highest second daily maximum value.

Figure 2-36 presents a map of fourth highest daily maximum 8-hour O_3 values by county in 1999 and an accompanying bar chart of the number of people in counties corresponding to various air quality ranges. The map reveals widespread areas with high 8-hour O_3 concentrations (i.e., greater than 0.084 ppm) in much of the eastern half of the country and in California as well as isolated counties in the West. The corresponding bar chart indicates that roughly 123 million people live in counties where fourth highest daily maximum 8-hour O_3 concentrations were greater than 0.084 ppm.

Particulate Matter

PM₁₀ Air Quality Concentrations 1980–99 NA				
1990–99	18%	decrease		
1998–99	1%	increase		
DM Emio	iono			

1980–99	13	NA
1990–99	15%	decrease
1998–99	9%	decrease

PM ₂₅ Air	Quality Concentrations
1980–99	Trend not yet available
1990–99	Trend not yet available
1998–99	Trend not yet available

PM ₂₅ Emissions				
	NA			
17%	decrease			
18%	decrease			
	17% 18%			

Worth Noting:

PM₁₀

• Between 1998 and 1999, annual average PM_{10} concentrations increased nationally for the first time since EPA began tracking PM_{10} trends in 1988. The small increase (1 percent) is largely influenced by increases in the West, particularly in California. PM_{10} concentrations in California were higher than normal from September to December 1999, a period which coincided with major wildfires and particularly dry conditions.

• Beginning in 1998, the number of monitoring sites in the PM_{10} network began to decrease. This follows the PM monitoring strategy published in July 1997 which encourages reducing the number of PM_{10} monitoring sites in areas of low concentrations where the PM_{10} NAAQS are not expected to be violated. In 1999, only 667 sites had data, compared to 887 sites in 1998 and 992 sites in 1997.

• The Franklin Smelter facility, responsible for historically high recorded PM_{10} concentrations in Philadelphia, shut down in August 1997 and dismantled in late 1999. This has brought peak concentrations down below the level of the standard at the nearby monitoring site. In 1998 and 1999, the second maximum was only 61 and 52 µg/m³, respectively, compared to 264 µg/m³ in 1997.

PM_{2.5}

• The first complete year of $PM_{2.5}$ data (1999) collected by EPA's Federal Reference Method Monitoring network confirms that $PM_{2.5}$ varies regionally. In the East, higher levels extend from the Southeastern to Mid-Atlantic states and west into the Ohio River Valley area. Florida and the Northeast (New York State to Maine) tend to have annual mean concentrations below 15 μ g/m³. California, seems to be the only area widespread in the West with annual mean concentrations above 15 μ g/m³.

- Data from the IMPROVE network show that average $PM_{2.5}$ concentrations in the rural east decreased 7 percent from 1998–1999.

 Sulfate concentrations in the rural east decreased 7 percent based on the 10 IMPROVE sites (and 10 percent based on the 34 CASTNet sites) from 1998–1999.

 Organic carbon concentrations in the rural east decreased 4 percent from 1998– 1999, and are still up 18 percent from 1997.

Nature and Sources

Particulate matter (PM) is the general term used for a mixture of solid particles and liquid droplets found in the air. PM originates from a variety of sources, including diesel trucks, power plants, wood stoves and industrial processes. The chemical composition and physical properties of these particles vary widely. While individual particles cannot be seen with the naked eye, collectively they can appear as black soot, dust clouds, or haze.

Particles less than or equal to 2.5 micrometers in diameter, or $PM_{2.5}$, are known as "fine" particles. Those larger than 2.5 micrometers but less than or equal to 10 micrometers are known as "coarse" particles. PM_{10} refers to all particles less than or equal to 10 micrometers in diameter.

Fine particles result from fuel combustion (from motor vehicles, power generation, industrial processes), residential fireplaces and wood stoves. Fine particles also can be formed in the atmosphere from gases such as sulfur dioxide, nitrogen oxides, and volatile organic compounds.

Coarse particles are generally emitted from sources such as vehicles traveling on unpaved roads, materials handling, and crushing and grinding operations, and windblown dust. Fine and coarse particles typically exhibit different behavior in the atmosphere. Coarse particles can settle rapidly from the atmosphere within hours, and their spatial impact is

Note: The methods used to estimate PM₁₀ emissions of some source categories are not consistent in all years over the period between 1980 and 1999. Changes from one method to another make the emissions trend over time appear different than it actually has been. Of particular note is that for 1999 PM₁₀ emissions from three source categories of open burning are estimated differently than in previous years and show a substantial increase compared to estimates for prior years. These categories of open burning of residential waste, yard waste, and land clearing waste are included in the "industrial processing" sector of Figures 2-39 and 2-40. The apparent increase in emissions from this sector, and in total PM₁₀ emissions, from 1998-1999 is the result of this change in estimation methodology.

typically limited because they tend to fall out of the air in the downwind area near their emission point. Larger coarse particles are not readily transported across urban or broader areas, because they are generally too large to follow air streams and they tend to be removed easily by impaction on surfaces. Smaller-sized coarse particles can have longer lives and longer travel distances, especially in extreme circumstances, such as dust storms.

Because fine particles remain suspended for longer times, typically on the order of days to weeks and travel much father than coarse particles, all else being equal, fine particles are theoretically likely to be more uniformly dispersed at urban and regional scales than coarse particles. Analyses of 1999 PM_{2.5} data from sites in Atlanta, Detroit, Phoenix, and Seattle indicate that PM2.5 concentrations tend to be highly correlated among sites within an urban area. In contrast, coarse particles tend to exhibit more localized elevated concentrations near sources.²⁸

Health and Environmental Effects

Scientific studies show a link between inhalable PM (alone, or combined with other pollutants in the air) and a series of significant health effects. Inhalable PM includes both fine and coarse particles. Both coarse and fine particles can accumulate in the respiratory system and are associated with numerous adverse health effects. Exposure to coarse particles is primarily associated with the aggravation of respiratory conditions such as asthma. Fine particles are most closely associated with adverse health effects including decreased lung function, increased hospital admissions and emergency room visits, increased

respiratory symptoms and disease, and premature death. Sensitive groups that appear to be at greatest risk to such PM effects include the elderly, individuals with cardiopulmonary disease such as asthma or congestive heart disease, and children.

Particulate matter also can also cause adverse impacts to the environment. Fine particles are the major cause of reduced visibility in parts of the United States, including many of our national parks. Other environmental impacts occur when particles deposit onto soils, plants, water, or materials. For example, particles containing nitrogen and sulfur that deposit onto land or water bodies may change the nutrient balance and acidity of those environments so that species composition and buffering capacity change. Particles that are deposited directly onto the leaves of plants can, depending on their chemical composition, corrode leaf surfaces or interfere with plant metabolism. Finally, PM causes soiling and erosion damage to materials, including culturally important objects such as carved monuments and statues.

Primary and Secondary PM Standards

The standards for PM_{10} include both short- and long-term NAAQS. The short-term (24-hour) standard of 150 $\mu g/m^3$ is not to be exceeded more than once per year on average over three years. The long-term standard specifies an expected annual arithmetic mean not to exceed 50 $\mu g/m^3$ averaged over three years.

The standards for $PM_{2.5}$ are set at 15 µg/m³ and 65 µg/m³, respectively, for the annual and 24-hour standards.²⁹ These are the primary, or health-based, standards. The second-

ary, or welfare-based, standards for PM_{10} are identical to the primary standards. The secondary (welfare-based) $PM_{2.5}$ standards were made identical to the primary standards.

Numerous industry and environmental petitioners, including the American Trucking Associations (ATA), challenged the O₃ and PM standards in the United States Court of Appeals for the District of Columbia Circuit. On May 14, 1999, a threejudge panel of that court concluded that EPA's interpretation of the Clean Air Act unconstitutionally delegated legislative power to EPA and remanded the standards to EPA. EPA appealed that ruling, and on February 27, 2001, the Supreme Court unanimously upheld the constitutionality of Clean Air Act section 109 and affirmed EPA's ability to set NAAQS based solely on public health and welfare factors, without consideration of costs, which are considered in the implementation of the standards. The court rejected the D.C. Circuit's conclusion that

EPA's interpretation of the implementation provisions violated the statute's clear terms, but nevertheless remanded the implementation policy to EPA on the basis that EPA's policy was not a reasonable interpretation of ambiguous statutory language. Because the D.C. Circuit originally remanded, but did not vacate the O₃ and PM_{2.5} standards, they have remained legally effective throughout the ongoing litigation. The case has now been returned to the Court of Appeals, where the remaining issues are to be considered in accordance with the decision of the Supreme Court.

For a variety of reasons, EPA has not yet taken actions to implement either standard. The litigation over

the PM NAAQS has not yet affected EPA or state activities related to these standards. EPA cannot start implementing the 1997 PM₂₅ standards until EPA and the states have collected three years of monitoring data to determine which areas are not attaining the standards. The fine particle monitoring network has been operational since 1999 and was completed in 2000. In most cases, areas would not be designated "attainment" or "nonattainment" for the PM_{2.5} standards until 2004–2005. Refer to http://www.epa.gov/airlinks for up-to-date information concerning actions surrounding the revised standards.

National 10-Year PM₁₀ Air Quality Trends

Since 1988 represents the first complete year of PM₁₀ data for most monitored locations, a 20-year trend is not available. However, the most recent 10-year period (1990-1999) shows that the national average of annual mean PM₁₀ concentrations at 954 monitoring sites decreased 18 percent in Figure 2-37. The downward trend is apparent through 1998. However, between 1998 and 1999, the national average increased 1 percent. This slight increase is largely influenced by increases in the West, particularly in California. PM₁₀ concentrations in California were higher than normal from September-December 1999, a period which coincided with major wildfires and particularly dry conditions.

When the sites are grouped as rural, suburban, and urban, as in Figure 2-38, the trend is similar to the national trend. The highest values are generally found at the urban sites, followed closely by the suburban sites. The annual mean is much Figure 2-37. Trend in annual mean PM₁₀ concentrations, 1990–1999.

Figure 2-39. National PM_{10} emissions trend, 1980–1999 (traditionally inventoried sources only).

Notes: Emissions data not available for consecutive years 1980-1989.

Emission estimation methods continue to evolve and improve over time. Methods have changed for many significant categories beginning with the years 1985, 1990, and 1996 and consequently are not consistent across all years in this trend period. See Appendix B Emissions Estimates Methodology for additional information.

Figure 2-40. PM₁₀ emissions from traditionally inventoried source categories, 1999.

lower at the rural sites, which are generally located away from local sources of PM_{10} .

Beginning in 1998, the number of monitoring sites in the PM₁₀ network began to decrease. This follows the PM monitoring strategy published in July 1997 which encourages reducing the number of PM₁₀ monitoring sites in areas of low concentrations where the PM₁₀ NAAQS are not expected to be violated. Specifically, it calls for eliminating sites not needed for trends or with maximum concentrations less than 60 percent of the NAAQS.30 In 1999, only 667 sites had data, compared to 887 sites in 1998 and 992 sites in 1997. This decrease in the number of monitors has not affected the calculation of the national trend.

Several factors have played a role in reducing PM_{10} concentrations. Where appropriate, states required emissions from industrial sources and construction activities to be reduced to meet the PM₁₀ standards. Measures were also adopted to reduce street dust emissions, including the use of clean anti-skid materials like washed sand, better control of the amount of material used, and removal of the material from the street as soon as the ice and snow melt. Cleaner burning fuels like natural gas and fuel oil have replaced wood and coal as fuels for residential heating, industrial furnaces, and electric utility and industrial boilers.

National PM₁₀ Emissions Trends

Nationally, annual estimates of PM_{10} direct emissions decreased 15 percent between 1990 and 1999 (see Table A-6). Direct PM_{10} emissions are generally examined in two separate groups. First there are the emissions from the more traditionally invento-

ried sources, shown in Figures 2-39 and 2-40. These include fuel combustion, industrial processes, and transportation. Of these, the fuel combustion category saw the largest decrease over the 10-year period (14 percent), with most of the decline attributable to a decrease in emissions from electric utility coal and oil combustion. Emissions from the industrial processes category decreased 3 percent, and emissions from the transportation category decreased 10 percent. The recent upward movement between 1998 and 1999 for industrial processing is attributed to new sources of emissions for open burning (of residential yard wastes and land clearing debris) that had not been characterized previously.

The second group of direct PM₁₀ emissions is a combination of miscellaneous and natural sources including agriculture and forestry, wildfires and managed burning, and fugitive dust from paved and unpaved roads. It should be noted that fugitive dust emissions from geogenic wind erosion have been removed from the emissions inventory for all years, since the annual emission estimates based on past methods for this category are not believed to be representative. As Figure 2-41 shows, these miscellaneous and natural sources actually account for a large percentage of the total direct PM₁₀ emissions nationwide, although they can be difficult to quantify compared to the traditionally inventoried sources. The trend of emissions in the miscellaneous/natural group may be more uncertain from one year to the next or over several years because these emissions tend to fluctuate a great deal from year to year. It should be noted that a change in methodology occurred between 1995 and 1996 in

Figure 2-41. Total PM₁₀ emissions by source category, 1999.

calculating PM_{10} emissions from unpaved roads. This has led to lower PM_{10} emissions from 1996 through 1999 than would have been predicted using the older methodology.

Table A-6 lists PM_{10} emissions estimates for the traditionally inventoried sources for 1990–1999. Miscellaneous and natural source PM_{10} emissions estimates are provided in Table A-7.

Figure 2-42 shows the emission density for PM_{10} in each U.S. county. PM_{10} emission density is the highest in the eastern half of the United States, in large metropolitan areas, areas with a high concentration of agriculture such as the San Joaquin Valley in California and along the Pacific coast. This closely follows patterns in population density. One exception is that open biomass burning is an important source category that is more prevalent in forested areas and in some agricultural areas. Fugitive dust is an important component in arid and agricultural areas.

PM₁₀ Regional Air Quality Trends

Figure 2-43 is a map of regional trends for the PM₁₀ annual mean from 1990-1999. All 10 EPA regions show decreasing trends over the 10-year period, with declines ranging from 5-33 percent. The largest decreases are generally seen in the western part of the United States. This is significant since PM₁₀ concentrations are typically higher in the West. In the western states, programs such as those with residential wood stoves and agricultural practices have helped reduce emissions of PM₁₀. In the eastern United States, the Clean Air Act's Acid Rain Program has contributed to the decrease in PM_{10} emissions. The program has reduced

Figure 2-42. PM₁₀ emissions density by county, 1999.

Figure 2-43. Trend in PM₁₀ annual mean concentration by EPA region, 1990–1999.

Alaska is in EPA Region 10; Hawaii, EPA Region 9; and Puerto Rico, EPA Region 2. Concentrations are μ g/m3.

Figure 2-44. Highest 2nd maximum 24-hour PM₁₀ concentration by county, 1999.

 SO_2 and NO_x emissions, both precursors of particulate matter in the atmosphere (see Chapter 7 on Atmospheric Deposition and the SO_2 section in this chapter for more information on the Acid Rain Program).

PM₁₀ 1999 Air Quality Status

The map in Figure 2-44 displays the highest second maximum 24-hour PM_{10} concentration in each county for 1999. The largest of these was recorded in Inyo County, California, caused by wind blown dust from a dry lake bed.³¹ The bar chart which accompanies the national map shows the number of people living in counties within each concentration range. The colors on the map and bar chart correspond to the colors of the concentration ranges displayed in the map legend. In 1999, approximately 5

million people lived in 11 counties where the highest second maximum 24-hour PM_{10} concentration was above the level of the 24-hour PM_{10} NAAQS. When both the annual and 24-hour PM_{10} standards are considered, there were 20 million people living in 19 counties with PM_{10} concentrations above the NAAQS in 1999. See Chapter 4 for information concerning officially designated PM_{10} nonattainment areas.

The Franklin Smelter facility, responsible for historically high recorded PM_{10} concentrations in Philadelphia, shut down in August 1997 and dismantled in late 1999.³² This has brought peak concentrations down below the level of the standard at the nearby monitoring site. In 1998 and 1999, the second maximum was

only 61 and 52 μ g/m³, respectively, compared to 264 μ g/m³ in 1997.

Characterizing PM, Air Quality

A new monitoring network designed to assess fine PM data with respect to the new PM_{2.5} standards began deployment in early 1999. The status of this network is shown in Figure 2-45. As of February 2001, 1,108 Federal Reference Method (FRM) monitoring sites were operating and 1,044 of them have reported data to EPA's Aerometric Information Retrieval System (AIRS). Analyses of the first complete year of data (1999) collected by this network are summarized in the "FRM Network Results" section.

Data from another network, the IMPROVE network of rural sites, were used to assess the *composition* of and *trends* in ambient PM_{2.5} concen-

Figure 2-45. Status of PM_{2.5} monitor network, as of May 2001.

trations. Since the monitors in the IMPROVE network are non-FRM, the data cannot be used for compliance purposes. Analyses of these data are summarized in the "IMPROVE Network Results" section.

As additional analyses of PM_{2.5} data are completed, they will be published on EPA's PM_{2.5} Data Analysis Web site at http://www.epa.gov/oar/ oaqps/pm25/.

FRM Network Results 1999 Annual Mean PM_{2.5} Concentrations

Figure 2-46 depicts nationwide annual mean PM2.5 concentrations from the FRM monitoring network. Data completeness is illustrated by the size of the circles on the map, with smaller circles indicating relatively incomplete data for the year. Many locations in the eastern United States and in California were above 15 µg/ m³. Annual mean concentrations were above $20 \,\mu g/m^3$ in several major urban areas throughout the eastern United States including Pittsburgh, Cleveland, Atlanta, Chicago, and St. Louis. Los Angeles and the central valley of California also had levels above $20 \,\mu g/m^3$. Sites in the central and western mountain regions of the United States had generally low annual mean concentrations, most below 10 μ g/m³.

1999 24-hour PM_{2.5} Concentrations

Figure 2-47 depicts nationwide 98^{th} percentile 24-hour average $PM_{2.5}$ concentrations from the FRM monitoring network. Concentrations above 65 µg/m³ are relatively rare in the eastern United States, but more prevalent in California. Values in the 40–65 µg/m³ range are more common in the eastern United States and the west coast, but relatively rare in the central and western mountain regions.

Readers should be cautioned not to draw conclusions regarding the attainment or nonattainment status inferred by a single year of PM_{2.5} monitoring data. EPA regulations in 40 CFR part 50, Appendix N, require three years of monitoring data and specify certain minimum data completeness requirements for data used to make decisions regarding attainment Figure 2-46. 1999 annual mean PM_{2.5} concentrations (µg/m³).

Source: US EPA AIRS Data base as of 7/12/00 without data flagged as 1, 2, 3, 4, T, W, Y, or X

Figure 2-47. 1999 98th percentile 24-hour average PM_{2.5} concentrations (µg/m³).

Source: US EPA AIRS Data base as of 7/12/00 without data flagged as 1, 2, 3, 4, T, W, Y, or X

Figure 2-48. Urban PM_{2.5} monthly patterns by region, 1999.

status. As indicated by the size of the circles on the maps, many sites have relatively incomplete data for 1999 at the time of the data summarization.

Seasonal Patterns in PM Concentrations

Data from the 1999 $PM_{2.5}$ FRM network show distinct seasonal variation

in average $PM_{2.5}$ concentrations. The regional summaries in Figure 2-48 (urban) and Figure 2-49 (rural) demonstrate the geographic variability of $PM_{2.5}$ concentrations. The months with peak urban $PM_{2.5}$ concentrations vary by region. The urban areas in the eastern regions all show peaks in the summer months, and the western

regions all show peaks in the winter months. The Industrial Midwest shows peaks in June and July, the upper Midwest shows peaks in July and August, and the Southeast shows peaks in August. The Northwest, Southwest, and Southern California all show peaks in January. The

Figure 2-49. Rural PM_{2.5} monthly patterns by region, 1999.

Southwest and Southern California show a second peak in November.

Differences between urban and rural locations are apparent from the plots. Southern California urban and rural monitors show different seasonal patterns, with urban winter peaks not present in rural areas. In the Northwest the rural winter peak is not as pronounced as it is in urban areas. In all other regions the urban and rural patterns are very similar.

IMPROVE Network Results

The IMPROVE network was established in 1987 to track visibility impairment in the nation's most pristine areas, like national parks and wilderness areas. For this reason, the data primarily represent rural areas. There are, however, two non-rural sites (in Washington, D.C. and South Lake Tahoe) that use the same monitoring protocol. Data from these and other sites meeting data completeness criteria described in Appendix B, are presented in this section. Figure 2-50 shows the location of these sites by region. (The IMPROVE network is discussed in further detail in Chapter

Figure 2-50. Class I Areas in the IMPROVE Network meeting the data completeness criteria in Appendix B.

6: Visibility Trends. Also, visit http:// vista.cira.colostate.edu/improve/ Data/IMPROVE/improve_data.htm for more information concerning the IMPROVE network.)

1999 Rural PM_{2.5} Concentrations and Composition

Rural $PM_{2.5}$ concentrations vary regionally, with sites in the East typically having higher annual mean concentrations. Figure 2-51 shows the annual mean $PM_{2.5}$ concentrations in 1999. Much of the East/West difference is attributable to higher sulfate concentrations in the eastern United States. Sulfate concentrations in the eastern sites are 4–5 times greater than those in the western sites. Sulfate concentrations in the East largely result from sulfur dioxide emissions from coal-fired power plants. EPA's Acid Rain Program, which is discussed in more detail in the SO₂ section and in the SO₂ section in Chapter 7, sets restrictions on these power plants.

Within the East, rural PM_{2.5} levels are higher in the Southeastern and mid-Atlantic states (ranging roughly from 10–16 μ g/m³), while the sites in the northeast are between 6–7 μ g/m³. In the West, rural PM_{2.5} levels are generally less than 5 μ g/m³. California, Montana and Texas are the only states in the West with sites above that level.

The chemical composition of PM_{2.5} also varies regionally. Sulfate and organic carbon account for most of the PM_{2.5} concentrations in the East and the West. Sites in the East on average have a higher percentage of sulfate concentrations (56 percent) relative to those in the West (33 per-

Figure 2-51. Annual mean PM_{2.5} concentrations in 1999.

cent). Table 2-5 shows the difference in percent contribution of each species for the eastern versus western regions of the United States.

Table 2-5. Percent Contribution to $PM_{2.5}$ by Component, 1999

Sulfate5633Elemental Carbon56Organic Carbon2736		East (10 sites)	West (26 sites)
Elemental Carbon56Organic Carbon2736	Sulfate	56	33
Organic Carbon 27 36	Elemental Carbon	5	6
	Organic Carbon	27	36
Nitrate 5 8	Nitrate	5	8
Crustal Material 7 17	Crustal Material	7	17

Note: Measured PM2.5 represents the direct mass measurement from the filter. The sum of the component concentrations do not equal this value because they do not account for all measured mass.

Note: Measured PM2.5 represents the direct mass measurement from the filter. The sum of the component concentrations do not equal this value because they do not account for all measured mass.

Figure 2-54. PM_{2.5} concentrations, 1990–1999 at the Washington D.C. IMPROVE site.

Note: Measured PM2.5 represents the direct mass measurement from the filter. The sum of the component concentrations do not equal this value because they do not account for all measured mass.

PM_{2.5} Air Quality Trends in Rural Areas

Because of the significant regional variations in rural PM₂₅ concentrations, trends are aggregated by eastern and western regions as shown in Figures 2-52 and 2-53. Based on the 10 sites with trend data in the East, average PM_{2.5} concentrations in the rural east decreased 7 percent from 1998–1999. The 1999 level is down 5 percent from the 1992 level, but it is up 4 percent from the 1995 level (the lowest level during the trend period). Sulfate concentrations in the rural east decreased 7 percent from 1998 to 1999. Organic carbon concentrations in the rural east decreased 4 percent from 1998–1999, but are still up 18 percent from 1997 (the lowest level during the trend period).

The average $PM_{2.5}$ concentrations in the West increased 10 percent from 1998–1999. However, the 1999 level is down 15 percent from the 1990 level.

PM₂₅ Trends in Non-rural Areas

Figure 2-54 shows that annual average $PM_{2.5}$ concentrations at the Washington, D.C. site decreased 2 percent between 1990 and 1999, but increased 1 percent between 1998 and 1999.

Characterizing PM_{2.5} Emissions

To get some idea of the nature of fine PM, some emissions information coupled with ambient data measurements can be examined. EPA is working to improve the $PM_{2.5}$ emission inventory. In the meantime, a general assessment of the emission sources contributing to $PM_{2.5}$ can be obtained by evaluating $PM_{2.5}$ monitoring data in conjunction with emission inventory information. The paragraphs below provide a broad overview of the nationwide concentrations, composition, and sources of

PM_{2.5} based on actual PM_{2.5} measurements and the emission inventory of sources contributing within each composition category.

PM_{2.5} is composed of a mixture of particles directly emitted into the air and particles formed in the air from the chemical transformation of gaseous pollutants. The principal types of secondary particles are ammonium sulfate and ammonium nitrate formed in the air from gaseous emissions of SO₂ and NO_x, reacting with ammonia. The main source of SO_2 is combustion of fossil fuels in boilers and the main sources of NO_v are combustion of fossil fuel in boilers and mobile sources. Some secondary particles are also formed from volatile organic compounds which are emitted from a wide range of combustion and other sources.

The principle types of directly emitted particles are those that predominantly consist of crustal materials and those consisting of elemental and organic carbonaceous materials resulting from the incomplete combustion of fossil fuels and biomass materials. The main sources of crustal particles are road surface materials, construction activity, and certain agricultural activities. The main sources of combustion-related particles are mobile sources such as diesels, managed and unmanaged biomass burning, residential wood combustion, utility, commercial and industrial boilers. Note however, that crustal particles contain some carbonaceous materials, some combustion process emissions contain crustal materials (e.g., wild and prescribed fires), and even fossil fuels contain fly ash that is chemically similar to soil and thus would be classified as

crustal in the compositional analysis of ambient samples reported herein.

Figure 2-55 summarizes information from actual measurements of ambient $PM_{2.5}$. It shows how $PM_{2.5}$ composition varies in both the eastern and western United States. The ambient samples were chemically analyzed to determine the amount of ammonium sulfate and nitrate. crustal material and carbonaceous material. The concentration and composition data are based on at least one year of data from each monitoring location, with the exception of Denver. The data were collected using a variety of non-federal reference methods and should not be used to determine compliance with the PM_{2.5} NAAQS. The composition information represents a range of urban and non urban locations. The published composition data for the East are somewhat limited, but preliminary information from several recently completed urban studies is included. It shows relatively consistent composition of PM2.5 across much of the East. The available information consistently shows that PM₂₅ in the East is dominated by ammonium sulfate on a regional scale and also by carbonaceous particles emitted directly by combustion processes. Regional concentrations of PM_{2.5} are generally higher throughout much of the East, due to the regional influence of ammonium sulfate caused by higher SO₂ emissions throughout much of the East and the ubiquitous nature of combustion processes. (See Chapter 7 for a description of spatial patterns and trends of sulfate air quality.) The regional concentrations of PM₂₅ are lower in the western United States than in the East and the composition is more variable. The west differs from the East in two

important ways. First, non urban PM₂₅ concentrations are much lower in the West than in the East. This is because the East is blanketed regionally by relatively higher concentrations of ammonium sulfate, whereas regional sulfate concentrations in the West are much lower. Second, several western areas, notably the San Joaquin Valley and the Rubidoux area California's South Coast basin have higher ammonium nitrate concentrations. Nitrate concentrations are also higher in non-urban inland areas of southern California. Such pockets of high nitrate concentrations are not as pronounced in the East. Crustal material is a relatively small constituent of PM_{2.5} in both the West and east, even in arid and agricultural areas such as Phoenix, Arizona and the San Joaquin Valley of California.

Figure 2-56 depicts the link between sources and the composition components of PM_{2.5}. EPA has developed a National Emissions Inventory (NEI) inventory for use in analyzing trends in emissions over time, conducting various in house analyses for PM, and for use in regional scale modeling.³³ The NEI covers all 50 states and includes point, area, onroad mobile, nonroad mobile sources and biogenic/geogenic emissions. Point sources are identified individually while county tallies are used for area and mobile source category groups. The inventory includes emissions of SO₂, NO_x, VOC, CO, PM₁₀, PM_{2.5}, and NH₃. Of these pollutants, only carbon monoxide is not a contributor to the ambient fine particle burden.

Figure 2-56 provides a link between the sources in the NET inventory and the composition information shown in Figure 2-55. The stacked bar graphs show the relative magnitude of emissions of sulfur dioxide, nitrogen oxides, carbonaceous and crustal-related particles. SO₂ is emitted mostly from the combustion of fossil fuels in boilers operated by electric utilities and industry. Less than 20 percent of SO₂ emissions nationwide are from other sources, mainly industrial processes and mobile sources. NO_x emissions are more evenly divided between stationary source and onroad mobile source fuel combustion, accounting for almost 80 percent of SO₂ emissions. Nonroad mobile sources account for most of the remaining emissions. SO₂ and NO_x combine with ammonia in the atmosphere under certain conditions to form ammonium sulfate and nitrate particles. Animal husbandry, mobile sources, fertilizer application and industrial processes are the main sources of ammonia, with animal husbandry contributing about 80 percent of the emissions. The main sources of carbonaceous particles are biomass and fossil fuel combustion with the open burning of biomass accounting for about one-third of the carbonaceous material emissions. Other important categories are mobile sources, various industrial processes, residential wood stoves and fireplaces, and organic soils and plant materials. Principal mobile sources include both on and off road diesels, gasoline engines, aircraft, railroads, and ships. The main sources of crustal particles are roads, construction and agriculture, but as discussed earlier, some of the crustal materials reported in Figures 2-55 and 2-56 come from combustion emissions. High wind events also can contribute large quantities of crustal materials to the air. However, since wind events are of relatively short duration, they are not included in annual emission estimates such as the NEI. While

Figure 2-55. PM_{2.5} ambient composition.

Notes:

See Appendix B for a full discussion of data sources.

 $\rm PM_{2.5}$ mass concentrations are determined using at least 1 year of monitoring at each location using a variety of sampling methods. They should not be used for comparisons to the $\rm PM_{2.5}$ NAAQS.

Figure 2-56. PM_{2.5} emission sources.

Note:

Composition and source contributions vary among urban areas. Also, some carbonaceous material is formed from organic gases reacting in the atmosphere. The magnitude of these "secondary" organics is believed small but more studies are needed by the research community.

Figure 2-57. Direct $PM_{2.5}$ emissions density by county, 1999.

crustal materials are the predominant component of PM_{10} , Figure 2-56 shows that $PM_{2.5}$ is predominantly comprised of secondary particles and directly emitted carbonaceous particles. The composition (and thus the sources) of $PM_{2.5}$ and PM_{10} are markedly different because most of the crustal material particles are larger than 2.5 micrometer aerodynamic diameter while almost all of the secondary particles and directly emitted carbonaceous particles are smaller than 2.5 micrometers.

Used together, Figures 2-55 and 2-56 can give a qualitative feel for the combined influence of specific source types on ambient PM_{2.5} overall (e.g., fuel combustion in boilers, organic and inorganic industrial processes, highway and off highway mobile sources, open burning of waste/ biomass and fugitive dust). For example, Figure 2-56 shows that fuel combustion in boilers contributes significantly to both sulfate and carbonaceous mass. Figure 2-57 shows that both sulfate and carbonaceous particles are found in abundance in PM_{2.5} in the east and that carbonaceous particles are also abundant in the west. Thus, one could conclude that fuel combustion in boilers is a significant contributor to PM_{2.5} in the ambient air. In contrast, one could conclude that fugitive dust sources do not play a particularly important role in ambient air samples of PM_{2.5}. It is important to note, however, that PM₁₀ crustal particles have been shown to be significant contributors to visibility impairment in the western United States.34

National Trends in PM_{2.5} Emissions

Figure 2-57 shows the emission density for PM_{2.5} in each U.S. county. PM_{2.5} emission density is the highest in the eastern half of the United States, in large metropolitan areas, areas with a high concentration of agriculture such as the San Joaquin Valley in California and along the Pacific coast. This closely follows patterns in population density. One exception is that open biomass burning is an important source category that is more prevalent in forested areas and in some agricultural areas. Fugitive dust is a lower fraction of PM_{2.5} emissions than they are for PM_{10} .

Figure 2-58 shows that total direct $PM_{2.5}$ emissions decreased 12 percent between 1990 and 1999, which is a

similar 10-year trend to that for PM_{10} . The relative source contribution to $PM_{2.5}$ versus PM_{10} is different, as shown in Figures 2-59 and 2-60. When both traditionally inventoried and miscellaneous categories are considered together, combustion sources account for a higher percentage of total emissions for $PM_{2.5}$ than for PM_{10} .

As discussed earlier, ammonia is important in explaining the formation of sulfate and nitrate. Figure 2-61 is a pie chart showing 1999 NH_3 emissions by source category. It shows that livestock (and to a lesser extent fertilizer application) are the most important NH_3 sources, accounting for 87 percent of total ammonia emissions.

Characterizing Coarse Fraction PM Air Quality

An approximation of course fraction PM can be obtained by subtracting PM_{2.5} from PM₁₀ at collocated FRM monitors. Since the protocol for each monitor is not identical, the resulting estimate should be viewed with caution. A more complete and accurate view of PM₁₀₋₂₅ values can be obtained by nationwide deployment of PM₁₀ and PM_{2.5} monitors that use an equivalent monitoring protocol. Figure 2-62 shows estimated annual mean PM_{10-2.5} and Figure 2-63 shows the estimated 98th percentile 24-hour average PM_{10-2.5} developed from 1999 FRM monitor data. The limited data show that annual mean concentrations vary widely, with higher concentrations in several areas of the Midwest and southern California. A similar pattern emerges for the estimated 98th percentile 24-hour average

Figure 2-58. National direct $PM_{2.5}$ emissions trend, 1990–1999 (traditionally inventoried sources only).

 $PM_{10-2.5}$ concentrations. Though the Southeast data is relatively incomplete, preliminary estimates suggest relatively low $PM_{10-2.5}$ levels throughout that region.

Figure 2-61. National ammonia emissions by principal source categories, 1999.

Figure 2-62. Estimated 1999 annual mean PM_{10-2.5}.

Figure 2-63. Estimated 1999 98th percentile 24-hour average PM_{10-2.5} developed from 1999 FRM monitor data.

Sulfur Dioxide

Air Quality	Conc	entrations
1980-99	50%	decrease
1990-99	36%	decrease
1998-99	2%	decrease
Emissions		
Emissions 1980-99	27%	decrease
Emissions 1980-99 1990-99	27% 20%	decrease decrease

Worth Noting:

• Steady 20-year improvement has reduced SO₂ ambient concentrations by one-half and emissions by one-third.

• Phase II of the Acid Rain Program was implemented in 2000 and should result in significant new reductions.

Nature and Sources

Sulfur dioxide (SO₂) belongs to the family of sulfur oxide (SO_x) gases. These gases are formed when fuel containing sulfur (mainly coal and oil) is burned, and during metal smelting and other industrial processes. The highest monitored concentrations of SO₂ have been recorded in the vicinity of large industrial facilities.

Health and Environmental Effects

High concentrations of SO_2 can result in temporary breathing impairment for asthmatic children and adults who are active outdoors. Short-term exposures of asthmatic individuals to elevated SO_2 levels while at moderate exertion may result in reduced lung function that may be accompanied by symptoms such as wheezing, chest tightness, or shortness of breath. Other effects that have been associated with longer-term exposures to high concentrations of SO_2 , in conjunction with high levels of PM, include respiratory illness, alterations in the lungs' defenses, and aggravation of existing cardiovascular disease. The subgroups of the population that may be affected under these conditions include individuals with cardiovascular disease or chronic lung disease, as well as children and the elderly.

Additionally, there are a variety of environmental concerns associated with high concentrations of SO₂. Because SO₂, along with NOx, is a major precursor to acidic deposition (acid rain), it contributes to the acidification of soils, lakes and streams and the associated adverse impacts on ecosystems (see Chapter 7, Atmospheric Deposition of Sulfur and Nitrogen Compounds). Sulfur dioxide exposure to vegetation can increase foliar injury, decrease plant growth and yield, and decrease the number and variety of plant species in a given community. Sulfur dioxide also is a major precursor to PM_{2.5} (aerosols), which is of significant concern to human health (as discussed in the particulate matter section of this chapter), as well as a main pollutant that impairs visibility (see Chapter 6, Visibility Trends). Finally, SO₂ can accelerate the corrosion of natural and man-made materials (e.g., concrete and limestone) which are used in buildings and monuments, as well as paper, iron-containing metals, zinc and other protective coatings.

Primary and Secondary Standards

There are both short- and long-term primary NAAQS for SO_2 . The short-term (24-hour) standard of 0.14 ppm (365 µg/m³) is not to be exceeded more than once per year. The long-term standard specifies an annu-

al arithmetic mean not to exceed 0.030 ppm ($80 \mu g/m^3$). The secondary NAAQS (3-hour) of 0.50 ppm (1,300 $\mu g/m^3$) is not to be exceeded more than once per year. The standards for SO₂ have undergone periodic review, but the science has not warranted a change since they were established in 1972.

National 10-Year Air Quality Trends

The national composite average of SO₂ annual mean concentrations decreased 36 percent between 1990-1999 as shown in Figure 2-64, with the largest single-year reduction (16 percent) occurring between 1994 and 1995.30 The composite trend has since leveled off, declining only 3 percent from 1998–1999. This same general trend is seen in Figure 2-65, which plots the ambient concentrations grouped by rural, suburban, and urban sites. It shows that the mean concentrations at the urban and suburban sites are consistently higher than those at the rural sites. However, the 1994–1995 reduction in the concentrations at non-rural sites does narrow the gap between the trends. The greater reduction seen in the non-rural sites reflects the fact that the proportion of non-rural sites is greater in the eastern United States, which is where most of the 1994-1995 emissions reductions at electric utilities occurred.34 The national composite second maximum 24-hour SO₂ annual mean concentrations decreased 38 percent between 1990 and 1999, as shown in Figure 2-64 with the largest single-year reduction (25 percent) occurring between 1994 and 1995. See also Chapter 7, Atmospheric deposition of Sulfur and Nitrogen Compounds. A map of 1999 SO₂

monitor locations may be found in Figure B-6 in Appendix B.

National Emissions Trends

National SO₂ emissions decreased 20 percent between 1990 and 1999, with a sharp decline between 1994 and 1995, similar to the decline in the ambient concentrations. Unlike the air quality trend, however, the emissions trend remains essentially level from 1996–1999, as shown in Figure 2-66. This dramatic reduction in 1995 was caused by implementation of the Acid Rain Program; subsequent yearto-year variations are driven in part by the yearly changes in emissions from the electric utility industry. The electric utility industry accounts for most of the fuel combustion category in Figure 2-67. In particular, the coalburning power plants have consistently been the largest contributor to SO₂ emissions, as documented in Table A-8 in Appendix A. See also Chapter 7, Atmospheric Deposition of Sulfur and Nitrogen Compounds.

The Acid Rain Program

The substantial national reductions in SO₂ emissions and ambient SO₂ and sulfate concentrations from 1994-1999) are due mainly to Phase I implementation of the Acid Rain Program. Established by EPA under Title IV of the CAAA, the Acid Rain Program's principal goal is to achieve significant reductions in SO₂ and NO_x emissions from electric utilities. Phase I compliance for SO₂ began in 1995 and significantly reduced emissions from the participating utilities.³⁵ Table 2-6 shows this reduction in terms of units required to participate in Phase I and other units.

Between 1996-1998 total SO₂ emissions from electric utilities have increased slightly, compared to 1995. In

Note: When the total number of rural, suburban, and urban sites are summed for either the 1980-89 or 1990-99 time periods in Figure 2-26, this number may not equal the total number of sites shown in Figure 2-25 for the same time periods. This is due to a few monitoring sites falling outside the definitions of rural, suburban, or urban sites.

Figure 2-65. Annual mean SO₂ concentration by trend location, 1980–1999.

Concentration, ppm

Figure 2-66. National total SO₂ emissions trend, 1980–1999.

Figure 2-67. SO₂ emissions by source category, 1999.

1999, however, total SO₂ emissions have decreased, matching 1995 levels. Again, Table 2-6 explains this increase in terms of Phase I units and Non-Phase I units. Most Phase I plants over-complied in Phase I (1995-1999), banking their SO₂ allowances for use in Phase II, resulting in significant early reductions. However, some Phase I units did increase their emissions during these years, compared to 1995. Since Phase I units account for only 18 percent of the total 1996-1998 increase, the majority of the increase is attributed to those units not yet participating in the Acid Rain Program until Phase II, which began in 2000. When fully implemented, total SO₂ emissions from electric utilities will be capped at 8.95 million tons per year under the Acid Rain Program. For more information on the Acid Rain Program, visit http:// www.epa.gov/airmarkets. See also Chapter 7, Atmospheric Deposition of Sulfur and Nitrogen Compounds.

National 20-Year Air Quality Trends

The progress in reducing ambient SO₂ concentrations during the past 20 years is shown in Figure 2-68. While there is a slight disconnect in the trend line between 1989 and 1990 due to the mix of trend sites in each 10-year period, an overall downward trend is evident. The national 1999 composite average SO₂ annual mean concentration is 50 percent lower than 1980. In addition to the previously mentioned effects of the Acid Rain Program, these steady reductions over time were accomplished by installing flue-gas control equipment at coal-fired generating plants, reducing emissions from industrial processing facilities such as smelters and sulfuric acid manufacturing plants,

reducing the average sulfur content of fuels burned, and using cleaner fuels in residential and commercial burners.

Regional Air Quality Trends

The map of regional trends in Figure 2-69shows that ambient SO₂ concentrations are generally higher in the eastern United States. The effects of Phase I of the Acid Rain Program are seen most vividly in the northeast. In particular, concentrations fell 20-25 percent between 1994 and 1995 in EPA Regions 1, 2, 3, and 5. These broad regional trends are not surprising since most of the units affected by Phase I of the Acid Rain Program also are located in the east as shown in Figure 2-70 This figure also shows that ambient concentrations have increased slightly between 1995 and 1997 in Regions 3 and 4 where many of the electric utility units not yet affected by the Acid Rain Program are located.

1999 Air Quality Status

The most recent year of ambient data shows that all counties did meet the primary SO_2 short-term standard, according to Figure 2-71.

Table 2-6. Total SO_2 Emissions from Phase I and Non-Phase I Acid Rain Sources: 1990–1999 (million tons).

	1990***	1995	1996	1997	1998	1999
Phase I (Table I) Units*	8.7	4.455	4.765	4.769	4.66	4.348
Non-Phase I Units**	7.03	7.408	7.749	8.209	8.474	8.104
All Electric Utility Units	15.73	11.863	12.514	12.978	13.134	12.452

* does not include substitution, compensating and opt-in units

** includes substitution, compensating, opt-in and Phase II units

*** Acid Rain phased requirements began in 1995

Figure 2-69. Trend in SO₂ annual arithmetic mean concentration by EPA region, 1980–1999.

Alaska is in EPA Region 10; Hawaii, EPA Region 9; and Puerto Rico, EPA Region 2. Concentrations are ppm.

Figure 2-71. Highest 2nd maximum 24-hour SO₂ concentration by county, 1999.

References

1. Note that due to the annual loss and replacement of ambient monitoring sites (e.g., redevelopment, new leases, etc.), too few sites possess a monitoring record sufficient to construct a representative 20-year trend for the nation. Therefore, this report assesses long-term trends by piecing together two separate 10-year trends databases.

2. The methods used to estimate CO emissions of some source categories are not consistent in all years over the period between 1980 and 1999. Changes from one method to another make the emissions trend over time appear different than it actually has been. Of particular note is that for 1999, CO emissions from three source categories of open burning are estimated differently than in previous years and show a substantial increase compared to estimates for prior years. These categories of open burning of residential waste, vard waste, and land clearing waste are included in the 'industrial processing' sector of Figure 2-6. The apparent increase in emissions from this sector, and in total CO emissions, from 1998 to 1999 is the result of this change in estimation methodology.

3. *Oxygenated Gasoline Implementation Guidelines*, EPA, Office of Mobile Sources, Washington, D.C., July 27, 1992.

4. Guidelines for Oxygenated Gasoline Credit Programs and Guidelines on Establishment of Control Periods Under Section 211(m) of the Clean Air Act as Amended, 57 FR 47853 (October 20, 1992).

5. Interagency Assessment of Oxygenated Fuels, National Science and Technology Council, Executive Office of the President, Washington, D.C., June 1997.

6. Section 6 of TSCA gives EPA authority to ban, phase out, limit or control the manufacture of any chemical substance deemed to pose an unreasonable risk to the public or the environment. EPA expects to issue a full proposal to ban or phase down MTBE in early 2001.

7. "National Ambient Air Quality Standards for Nitrogen Dioxide: Final Decision," *Federal Register*, 61 FR 196, Washington, D.C., October 8, 1996.

8. "Review of the National Ambient Air Quality Standards for Nitrogen Oxides: Assessment of Scientific and Technical Information," EPA-452/R-95-005, U.S. Environmental Protection Agency, Research Triangle Park, N.C., September 1995.

9. Atmospheric concentrations of NO₂ are determined by indirect photomultiplier measurement of the luminescence produced by a critical reaction of NO with ozone. The measurement of NO₂ is based first on the conversion of NO, to NO, and then subsequent detection of NO using this well characterized chemiluminescence technique. This conversion is not specific for NO_{γ} hence chemiluminescence analyzers are subject to interferences produced by response to other nitrogen containing compounds (e.g., peroxyacetyl nitrate [PAN]) that can be converted to NO). The chemiluminescence technique has been reported to overestimate NO₂ due to these interferences. This is not an issue for compliance since there are no violations of the NO. NAAOS. In addition, the interferences are believed to be relatively small in urban areas. The national and regional air quality trends depicted are based primarily on data from monitoring sites in urban locations, and are expected to be reasonable representations of urban NO, trends. That is not the case in rural and remote areas, however, where air mass aging could foster greater relative levels of PAN and nitric acid and interfere significantly with the interpretation of NO₂ monitoring data.

10. "1998 Compliance Report," U.S. Environmental Protection Agency, Acid Rain Program, Washington, D.C., August 1999. 11. "Identification of Ozone Areas Attaining the 1-hour Standard and to Which the 1-hour Standard is No Longer Applicable; Final Rule," *Federal Register*, 63 FR 2804, Washington, D.C., June 5, 1998.

12. "Identification of Additional Ozone Areas Attaining the 1-hour Standard and to Which the 1-hour Standard is No Longer Applicable; Final Rule," *Federal Register*, 63 FR 39431, Washington, D.C., July 22, 1998.

13. "Identification of Additional Ozone Areas Attaining the 1-hour Standard and to Which the 1-hour Standard is No Longer Applicable; Final Rule," *Federal Register*, 64 FR 30911, Washington, D.C., June 9, 1999.

14. "Rescinding Findings that the 1hour Ozone Standard No Longer Applies to Certain Areas; Final Rule," *Federal Register*, 64 FR 57424, Washington, D.C., November 5, 1999.

15. "National Ambient Air Quality Standards for Ozone; Final Rule," *Federal Register*, 62 FR 38856, Washington, D.C., July 18, 1997.

 W.M. Cox and S.H. Chu, "Meteorologically Adjusted Ozone Trends in Urban Areas: A Probabilistic Approach," *Atmospheric Environment*, Vol. 27B, No. 4, Pergamon Press, Great Britain, 1993.

17. Currently, 24 of the nation's remaining 31 nonattainment areas for the 1-hour ozone NAAQS are required to operate PAMS sites ("Ambient Air Quality Surveillance: Final Rule," *Federal Register*, 58FR 8452, Washington, D.C., February 12, 1993). Each PAMS network consists of as many as five monitoring stations, depending on the area's population. These stations are carefully located according to meteorology, topography, and relative proximity to emissions sources of VOC and NO_x . As of October 1999, there were 83 active designated PAMS sites.

18. "Selected PAMS sites" refers to the inclusion of only those sites with measurements of NO_v or VOCs in both

1995 and 1999. Morning periods for NO_x and VOCs are used because those time frames are generally thought to be an appropriate indicator of anthropogenic emissions.

19. These 24 VOC species are the focus of this analysis because they account for more than 75 percent (by volume) of the VOCs concentrated on in the PAMS program.

20. CASTNet is considered the nation's primary source for atmospheric data to estimate dry acidic deposition and to provide data on rural ozone levels. Used in conjunction with other national monitoring networks, CASTNet is used to determine the effectiveness of national emission control programs. Established in 1987, CASTNet now comprises 79 monitoring stations across the United States. The longest data records are primarily at eastern sites. The majority of the monitoring stations are operated by EPA's Office of Air and Radiation; however, 27 stations are operated by the National Park Service (NPS) in cooperation with EPA. The CASTNet data complement the larger ozone data sets gathered by the State and Local Monitoring (SLAMS) and National Air Monitoring (NAMS) networks with additional rural coverage. A more detailed treatment of CASTNet's atmospheric deposition role and data are provided in Chapter 7: Atmospheric Deposition of Sulfur and Nitrogen Compounds.

21. Similarly, although registering declines in 8-hour ozone levels of 17 and 12 percent respectively over the last 20 years, neither urban nor suburban sites have shown any improvement in ozone concentrations between 1990–1999.

22. This analysis utilizes a non-parametric regression procedure to assess statistical significance a description of which is provided in Chapter 3: Criteria Pollutants – Metropolitan Area Trends.

23. "Volatility Regulations for Gasoline and Alcohol Blends Sold in Calendar

Years 1989 and Beyond," *Federal Register*, 54 FR 11868, Washington, D.C., March 22,1989.

24. "Reformulated Gasoline: A Major Step Toward Cleaner Air," EPA-420-B-94-004, U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, D.C., September 1994.

25. The Clean Air Act requires that RFG contain 2 percent oxygen by weight. "Requirements for Reformulated Gasoline," *Federal Register*, 59 FR 7716, Washington, D.C., February 16, 1994.

26. The Panel's Executive Summary and final report entitled "Achieving Clean Air and Clean Water: The Report of the Blue Ribbon Panel on Oxygenates in Gasoline" can be found at: http:// www.epa.gov/oms/consumer/fuels/ oxypanel/blueribb.htm

27. National Air Pollutant Emission Trends, 1900-1998, EPA-454/R-00-002, U.S. Environmental Protection Agency, Research Triangle Park, NC 2000.

28. 1996 PM Criteria Document, http:// www.epa.gov/ttn/oarpg/t1cd.html.

29. National Ambient Air Quality Standards for Particulate Matter: Final Rule, July 18, 1997. (62 FR 38652), http:// www.epa.gov/ttn/oarpg/t1/fr_notices/ pmnaaqs.pdf.

30. Revised Requirements for Designation of Reference and Equivalent Methods for PM2.5 and Ambient Air Quality Surveillance for Particulate Matter: Final Rule, July 18, 1997, http://www.epa.gov/ttn/ oarpg/t1/fr_notices/pm_mon.pdf.

31. Personal communication with EPA Region 9.

32. Personal communication with EPA Region 3.

33. National Air Pollutant Emissions Trends, 1900-1998, EPA-454/R-00-002, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, March 2000. 34. IMPROVE, Cooperative Center for Research in the Atmosphere, Colorado State University, Ft. Collins, CO, May 2000.

35. 1997 Compliance Report: Acid Rain Program, EPA-430-R-98-012, U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, D.C., August 1998.

CHAPTER 3

Criteria Pollutants — Metropolitan Area Trends

http://www.epa.gov/oar/aqtrnd99/chapter3.pdf

Worth Noting:

- · Out of 263 metropolitan statistical areas, 34 have significant upward trends.
- Of these, trends with values over the level of the air quality standards involved only 8-hour ozone.

This chapter presents status and trends in criteria pollutants for metropolitan statistical areas (MSAs) in the United States. The MSA status and trends give a local picture of air pollution and can reveal regional patterns of trends. Such information can allow one to gauge the air pollution situation where they live, and can be very useful in formulating plans for community based programs.1 Not all areas in the country are in MSAs, and not all MSAs are included here. A complete list of MSAs and their boundaries can be found in the Statistical Abstract of the United States.² The status and trends of metropolitan areas are based on four tables found in Appendix A (A-15 through A-18). Table A-15 gives the 1999 peak statistics for all MSAs, providing the status of that year. Ten-year trends are shown for the 263 MSAs having data that meet the trends requirements explained in Appendix B. Table A-16 lists these MSAs and reports criteria pollutant trends as "upward" or "downward," or "not significant." These categories are based on a statistical test, known as the Theil test, described later in this chapter.

Another way to assess trends in MSAs is to examine Air Quality Index (AQI) values.^{3,4,5} The AQI is used to present daily information, on one or more criteria pollutants in an easily understood format, to the public in a timely manner. Tables A-17 and A-18 list the number of days with AQI values greater than 100 for the nation's 94 largest metropolitan areas (population greater than 500,000). Table A-17 lists AQI values based on all pollutants, while Table A-18 lists AQI values based on ozone alone. The tables listing PSI data from previous reports may not agree with the tables in this report because of the new way to calculate the AQI. These changes are presented in more detail later in this chapter.

Not every MSA appears in these tables. Some do not appear because the population is so small or the air quality is so good that AQI reporting is not presently required. There are MSAs with no ongoing air quality monitoring for one or more of the criteria pollutants, because it is not needed. Ambient monitoring for a particular pollutant may not be conducted if there is no problem. In addition, there are also MSAs with too little monitoring data for trends analysis purposes (see Appendix B).

Status: 1999

The air quality status for MSAs can be found in Table A-15.** Table A-15 lists peak statistics for all criteria pollutants measured in an MSA. As discussed above, not all criteria pollutants are measured in all MSAs. This is why data for some MSAs are designated as "ND" (no data) for those pollutants. Examining Table A-15 shows that 163 areas had peak concentrations exceeding standard levels for at least one criteria pollutant. The number of these areas decreased 6 percent over the count from 1998 data (173 areas). These 163 areas contain 58 percent of the U.S. population. Similarly, there were eight areas (with 8 percent of the population) that had peak statistics that exceeded two or more standards. Only one area, Los Angeles, CA (with 4 percent of the U.S. population), had peak statistics from three pollutants that

^{**}For related information, see Table A-14, peak concentrations for all counties with monitors that reported to the Aerometric Information Retrieval System (AIRS) database.

exceeded the respective standards. There were no areas that violated four or more standards.

Trends Analysis

Table A-16 displays air quality trends for MSAs. The data in this table are average statistics of pollutant concentrations from the subset of ambient monitoring sites that meet the trends criteria explained in Appendix B. A total of 258 MSAs have at least one monitoring site that meets these criteria. As stated previously, not all pollutants are measured in every MSA. From 1990–1999, statistics based on the Standards were calculated for each site and pollutant with available data. Spatial averages were obtained for each of the 263 MSAs by averaging these statistics across all sites in an MSA. This process resulted in one value per MSA per year for each pollutant. Although there are seasonal patterns of high values for some pollutants in some locations, the averages for every MSA and year provide a consistent indicator with which to assess trends.

Since air pollution levels are affected by variations in meteorology, emissions, and day-to-day activities of populations in MSAs, trends in air pollution levels are not always well defined. To assess upward or downward trends, a statistical significance test was applied to these data. An advantage of using the statistical test is the ability to test whether or not the upward or downward trend is real (significant) or just a chance product of year-to-year variation (not significant). Since the underlying pollutant distributions do not meet the usual assumptions required for common significance tests, the test

Table 3-1. Summary of MSA Trend Analyses by Pollutant, 1990–1999

	Trend Statistic	Total # MSAs	# MSAs Up	# MSAs Down	# MSAs with No Significant Change
СО	second max 8-hour	138	0	107	31
Lead	max quarterly mean	69	1	44	24
NO ₂	arithmetic mean	99	3	41	55
Ozone	fourth max 8-hour	207	25	10	172
Ozone	second daily max 1-hour	207	17	14	176
PM ₁₀	90th percentile	216	1	113	102
PM ₁₀	weighted annual mean	216	2	126	88
SO ₂	arithmetic mean	148	1	86	61
SO ₂	second max 24-hour	149	1	82	66

was based upon a nonparametric method commonly referred to as the Theil test.^{6,7,8,9} Because linear regression estimates the trend from changes during the entire 10-year period, it is possible to detect an upward or downward trend even when the concentration level of the first year equals the concentration level of the last year.

Table 3-1 summarizes the trend analysis performed on the 263 MSAs. It shows that there were no upward trends in carbon monoxide (CO) for any MSA. Lead, the 90th percentile of PM₁₀ and sulfur dioxide had upward trends at only one MSA over the past decade. Further examination of Table A-16 shows that of the 263 MSAs: 1) 214 had downward trends in at least one of the criteria pollutants; 2) 34 had upward trends (of these 34, 26 also had downward trends in other pollutants (leaving 8 MSAs with exclusively upward trends); and 3) 41 MSAs had no significant trends. A closer look at the 34 MSAs with upward trends reveals that most (20) were exceeding the level of the 8-hour ozone standard. For all other

pollutants with upward trends in any MSA, the levels observed were well below standard levels. Taken as a whole, these results demonstrate significant improvements in urban air quality over the past decade for the nation.

The Air Quality Index

The AQI provides information on pollutant concentrations for ground-level ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. Formerly known as the Pollutant Standards Index (PSI), this nationally uniform air quality index is used by state and local agencies for reporting daily air quality to the public. In 1999, EPA updated the AQI to reflect the latest science on air pollution health effects and to make it more appropriate for use in contemporary news media, thereby enhancing the public's understanding of air pollution across the nation. Currently, the AQI may be found in national media such as USA Today and on the Weather Channel, as well as local newspapers and broadcasts across the country. It also serves as a basis for community-based programs that encourage the public to take action to reduce air pollution on days when levels are projected to be of concern. An Internet website, AIRNOW (http://www.epa.gov/ airnow), which presents "real time" air quality data and forecasts of summertime smog levels for most states, uses the AQI to communicate information about air quality. The Index has been adopted by many other countries (e.g., Mexico, Singapore, and Taiwan) and is used around the world to provide the public with information on air pollutants.

AQI values for each of the pollutants are derived from concentrations of that pollutant. The Index is "normalized" across each pollutant so that, generally, an Index value of 100 is set at the level of the short-term, health-based standard for that pollutant. An Index value of 500 is set at the significant harm level, which represents imminent and substantial endangerment to public health.*** The higher the Index value, the greater the level of air pollution and health risk. To make the AQI as easy to understand as possible, EPA has divided the AQI scale into six general categories that correspond to a different level of health concern. Because different groups of people are sensitive to different pollutants, there are pollutant-specific health effects and cautionary statements for each category in the AQI:

- **Good** (AQI values between 0 and 50) Air quality is considered satisfactory and air pollution poses little or no risk.
- Moderate (AQI values between 51 and 100) Air quality is acceptable; however, for some pollutants there may be a moderate health concern

for a very small number of individuals. For example, people who are unusually sensitive to ozone may experience respiratory symptoms.

- **Unhealthy for Sensitive Groups** (AQI values between 101 and 150) Certain groups of people are particularly sensitive to the harmful effects of certain air pollutants. This means they are likely to be affected at lower levels than the general public. For example, children and adults who are active outdoors and people with respiratory disease are at greater risk from exposure to ozone, while people with heart disease are at greater risk from carbon monoxide. When the AQI is in this range, members of sensitive groups may experience health effects, but the general public is not likely to be affected.
- Unhealthy (AQI values between 151 and 200) Everyone may begin to experience health effects. Members of sensitive groups may experience more serious health effects.
- Very Unhealthy (AQI values between 201 and 300) Air quality in this range triggers a health alert, meaning everyone may experience more serious health effects.
- Hazardous (AQI values over 300) Air quality in this range triggers health warnings of emergency conditions. The entire population is likely to be affected.

An AQI report will contain an Index value, category name, and the pollutant of concern, and is often featured on local television or radio news programs and in newspapers, especially when values are high. For national consistency and ease of understanding, there are specific colors associated with each category that are required if the AQI is reported using color. Examples of the use of color in Index reporting include the color bars that appear in many newspapers, and the color contours of the ozone Map. The six AQI categories, their respective health effects descriptors, colors, index ranges, and corresponding concentration ranges are listed in Table 3-2. The EPA has also developed an AQI logo (Figure 3-1) to increase the awareness of the AQI in such reports and also to indicate that the AQI is uniform throughout the country.

The AQI integrates information on pollutant concentrations across an entire monitoring network into a single number that represents the worst daily air quality experienced in an urban area. For each of the pollutants, concentrations are converted into Index values between zero and 500. The pollutant with the highest Index value is reported as the AQI for that day. There is a new AQI requirement to report any pollutant with an Index value above 100. In addition, when the AQI is above 100 a pollutant-specific statement indicating what specific groups are most at risk must be reported. For example, when the Index is above 100 for ozone the AQI report will contain the statement "Children and people with asthma are the groups most at risk." The AQI must be reported in all MSAs with air quality problems and populations greater than 350,000 according to the 1990 census. Previously, urbanized areas with populations greater than 200,000 were required to report the Index.

^{***}Based on the short-term standards, Federal Episode Criteria, and Significant Harm Levels, the AQI is computed for PM (particulate matter), SO₂, CO, O₃, and NO₂. Lead is the only criteria pollutant not included in the index because it does not have a short-term standard, a Federal Episode Criteria, or a Significant Harm Level.

Category	AQI	O ₃ (ppm) 8-hour	O ₃ (ppm) 1-hour	ΡΜ _{2.5} (µg/m³)	PM ₁₀ (µg/m³)	CO (ppm)	SO ₂ (ppm)	NO ₂ (ppm)
Good	0 – 50	0.000 - 0.064	(2)	0.0 - 15.4	0 – 54	0.0 – 4.4	0.000 - 0.034	(3)
Moderate	51 – 100	0.065 – 0.084	(2)	15.5 – 40.4	55 – 154	4.5 – 9.4	0.035 – 0.144	(³)
Unhealthy for Sensitive Groups	101 – 150	0.085 – 0.104	0.125 – 0.164	40.5 - 65.4	155 – 254	9.5 – 12.4	0.145 – 0.224	(³)
Unhealthy	151 – 200	0.105 – 0.124	0.165 – 0.204	65.5 – 150.4	255 – 354	12.5 – 15.4	0.225 – 0.304	(³)
Very unhealthy	201 – 300	0.125 – 0.374	0.205 – 0.404	150.5 – 250.4	355 – 424	15.5 – 30.4	0.305 – 0.604	0.65 – 1.24
Hazardous	301 – 400 401 – 500	(¹) (¹)	0.405 – 0.504 0.505 – 0.604	250.5 – 350.4 350.5 – 500.4	425 – 504 505 – 604	30.5 – 40.4 40.5 – 50.4	0.605 – 0.804 0.805 – 1.004	1.25 – 1.64 1.65 – 2.04

Table 3-2. AQI Categories, Colors, and Ranges

1. No health effects information for these levels-use 1-hour concentrations.

2. 1-hour concentrations provided for areas where the AQI is based on 1-hour values might be more cautionary.

3. NO₂ has no short-term standard but does have a short-term "alert" level.

Figure 3-1. Air Quality Index logo.

Summary of AQI Analyses

Of the five criteria pollutants used to calculate the AQI, only four (CO, O_3 , PM_{10} , and SO_2) generally contribute to the AQI value. Nitrogen dioxide is rarely the highest pollutant measured because it does not have a short-term standard and can only be included when the Index reaches a value of 200 or greater. Ten-year AQI trends are based on daily maximum pollutant concentrations from the subset of ambient monitoring sites that meet the trends requirements in Appendix B.

Since an AQI value greater than 100 indicates that at least one criteria pollutant has reached levels where people in sensitive groups are likely to suffer health effects, the number of days with AQI values greater than 100 provides an indicator of air quality in urban areas. Figure 3-2 shows the trend in the number of days with AQI values greater than 100 summed across the nation's 94 largest metropolitan areas. This number is expressed as a percentage of the days in the first year (1990). Because of their magnitude, AQI totals for Los Angeles, CA; Riverside, CA; Bakersfield, CA; Ventura CA; Orange County, CA; and San Diego, CA are shown separately as southern California. Plotting these values as a percentage of 1990 values allows two trends of different magnitudes to be compared on the same graph. The long-term air quality improvement in southern California urban areas is evident in this figure. Between 1990 and 1999, the total number of days with AQI values greater than 100 decreased 62 percent in southern California but actually rose 25 percent in the remaining major cities across the United States (see Figure 3-2).

While five criteria pollutants can contribute to the AOI, the index is driven mostly by ozone. AQI estimates depend on the number of pollutants monitored as well as the number of monitoring sites where data are collected. The more pollutants measured and the more sites that are available in an area, the better the estimate of the AQI for a given day. Historically, ozone accounts for the majority of days with AQI values above 100. Soon, PM_{2.5} will also be monitored and reported on a regular basis, which will reduce the percentage of days that ozone is the AQI pollutant. Table A-18 shows the number of days with AQI values greater than 100 that are attributed to ozone alone. Comparing Table A-17 and A-18, the number of days with a AQI above 100 are increasingly due to ozone. In fact, the percentage of days with a AQI above 100 due to ozone have increased from 91 percent in 1990, to 98 percent in 1999 (See Figure 3-3). This increase reveals that ozone increasingly accounts for those days

Figure 3-2. Number of days with AQI values > 100, as a percentage of 1990 value.

above the 100 level and, therefore, reflects the success in achieving lower CO and PM_{10} concentrations. However, the typical one-in-six day sampling schedule for most PM_{10} sites limits the number of days that PM_{10} can factor into the AQI determination, which may, in some places, account for the predominance of ozone.

Figure 3-3. Percent of days over 100 due to ozone.

References and Notes

1. Community Based Environmental Protection (CBEP) is a relatively new approach to environmental protection. Traditionally, environmental protection programs have focused on a particular medium or problem (i.e., a "Command and Control" approach to environmental protection). These "Command and Control" programs have been very effective at reducing point source pollution and improving environmental quality for more than two decades. However, some environmental problems, such as non-point source pollution, which may involve several media types and diffuse sources, are less amenable to the "Command and Control" approach. Instead, a solution that seeks to address the various causes of the problems by focusing on the interrelationships between human behavior and pollution in a specific area may be more appropriate. CBEP supplements and complements the traditional environmental protection approach by focusing on the health of an ecosystem and the behavior of humans that live in the ecosystem's boundaries, instead of concentrating on a medium or particular problem. Therefore, CBEP is place-based, and not media or issue-based (see http://www.epa.gov/ ecocommunity/about.htm).

2. *Statistical Abstracts of the United States, 1999,* U.S. Department of Commerce, U.S. Bureau of the Census.

3. Air Quality Index, A Guide to Air Quality and Your Health, EPA-454/ R-00-005, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, June 2000.

4. *Code of Federal Regulations*, 40 CFR Part 58, Appendix G.

5. *Guideline for Reporting of Daily Air Quality—Air Quality Index* (AQI), EPA-454/R-99-010, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, July 1999.

6. *Note:* Although the results are summarized in the report for comparison purposes, the intent of publishing Tables A-16 through A-18 is to present information on a localized basis, to be used on a localized basis (i.e., one MSA at a time). Therefore, no attempt was made to adjust the Type I error to a table-wide basis. All the tests for trends were conducted at the 5-percent significance level. No inference has been made from the tables as a whole.

7. T. Fitz-Simons and D. Mintz, "Assessing Environmental Trends with Nonparametric Regression in the SAS Data Step," American Statistical Association 1995 Winter Conference, Raleigh, NC, January, 1995.

8. Freas, W.P. and E.A. Sieurin, "A Nonparametric Calibration Procedure for Multi-Source Urban Air Pollution Dispersion Models," presented at the Fifth Conference on Probability and Statistics in Atmospheric Sciences, American Meteorological Society, Las Vegas, NV, November 1977.

9. M. Hollander and D.A. Wolfe, *Nonparametric Statistical Methods*, John Wiley and Sons, Inc., New York, NY, 1973.

HAPTER С 4

Criteria Pollutants — **Nonattainment Areas**

http://www.epa.gov/oar/aqtrnd99/chapter4.pdf

Worth Noting:

· As of September 2000, there were a total of 114 nonattainment areas on the condensed nonattainment list.

This chapter provides general information on geographical regions known as nonattainment areas. When an area does not meet the air

quality standard for one of the criteria pollutants the area may be subject to the formal rule-making process which designates the area as nonattainment. The 1990 Clean Air Act Amendments (CAAA) further classify ozone, carbon monoxide, and some particulate matter nonattainment areas based on the magnitude of an area's problem. Nonattainment classifications may be used to specify what air pollution reduction mea-

Figure 4-1. Location of nonattainment areas for criteria pollutants, September 2000.

Note: Incomplete data, not classified, and Section 185a areas are not shown. *Ozone nonattainment areas on map are based on the 1-hour ozone standard.

**PM₁₀ nonattainment areas on map are based on the existing PM₁₀ standards.

Figure 4-2. Classified ozone nonattainment areas.

Note: San Francisco is classified Other / Sec 185a and nonattainment areas with incomplete data are not included.

sures an area must adopt and when the area must reach attainment. The technical details underlying these classifications are discussed in the *Code of Federal Regulations*, Part 81 (40 CFR 81), see http://www.epa.gov/ epacfr40.

Figure 4-1 shows the location of the nonattainment areas for each criteria pollutant as of September 2000. Figure 4-2 identifies the classified ozone nonattainment areas by degree of severity. A summary of nonattainment areas can be found in Table A-19 in Appendix A. An area is on the condensed list if the area is designated nonattainment for one or more of the criteria pollutants. Note that Section 185a areas (formerly known as "transitional areas") and incomplete areas are excluded from the counts in Table A-19. Another source of information for areas designated as nonattainment, including Section 185a and incomplete areas, is the *Green Book*. The current *Green Book* is located at **http://**

www.epa.gov/oar/oaqps/greenbk.

As of September 2000, there were a total of 114 nonattainment areas on the condensed nonattainment list. The areas on the condensed list are displayed alphabetically by state. There were, as of September 2000, approximately 101 million people living in areas designated as nonattainment for at least one of the criteria pollutants. Areas redesignated between September 1999 and September 2000 are listed in Table 4-1, by pollutant. All redesignations were to attainment.

SO ₂	Coshocton Co., OH; Gallia Co., OH; and Lorain Co., OH
PM ₁₀	Canon City, CO
СО	Colorado Springs, CO; Longmont, CO; and Minneapolis- St. Paul, MN
Pb	Collin Co., TX and Marion Co. (Indianapolis), IN
O ₃	Cincinnati-Hamilton, OH-KY

 Table 4-1. Areas Redesignated Between September 1999 and September 2000

Air Toxics

http://www.epa.gov/oar/aqtrnd99/chapter5.pdf

Worth Noting:

- For all 188 HAPs, there is a 23-percent reduction in emissions between the 1990–1993 baseline and 1996. For the 33 urban HAPs, there is a 30-percent reduction in air toxics emissions between baseline and 1996. The majority of these reductions are attributable to two source types with existing regulatory programs: major sources and onroad mobile sources.
- Ambient monitoring results generally reveal downward trends for most monitored HAPs. The most consistent improvements are apparent for benzene which is predominantly emitted by mobile sources; and for total suspended lead. From 1994–1999, annual average concentrations for these two HAPs declined 40 and 47 percent respectively.

Background

Hazardous air pollutants (HAPs), commonly referred to as air toxics or toxic air pollutants are pollutants known to cause or suspected of causing cancer or other serious human health effects or ecosystem damage. The Clean Air Act (CAA) lists 188 HAPs and directs EPA to regulate sources emitting major amounts of these identified pollutants.¹ Examples of HAPs include heavy metals (e.g., mercury and chromium), volatile chemicals (e.g., benzene and perchloroethylene), combustion byproducts (e.g., dioxins) and solvents (e.g., carbon tetrachloride and methylene chloride). In addition, EPA has recently listed diesel particulate matter plus diesel exhaust organic gases as a mobile source air toxic and has addressed diesel exhaust in several regulatory actions. EPA's list of mobile source air toxics also includes 20 other pollutants which are included among the list of 188 HAPs.

Hazardous air pollutants are emitted from literally thousands of sources including large stationary industrial facilities (such as electric power plants), smaller area sources (such as neighborhood dry cleaners), mobile sources (such as automobiles), indoor sources (such as some building materials and cleaning solvents), and other sources (such as wildfires).

Factors such as weather, the terrain (i.e., mountains, plains, valleys), and the chemical and physical properties of a pollutant determine how far it is transported, its concentration at various distances from the source, what kind of physical and chemical changes it undergoes, and whether it will degrade, remain airborne, or deposit to land or water. Some HAPs (such as chromium) remain airborne and contribute to air pollution problems far from the pollution source. Other HAPs (such as mercury) are released into the air and can be deposited to land and water bodies through

precipitation, or by settling directly out of the air onto land or water.

Potential Effects of Air Toxics

Human Health

- Cancer
- · Birth defects
- · Developmental delays
- · Reduced immunity
- Difficulty in breathing and respiratory damage
- · Headache, dizziness, and nausea

Environmental

- Reproductive effects and developmental delays in wildlife
- · Toxicity to aquatic plants and animals
- Accumulation of pollutants in the food chain

Health and Environmental Effects

The degree to which a toxic air pollutant affects a person's health depends on many factors, including the quantity of pollutant the person is exposed to, the duration and frequency of exposures, the toxicity of the pollutant, and the person's state of health and susceptibility. The different health effects that may be caused by HAPs include cancer; neurological, cardiovascular, and respiratory effects; effects on the liver, kidney, immune system, and reproductive system; and effects on fetal and child development. The timing and severity of the effect (e.g., minor or reversible vs. serious, irreversible, and life-threatening) may vary among HAPs and with the exposure circumstances. In some cases effects can be seen immediately; in other cases the resulting effects (e.g., liver damage or cancer) are associated with long-term exposures and may not appear until years after exposure. Roughly half of the 188 HAPs have been classified by EPA as "known," "probable," or "possible" human carcinogens. Known human carcinogens are those that have been demonstrated to cause cancer in humans. Examples include benzene, which has caused leukemia in workers exposed over several years in their workplace air, and arsenic, which has been associated with elevated lung cancer rates in workers at metal smelters. Probable and possible human carcinogens include chemicals that we are less certain cause cancer in people, yet for which laboratory animal testing or limited human data indicate carcinogenic effects. For example, EPA concluded that diesel exhaust is likely to be carcinogenic to humans at environmental levels that the public faces (classifying it as a "probable human carcinogen").2

Some HAPs pose particular hazards to people of a certain stage in life (e.g., young children, adolescents, adults, or elderly people). Some HAPs are developmental or reproductive toxicants in humans. This means that exposure before birth or during childhood may interfere with normal development into a healthy adult. Other such exposures may affect the ability to conceive or give birth to a healthy child. Ethylene oxide, for example, has been associated with increased miscarriages in exposed workers and has affected reproductive ability in both male and female laboratory animals.

Some HAPs are of particular concern because they degrade very slowly or not at all, as in the case of metals such as mercury or lead. These persistent HAPs can remain in the environment for a long time and can be transported great distances. Persistent and bioaccumulative HAPs are of particular concern in aquatic ecosystems because the pollutants accumulate in sediments and may biomagnify in tissues of animals at the top of the food chain through consumption or uptake to concentrations many times higher than in the water or air. In this case, exposure to people occurs by eating contaminated food from waters polluted from the deposition of these HAPs. As of July 2000, for example, 40 states and the American Samoa have issued fish consumption advisories for mercury. Thirteen of those states have issued advisories for all water bodies in their state and the other 27 states have issued advisories for more than 1900 specific water bodies.3

Hazardous air pollutants can have a variety of environmental impacts in addition to the threats they pose to human health. Like humans, animals can experience health problems if they are exposed to sufficient concentrations of HAPs over time. For example, exposures to PCBs, dioxins, and dibenzo-furans are suspected of causing death and deformities to various bird chicks.⁴ These pollutants are also thought to have had adverse impacts on reproduction of lake trout.⁵ Mercury is also thought to pose a significant risk to wildlife. Methylmercury levels in fish in numerous waterbodies have been shown to exceed levels associated with adverse effects on birds.⁶ These and other observations have led some scientists to conclude that fish-eating birds and mammals occupying a variety of habitats are at risk due to high levels of methylmercury in aquatic food webs.

National Air Toxics Control Program

Since 1990, EPA has made considerable progress in reducing emissions of air toxics through regulatory, voluntary, and other programs. To date, the overall air toxics program has focused on reducing emissions of the 188 air toxics from major stationary sources through the implementation of technology-based emissions standards as specified by Congress in the 1990 CAA Amendments. These actions have resulted in, or are projected to result in, substantial reductions in air toxics emissions. Additionally, actions to address mobile sources under other CAA programs have achieved significant reductions in air toxics emissions (e.g., the phase-out of lead from gasoline). Many motor vehicle and fuel emission control programs of the past have reduced air toxics. Several current EPA programs further reduce air toxics emissions from a wide variety of mobile sources. These include the reformulated gasoline (RFG) program, the national low emission vehicle (NLEV) program, and Tier 2 motor vehicle emission standards and gasoline sulfur control requirements. In addition, EPA has recently issued regulations to address emissions of toxic air pollutants from motor vehicles and their fuels as well as stringent standards for heavyduty trucks and buses and diesel fuel that will lead to a reduction in emis-

Table 5-1. List of 33 Urban Air Toxics Strategy HAPs

VOCs	Metals (Inorganic Compounds)	Aldehydes (Carbonyl Compounds)	SVOCs & Other HAPs
acrylonitrile	arsenic compounds	acetaldehyde	2,3,7,8-tetrachlorodi benzo-p-dioxin (& congeners & TCDF congeners)
benzene	beryllium and compounds	formaldehyde	coke oven emissions
1,3-butadiene	cadmium compounds	acrolein	hexachlorobenzene
carbon tetrachloride	chromium compounds		hydrazine
chloroform	lead compounds		polycyclic organic matter (POM)
1,2-dibromoethane (ethylene dibromide)	manganese compounds		polychlorinated biphenyls (PCBs)
1,3-dichloropropene	mercury compounds		quinoline
1,2-dichloropropane (propylene dichloride)	nickel compounds		
ethylene dichloride, EDC (1,2-dichlorethane)			
ethylene oxide			
methylene chloride (dichloromethane)			
1,1,2,2,-tetrachloroethane	e de la companya de l		
tetrachloroethylene (perchloroethylene, PCE)			
vinvl chloride			

sions of diesel particulate matter by over 90 percent between 1996 and 2020. From 1996 (the year of the most up-todate emissions inventory estimates) to 2020, the existing proposed mobile source programs are also expected to lower onroad emissions of benzene by 61 percent, formaldehyde by 78 percent, 1,3-butadiene by 60 percent, and acetaldehyde by 73 percent from the 1996 levels. There will also be substantial reductions from other gaseous onroad HAPs and from nonroad mobile sources.

EPA expects, however, that the emission reductions that will result from these actions may only be part of what is necessary to protect public health and the environment from air toxics. In accordance with the 1990 CAA Amendments, EPA has begun to assess the risk remaining (i.e., the residual risk) after implementation of technology-based standards in order to evaluate the need for additional stationary source standards to protect public health and the environment. During 2001, EPA will also begin the process for assessing new standards for nonroad engines such as construction and farm equipment. In addition, after extensive study, EPA determined mercury emissions from power plants pose significant hazards to public health and must be reduced. EPA will propose regulations by 2003 and issue final rules by 2004. By July 2003, EPA will reassess the need for and feasibility of controls for onroad and nonroad sources of air toxics, and propose any additional vehicle and fuel controls that the Agency determines are appropriate. This rulemaking will be finalized by July 2004.

EPA's Integrated Urban Air Toxics strategy identified 33 HAPs which are judged to pose the greatest threat to public health in urban areas.7 These 33 "urban HAPs" are a subset of EPA's list of 188. Under EPA's urban strategy, the Agency is developing area source regulations that will control those sources responsible for 90 percent of the total emissions of the 33 HAPs in urban areas. The list of the 33 urban HAPs is presented in Table 5-1 and is grouped according to chemical properties (volatile organic compounds (VOCs), metals, aldehydes, and semi-volatile organic compounds [SVOCs]). This grouping is the same breakdown EPA uses for ambient monitoring which is discussed in a subsequent section of this chapter.

In addition to national regulatory efforts, EPA provides leadership and technical and financial assistance for the development of cooperative federal, state, local, and tribal programs to prevent and control air pollution. EPA's risk initiatives include comprehensive local-scale assessments, as well as federal and regional activities associated with air toxics deposition (e.g., the Great Waters program (includes the Great Lakes, Lake Champlain, Chesapeake Bay, and many U.S. coastal estuaries) and Agency initiatives concerning mercury and other persistent and bioaccumulative toxics [PBTs]).

EPA also has an ongoing comprehensive evaluation of air toxics in the United States which is called the National Air Toxics Assessment (NATA). These NATA activities help EPA identify areas of concern, characterize risks, and track progress toward meeting the air toxics program goals to reduce risk to human health and the environment. They include expansion of air toxics monitoring, improving and periodically updating emissions inventories, developing better air toxics emission factors for nonroad sources, improving nationaland local-scale modeling, continued research on health effects and exposures to both ambient and indoor air, and improvement of assessment tools.

For indoor air toxics, EPA's program has relied on education and outreach to achieve reductions. EPA's voluntary programs that focus on indoor air pollution have been very successful in reducing indoor air pollution. For example, through EPA's voluntary *Tools for Schools Pro-*

Examples of Source Types

- Major sources: large industrial sources such as chemical plants, oil refineries and steel mills.
- Area and other sources: smaller industrial sources such as drycleaners, gas stations and landfills, as well as natural sources like wildfires.
- Onroad mobile sources: cars, heavyduty trucks, buses and other highway vehicles.
- Nonroad mobile sources: construction and farm equipment as well as recreational vehicles.

gram, there have been significant reductions in children's exposure to air toxics in 4,000 schools across the country. EPA is also developing a specific strategy for indoor air toxics that will present an approach to evaluate information, characterize potential indoor exposures and risks, and identify methods to reduce air toxics indoors. Additional information about indoor air toxics activities is available at: www.epa.gov/iaq/pubs/index.html.

Figure 5-2. National contribution of source types to 1996 NTI emissions for the urban HAPs.

Air Toxics Emissions in 1996

The National Toxics Inventory (NTI) is EPA's compilation of quantitative information concerning the mass of emissions of HAPs emitted into the atmosphere (through smokestacks, tailpipes, vents, etc.) from stationary and mobile sources. The NTI is developed every 3 years. EPA has compiled both a baseline period (1990–1993) as well as 1996 emissions estimates for the 188 HAPs. As of the date of this publication, the 1996 NTI contains the most complete, up-to-date air toxics emissions estimates available. However, EPA has not yet included the 1996 dioxin emissions in the 1996 NTI since they are still under review. Since dioxin emissions are relatively small, its exclusion does not affect the summary information presented for the 188 or the 33 urban HAPs. In addition, these emission summaries do not include diesel particulate matter. For purposes of this report, the information in the NTI has been divided into four overarching source types: 1) large industrial or "major" sources; 2) "area and other sources," which include smaller industrial sources, such as small drycleaners and gasoline stations, as well as natural sources, such as wildfires; 3) "onroad"

Figure 5-1. National contribution of source types to 1996 NTI emissions for the 188 HAPs.

Figure 5-3. National contribution by emission source type for individual urban HAPs and diesel particulate matter, 1996.

mobile, including highway vehicles; and 4) "nonroad" mobile sources, like aircraft, locomotives, and lawn mowers.

Figures 5-1 and 5-2 provide a summary of the national emissions in the 1996 NTI based on source types for the 188 HAPs as well as the 33 urban HAPs, respectively. Note that emissions of the 33 urban HAPs represent roughly a quarter (23 percent) of the 1996 emissions of the 188 HAPs. As shown in Figure 5-1, the national emissions of the 188 HAPs are relatively equally divided between the four types of sources. For the 33 urban HAPs, however, area and other sources are the largest overall contributor (40 percent), while major sources account for less than 10 percent of the nationwide emissions and mobile sources make up the remaining 51 percent.

Figure 5-3 provides the percent of emissions by source type for each of the 33 urban HAPs that have available emissions information (i.e., excluding dioxin). It also contains information on diesel particulate matter. Note that for each bar, the individual contributions total to 100 percent. Also, the center vertical line in the chart is zero so that the mobile source contributions are shown on the right side of the chart for ease of display. The contributions from each source type vary by pollutant. For example, acetaldehyde and benzene have mobile sources as the dominant contributor, hydrazine and coke oven emissions are dominated by major

sources, and perchlorethylene is predominantly from area and other sources. Since the other 156 HAPs are not represented here, this graph provides a subset of information on what source types emit which HAPs. For example, nine of the 21 HAPs EPA has identified as mobile source air toxics are not included in Figure 5-3. Table A-21 shows the 21 mobile source air toxics, including diesel particulate matter, and their contributions from mobile sources.

Also, note that Figure 5-3 does not provide any information about the relative magnitude of emissions. For example, benzene and formaldehyde together represent about 64 percent

percent of total emissions

(roughly 32 percent each) of the total emissions of these 32 urban HAPs. Conversely, 23 of the urban HAPs, including lead, chromium, and PCBs each represent less than 1 percent of the total emissions of the 33 urban HAPs.

Figure 5-4 provides additional detail on the source sector emissions from the 1996 NTI to show the relative percentages of sources that are found in urban versus rural areas for all 188 HAPs. Figure 5-5 shows this same breakdown for the 33 urban HAPs subset. For the 188 HAPs, urban sources dominate the emissions for all source types. For the 33 urban HAPs, there is one source type, area and other sources, which has roughly the same percentage contribution of urban and rural sources.

Figure 5-5. Urban/rural splits by source type for the 1996 national emissions of 33 urban HAPs.

inventory over time could account for some of the current estimates of changes in emissions, EPA and state regulations, as well as voluntary reductions by industry, have clearly achieved large reductions in overall air toxic emissions.

Ambient Monitoring

Ambient measurements, which provide the concentration of a HAP at a particular monitored location at a point in time, are useful to characterize air quality. These measurements are used to derive trends in HAP concentrations to help evaluate the effectiveness of HAP reduction strategies. They also can provide data to support and evaluate dispersion and deposition models.

Unlike criteria air pollutants, such as carbon monoxide and sulfur dioxide (which have been monitored since the 1970s), there is no national air toxics monitoring system. However, there are approximately 300 monitoring sites currently producing ambient data on

Trends in Air Toxics Emissions

Trends in air toxics emissions are shown in Figure 5-6 based on comparison of a baseline period of NTI emissions data (1990-1993) to the 1996 NTI. The bar for each time period includes both the national total for the 188 HAPs as well as the fraction of the national emissions that are associated with the urban HAPs. For all 188 HAPs, there is a 23-percent reduction between the baseline and 1996. For the 33 urban HAPs, there is a 30-percent reduction between baseline and 1996. The majority of these reductions are attributable to two source types with existing regulatory programs: major sources and onroad mobile sources. For the 188 HAPs, major source emissions (which accounted for 25 percent of the total emissions in 1996) decreased by 58 percent and onroad mobile source emissions (which accounted for 30 percent of the total emission in 1996) decreased by 16 percent. Although differences in how EPA compiled the

Figure 5-6. Change in national air toxics emissions – baseline (1990–1993) to 1996.

HAPs. These include sites within several states that have long-standing air toxics monitoring programs as well as sites of the Interagency Monitoring of Protected Visual Environments (IM-PROVE) visibility network which provides historical information about HAP trace metals in rural areas. The current monitoring sites also include those participating in the Urban Air Toxics Monitoring Program which provides a year's worth of measurements of 39 HAP VOCs and 13 carbonyl compounds.⁸ In addition, the Agency's Photochemical Assessment Monitoring Stations (PAMS) program requires routine year-round measurement of VOCs which include nine HAPs: acetaldehyde, benzene, ethylbenzene, formaldehyde, n-hexane, styrene, toluene, xylenes (m/p-xylene, o-xylene) and 2,2,4trimethlypentane. For a more detailed discussion of the PAMS program, see the ozone section in Chapter 2 of this report. At the present time, the collection of current state and local air toxics monitoring data and PAMS data is limited in its geographic scope and it

does not cover many HAPs for most states. In addition the sites are not necessarily at locations which represent the highest area-wide concentrations. Nevertheless, they can still be used to provide useful information on the trends in ambient air toxics at this time.

EPA is working together with state and local air monitoring agencies to build upon these sites to develop a monitoring network with the following objectives: to characterize air toxics problems on a national scale; to provide a means to obtain data on a more localized basis as appropriate and necessary (e.g., to evaluate potential "hot spots" near sources), and to help evaluate air quality models. However, there are a significant number of the 188 HAPs for which EPA does not yet have a monitoring method developed. For this reason, EPA is devoting its resources on building up the air toxics monitoring network by first focusing on the 33 urban HAPs. The states currently have the capability to monitor for 28 of the 33 urban HAPs. As the monitoring network is enhanced, EPA will assist the states to continue to add to both the geographic scope of the monitoring as well as the number of HAPs included. The network will represent an integration of information from many monitoring programs, including existing state and local air toxic monitoring sites; PAMS, and the new urban PM_{2.5} chemical speciation and rural IM-PROVE program networks. This new national network will be developed over the next several years.⁹

Trends In Ambient Concentrations

The most widely measured HAP has been lead, which is also a criteria pollutant. Until recently, it has been monitored in most states, both in metropolitan and non-metropolitan areas. Nineteen states have monitored other urban HAPs in their metropolitan areas since 1994. In addition, several VOCs, aldehydes and metals have good data history in metropolitan areas. Most of these monitors, however, are concentrated in a few states, with 36 percent of them in California alone. Nevertheless, these data can be used to provide a preliminary picture of nationwide trends in air toxics. A good history of several trace metal concentrations in rural areas is derived from the IMPROVE program. However, long-term monitoring in rural areas for VOCs and aldehydes has generally been more limited. The locations for the urban and rural monitors with long-term data are shown in Figure 5-7.

Trends derived from these data are separately presented for metropolitan (urban) and non-metropolitan (rural) sites. Table 5-2 presents a national summary of these 6-year trends in ambient air toxics concentrations in metropolitan statistical areas. Among the 33 HAPs on the urban strategy list, 25 pollutants have sufficient historical data for this 6-year trends assessment. These air contaminants include 13 of the 15 urban VOCs, all eight urban HAP trace metals, the three aldehydes and several specific polycyclic aromatic hydrocarbons (PAHs). Also included are styrene and toluene, which are two additional pervasive air toxics whose monitoring sites have good nationwide coverage. The table presents the number of sites with increases and decreases in measured ambient concentrations from 1994-1999. For trace metals, the table includes results representing more than one particulate size fraction. Similarly, trends are shown separately for several individual PAHs which are constituents of polycyclic organic matter (POM). For each of these HAPs with sufficient historical data, the number of sites with statistically significant changes are highlighted. When most individual locations reveal a consistent change (and when many are statistically significant), this is more characteristic of a national trend.

Although these ambient air toxics data are only available for a limited number of metropolitan areas, the results generally reveal downward trends for most monitored HAPs. The most consistent improvements are apparent for benzene which is predominantly emitted by mobile sources; and for total suspended lead. From 1994–1999, annual average concentrations for these two HAPs declined 40 and 47 percent respectively. The majority of ambient concentrations of lead once came from the tail pipe of cars. Since the mid-90s, however, lead has been largely

Figure 5-7. Locations for urban and rural air toxics monitors with long-term data.

Number of sites located in an MSA (184):
Number of sites not located in an MSA (80):

removed from gasoline and almost all of these trace elements now typically emanate from major point sources and aircrafts with piston engines (e.g., small commuter aircraft). The criteria pollutant section in Chapter 2 of this report contains more information about particulate lead. The change in national benzene emissions is attributed to a combination of new car emission standards, use of cleaner fuels in many states as well as stationary source emission reductions. Ambient concentrations of toluene (emitted primarily from mobile sources) also show a consistent decrease over most reporting locations. Similar to benzene, annual average toluene concentrations dropped 48 percent. Other HAPs (including styrene) also reveal air quality improvement, but the downward trends are not significant across large numbers of monitoring locations.

Figure 5-8 presents boxplots of the composite urban trends for six HAPs: benzene, 1,3-butadiene, lead, perchlorethylene, styrene and tolu-

ene. These figures depict the concentration distributions among annual averages in metropolitan areas from 1994–1999. The accompanying map displays the number and location of the monitoring "trend" sites. For comparison, the maps also show the number of sites that produced any measurement data during the 6-year period. The average trend lines for benzene, lead and toluene show more improvement in the first few years. The trend for toluene continues through 1999. The benzene trend reveals a small increase between 1998 and 1999.

For the other HAPs in Table 5-2, most urban locations do not reveal predominant or consistent trends among all monitoring areas. In addition, most observed trends for these HAPs are not statistically significant. This is attributed in part to few states with long-term HAP monitoring, to the large year-to-year variability in computed annual average concentrations for some HAPs and the large variety of contributing emission

Number of Urban Sites by HAP						
Pollutant Name	Total	Significant* UP Trend	Non-Significant UP Trend	No Trend	Non-Significant DOWN Trend	Significant* DOWN Trend
Acrylonitrile	4		4			
Benzene	84	2	8		52	22
1,3-Butadiene	62	3	23	5	22	9
Carbon tetrachloride	57	1	10	6	26	14
Chloroform	76	5	24	13	34	
1,2-Dibromoethane	26		3	17	3	3
1.2-Dichloropropane	30		2	11	16	1
Ethylene dichloride	58		5	26	21	6
Methylene chloride	74		19	2	30	14
1 1 2 2-Tetrachloroethane	11		15	3	1	14
Dereblereetbylene	76			5		4.4
Trichlana athulana	70	0	1	<u> </u>	20	14
Iricnioroetnyiene	66	2	17	8	37	2
Vinyl chloride	55		2	32	18	3
Arsenic (coarse)	9			9		
Arsenic (fine)	8 8			1	7	
Arsonic (IIIe)	12		1		1	
Arsenic (FN_{10})	13			2	0	
Arsenic (TSP)	64		8	37	12	1
Beryllium (PM ₁₀)	6			6		
Beryllium (TSP)	25		3	20	2	
Cadmium (PM ₁₀)	6		3		3	
Cadmium (TSP)	58	2	12	10	30	4
Chromium (coarse)	9		1		8	
Chromium (fine)	8		1	1	5	1 1
Chromium (PM ₁₀)	12	1	7		4	
Chromium (TSP)	70		27	0	27	2
Chromium (TSF)	10		21	9	21	10
	19				9	10
Lead (coarse)	9				1	2
Lead (fine)	8	1			6	1
Lead (PM ₁₀)	26	2	3	14	5	2
Lead (TSP)	241	8	52	2	124	55
Manganese (coarse)	9		1		7	1
Manganese (fine)	8		4		4	
Manganese (PM ₁₀)	12		1		11	
Manganese (TSP)	63		20	1	34	8
Mercury (fine)	8		1	7		
Mercury (IIIe)	6			1	2	
(TOD)	0		3		3	
Mercury (TSP)	22	1	16	2	3	
Mercury compounds	2		1		1	
Nickel (coarse)	9		2		5	2
Nickel (fine)	8			1	6	1
Nickel (PM ₁₀)	12		3		9	
Nickel (TSP)	69		12	3	39	15
	4.0				_	
Acetaldenyde	18	1	9		1	1
Formaldehyde	18	1	12		4	1
Acrolein	6	1	2	3		
Benzo(a)pyrene						
(total DM & yanar)	10	1	12		1	
$\frac{(101a1 \text{ PIVI}_{10} \text{ & Vapor})}{\text{Dilements}}$	10		13		4	
Dibenz(a,n)anthracene						
(total PM ₁₀ & vapor)	18	3	11		4	
Indeno(1,2,3-cd)pyrene						
(total PM ₁₀ & vapor)	18	1	13		4	
Benzo(b)fluoranthene						
(total PM ₁₀ & vapor)	18	3	13		2	
Benzo(k)fluoranthene		, in the second			_	
(total DM & yoper)	19	2	11		Λ	
Sturopo	64	3	10	E	20	F
Talvana	01	4	13	5	38	5
Toluene	80	1	4		42	33

Table 5-2. National Summary of Ambient HAP Concentration Trends in Metropolitan Areas, 1994–1999

*Statistically significant at the 10-percent level (See Appendix B: Methodology, Air Toxics Methodology section).

Figure 5-8a. National trend in annual average benzene concentrations in metropolitan areas, 1994–1999.

Figure 5-8b. National trend in annual average 1,3-butadiene concentrations in metropolitan areas, 1994–1999.

Figure 5-8c. National trend in annual average total suspended lead concentrations in metropolitan areas, 1990–1999.

Figure 5-8d. National trend in annual average perchloroethylene concentrations in metropolitan areas, 1990–1999.

Figure 5-8e. National trend in annual average styrene concentrations in metropolitan areas, 1994–1999.

Figure 5-8f. National trend in annual average toluene concentrations in metropolitan areas, 1994–1999.

sources for many of the air toxics. For these pollutants, a national composite trend may not be meaningful at this time. Although the general direction of change is down for most HAPs on the urban list, several states reveal significant 6-year increases at a few locations. The HAPs and some of their influencing sources are: 1,3butadiene (mobile sources); chromium (power plants, electroplating); lead (smelters and aircraft); and semivolatile particulates (various combustion sources). This list also includes carbon tetrachloride, chloroform, and trichloroethylene whose ambient concentrations are estimated to have relatively high background contributions. Background concentrations are contributions to ambient air toxics concentrations resulting from natural sources, persistence in the environment of past years' emissions and long-range transport from distant source. To illustrate a few of the HAPs without consistent trends among the current set of trend sites, boxplots for 1994–1999 are presented for 1,3-butadiene, styrene, and perchloroethylene. The national trend lines for these HAPs show more year-to year variability, but still appear to show 6-year air quality improvements.

To illustrate the behavior of selected HAPs in a particular region of the country, trends of monitoring sites in California are presented Figure 5-9. The state of California has the largest and longest running air toxics monitoring network. They have over 30 sites with a 10-year history for several VOCs and almost as many for several trace metals. These data allow us to take a look at air toxics trends over a longer period of time. Among the HAPs discussed in this section, notable improvements are seen for benzene, 1,3-butadiene, lead, perchloroethylene, styrene and toluene. The impressive air quality improvement for urban benzene in California is shown in Figure 5-9a. This figure illustrates the large decrease in ambient concentrations which occurred during the early 1990s. Annual average concentrations declined 64 and 35 percent over the 1990-1999 and 1990-1999 periods. Ambient concentrations of perchloroethylene associated with dry cleaners is down 60 and 39 percent respectively (Figure 5-9d). Toluene associated with mobile sources also showed consistent 10-year declines which averaged 53 percent across the state (Figure 5-9f). Besides benzene, another HAP which predominantly comes from mobile sources is 1,3butadiene. Although site-specific trends for this pollutant were mixed, the composite trend in Figure 5-9b shows an overall 40 percent and 28 percent decline in ambient concentrations for the 10- and 6-year periods.

As was the case nationally, the reductions in ambient concentrations of perchloroethylene are due to better controls on the use of solvents. The California improvements in benzene, 1,3-butadiene and toluene are primarily attributed to the reformulation of gasoline and new-car improvements in terms of emission controls. (For more information about trends in these emissions, see the ozone section in Chapter 2.) For lead in TSP, annual average concentrations in California declined 46 percent over the 10 years, but appear to have leveled off over the most recent years. For additional detail on the derivation of Figures 5-8a to 5-9f, see Appendix B: Methodology.

Ambient air toxics data in rural areas are much more limited, but the

results in Table 5-3 also indicate widespread air quality improvement for many monitored HAPs. Significant downward trends are noted among the few rural sites for benzene and several other VOCs. Lead concentrations in rural areas are also down.

While these data are useful to describe general trends and geographic variations in annual average concentrations, they only represent a selected group of monitoring sites. They do not necessarily highlight the range of concentrations or locate air toxics problem areas that exist nationwide. For example, a recent air toxics study conducted in the Los Angeles area has shown that higher concentrations of air toxics generally occur near their emission sources. In particular, concentrations of compounds that are emitted primarily from stationary and area sources tended to be highest within a few kilometers from the source location. More ubiquitous mobile source related compounds such as benzene and 1,3-butadiene were shown to be generally high throughout the South Coast Air Basin. However, the highest concentrations were estimated by air quality models to occur along freeway corridors and junctions. In addition, high levels of mobile source related compounds were estimated near major mobile source activities such as airports and other areas with major industrial activities. Also, annual averages may tend to average out peaks in the monitoring data. The study showed that there were strong seasonal variations to the levels of toxic air contaminants, primarily with those pollutants associated with mobile sources. For example, benzene and butadiene both had seasonal peaks in the late fall and winter

Figure 5-9a. Trend in annual average benzene concentrations for metropolitan sites in California, 1994–1999.

Figure 5-9b. Trend in annual average 1,3-butadiene concentrations for metropolitan sites in California, 1994–1999.

Figure 5-9c. Trend in annual average total suspended lead concentrations for metropolitan sites in California, 1990–1999.

Figure 5-9d. Trend in annual average perchloroethylene concentrations for metropolitan sites in California, 1990–1999.

Figure 5-9e. Trend in annual average styrene concentrations for metropolitan sites in California, 1990–1999.

Figure 5-9f. Trend in annual average toluene concentrations for metropolitan sites in California, 1990–1999.

	Number of Rural Trend Sites by HAP					
Pollutant Name	Total	Significant* UP Trend	Non-Significant UP Trend	No Trend	Non-Significant DOWN Trend	Significant* DOWN Trend
Benzene	6				6	
1,3-Butadiene	4		1		2	1
Carbon tetrachloride	2		2			
Chloroform	4		1		2	1
1,2-Dichloropropane	3			2	1	
Ethylene dichloride	3				2	1
Methylene chloride	4		1		3	
1,1,2,2-Tetrachloroethane	e 1				1	
Perchloroethylene	5		1		1	3
Trichloroethylene	5			1	3	1
Vinyl chloride	4		1	2	1	
Arsenic (coarse)	2		1	1		
Arsenic (fine)	59	2	18	1	36	2
Arsenic (PM ₁₀)	6		1	3	1	1
Arsenic (TSP)	5			1	2	2
Beryllium (PM ₁₀) Beryllium (TSP)	2		1	3		
Cadmium (PM ₁₀)	2			1	1	
Cadmium (TSP)	7			4	1	2
Chromium (coarse)	2		1		1	
Chromium (fine) *	59	32	22	1	4	
Chromium (PM ₁₀)	6	1	2	1	3	
Chromium (15P)	0 1		3	'	4	
Lead (coarse)	2			1	1	
Lead (fine)	59	3	32		20	4
Lead (PM ₁₀)	8	1	2	2	2	1
Lead (TSP)	33		5		16	12
Manganese (coarse)	2		1		1	
Manganese (fine)	59	3	22		32	2
Manganese (TSP)	7		2		5	'
Mercury (fine)	2			1	1	
Mercury (PM ₁₀)	4		2	1	1	
Mercury (TSP)	1		1			
Nickel (coarse)	2		1		1	
Nickel (fine)	59		12	1	32	14
Nickel (PM ₁₀) Nickel (TSP)	6		1	1	3	1
	3		2	1	1	· · ·
Formaldehydo	1		1		2	
Acrolein	1		1		1	
Styrene	6		2		3	1
Toluene	7		3		3	1
Ioldelle	1		5		5	

Table 5-3. National Summary of Ambient HAP Concentration Trends in Rural Areas, 1994–1999

*Statistically significant at the 10-percent level (See Appendix B: Methodology, Air Toxics Methodology section). ** The apparent up trends in fine chromium concentrations may be an artifact of the detection limits for these measurements.
months; their lowest levels were observed during the spring and summer months.

National Atmospheric Deposition Program/Mercury Deposition Network

The purpose of the National Atmospheric Deposition Program (NADP) is to address the problem of atmospheric deposition and its effects on agricultural crops, forests, rangelands, surface waters, and other natural resources. NADP began in 1978 as a cooperative program between federal and state agencies, universities, electrical utilities, and other industries to measure atmospheric deposition and determine geographical patterns and trends in wet deposition of sulfate, nitrate, hydrogen ion, ammonium, chloride, calcium, magnesium, and potassium. Wet deposition is atmospheric deposition that occurs when rain, snow, or fog carry gases and particles to the earth's surface.

The Mercury Deposition Network (MDN), which is a component of the NADP, measures mercury levels in wet deposition at over 40 NADP sites located in 16 states and two Canadian provinces. MDN is investigating the importance of atmospheric deposition as a source of mercury in lakes and streams. These MDN data enable researchers to compile a national database of weekly precipitation concentrations to determine seasonal and annual fluxes of mercury in precipitation falling on lakes, wetlands, streams, forested watersheds, and other sensitive ecosystems. As a result, state and federal air regulators can monitor progress in reducing mercury deposition and amend policy decisions accordingly. There are plans to expand the network in the near future, pending availability

of new funds. Additional information about the network is available on the Internet at http:// nadp.sws.uiuc.edu/mdn/.

Data from 1998 indicate that the volume-weighted mean concentration of total mercury in precipitation from 30 sites ranged from 3.8-23.0 ng/L and annual deposition of mercurv ranged from $4.0-20.3 \,\mu\text{g/m}^2$. Most of the monitors are in the Great Lake states and eastern United States. While high concentrations in precipitation are found in many regions, the highest estimated deposition is in the southern states. In the eastern United States, average summer mercury concentrations are approximately twice the winter concentrations and average summer deposition values are three times winter values. This can be explained by higher concentrations of mercury in the rain and higher rainfall amounts during the summer.¹⁰

Integrated Atmospheric Deposition Network

The Integrated Atmospheric Deposition Network (IADN) was established in 1990 by the United States and Canada for conducting air and precipitation monitoring in the Great Lakes Basin. IADN collects data that can be useful in assessing the relative importance of atmospheric deposition to pollutant loadings in the Great Lakes. The first implementation plan, signed in 1990, committed the United States and Canada to work cooperatively towards the initiation of IADN. IADN measures concentrations of target chemicals in rain and snow (wet deposition), airborne particles (dry deposition), and airborne organic vapors.¹¹ PAHs, PCBs, and organochlorine compounds (which are all Semivolatile Organic Compounds, or SVOCs) are measured in air and precipitation samples in the United States and Canada. SVOCs are measured in both the gaseous and particulate phases in air. Canada also measures trace metals in air and precipitation, as well as $PM_{2.5}$ (particles less than 2.5 microns in diameter) in air.

Under IADN, trends in pollutant concentrations in air and precipitation are assessed and loading estimates of atmospheric deposition and volatilization of pollutants are made every two years. The IADN network currently consists of one master station per Great Lake and 14 satellite stations. Stations are located in remote areas and do not assess urban sources of pollution.

General conclusions based on IADN data include the following:

- Levels in air and precipitation appear stable for current-use pesticides such as endosulphan, but levels for most other pesticides, PCBs, and lead are decreasing.
- Gas absorption appears to be the dominant deposition process for delivering SVOCs, including PCBs and PAHs, to lake surfaces, while wet and dry deposition dominate for the trace elements and higher molecular weight PAHs.
- For some IADN substances, like dieldrin and PCBs, the surface waters are behaving like a source since the amount that is volatilizing from the water is greater than the amount being deposited to the water.
- The lakes are sensitive to the atmospheric concentration of IADN chemicals, and this points out the fragility of these resources given that long-range transport from other regions may be a significant source of toxic pollutants.

• Air trajectory analyses indicate that many SVOCs are potentially originating from outside the Great Lakes basin, whereas trace metals and PAHs may be associated with local sources.

The Second Implementation Plan for IADN (IP2), signed in 1998, outlines goals and plans for IADN for the period 1998–2004. Under this Second Implementation Plan, the IADN will continue surveillance and monitoring activities, related research, and provision of information for intergovernmental commitments and agreements. Additional work to be completed under the Second Implementation Plan is the development of a database for all U.S. and Canadian data. Potential modifications will be discussed in relation to the placement of satellite stations to assess urban inputs and air-water gas exchange, criteria for changes to the IADN chemical list, coordination with other research activities, quality assurance and control of IADN operations, and communication of IADN results.12

References

1. This list originally included 189 chemicals. The CAA allows EPA to modify this list if new scientific information becomes available that indicates a change should be made. Using this authority, the Agency modified the list to remove caprolactam in 1996, reducing the list to 188 pollutants (*Hazardous Air Pollutant List; Modification, 61 FR 30816*, June 18, 1996).

2. U.S. EPA. 2000. Draft Health Assessment Document for Diesel Exhaust. July 2000.

3. Federal Register, 65 FR 79827.

4. Giesy, J.P., Ludwig, J.P., and Tillitt, D.E. 1994. Deformities in birds of the Great Lakes region: assigning causality. *Environ. Sci. Technol.* 28,128A-136A.

5. Cook, P.M., Zabel, E.W., and Peterson, R.E. 1997. The TCDD toxicity equivalence approach for characterizing risks for early life stage mortality in trout. In: *Chemically Induced Alterations in the Functional Development and Reproduction of Fishes*, pp. 9–27. (Rolland, R., Gilbertson, M., and Peterson R., Eds.). SETAC Press, Pensacola, FL.

6. Scheuhammer, A.M., and Blancher, P.J. 1994. Potential risk to common loons (Gavia immer) from methylmercury exposure in acidified lakes. Hydrobiol. 279,445-455.

7. "National Air Toxics Program: The Integrated Urban Strategy," *Federal Register*, 64 FR 38705, Washington, D.C., July 19, 1999. Available on the Internet at: http://www.epa.gov/ttn/ atw/urban/urbanpg.html 8. "1997 Urban Air Toxics Monitoring Program (UTAMP)," EPA-454/R-99-036. RTP, NC 27711, January 1999. Available on the Internet at http:// www.epa.gov/ttn/amtic/airtxfil.html.

9. "Air Toxics Monitoring Concept Paper," U.S Environmental Protection Agency, Office of Air Quality Planning and Standards, RTP, NC, 27711. February 29, 2000. Peer Review Draft. Available on the Internet at: http:// www.epa.gov/ttn/amtic/airtxfil.html.

10. Sweet, C.W., E. Prestbo, B. Brunette. 1999. Atmospheric wet deposition of mercury in North America. Proceedings of the 92nd Annual Meeting of the Air and Waste Management Association. June 21–23, 1999, St. Louis, MO.

11. The target chemicals include PCBs, pesticides, PAHs and metals. The compounds included as "target chemicals" were selected based on the following criteria: presence on List 1 of Annex 1 of the Great Lakes Water Quality Agreement (substances believed to be toxic and present in the Great Lakes); established or perceived water quality problem; presence on the International Joint Commission's Water Quality Board's list of criteria pollutants; evidence of presence in the atmosphere and an important deposition pathway; and feasibility of measurement in a routine monitoring network.

12. U.S./Canada IADN Scientific Steering Committee. 1998. Technical summary of progress under the integrated atmospheric depositions program 1990–1996. NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 1999

Visibility Trends

http://www.epa.gov/oar/aqtrnd99/chapter6.pdf

Worth Noting:

The 10 eastern U.S. Class I area trend sites as an aggregate show a 15-percent improvement in aerosol light extinction for the haziest 20 percent of days over the 1992–1999 timeframe, with aerosol light extinction due to sulfates reaching its lowest level of the 1990s. However, visibility on the haziest 20 percent of the days remains significantly impaired with a mean visual range of 23 km for 1999 as compared to 84 km for the clearest days in 1999.

The 26 western U.S. Class I area trend sites as an aggregate show improvement in aerosol light extinction for the clearest 20 percent and middle 20 percent of days over the 1990–1999 timeframe, with a 25-percent and 14-percent improvement, respectively. The conditions for the haziest 20 percent of days degraded between 1997 and 1999 by 17 percent. However, visibility on the haziest 20 percent of the days remains relatively unchanged over the 1990s with the mean visual range for 1999 (80 km) nearly the same as the 1990 level (86 km).

Introduction

The Clean Air Act (CAA) authorizes the United States Environmental Protection Agency (EPA) to protect visibility, or visual air quality, through a number of programs. These programs include the National Visibility Program under sections 169a and 169b of the Act, the Prevention of Significant Deterioration Program for the review of potential impacts from new and modified sources, the secondary National Ambient Air Quality Standards (NAAQS) for PM₁₀ and PM_{2.5}, and the Acid Rain Program under section 401. Since 1980, EPA issued two sets of regulations to prevent future and remedy existing visibility impairment. In 1980, EPA issued visibility regulations to address adverse impacts from a single source or small group of sources. In 1999, EPA issued regulations to address regional haze,

visibility impairment caused by numerous sources located across large geographic areas.

The National Visibility Program requires the protection of visibility in 156 mandatory federal Class I areas across the country (primarily national parks and wilderness areas). The CAA established as a national visibility goal "the prevention of any future, and the remedying of any existing, impairment of visibility in mandatory federal Class I areas in which impairment results from manmade air pollution." The Act also calls for state programs to make "reasonable progress" toward the national goal.

In 1987, the Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility network was established as a cooperative effort between EPA, the National Oceanic and Atmospheric Administration, the National Park Service, the U.S. Forest Service, the Bureau of Land Management, the U.S. Fish & Wildlife Service, and state governments. The objectives of the network are to establish current conditions, to track progress toward the national visibility goal by documenting long-term trends, and to provide information for determining the types of pollutants and sources primarily responsible for visibility impairment. Chemical analysis of aerosol measurements provides ambient concentrations and associated light extinction for PM₁₀, PM_{2.5}, sulfates, nitrates, organic and elemental carbon, crustal material, and a number of other elements. The IMPROVE program has established protocols for aerosol, optical, and photographic monitoring methods. The IMPROVE network has been expanded from 30 to 110 sites to represent all mandatory federal Class I areas. Together with additional sites which also used the IMPROVE monitoring protocol, the total number of visibility sites now exceeds 130 nationwide. The analyses presented in this chapter are based on data from the IMPROVE network, which can be found on the Internet at: http:// vista.cira.colostate.edu/improve/Data/ IMPROVE/improve data.htm.

This chapter presents aerosol and light extinction data collected between 1990 and 1999 at 36 Class I areas in the IMPROVE network. Because the CAA calls for the tracking of "reasonable progress" in preventing future impairment and remedying existing impairment, this analysis looks at trends in visibility impairment across the entire range of the visual air quality distribution. States are required to establish goals to improve visibility for the 20 percent worst days and to allow no degradation of the 20 percent best days as discussed later in this chapter. To facilitate this approach, visibility data have been sorted into quintiles, or 20 percent segments, of the overall distribution and average values have been calculated for each quintile. Trends are presented in terms of the haziest ("worst") 20 percent, typical ("middle") 20 percent, and clearest ("best") 20 percent of the annual distribution of data. Figure 6-1 is a map of the 36 Class I areas with seven or more years of IMPROVE monitoring data included in this analysis.

Nature and Sources of the Problem

Visibility impairment occurs as a result of the scattering and absorption of light by particles and gases in the atmosphere. It is most simply described as the haze that obscures the clarity, color, texture, and form of what we see. The same particles linked to serious health and environmental effects (sulfates, nitrates, organic carbon, elemental carbon (commonly called soot), and crustal material) also can significantly affect our ability to see.

Both primary emissions and secondary formation of particles contribute to visibility impairment. Primary particles, such as elemental carbon from diesel and wood combustion, or dust from certain industrial activities or natural sources, are emitted directly into the atmosphere. Secondary particles that are formed in the

*Data does not include IMPROVE sites established in 2000 and 2001.

atmosphere from primary gaseous emissions include sulfate from sulfur dioxide (SO₂) emissions, nitrates from nitrogen oxide (NO_x) emissions, and organic carbon particles formed from condensed hydrocarbon emissions. In the eastern United States, reduced visibility is mainly attributable to secondarily formed particles, particularly those less than a few micrometers in diameter. While secondarily formed particles still account for a significant amount in the West, primary emissions from sources such as woodsmoke generally contribute a larger percentage of the total particulate load than in the East. The only primary gaseous pollutant that directly reduces visibility is nitrogen dioxide (NO_2) , which can sometimes be seen in a visible plume from an industrial facility, or in some urban

areas with high levels of motor vehicle emissions.

Visibility conditions in Class I and other rural areas vary regionally across the United States. Rural areas in the East generally have higher levels of impairment than most remote sites in the West. Higher eastern levels are generally due to higher regional concentrations of sulfur dioxide and other anthropogenic emissions, higher estimated regional background levels of fine particles, and higher average relative humidity levels. Humidity can significantly increase the effect of pollution on visibility. Some particles, such as sulfates, accumulate water and grow in size becoming more efficient at scattering light. Annual average relative humidity levels are 70-80 percent in the East as compared to 50–60 percent in many parts of the

Figure 6-2. Comparison of the three visibility metrics (extinction, deciview and visual image).

Figure 6-2a. Images of Shenandoah National Park and Yosemite National Park.

Shenandoah National Park

Yosemite National Park

West. Poor summer visibility in the eastern United States is primarily the result of high sulfate particle concentrations combined with high humidity levels.

Visibility conditions are commonly expressed in terms of three mathematically related metrics: visual range, light extinction, and deciviews. Figure 6-2 shows the relationship between these three metrics of visibility. Figure 6-2a provides a photographic illustration of very clear and very hazy conditions at Shenandoah National Park in Virginia and Yosemite National Park in California. Visual range is the metric best known by the general public. It is the maximum distance at which one can identify a black object against the horizon, and is typically described in miles or kilometers.

Light extinction, inversely related to visual range, is the sum of light scattering and light absorption by particles and gases in the atmosphere. It is typically expressed in terms of inverse megameters (Mm⁻¹), with larger values representing poorer visibility. Unlike visual range, the light extinction coefficient allows one to express the relative contribution of one particulate matter (PM) constituent versus another to overall visibility impairment. Using speciated mass measurements collected from the IMPROVE samplers, "reconstructed light extinction" can be calculated by multiplying the aerosol mass for each constituent by its appropriate "dry extinction coefficient," and then summing these values for each constituent. Because sulfates and nitrates become more efficient at scattering light with increasing humidity, these values are also multiplied by a relative humidity adjustment factor.² Annual and seasonal light extinction values developed by this approach correlate well with optical measurements of light extinction (by transmissometer) and light scattering (by nephelometer).

The deciview metric was developed because changes in visual range and light extinction are not proportional to human perception of visibility impairment. For example, a 5-mile (8-km) change in visual range can be either very apparent or not perceptible, depending on the base line level of ambient pollution. The deciview metric provides a linear scale for perceived visual changes over the entire range of conditions, from clear to hazy, analogous to the decibel scale for sound. Under many scenic conditions, a change of one deciview is considered to be perceptible by the average person. A deciview of zero represents pristine conditions.

It is important to understand that the same amount of pollution can have dramatically different effects on visibility depending on existing conditions. Most importantly, visibility in cleaner environments is more sensitive to increases in PM2.5 particle concentrations than visibility in more polluted areas. This principle is illustrated in Figure 6-3, which characterizes visibility at Shenandoah National Park under a range of conditions.³ A clear day at Shenandoah can be represented by a visual range of 80 miles (133 km), with conditions approximating naturallyoccurring visibility (i.e., without pollution created by human activities). An average day at Shenandoah is represented by a visual range of 18 miles (30 km), and is the result of an additional $10 \,\mu g/m^3$ of fine particles in the atmosphere. The two bottom scenes, with

visual ranges of eight and six miles respectively, illustrate that the perceived change in visibility due to an additional $10 \mu g/m^3$ of fine particles to an already degraded atmosphere is much less perceptible than adding this amount to a clean atmosphere. Thus, to achieve a given level of perceived visibility improvement, a large reduction in fine particle concentrations is needed in more polluted areas. Conversely, a small amount of pollution in a clean area can dramatically decrease visibility.

Long-Term Trends (1981–1995)

Visibility impairment is presented here using visual range data collected since 1960 by human observers at 298 monitoring stations located at primarily urban and suburban airports across the country. Trends in visibility impairment can be inferred from these long-term records of visual range. Figure 6-4 describes long-term U.S. visibility impairment trends derived from such data.⁴ The maps show the amount of haze during the summer months with each map covering five-year periods, centered at 1983, 1988, and 1993. The dark blue color represents the best visibility, and red represents the worst visibility. Overall, these maps show that summer visibility in the eastern United States improved slightly between 1980 and 1990, and continued to improve between 1991 and 1995. These trends follow overall trends in emissions of sulfur oxides during these periods.

In the early 1990s to the mid 1990s, the National Weather Service gradually switched the method used to collect visibility data presented in Figure 6-4 from human observations to automated sensors. This method change resulted in an incompatibility between the human observation and the automated sensor data. Because

Figure 6-3. Shenandoah National Park on clear and hazy days and the effect of adding 10 μ g/m³ of fine particles to each.

of this method change the trends presented using the human observation data in Figure 6-4 end at 1995.

Recent Trends (1990–1999) from IMPROVE Data

Visibility and aerosol light extinction data are presented for 36 sites with at least seven years of fine particle data from 1990-1999 for western sites and from 1992-1999 for eastern sites: 10 are located in the East, and 26 are located in the West, as shown in Figure 6-2. Eastern trends start in 1992 because seven sites were added to the existing three eastern sites in the IMPROVE network, bringing the total number of eastern sites to 10. This is reflected in the eastern Class I area plots, Figure 6-5a and Figure 6-6a to 6-6c, where the trend is based on eight years of data, versus 10 years of data in the western Class I area plots. Because of the significant regional variations in visibility conditions, this chapter does not present aggregate national trends, but instead groups the data into eastern and western regions. As noted earlier, trends in this chapter are presented in terms of the annual average values for the clearest ("best") 20 percent, middle ("typical") 20 percent, and haziest ("worst") 20 percent of the days monitored each year. The goals of the regional haze program are to improve visibility on the haziest days and prevent degradation of visibility on the clearest days. To date, two 24-hour aerosol samples have been taken each week from IMPROVE sites, resulting in a potential for 104 sampling days per year. In 2000, the aerosol sampling schedule was changed to one sample every three days, consistent with the approach used for national PM2.5 aerosol monitoring.

In May of 2001, the National Park Service and other participants of the IMPROVE program identified technical concerns about measured nitrate concentrations at all IMPROVE sites prior to June 1996, and about estimates of sulfates, primarily at eastern IM-PROVE sites prior to 1995. As a result, the IMPROVE monitoring data used in this year's National Air Quality and *Emissions Trends Report* is interpreted differently to correct the technical concerns. At some affected IMPROVE sites, the adjustments result in a change in the direction or significance of the reported visibility trend. Because of the new usage of the IMPROVE monitoring data, the results presented here are not directly comparable with results presented in previous Trends reports. A discussion of the technical concerns, the data usage, and the effect on the nitrate and sulfate data is presented on the IMPROVE website, http:// vista.cira.colostate.edu/IMPROVE/ Data/QA_QC/issues.htm.

Regional Visibility Trends for the Eastern and Western United States

Figures 6-5a and 6-5b illustrate eastern and western trends for visibility impairment in deciviews. The deciview metric used in Figures 6-5a and 6-5b best characterizes perceived changes in visibility impairment. Under many scenic conditions a change in one deciview is considered to be perceptible by the average person. These figures, presented with equivalent scales, demonstrate the regional difference in overall levels of rural visibility impairment. One can see that visibility impairment for the haziest visibility days in the West is close to the same level of impairment as seen for the best days in the East. Figure 6-5a shows that in the East, the haziest visibility days improved by

Figure 6-5a. Visibility* trends for 10 eastern U.S. Class I areas for clearest, middle, and haziest 20 percent days in the distribution, 1992–1999.

Figure 6-5b. Visibility* trends for 26 western U.S. Class I areas for clearest, middle, and haziest 20 percent days in the distribution, 1992–1999.

* For Figures 6-5a and 6-5b changes in nitrate concentrations were not considered in calculation of deciviews. A constant value based on mean 1997–1999 extinction associated with nitrates was substituted for all years.

Aerosol Light Extinction, Mm-1

Figure 6-6a. Aerosol light* extinction in 10 eastern Class I areas for the clearest 20 percent of the days in the distribution, 1992–1999.

Aerosol Light Extinction, Mm-1

Figure 6-6b. Aerosol light* extinction in 10 eastern Class I areas for the middle 20 percent of the days in the distribution, 1992–1999.

Aerosol Light Extinction, Mm-1

Figure 6-6c. Aerosol light* extinction in 10 eastern Class I areas for the haziest 20 percent of the days in the distribution, 1992–1999.

* For Figures 6-6a to 6-6c changes in nitrate concentrations were not considered in calculation of aerosol light extinction. A constant value based on mean 1997–1999 extinction associated with nitrates was substituted for all years. 1.5 deciviews, or 15 percent in aerosol light extinction, since 1992 based on 10 locations. Over the past two years (1998-1999) impairment on the haziest days in the East show improvement of close to 1 deciview, or 10-percent in aerosol light extinction. However, visibility for the haziest days still remains significantly impaired with a mean visual range of 23 km compared to 84 km for the clearest days in 1999. Visibility impairment in 1999 for the clearest 20 percent of days is approximately equal to 1992 levels of 15 deciviews. The typical days (or middle 20 percent of the distribution) show a 1 deciview improvement, 10 percent in aerosol light extinction, since 1992 for the 10 sites.

In the West, there appears to be visibility improvement for the clearest, and the typical, days as presented in Figure 6-5b for the period 1990-1999. Visibility impairment for the aggregate 26 western sites improved by 1.5 deciviews for the clearest days and 1 deciview for the typical days, or 25 percent and 14 percent in aerosol light extinction, respectively. Visibility impairment for the haziest days in the West degraded between 1997-1999 close to 1.5 deciviews or 17 percent in aerosol light extinction. However, visibility on the haziest 20 percent of days remains relatively unchanged over the 1990s, with the mean visual range for 1999 (80 km) nearly the same as the 1990 level (86 km).

The Components of PM Contributing to Trends in Visibility Impairment

The area plots in Figures 6-6a to 6-6f show the relative contribution to aerosol light extinction by the five principal particulate matter constituents measured by IMPROVE at eastern and western sites for the best, middle, and worst 20 percent days. Note that the scale differs for the eastern and western figures in order to more clearly present the relative contribution of the five components. By understanding the total magnitude of each $PM_{2.5}$ component, the change in aerosol composition over time, and the effect of these components on changing visibility, policymakers can design strategies to address both health and environmental concerns.

In the East, (Figures 6-6a to 6-6c), sulfate is clearly the largest contributor to visibility impairment, ranging from an average of 78-82 percent of each year's annual aerosol extinction during the haziest days to 56-63 percent on the clearest days. In 1999, eastern aerosol light extinction due to sulfates on the haziest days reached its lowest level of the 1990s with a 19-percent decline over 1992–1999. This decline in sulfates in the eastern United States and the low 1999 level corresponds to the reported regional SO₂ emissions trends and lower average sulfate aerosol concentrations discussed in Chapter 7 (Atmospheric Deposition of Sulfur and Nitrogen Compounds). Organic carbon is the next largest contributor to visibility impairment in the East, accounting for 10–14 percent of annual aerosol extinction on the best days and 8-11 percent on the most impaired days. The third largest contributor in the East is nitrate, which also accounts for about 11–13 percent of annual aerosol light extinction on the best days and about 3-4 percent on the haziest days.

In the West, sulfate is also the most significant single contributor to aerosol light extinction on the clearest, typical, and haziest days. Sulfate accounts for 33–41 percent of annual

Aerosol Light Extinction, Mm-1

Figure 6-6e. Aerosol light* extinction in 26 western Class I areas for the middle 20 percent of the days in the distribution, 1990–1999.

Figure 6-6f. Aerosol light* extinction in 26 western Class I areas for the haziest 20 percent of the days in the distribution, 1990–1999.

^{*} For Figures 6-6d to 6-6f changes in nitrate concentrations were not considered in calculation of aerosol light extinction. A constant value based on mean 1997–1999 extinction associated with nitrates was substituted for all years.

An Urban Perspective – the Washington, D.C. IMPROVE site

The only urban monitoring site with a long-term data record using the IMPROVE monitoring protocol is located in Washington, D.C. This monitor was one of the first to be deployed in 1988. The figure below illustrates the trend at the Washington, D.C. site for visibility impairment in deciviews from 1990–1999. The decrease of visibility impairment in deciviews seen from 1993–1995 for the clearest, typical, and haziest days is attributable primarily to decreases in sulfate concentrations, although nitrates and organic carbon both had large decreases during the same time period. Nevertheless, conditions of the haziest days are still significantly impaired with an average visual range of only 21 km.

* Changes in nitrate concentrations were not considered in calculation of total light extinction. A constant value based on mean 1997–1999 extinction associated with nitrates was substituted for all years.

The photos below depict a very clear day along with a very hazy day looking across the Potomac River at the Lincoln Memorial and the Washington Monument.

Visual range > 150 km / 9.6 deciviews

Visual range = 8.4 km / 38.4 deciviews

Table 6-1.	Summary	of Class	I Area	I rena '	Analysis	

Parameter	Number of Significan (<i>Deteriorati</i> West	Sites With t ² Upward ng) Trends East	Number of Significant ^a (<i>Improvin</i> West		
³ Deciviews, worst 20%	4	0	1	2	
³ Deciviews, middle 20%	0	0	6	2	
³ Deciviews, best 20%	0	0	9	1	
Light extinction due to sulfate, worst 20%	4	0	4	2	
Light extinction due to sulfate, middle 20%	1	1	6	4	
Light extinction due to sulfate, best 20%	0	1	14	0	
Light extinction due to organic carbon, worst 20%	2	0	1	0	
Light extinction due to organic carbon, middle 20%	0	0	3	0	
Light extinction due to organic carbon, best 20%	2	0	5	0	

¹Based on a total of 36 monitored sites with at least 10 years of data in the West and eight years of data in the East: 26 sites in the West, 10 sites in the East.

²Statistically significant at the 5-percent level.

³For deciview trends changes in nitrate concentrations were not considered in the trend analysis. A constant value based on mean 1997–1999 extinction associated with nitrates was substituted for all years.

Figure 6-7a. Class I area significant trends in deciviews for the clearest 20 percent, middle 20 percent, and haziest 20 percent days as summarized in Table 6-1.

Figure 6-7b. Class I area significant trends light extinction due to sulfate for the clearest 20 percent, middle 20 percent, and haziest 20 percent days as summarized in Table 6-1.

Figure 6-7c. Class I area significant trends for light extinction due to organic carbon for the clearest 20 percent, middle 20 percent, and haziest 20 percent days as summarized in Table 6-1.

aerosol light extinction on the best days, 39–43 on the typical days, and 31-42 on the haziest days. However, organic carbon (19-30 percent), crustal material (14-26 percent), and nitrates (9–15 percent) play a more significant role (as a percentage of aerosol extinction) in western sites as compared to eastern ones. Since 1990, western visibility (as aggregated across 26 areas) has improved slightly on the best days and typical days. On the haziest days, light extinction generally decreased through 1997, but it increased by 22 percent between 1997–1999. It appears that this increase in light extinction was primarily due to increases in organic carbon and crustal material.

Trends in Specific Class I Areas

IMPROVE data from 36 Class I area monitoring sites¹ were analyzed for upward or downward trends using a nonparametric regression methodology described in Appendix B: Methodology.

Table 6-1 summarizes the trends analysis performed on these 36 sites for total light extinction (expressed in deciviews), light extinction due to sulfates and light extinction due to organic carbon on an area-by-area basis. Figures 6-7a-c show the significant trends for the Class I areas as summarized in Table 6-1. A solid dot indicates the IMPROVE monitoring site location. The arrow is pointing up for a deteriorating trend and down for an improving trend. The different color arrows represent the clearest 20 percent of days, typical (middle) 20 percent of days, and haziest 20 percent of days. As shown in Figure 6-7a several sites with improving trends show improvement in more than one of the three quintiles, especially in the West. Figures 6-7b and 6-7c show the trends associated with aerosol light extinction

due to sulfate and organic carbon, respectively. Trends in the individual constituents, like sulfate and organic carbon, often appear earlier than trends for total aerosol light extinction.

Current Visibility Conditions

Current annual average conditions range from about 18–40 miles in the rural east and about 35–90 miles in the rural west. On an annual average basis, natural visibility conditions have been estimated at approximately 80–90 miles in the East and up to 140 miles in the West.³ Natural visibility varies by region, primarily because of slightly higher estimated background levels of PM_{2.5} in the East, and the more significant effect of relative humidity on particle concentrations in the East than in the West.

Figure 6-8a. Aerosol light extinction in (Mm⁻¹) for the clearest 20 percent days and contribution by individual particulate matter constituents, based on 1997–1999 IMPROVE data.

Figure 6-8b. Aerosol light extinction in (Mm⁻¹) for the middle 20 percent days and contribution by individual particulate matter constituents, based on 1997–1999 IMPROVE data.

Figure 6-8c. Aerosol light extinction in (Mm⁻¹) for the haziest 20 percent days and contribution by individual particulate matter constituents, based on 1997–1999 IMPROVE data.

Note: For Figures 6-8a to 6-8c changes in nitrate concentrations were not considered in calculation of aerosol light extinction.

Figures 6-8a to 6-9c illustrate regional visibility impairment in terms of reconstructed aerosol light extinction based on measurements at IM-PROVE sites between 1997 and 1999. Maps are presented for the clearest, typical, and haziest 20 percent of the distribution. The pie charts show the relative contribution of different particle constituents to visibility impairment. Annual average aerosol light extinction due to these particles is indicated by the value next to each pie and by the size of each pie.¹ Figure 6-8 also shows that visibility impairment is generally greater in the rural east compared to most of the West. As noted earlier, the pies show that, for most rural eastern sites, sulfates account for more than 60 percent of annual average light extinction on the best days and up to 86 percent of annual average light extinction on the haziest days. Sulfate particles play a particularly significant role in the humid summer months due to their ability to take on moisture and become more efficient at scattering light, most notably in the Appalachian, northeast, and mid-south regions. The figures also show that organic carbon and nitrates each account for 10-18 percent and 7-16 percent respectively of aerosol extinction on the clearest days while elemental carbon only contributes 5-8 percent. On the other hand, organic carbon contributes around 11 percent to aerosol light extinction on the haziest days while nitrates and elemental carbon each typically contribute 1-6 percent.

In the rural west, sulfates also play a significant role, typically accounting for about 30–40 percent of aerosol light extinction on the best days and 30–45 percent on the haziest days. In several areas of the West, however, sulfates account for over 50 percent of annual average aerosol extinction, including Mt. Rainier, WA, and Redwood National Park, CA. In contrast, it contributes less than 25 percent in southern California. Organic carbon typically makes up 25-40 percent of aerosol light extinction in the rural west, elemental carbon (absorption) accounts for about 10 percent, and crustal matter (including coarse PM) accounts for about 15-25 percent. Nitrates typically account for less than 10 percent of total light extinction in western locations, except in the southern California region where it accounts for 30-45 percent.

Figures 6-9a to 6-9c illustrate current levels of visibility impairment, in terms of deciviews, for the clearest, typical, and haziest 20 percent days based on IMPROVE data from 1997– 1999.¹ Note that the deciview scale is more compressed than the scale for

Figure 6-9a. Current visibility impairment expressed in deciviews for the clearest 20 percent days based on 1997–1999 IMPROVE data.

Figure 6-9b. Current visibility impairment expressed in deciviews for the middle 20 percent days based on 1997–1999 IMPROVE data.

Figure 6-9c. Current visibility impairment expressed in deciviews for the haziest 20 percent days based on 1997–1999 IMPROVE data.

- 9.9 11.4
 11.5 14.3
- 14.4 19
- 19.1 26
- 26.1 31.7

visual range or light extinction, with larger values representing greater visibility degradation. Most of the sites in the intermountain west and Colorado Plateau have annual average impairment of 12 deciviews or less, with the worst days ranging up to 17 deciviews. Several other western sites in the northwest and California experience levels on the order of 16–23 deciviews on the haziest 20 percent of days. Many rural locations in the East have annual average values exceeding 21 deciviews, with average visibility levels on the haziest days up to 32 deciviews.

Programs to Improve Visibility

In April of 1999, EPA issued the final regional haze regulation.⁵ This regulation addresses visibility impairment in national parks and wilderness

Note: For Figures 6-9a to 6-9c changes in nitrate concentrations were not considered in calculation of deciviews.

areas that is caused by numerous sources located over broad regions. The program lays out a framework within which states can work together to develop implementation plans that are designed to achieve "reasonable progress" toward the national visibility goal of no human-caused impairment in the 156 mandatory Class I federal areas across the country.

States are required to establish goals to improve visibility on the 20 percent worst days and to allow no degradation on the 20 percent best days for each Class I area in the state. In establishing any progress goal, the state must analyze the rate of progress for the next 10–15 year implementation period which, if maintained, would achieve natural visibility conditions by 2064. The state will need to show whether this rate of progress or another rate is more reasonable based on certain factors in the Clean Air Act, including costs and the remaining useful life of affected sources. Along with these goals, the state plans also must include emission reduction measures to meet these goals (in combination with other states' measures), requirements for Best Available Retrofit Technology on certain large existing sources (or an alternative emissions trading program), and visibility monitoring representative of all Class I areas.

State regional haze plans are due in the 2003–2008 timeframe. Because of the common precursors and the regional nature of the PM and regional haze problems, the haze rule includes specific provisions for states that work together in regional planning groups to assess the nature and sources of these problems and to develop coordinated, regional emission reduction strategies. One provision allows nine Grand Canyon Visibility Transport Commission States (Arizona, California, Colorado, Idaho, Nevada, New Mexico, Oregon, Utah, and Wyoming) to submit initial plans in 2003 to implement their past recommendations within the framework of the national regional haze program. Another provision allows certain states until 2008 to develop coordinated strategies for regional haze and PM contingent upon participation in regional planning groups. For additional information on the regional haze program, go to EPA's website: http/www.epa.gov/air/ visibility.

Implementation of the PM and ozone NAAQS in conjunction with a future regional haze program is expected to improve visibility in urban as well as rural areas across the country. Other air quality programs are expected to bring about emissions reductions that will improve visibility in certain regions of the country. The acid rain program will achieve significant regional reductions in the emissions of SO₂, which will reduce sulfate haze particularly in the eastern United States. When implemented, the NO_x State Implementation Plan (SIP) call to reduce emissions from sources of NO_x to reduce formation of ozone should also improve regional visibility conditions to some degree. In addition, visibility impairment in Class I areas should improve as a result of a number of other programs, including mobile source emissions and fuel standards, certain air toxics standards, and implementation of smoke management and woodstove programs to reduce fuel combustion and soot emissions.

References

1. Data from IMPROVE Visibility Monitoring Network, 1999.

2. Sisler, J. Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States: Report III. Colorado State University, Cooperative Institute for Research in the Atmosphere. Fort Collins, CO., 2000.

Also see: Sisler, J. Spatial and Seasonal Patterns and Long-Term Variability of the Composition of the Haze in the United States: An Analysis of Data from the IMPROVE Network. Colorado State University, Cooperative Institute for Research in the Atmosphere. Fort Collins, CO, 1996.

Sisler, J., Huffman, D., and Latimer, D. Spatial and Temporal Patterns and the Chemical Composition of the Haze in the United States: An Analysis of Data from the IMPROVE Network, 1988–1991, Colorado State University, Cooperative Institute for Research in the Atmosphere. Fort Collins, CO, 1993.

Also see (Submitted for publication) Sisler, J., and Malm, W.C. "Interpretation of Trends of PM_{2.5} and Reconstructed Visibility from the IMPROVE Network," Journal of the Air and Waste Management Association, 1998.

3. Irving, P.M., ed., *Acid Deposition: State of Science and Technology, Volume III, Terrestrial, Materials, Health, and Visibility Effects,* The U.S. National Acid Precipitation Assessment Program, Chapter 24, page 24–76.

4. Schichtel, B.A., J.B. Husar, S.R. Falke, and W.E. Wilson. "Haze Trends of the United States, 1980–1995," *Atmospheric Environment* in press.

5. The final regional haze rule was signed on 4/22/99 and published in the *Federal Register* on 7/1/99 (64FR35713).

Atmospheric Deposition of Sulfur and Nitrogen Compounds

http://www.epa.gov/oar/aqtrnd99/chapter7.pdf

Worth Noting:

 1990's improvements in wet sulfur deposition, rural ambient SO₂, and rural ambient sulfates followed the large reductions in regional emissions in SO₂. Most of the emissions and reductions come from power plants.

 10-year changes in the eastern United States: annual average sulfates, -24 percent; annual average SO₂, -32 percent; regional power plant emissions, -25 percent.

 2-year changes in the eastern United States: (1998–99): annual average sulfates, -10 percent; annual average SO₂, -4 percent; regional power plant emissions, -6 percent.

- The largest sulfate improvements occur during the third calendar quarter.
 - 10-year changes: quarterly average sulfates, -33 percent.
 - 2-year changes (1998–99): quarterly average sulfates, -17 percent.
- These regional reductions in particle sulfates benefit visibility and PM_{2.5} levels.

Sulfur and nitrogen oxides are emitted into the atmosphere primarily from the burning of fossil fuels. These emissions react in the atmosphere to form compounds that are transported long distances and are subsequently deposited in the form of pollutants such as particulate matter (sulfates, nitrates) and related gases (nitrogen dioxide, sulfur dioxide and nitric acid). Nitrogen oxides also will interact with volatile organic compounds to form ozone. The effects of atmospheric deposition include acidification of lakes and streams, nutrient enrichment of coastal waters and large river basins, soil nutrient depletion and decline of sensitive forests, agricultural crop damage, and impacts on ecosystem biodiversity. Toxic pollutants and metals also can be transported and deposited through atmospheric processes. (See Chapter 5: Air Toxics.)

Both local and long-range emission sources contribute to atmospheric deposition. Total atmospheric deposition is determined using both wet and dry deposition measurements. Wet deposition is the portion dissolved in cloud droplets and is deposited during rain or other forms of precipitation. Dry deposition includes both gas and particle transfer to surfaces during periods of no precipitation. Although the term "acid rain" is widely recognized, the dry deposition portion can range from 20–60 percent of total deposition.

EPA is required by several Congressional and other mandates to assess the effectiveness of air pollution control efforts. These mandates include Title IX of the Clean Air Act Amendments (the National Acid Precipitation Assessment Program), the Government Performance and Results Act, and the U.S./Canada Air Quality Agreement. One measure of effectiveness of these efforts is whether sustained reductions in the amount of atmospheric deposition over broad geographic regions are occurring. However, changes in the atmosphere happen very slowly and trends are often obscured by the wide variability of measurements and climate. Numerous years of continuous and consistent data are required to overcome this variability, making long-term monitoring networks especially critical for characterizing deposition levels and identifying relationships among emissions, atmospheric loadings and effects on human health and the environment.

For wet and dry deposition, these studies typically include measure-

Figure 7-1. The National Atmospheric Deposition Program/National Trends Network.

ment of concentration levels of key chemical components as well as precipitation amounts. For dry deposition, analyses also must include meteorological measurements that are used to estimate rate of the actual deposition, or "flux." Data representing total deposition loadings (e.g., total sulfate or nitrate) are what many environmental scientists use for integrated ecological assessments.

Primary Atmospheric Deposition Monitoring Networks

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and the Clean Air Status and Trends Network (CASTNet) were developed to monitor wet and dry acid deposition, respectively. Monitoring site locations are predominantly rural by design to assess the relationship between regional pollution and changes in regional patterns in deposition. CASTNet also includes measurements of rural ozone and the chemical constituents of PM_{2.5}. Rural monitoring sites of NADP/NTN and CASTNet provide data where sensitive ecosystems are located and provide insight into natural background levels of pollutants where urban influences are minimal. Scientists and policy analysts use these data to evaluate environmental effects, particularly those caused by regional sources of emissions for which long-range transport plays an important role. Measurements from these networks also are important for understanding non-ecological impacts of air pollution such as visibility impairment and damage to materials, particularly those of cultural and historical importance.

They also provide important information to support the NAAQS.

National Atmospheric Deposition Network/National Trends Network

The National Atmospheric Deposition Program/National Trends Network is a cooperative program between federal and state agencies, universities, electric utilities and other industries that has measured precipitation chemistry in the United States since 1978. As one of the world's largest and longest running deposition monitoring networks, it is composed of over 200 sites and is able to determine geographic patterns and trends in precipitation chemistry (see Figure 7-1).

The NADP/NTN analyzes the constituents important in precipitation chemistry, including those affecting rainfall acidity and those that

may have ecological effects. The Network measures sulfate, nitrate, hydrogen ion (measure of acidity), ammonia, chloride, and base cations (calcium, magnesium, potassium). To ensure comparability of results, laboratory analyses for all samples are conducted by NADP's Central Analytical Lab at the Illinois State Water Survey. A new subnetwork of the NADP, the Mercury Deposition Network (MDN) measures mercury in precipitation. For more information on the MDN, see Chapter 5: Air Toxics.

Trends Analyses for Sulfate and Nitrogen Concentrations in Wet Deposition

Sulfate concentrations in precipitation have decreased over the past two decades.1 The reductions were relatively large in the early 1980s followed by more moderate declines until 1995. These reductions in wet sulfates are similar to changes in SO₂ emissions. In 1995 and 1996, however, concentrations of sulfates in precipitation over a large area of the eastern United States exhibited a dramatic and unprecedented reduction. Sulfates in rain have been estimated to be 10-25 percent lower than levels expected with a continuation of 1983–1994 trends.² The wet sulfate deposition levels in the 1990–1992 and 1997-1999 time periods, together with the absolute change are illustrated in Figure 7-2. This important reduction in acid precipitation is directly related to the large regional decreases in SO₂ emissions resulting from phase I of the Acid Rain Program (see "Trends in SO₂" in Chapter 2 of this report). The largest reductions in wet sulfate deposition occurred along the Ohio River Valley

and in states to the north and immediately downwind of this region. Nitrogen trends paint a different picture. Nitrate and ammonium deposition derived from NADP/NTN measurement sites reveal 10-year improvement in some areas, including eastern TX, MI, PA and NY. Increased deposition is estimated for the Plains States; and the western Ohio River and Central Mississippi River Valleys. From ammonium in rain, increases are also noted for eastern NC. However, most areas of the country were not appreciably different in either oxidized or reduced 1997–1999 nitrogen from historical levels (see Figures 7-3 and 7-4).

Clean Air Status and Trends Network

The Clean Air Status and Trends Network provides atmospheric data on the dry deposition component of total acid deposition, ground-level ozone and other forms of atmospheric pollution. CASTNet is considered the nation's primary source for atmospheric data to estimate dry acidic deposition and to provide data on rural ozone levels. Used in conjunction with other national monitoring networks, CASTNet is used to determine the effectiveness of national emission control programs. Established in 1987, CASTNet now comprises 79 monitoring stations across the United States. The longest data records are primarily at eastern sites. The majority of the monitoring stations are operated by EPA's Office of Air and Radiation; however, 27 stations are operated by the National Park Service (NPS) in cooperation with EPA. Of the total number of sites, 74 measure dry-deposition, 68 measure ozone, and eight measure aerosols for visibility assessment.

Figure 7-4. Annual mean nitrate deposition from precipitation, 1990–1992 vs. 1997–1999.

Each CASTNet dry deposition station measures:

- Weekly average atmospheric concentrations of sulfate, nitrate, ammonium, sulfur dioxide, and nitric acid (sulfate, nitrate and ammonium generally exist as fine particles).
- Hourly concentrations of ambient ozone levels.
- Meteorological conditions required for calculating dry deposition rates.

Dry Deposition

Dry deposition rates are calculated using atmospheric concentrations, meteorological data and information on land use, vegetation, and surface conditions. CASTNet complements the database compiled by NADP/ NTN. Together, these two long-term databases provide the necessary data to estimate trends and spatial patterns in total atmospheric deposition. NOAA also operates a smaller dry deposition network called Atmospheric Integrated Assessment Monitoring Network (AIRMoN) focused on addressing research issues specifically related to dry deposition measurement.

Concentration Trends Analysis at CASTNet Sites

CASTNet ambient concentration data in the eastern United States were analyzed for the period 1990–1999 for the change in ambient sulfur dioxide, sulfates, total nitrates and ammonium. First, maps are presented for a comparison of 3-year periods at the beginning and end of the 10-year period based on data from all 51 eastern locations in the CASTNet monitoring program. Then data from a subset of 34 eastern CASTNet sites with the most complete historical record are examined for year to year changes from 1990–1999.³

Figure 7-5. Rural annual mean SO₂ concentrations from CASTNet, 1990–1992 vs. 1997–1999.

In the early 1990s, ambient SO₂ concentrations in the rural eastern United States were highest in western Pennsylvania, along the Ohio Valley and in the vicinity of Chicago/Gary Indiana. Large improvement in ambient SO₂ air quality can be seen in Figure 7-5 by comparing 1990–1992 with 1997-1999. The largest decreases in concentrations are noted in the vicinity of Chicago and throughout the states bordering the Ohio Valley (IL, IN, OH, PA, KY, WV). The highest SO₂ concentrations in the rural parts of the eastern United States are now concentrated in southwestern PA.

Figure 7-6 shows that sulfate concentrations greater than 5 µg/m^{3*} cover most of the eastern United States in the 1990–1992 period. Regions of concentrations greater than 6 μ g/m³ are estimated to cover the Ohio Valley States (IL, IN, OH, KY, WV), Pennsylvania, and the other mid-Atlantic states from New Jersey to Virginia. The highest sulfate concentrations (> 7 μ g/m³) were adjacent to the Ohio Valley and in northern Alabama. These are the locations of large electric utilities.

During the late 1990s, ambient average sulfates lowered dramatically. Although there are differences in the measured concentrations among these individual years, both the size of the region with high concentrations as well as the magnitude of those concentrations have decreased.

Based on 34 CASTNet sites with 10 years of measurement data (Figure 7-7), mean rural sulfur dioxide concentrations were reduced by 32 percent and mean rural sulfate levels were reduced by 24 percent. The regional distribution of annual average concentrations is presented as box-plots in Figures 7-8 and 7-9. A 10-percent decrease in mean sulfates and 4-percent decrease in annual mean sulfur dioxide between 1998 and 1999 is also noted. This is a reversal of the 2-year increase previously reported for 1997–1998.

Levels and spatial changes in ambient nitrates in the rural east are shown in Figure 7-10. No significant change is noted in total nitrate concentrations. The trend in average total nitrate concentrations (nitrates plus nitric acid) among the 34 trend sites was level, corresponding to the small change in NO_x emissions during this period. The stable regional average nitrate trend line is not shown. The highest nitrate concentrations in the East are recorded in Ohio, Indiana, and Illinois. As shown in

^{*}Sulfate concentrations represent the sulfate ion, SO_4 -2, and do not represent the compounds (i.e., ammonium sulfate or ammonium bisulfate) typically associated with this analyte.

Figure 7-6. Rural annual average sulfate concentrations from CASTNet, 1990–1992 vs. 1997–1999.

Figure 7-7. CASTNet and subset of 34 long-term monitoring sites used for 1990–1999 trends analysis.

Figure 7-10, the 10-year change in total nitrate concentrations at individual measurement locations has been minimal. The ammonium maps for the eastern United States presented in Figure 7-11 shows that the highest ammonium concentrations are also highest in the midwest. This is due to the association of ammonium concentrations to sulfate and nitrate compounds. Although total nitrates have not substantially changed throughout this region, the 10-year decrease in ambient ammonium in the Ohio Valley and elsewhere appears to be associated with the reduction in sulfate concentrations.

Seasonal Trends in SO₂ Emissions and Related² Air Quality

Electric utilities account for 70 percent of the SO₂ emissions in the eastern United States and for 75 percent of the 10-year regional reduction in SO₂ emissions. The trend in ambient sulfates and sulfur dioxide are generally consistent with the change in annual sulfur dioxide emissions from electric utilities in the eastern United States. Figure 7-12 shows that the 24-percent 10-year decline in sulfates and 31-percent decrease in ambient SO₂ correspond to the overall 25percent decline in power plant SO₂ emissions. In addition, the 1998-1999 decrease in ambient rural sulfates (10 percent) and in ambient rural SO_2 (4 percent) appear to follow the 6-percent decrease in annual regional SO₂ power plant emissions.

For annual average ambient sulfur dioxide, the long-term air quality improvement is more substantial and appears similar to the large drop in regional SO_2 power plant emissions which occurred between 1993 and

Figure 7-8. Trend in ambient sulfates in the rural eastern United States, based on CASTNet monitoring data, 1990–1999.

Figure 7-9. Trend in ambient sulfur dioxide in the rural eastern United States, based on CASTNet monitoring data, 1990–1999.

Figure 7-10. Rural annual mean ammonium concentrations from CASTNet, 1990–1992 vs. 1997–1999.

Figure 7-11. Rural annual mean total nitrate concentrations from CASTNet, 1990–1992 vs. 1997–1999.

1995. For sulfates, the composite average ambient concentrations depict a more gradual change.

Figure 7-13 presents the trends in ambient sulfates, ambient sulfur dioxide, and SO₂ emissions by calendar quarter. The largest 10-year decrease in quarterly average ambient sulfates occurred during the 3rd calendar quarter which is the high sulfate "season." This 3-month period with its slow moving air masses, high photochemical activity and high seasonal SO₂ emissions contributes 65–70 percent to the typical annual average concentrations of sulfates.

Sulfur dioxide on the other hand depicts its lowest concentration levels during the summer season, but also reveals long term, albeit slightly lower, rural air quality improvement (-25 percent). This contrasts with more significant 10-year changes of -30 percent, -34 percent and -37 percent for the 1st, 2nd, and 4th calendar quarters respectively.

These changes in rural SO_2 match the annual average results presented for urban areas. (See the criteria pollutants section in Chapter 2 for more information about urban ambient SO_2 trends, SO_2 emission trends and the acid rain program. Also see **www.epa.gov/airmarkets/**.)

Sulfur and Nitrogen Deposition

Total deposition of sulfur and nitrogen are derived from concentrations of sulfur and nitrogen species in rain combined with estimated deposition resulting from ambient particles and gases. As described for the spatial patterns in measured concentrations of wet and dry sulfur compounds, the highest deposition of sulfur also is estimated to occur in the eastern **Figure 7-12.** Trend in annual mean ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SO₂ emissions from electric utilities in rural eastern United States, 1990–1999.

Figures 7-13a. and Figure 7-13b. Trend in annual mean ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SO₂ emissions from electric utilities in rural eastern United States by calendar quarter, 1990–1999.

Figures 7-13c. and **7-13d.** Trend in annual mean ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SO_2 emissions from electric utilities in rural eastern United States by calendar quarter, 1990–1999.

United States. Because of differences in rain, terrain and ground cover there is more spatial variability in estimated deposition than the contributing ambient concentrations. Some of the highest estimated sulfur deposition include areas along and to the East of the Ohio Valley. In these areas, generally at least half (45–65 percent) come from rain. This wet percent ranges from 70–90 percent in the other eastern United States areas with lower sulfur deposition. In all areas of the dry deposition is associated ambient SO_2 gas. In the West, sulfur deposition is much lower. Most western sulfur is deposited in rain, but the other sulfur is more evenly divided between SO_2 gas and sulfate particle (see Figure 7-14).

Nitrogen deposition comes from ammonium and nitrates in rain and ambient particulate concentrations of those species as well as ambient nitric acid. Based on monitoring stations that provide both wet and dry nitrogen measurements, Figure 7-15 shows that large areas of the eastern United States have similarly high values of estimated nitrogen deposition. The estimated deposition at western stations is much lower. For eastern stations, 60-70 percent is estimated to come from rain and most of this is associated with ammonium. Almost all of the remaining 30-40 percent is associated with measured nitric acid. In the West, rain accounts for more of the total deposition. Because dry nitrogen measurements are not available for the middle of the country, total nitrogen deposition cannot be estimated for this region. Data from the NADP, however, suggest that high nitrogen deposition would occur in this region. See Figure 7-3 which shows the high deposition of ammonium from precipitation in the region centered on IA.

References

1. Lynch, J.A., J.W. Grim and V.C. Bowersox. 1995. *Trends in Precipitation Chemistry in the United States: A National Perspective, 1980–1992.* Atmospheric Environment Vol 29, No. 11.

2. Lynch, J.A., V.C. Bowersox and J.W. Grim. 1996. Trends in Precipitation Chemistry in the United States: An Analysis of the Effects in 1995 of Phase I of the Clean Air Act Amendments of 1990, Title IV. U.S. Geological Survey. Open-file Report 96-0346.

3. Clean Air Status and Trends Network (CASTNet), 1999 Annual Report. http://www.epa.gov/castnet/ reports.html.

Figure 7-14. Wet and dry components of sulfur deposition, 1999.

Figure 7-15. Wet and dry components of nitrogen deposition, 1999.

Data Tables

http://www.epa.gov/oar/aqtrnd99/appenda.pdf

Statistic	# of Sites	Units	Percentile	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
Carbon Monoxid	e												
2nd Max. 8-hr.	304	ppm	95th	15.6	14.6	14.1	14.1	13.6	12.4	12.1	11.6	11.4	11.1
2nd Max. 8-hr.	304	ppm	90th	13.9	12.6	12.7	12.4	11.9	11.0	10.7	9.6	10.0	9.6
2nd Max. 8-hr.	304	ppm	75th	10.7	10.6	10.0	9.8	9.9	8.9	8.9	8.3	7.8	7.9
2nd Max. 8-hr.	304	ppm	50th	7.9	7.7	7.5	7.3	7.3	6.5	6.8	6.3	6.0	6.0
2nd Max. 8-hr.	304	ppm	25th	5.7	6.0	5.6	5.4	5.2	4.9	5.1	4.7	4.5	4.5
2nd Max. 8-hr.	304	ppm	10th	4.4	4.2	4.4	3.9	4.2	3.7	3.9	3.7	3.5	3.6
2nd Max. 8-hr.	304	ppm	5th	3.8	3.7	3.6	3.4	3.5	3.4	3.3	3.3	3.1	2.9
2nd Max. 8-hr.	304	ppm	Arith. Mean	8.6	8.4	8.1	7.9	7.8	7.1	7.2	6.7	6.5	6.4
Lead													
Max. Qtr. AM	216	µg/m³	95th	1.63	1.28	1.12	0.87	0.74	0.63	0.36	0.30	0.22	0.21
Max. Qtr. AM	216	µg/m³	90th	1.18	1.00	0.93	0.68	0.63	0.45	0.27	0.20	0.18	0.14
Max. Qtr. AM	216	µg/m³	75th	0.70	0.58	0.63	0.50	0.45	0.30	0.17	0.13	0.11	0.10
Max. Qtr. AM	216	µg/m³	50th	0.50	0.40	0.42	0.36	0.33	0.19	0.12	0.09	0.07	0.06
Max. Qtr. AM	216	µg/m³	25th	0.35	0.29	0.28	0.24	0.22	0.14	0.08	0.06	0.05	0.04
Max. Qtr. AM	216	µg/m³	10th	0.23	0.21	0.19	0.17	0.16	0.10	0.06	0.04	0.03	0.03
Max. Qtr. AM	216	µg/m³	5th	0.19	0.17	0.15	0.14	0.12	0.07	0.05	0.03	0.02	0.02
Max. Qtr. AM	216	µg/m³	Arith. Mean	0.65	0.54	0.53	0.40	0.37	0.25	0.15	0.11	0.10	0.08
Nitrogen Dioxide	•												
Arith. Mean	156	ppm	95th	0.051	0.051	0.050	0.046	0.046	0.048	0.050	0.043	0.048	0.045
Arith. Mean	156	ppm	90th	0.040	0.041	0.039	0.038	0.038	0.038	0.035	0.038	0.037	0.036
Arith. Mean	156	ppm	75th	0.029	0.028	0.028	0.027	0.029	0.029	0.028	0.028	0.028	0.028
Arith. Mean	156	ppm	50th	0.023	0.021	0.021	0.021	0.022	0.022	0.022	0.022	0.023	0.022
Arith. Mean	156	ppm	25th	0.016	0.016	0.016	0.016	0.016	0.017	0.016	0.017	0.016	0.016
Arith. Mean	156	ppm	10th	0.007	0.009	0.009	0.008	0.009	0.009	0.009	0.011	0.009	0.009
Arith. Mean	156	ppm	5th	0.003	0.003	0.004	0.003	0.003	0.004	0.004	0.004	0.003	0.003
Arith. Mean	156	ppm	Arith. Mean	0.024	0.024	0.023	0.022	0.023	0.023	0.023	0.023	0.023	0.023
Ozone													
2nd Max. 1-hr.	441	ppm	95th	0.220	0.202	0.196	0.220	0.203	0.190	0.170	0.180	0.200	0.170
2nd Max. 1-hr.	441	ppm	90th	0.177	0.164	0.160	0.186	0.165	0.160	0.150	0.164	0.180	0.143
2nd Max. 1-hr.	441	ppm	75th	0.150	0.140	0.133	0.150	0.138	0.132	0.130	0.140	0.155	0.124
2nd Max. 1-hr.	441	ppm	50th	0.122	0.115	0.115	0.130	0.113	0.112	0.112	0.118	0.130	0.108
2nd Max. 1-hr.	441	ppm	25th	0.105	0.100	0.100	0.110	0.100	0.098	0.098	0.104	0.110	0.099
2nd Max. 1-hr.	441	ppm	10th	0.091	0.090	0.086	0.095	0.090	0.088	0.086	0.090	0.098	0.086
2nd Max. 1-hr.	441	ppm	5th	0.087	0.080	0.080	0.085	0.080	0.078	0.080	0.087	0.088	0.080
2nd Max. 1-hr.	441	ppm	Arith. Mean	0.134	0.125	0.124	0.137	0.124	0.122	0.118	0.124	0.135	0.115
4th Max. 8-hr.	441	ppm	95th	0.142	0.129	0.128	0.145	0.130	0.127	0.120	0.126	0.140	0.120
4th Max. 8-hr.	441	ppm	90th	0.125	0.115	0.114	0.126	0.113	0.111	0.107	0.116	0.128	0.105
4th Max. 8-hr.	441	ppm	75th	0.106	0.101	0.098	0.110	0.099	0.097	0.095	0.102	0.115	0.093
4th Max. 8-hr.	441	ppm	50th	0.093	0.088	0.088	0.096	0.088	0.087	0.085	0.090	0.102	0.084
4th Max. 8-hr.	441	ppm	25th	0.082	0.077	0.076	0.085	0.077	0.077	0.076	0.081	0.087	0.076
4th Max. 8-hr.	441	ppm	10th	0.071	0.068	0.066	0.071	0.067	0.067	0.069	0.072	0.076	0.068
4th Max. 8-hr.	441	ppm	5th	0.065	0.060	0.061	0.063	0.062	0.062	0.062	0.067	0.067	0.063
4th Max. 8-hr.	441	ppm	Arith. Mean	0.097	0.091	0.090	0.099	0.091	0.090	0.088	0.093	0.102	0.087

Table A-1a. National Air Quality Trends Statistics for Criteria Pollutants, 1980–1989

Statistic	# of Sites	Units	Percentile	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
PM ₁₀													
Annual Avg.	_	µg/m³	95th	_	_	_	_	_	_	_	_		_
Annual Avg.	_	µg/m³	90th	_	_	_	_	_	_	_	_	_	_
Annual Avg.	_	µg/m³	75th	_	_	_	_	_	_	_	_	_	_
Annual Avg.	_	µg/m³	50th	_	_	_	_	_	_	_	_	_	_
Annual Avg.	_	µg/m³	25th	_	_	_	_	_	_	_	_	_	_
Annual Avg.	_	µg/m³	10th	_	_	_	_	_	_	_	_	_	_
Annual Avg.	_	µg/m³	5th	_	_	_	_	—	_	_	_	_	_
Annual Avg.	—	µg/m³	Arith. Mean	—	—	—	—	—	—	—	—	—	—
Sulfur Dioxide													
Arith. Mean	438	ppm	95th	0.0232	0.0223	0.0195	0.0182	0.0184	0.0176	0.0163	0.0162	0.0170	0.0162
Arith. Mean	438	ppm	90th	0.0190	0.0177	0.0164	0.0151	0.0156	0.0150	0.0140	0.0134	0.0143	0.0141
Arith. Mean	438	ppm	75th	0.0134	0.0133	0.0119	0.0121	0.0122	0.0114	0.0114	0.0111	0.0109	0.0107
Arith. Mean	438	ppm	50th	0.0092	0.0090	0.0085	0.0085	0.0088	0.0083	0.0081	0.0078	0.0080	0.0077
Arith. Mean	438	ppm	25th	0.0057	0.0059	0.0057	0.0056	0.0054	0.0050	0.0050	0.0048	0.0048	0.0047
Arith. Mean	438	ppm	10th	0.0029	0.0029	0.0031	0.0029	0.0029	0.0026	0.0025	0.0024	0.0025	0.0023
Arith. Mean	438	ppm	5th	0.0018	0.0018	0.0016	0.0017	0.0018	0.0019	0.0016	0.0016	0.0019	0.0016
Arith. Mean	438	ppm	Arith. Mean	0.0103	0.0101	0.0094	0.0091	0.0092	0.0087	0.0085	0.0083	0.0084	0.0081
2nd Max. 24-hr.	_	ppm	95th	_	_	_		_	_	_	_	_	_
2nd Max. 24-hr.	_	ppm	90th	_	_	_	_	_	_	_	_	_	_
2nd Max. 24-hr.	_	ppm	75th	_	_	_	_	_	_	_	_	_	_
2nd Max. 24-hr.	_	ppm	50th	_	_	_	_	_	_	_	_	_	_
2nd Max. 24-hr.	_	ppm	25th	_	_	_	_	_	_	_	_	_	_
2nd Max. 24-hr.	—	ppm	10th	_	_	_	_	_	_	_	_	_	_
2nd Max. 24-hr.	_	ppm	5th	_	_	_	_	_	_	_	_	_	_
2nd Max. 24-hr.	_	ppm	Arith. Mean	_	—	—	_	_	—	_	_	_	_

Table A-1a. National Air Quality Trends Statistics for Criteria Pollutants, 1980–1989 (continued)

Statistic	# of Sites	Units	Percentile	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Carbon Monoxid	e												
2nd Max. 8-hr.	388	ppm	95th	10.5	9.9	8.9	8.4	8.3	7.9	7.7	6.9	7.0	6.5
2nd Max. 8-hr.	388	ppm	90th	8.9	8.9	8.0	7.4	7.7	6.7	6.7	6.1	5.8	5.6
2nd Max. 8-hr.	388	ppm	75th	7.2	7.2	6.6	6.1	6.2	5.7	5.2	5.0	4.7	4.5
2nd Max. 8-hr.	388	ppm	50th	5.5	5.3	5.0	4.8	5.0	4.3	4.0	3.8	3.6	3.6
2nd Max. 8-hr.	388	ppm	25th	4.2	4.0	3.8	3.7	3.9	3.3	3.0	2.9	2.8	2.6
2nd Max. 8-hr.	388	ppm	10th	3.1	2.9	2.8	2.8	2.7	2.5	2.3	2.1	2.1	2.0
2nd Max. 8-hr.	388	ppm	5th	2.5	2.3	2.3	2.2	2.2	2.2	2.0	1.7	1.8	1.6
2nd Max. 8-hr.	388	ppm	Arith. Mean	5.8	5.7	5.3	5.0	5.1	4.6	4.3	4.0	3.8	3.7
Lead													
Max Otr AM	175	ua/m ³	95th	0 40	0.25	0 19	0.18	0 15	0.16	0 14	0 12	0.13	0 10
Max Otr AM	175	μg/m μα/m ³	90th	0.40	0.16	0.10	0.10	0.10	0.10	0.14	0.12	0.10	0.10
Max Otr AM	175	μg/m μα/m ³	75th	0.10	0.10	0.14	0.07	0.06	0.05	0.05	0.00	0.00	0.00
Max. Qtr. AM	175	µg/m µg/m ³	50th	0.05	0.00	0.07	0.07	0.00	0.00	0.00	0.04	0.04	0.00
Max. Qtt. AM	175	µg/m ug/m ³	25th	0.03	0.04	0.04	0.04	0.03	0.03	0.03	0.02	0.02	0.02
Max. Qtt. AM	175	µg/m ug/m ³	20th	0.03	0.03	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01
Max. Qtr. AM	175	µg/m ug/m ³	5th	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Max. Qtr. AM	175	ua/m ³	Arith Mean	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Nitrogon Dioxid	•	µ9	,	0.10	0100	0100	0.00	0100	0.00	0.01	0.0.	0.01	0.01
Nill Ogen Dioxide													
Arith. Mean	230	ppm	95th	0.039	0.043	0.038	0.037	0.040	0.039	0.037	0.034	0.035	0.035
Arith. Mean	230	ppm	90th	0.033	0.032	0.032	0.031	0.032	0.031	0.031	0.030	0.031	0.030
Arith. Mean	230	ppm	75th	0.025	0.025	0.024	0.024	0.024	0.023	0.023	0.022	0.023	0.023
Arith. Mean	230	ppm	50th	0.018	0.018	0.018	0.018	0.019	0.018	0.018	0.017	0.017	0.017
Arith. Mean	230	ppm	25th	0.013	0.012	0.012	0.012	0.013	0.012	0.012	0.012	0.012	0.012
Arith. Mean	230	ppm	10th	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.006	0.007
Arith. Mean	230	ppm	5th	0.005	0.005	0.005	0.005	0.004	0.004	0.004	0.004	0.004	0.004
Arith. Mean	230	ppm	Arith. Mean	0.020	0.019	0.019	0.019	0.020	0.019	0.018	0.018	0.018	0.018
Ozone													
2nd Max. 1-hr.	703	ppm	95th	0.170	0.170	0.159	0.150	0.147	0.149	0.141	0.142	0.150	0.139
2nd Max. 1-hr.	703	ppm	90th	0.144	0.147	0.130	0.137	0.129	0.139	0.126	0.130	0.133	0.130
2nd Max. 1-hr.	703	ppm	75th	0.120	0.122	0.112	0.120	0.117	0.123	0.114	0.116	0.119	0.118
2nd Max. 1-hr.	703	ppm	50th	0.107	0.107	0.099	0.104	0.104	0.110	0.103	0.103	0.109	0.107
2nd Max. 1-hr.	703	ppm	25th	0.093	0.093	0.090	0.091	0.092	0.098	0.093	0.091	0.097	0.095
2nd Max. 1-hr.	703	ppm	10th	0.083	0.082	0.082	0.080	0.083	0.086	0.084	0.081	0.086	0.085
2nd Max. 1-hr.	703	ppm	5th	0.075	0.076	0.077	0.075	0.077	0.079	0.079	0.075	0.077	0.077
2nd Max. 1-hr.	703	ppm	Arith. Mean	0.112	0.112	0.105	0.108	0.107	0.112	0.105	0.105	0.110	0.107
4th Max. 8-hr.	703	ppm	95th	0.115	0.115	0.107	0.110	0.106	0.112	0.103	0.105	0.110	0.105
4th Max. 8-hr.	703	ppm	90th	0.105	0.108	0.097	0.101	0.098	0.107	0.097	0.100	0.102	0.102
4th Max. 8-hr.	703	ppm	75th	0.093	0.096	0.087	0.090	0.090	0.096	0.090	0.091	0.095	0.095
4th Max. 8-hr.	703	ppm	50th	0.083	0.084	0.079	0.081	0.082	0.088	0.082	0.082	0.087	0.087
4th Max. 8-hr.	703	ppm	25th	0.074	0.073	0.073	0.073	0.074	0.077	0.075	0.073	0.077	0.077
4th Max. 8-hr.	703	ppm	10th	0.066	0.065	0.066	0.063	0.067	0.068	0.068	0.065	0.069	0.067
4th Max. 8-hr.	703	ppm	5th	0.060	0.059	0.061	0.059	0.061	0.062	0.062	0.059	0.060	0.061
4th Max. 8-hr.	703	ррт	Arith. Mean	0.085	0.086	0.081	0.083	0.084	0.087	0.083	0.082	0.086	0.085

Table A-1b. National Air Quality Trends Statistics for Criteria Pollutants, 1990–1999

Statistic	# of Sites	Units	Percentile	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
PM ₁₀													
Annual Avg.	954	ua/m ³	95th	45.9	45.5	41.7	40.5	39.4	38.4	37.4	37.5	35.5	39.7
Annual Avg	954	ua/m ³	90th	39.6	39.8	36.3	35.8	36.2	34.6	33.0	32.2	31.7	32.7
Annual Avg.	954	µg/m ³	75th	33.9	33.5	30.9	30.1	30.3	29.0	27.6	27.1	27.5	27.6
Annual Avg.	954	µg/m³	50th	28.1	28.0	25.7	25.2	25.4	24.2	22.9	22.9	23.4	23.0
Annual Avg.	954	µg/m ³	25th	23.2	23.4	22.0	21.0	20.9	19.7	19.3	19.3	19.2	19.1
Annual Avg.	954	µg/m³	10th	18.8	18.3	17.7	16.9	16.7	15.6	16.1	15.6	15.2	15.0
Annual Avg.	954	µg/m³	5th	16.1	15.2	14.7	13.5	13.4	12.6	13.2	12.7	12.9	12.9
Annual Avg.	954	µg/m³	Arith. Mean	29.2	29.0	26.8	26.0	26.0	24.8	24.0	23.8	23.6	23.9
Sulfur Dioxide													
Arith. Mean	480	ppm	95th	0.0176	0.0162	0.0154	0.0154	0.0143	0.0116	0.0113	0.0107	0.0106	0.0103
Arith. Mean	480	ppm	90th	0.0146	0.0140	0.0129	0.0126	0.0123	0.0101	0.0097	0.0091	0.0095	0.0089
Arith. Mean	480	ppm	75th	0.0108	0.0100	0.0095	0.0093	0.0091	0.0074	0.0074	0.0071	0.0070	0.0068
Arith. Mean	480	ppm	50th	0.0077	0.0075	0.0068	0.0067	0.0065	0.0051	0.0053	0.0051	0.0049	0.0048
Arith. Mean	480	ppm	25th	0.0043	0.0044	0.0042	0.0039	0.0037	0.0032	0.0032	0.0031	0.0032	0.0032
Arith. Mean	480	ppm	10th	0.0022	0.0022	0.0020	0.0022	0.0020	0.0018	0.0019	0.0018	0.0019	0.0019
Arith. Mean	480	ppm	5th	0.0014	0.0015	0.0014	0.0015	0.0015	0.0014	0.0014	0.0014	0.0014	0.0014
Arith. Mean	480	ppm	Arith. Mean	0.0081	0.0079	0.0073	0.0072	0.0069	0.0056	0.0056	0.0054	0.0053	0.0052
2nd Max. 24-hr.	481	maa	95th	0.0870	0.0750	0.0750	0.0720	0.0720	0.0570	0.0600	0.0520	0.0520	0.0520
2nd Max. 24-hr.	481	ppm	90th	0.0660	0.0630	0.0620	0.0590	0.0620	0.0480	0.0470	0.0450	0.0440	0.0410
2nd Max. 24-hr.	481	maa	75th	0.0480	0.0440	0.0440	0.0420	0.0450	0.0330	0.0330	0.0330	0.0310	0.0290
2nd Max. 24-hr.	481	ppm	50th	0.0330	0.0320	0.0300	0.0280	0.0330	0.0220	0.0230	0.0230	0.0220	0.0210
2nd Max. 24-hr.	481	ppm	25th	0.0200	0.0200	0.0190	0.0190	0.0190	0.0150	0.0150	0.0140	0.0140	0.0140
2nd Max. 24-hr.	481	ppm	10th	0.0100	0.0100	0.0100	0.0100	0.0090	0.0080	0.0090	0.0070	0.0070	0.0070
2nd Max. 24-hr.	481	ppm	5th	0.0060	0.0070	0.0060	0.0060	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050
2nd Max. 24-hr.	481	ppm	Arith. Mean	0.0376	0.0350	0.0340	0.0328	0.0343	0.0259	0.0263	0.0251	0.0242	0.0233

Table A-1b. National Air Quality Trends Statistics for Criteria Pollutants, 1990–1999 (continued)
Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	_
Fuel Combustion	4,632	4,480	7,302	8,485	7,443	5,510	5,856	6,155	5,586	5,519	5,934	6,206	5,484	5,075	5,322	E.
FUEL COMB. ELEC. UTIL.	237	276	322	291	321	363	349	350	363	370	372	409	423	450	445	ab
Coal	106	134	188	207	233	234	234	236	246	247	250	251	257	242	239	le /
Oil	41	69	48	18	26	20	19	15	16	15	10	12	14	19	18	P L
Gas	90	73	85	56	51	51	51	51	49	53	55	79	84	97	94	2
Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		9	33	33	lat
Internal Combustion	NA	NA	NA	10	11	57	45	47	51	55	58	58	60	60	61	iör
	770	763	750	670	672	870	020	055	1 0/3	1 0/1	1 056	1 101	1 163	1 151	1 178	a
Coal	100	67	58	86	87	105	101	102	1045	100	1,000	1,131	100	106	100	ŝ
Oil	100	40	25	47	46	74	60	64	66	66	71	54	50	51	50	arb
	44	49	30	47	40	226	204	200	200	227	245	240	220	226	240	ğ
Gas	402	403	410	207	470	220	204	300	322	337 207	345	340	339	220	342	Ξ
Other	164	184	239	107	1/3	279	207	264	280	287	297	349	333	334	341	P
	NA	NA	NA	113	96	195	208	227	268	251	245	337	330	324	334	ō
FUEL COMB. OTHER	3,625	3,441	6,230	7,525	6,450	4,269	4,587	4,849	4,181	4,108	4,506	4,606	3,898	3,474	3,699	id
Commercial/Institutional Coal	12	17	13	14	15	14	14	15	15	15	15	14	14	15	15	Ē
Commercial/Institutional Oil	27	23	21	18	17	18	17	18	18	18	19	19	20	16	16	ä
Commercial/Institutional Gas	24	25	26	42	49	44	44	51	53	54	54	64	65	63	69	ŝ
Misc. Fuel Comb. (Except Resid	ential)NA	NA	NA	57	55	149	141	141	143	147	145	46	48	49	50	ö
Residential Wood	2,932	3,114	5,992	7,232	6,161	3,781	4,090	4,332	3,679	3,607	3,999	4,207	3,499	3,089	3,300	าร
fireplaces	2,932	3,114	5,992	7,232	6,161	3,781	4,090	4,332	3,679	3,607	3,999	3,579	2,891	2,518	2,699	Ē
woodstoves	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	304	293	276	290	tii
other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	325	314	296	312	nai
Residential Other	630	262	178	162	153	262	281	292	274	268	273	255	252	242	249	ies
	46 000	40 770	0.050	7 045	7 042	E 0E0	E 740	E 602	E 000	E 020	E 700	4 750	4 0 2 2	4 055	7 500	<u> </u>
industrial Processes	10,099	10,770	9,250	1,215	7,013	5,052	5,740	5,003	5,090	5,039	5,790	4,/59	4,932	4,955	7,590	97
CHEMICAL & ALLIED PRODUCT N	1FG3,397	2,204	2,151	1,845	1,925	1,183	1,127	1,112	1,093	1,171	1,223	1,053	1,071	1,081	1,081	, o
Organic Chemical Mfg	340	483	543	251	285	149	128	131	132	130	127	90	91	92	93	10
ethylene dichloride	11	12	17	0	0	0	0	0	0	0	0	0	0	0	0	75
maleic anhydride	73	147	103	16	16	3	3	4	4	4	4	0	0	0	0	
cyclohexanol	36	39	37	5	6	0	0	0	0	1	1	0	0	0	0	86
other	220	286	386	230	264	146	125	127	128	125	123	89	90	92	92	ö
Inorganic Chemical Mfg	190	153	191	89	95	133	129	130	131	135	134	120	121	123	125	10
niaments: TiO2 chloride proc.	reactor18	22	.34	77	84	119	119	119	119	119	119	117	118	120	122	38
other	172	131	157	12	12	14	11	12	1.3	16	15			3		د
Polymer & Resin Mfg	NΔ	NΔ	NΔ	10	18	3	6	5	5	5	5	5	5	5	5	30
Agricultural Chemical Mfg	NΔ	ΝA	NΔ	16	17	11	10	10	18	17	17	12	13	13	13	ő
Point Varnish Lacquar Enamal				NA		-++	0	0	0	0	0	0	15	10	15	÷
Dharmacoutical Mfa					0	0	0	0	0	0	0	0	0	0	1	30(
Other Chamical Mfr		1 507		4 474	4 = 4 0	0	044	007	005	005	0	0	0 4 4	047	045	(†
Other Chemical Mig	2,866	1,567	1,417	1,471	1,510	854	844	827	805	885	939	826	841	847	845	ho
carbon black mfg	2,866	1,567	1,417	1,078	1,112	/98	/56	/36	/15	/93	845	796	811	818	815	SD
carbon black furnace: fugitive	es NA	NA	NA	155	180	17	54	57	60	63	65	4	4	4	4	an
other	NA	NA	NA	238	219	39	35	34	30	30	29	26	26	26	26	d
METALS PROCESSING	3,644	2,496	2,246	2,223	2,132	2,640	2,571	2,496	2,536	2,475	2,380	1,604	1,709	1,702	1,678	shc
Nonferrous Metals Processing	652	636	842	694	677	436	438	432	423	421	424	459	475	465	454	ĭ
aluminum anode baking	326	318	421	41	41	41	47	41	41	41	41	22	23	23	23	đ
prebake aluminum cell	326	318	421	257	254	260	260	260	260	260	260	277	288	281	274	ns)
other	NA	NA	NA	396	382	135	131	131	122	120	123	160	164	160	157	-

	1370	19/5	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Ferrous Metals Processing	2,991	1,859	1,404	1,523	1,449	2,163	2,108	2,038	2,089	2,029	1,930	1,101	1,189	1,193	1,181
basic oxygen furnace	440	125	80	694	662	594	731	767	768	677	561	268	296	301	301
carbon steel electric arc furnac	e 181	204	280	19	18	45	54	49	58	61	65	60	65	66	65
coke oven charging	62	53	43	9	9	14	16	17	7	7	8	4	4	4	4
gray iron cupola	1,203	649	340	302	280	124	118	114	121	128	120	111	115	111	106
iron ore sinter plant windbox	1.025	759	600	304	293	211	211	211	211	211	211	46	50	50	50
other	81	70	61	194	187	1,174	979	880	924	945	966	612	659	661	654
Metals Processing NEC	NA	NA	NA	6	6	40	25	26	25	25	25	44	46	44	43
PETROLEUM & RELATED INDUSTR	ES2.179	2.211	1.723	462	436	333	345	371	371	338	348	354	367	366	366
Oil & Gas Production	NA	NA	NA	11	8	38	18	21	22	35	34	27	27	27	27
Petroleum Refineries & Related In	d.2.168	2.211	1.723	449	427	291	324	345	344	299	309	319	332	331	332
fcc units	1 820	2 032	1 680	403	390	284	315	333	328	286	299	308	320	319	320
other	348	179	44	46	37	7	9	13	17	13	10	11	12	12	12
Asphalt Manufacturing	11	NA	NA	2	2	3	4	5	5	5	5	8	8	8	7
OTHER INDUSTRIAL PROCESSES	620	630	830	694	716	537	548	544	594	600	624	561	582	590	599
Agriculture Food & Kindred Produ	icts NA	NA	NA	004	0	3	3	3	3	2	6	4	4	4	4
Textiles Leather & Annarel Produ	cts NA	NΔ	NΔ	0	0	0	0	0	0	0	0	0	0	0	0
Wood Pulp & Paper & Pub Prod	610	602	708	627	655	473	461	110	453	461	181	356	370	378	388
sulfate pulping: rec. fumace/evapo	rator NA	NA	N 4	175	/07	370	360	348	350	355	370	274	285	201	200
sulfate (kraft) pulping: lime kilp	610	602	70.9	1/0	146	970	200 Q1	75	79	76	270	50	200	52	299
othor	010 N/A	00Z	190	140	140	16	21	25	24	20	20	20	22	24	24
Bubber & Missellensous Blastia D				12	13	10	21	25	24	30	52	52	33	0	0
Mineral Dreducto	00. NA	07	1NA 20	40	40	0 E 4	77	05	121	121	107	100	100	100	105
Machinery Dreducts			32	43	43	54	11	00	131	131	127	100	100	100	COL
Machinery Products	NA	INA NA	NA	10	10	0	0	0	0	0	0	1	1	1	1
Electronic Equipment	NA	NA NA	NA	18	12	2	2	2	2	2	2	0	0	0	0
	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0
Miscellaneous Industrial Processe	S NA	NA	NA	6	5	5	5	6	4	4	4	19	19	20	20
SOLVENT UTILIZATION	NA	NA	NA	2	2	5	5	5	5	5	6	1	2	2	2
Degreasing	NA	NA	NA	1	1	0	0	0	0	0	0	0	0	0	0
Graphic Arts	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0
Dry Cleaning	NA	NA	NA	NA	NA	0	0	0	0	1	1	0	0	0	0
Surface Coating	NA	NA	NA	0	1	0	1	1	1	1	1	1	1	1	1
Other Industrial	NA	NA	NA	0	0	4	4	4	4	4	4	0	0	0	0
Nonindustrial	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0
Solvent Utilization NEC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	0
STORAGE & TRANSPORT	NA	NA	NA	49	55	76	28	17	51	24	25	70	71	72	72
Bulk Terminals & Plants	NA	NA	NA	0	0	0	2	0	4	4	4	0	0	0	0
Petroleum & Petroleum Prod. Stor	age NA	NA	NA	0	0	0	12	0	32	4	4	0	0	0	0
Petroleum & Petroleum Prod. Tran	is. NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0
Service Stations: Stage I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	0
Service Stations: Stage II	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	0	0	0
Organic Chemical Storage	NA	NA	NA	42	49	74	13	13	13	13	13	68	69	70	70
Organic Chemical Transport	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0
	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0
Inorganic Chemical Storage															

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
WASTE DISPOSAL & RECYCLING	7.059	3,230	2,300	1,941	1,747	1.079	1,116	1,138	1,248	1,225	1,185	1,116	1,130	1,142	3,792
Incineration	2,979	1,764	1,246	958	876	372	392	404	497	467	432	403	408	412	416
conical wood burner	1,431	579	228	17	19	6	7	6	6	6	6	2	2	2	2
municipal incinerator	333	23	13	34	35	16	17	15	14	14	15	7	7	8	8
industrial	NA	NA	NA	9	9	9	10	10	87	48	10	9	10	10	10
commmercial/institutional	108	68	60	32	39	19	20	21	21	21	21	22	23	24	24
residential	1.107	1.094	945	865	773	294	312	324	340	347	351	330	333	337	339
other	NA	NA	NA	2	2	27	26	28	29	30	29	32	32	33	33
Open Burning	4.080	1,466	1.054	982	870	706	722	731	749	755	750	706	715	723	3,369
industrial	1.932	1.254	1.007	20	21	14	14	15	15	15	15	15	16	16	0
commercial/institutional	2.148	212	47	4	5	46	48	50	52	54	52	84	88	90	0
residential	NA	NA	NA	958	845	509	516	523	529	533	536	506	510	515	422
other	NA	NA	NA	NA	NA	137	144	144	153	153	147	101	101	102	2 947
POTW	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	_,0
Industrial Waste Water	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0
TSDF	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0
Landfills	NA	NA	NA	0	0	1	1	2	2	2	2	6	6	6	6
Other	NA	NA	NA	0	0	0	0	0	1	1	1	0	0	0	0
Transportation	100,004	96,243	92,538	93,386	83,829	76,635	81,583	80,235	81,224	82,699	75,035	79,795	78,509	77,478	75,151
ON-ROAD VEHICLES	88,034	83,134	78,049	77,387	66,050	58,444	62,999	61,236	61,833	62,903	54,811	54,388	53,315	52,360	49,989
Light-Duty Gas Vehicles & Motorcyc	les64,031	59,281	53,561	49,451	42,234	34,996	35,680	33,761	33,185	33,317	29,787	29,163	28,639	28,420	27,382
light-duty gas vehicles	63,846	59,061	53,342	49,273	42,047	34,806	35,503	33,582	32,995	33,122	29,601	28,974	28,449	28,225	27,187
motorcycles	185	220	219	178	187	190	177	179	190	195	187	189	191	195	195
Light-Duty Gas Trucks	16,570	15,767	16,137	18,960	15,940	17,118	20,622	21,536	22,795	22,614	19,434	16,873	16,949	16,948	16,115
light-duty gas trucks 1	10,102	9,611	10,395	11,834	9,034	9,672	11,606	12,065	12,647	12,428	11,029	11,221	11,296	11,315	10,766
light-duty gas trucks 2	6,468	6,156	5,742	7,126	6,906	7,446	9,016	9,471	10,148	10,186	8,405	5,652	5,652	5,634	5,349
Heavy-Duty Gas Vehicles	6,712	7,140	7,189	7,716	6,506	5,029	5,369	4,586	4,483	5,523	4,103	6,260	5,549	4,782	4,262
Diesels	721	945	1,161	1,261	1,369	1,301	1,327	1,353	1,370	1,449	1,487	2,093	2,178	2,210	2,230
heavy-duty diesel vehicles	721	915	1,139	1,235	1,336	1,233	1,292	1,317	1,333	1,411	1,447	2,074	2,162	2,197	2,217
light-duty diesel trucks	NA	NA	4	4	6	46	8	9	10	10	10	7	6	5	5
light-duty diesel vehicles	NA	30	19	22	28	22	27	27	28	29	29	12	10	8	8
NON-ROAD ENGINES AND VEHICL	ES11,970	13,109	14,489	15,999	17,779	18,191	18,585	18,999	19,391	19,796	20,224	25,407	25,194	25,118	25,162
Non-Road Gasoline	10,946	11,754	12,760	13,659	15,021	15,394	15,738	16,081	16,424	16,765	17,112	22,012	21,773	21,657	21,717
recreational	268	283	299	312	321	355	361	366	371	374	382	1,376	1,359	1,355	1,357
construction	358	393	527	603	603	603	602	602	602	602	602	723	688	674	667
industrial	535	586	709	807	740	723	707	690	674	657	640	864	823	793	767
lawn & qarden	5,899	6,324	6,764	7,166	8.023	8.237	8.451	8,665	8.880	9.094	9.308	11.330	11.243	11.073	11.063
farm	202	267	338	372	407	416	424	433	442	450	459	340	343	346	349
light commercial	1.905	1.997	2.095	2.263	2.754	2.877	3.000	3.123	3.246	3.369	3.491	3.992	4.061	4.138	4.187
logging	10	23	28	31	47	50	54	58	62	66	69	1.160	1.012	1.016	1.067
airport service	6	8	9	10	10	10	10	9	9	9	9	9	9	9	9
railway maintenance	NA	NĂ	NĂ	5	6	6	6	6	6	6	7	7	7	7	6
recreational marine vessels	1.763	1.873	1,990	2,090	2,112	2.117	2.122	2.128	2,133	2,138	2 144	2 211	2 228	2 244	2 247
	.,	.,	.,	_,	_,	_,	_,	_,	_,	_,	_,	_,	_,	_,_ · · ·	_,

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
Non-Road Diesel	430	650	829	900	1,062	1,098	1,134	1,169	1,204	1,238	1,269	1,386	1,377	1,352	1,302	av
recreational	1	2	2	3	3	3	3	3	3	3	3	5	5	5	5	đ
construction	254	362	479	534	637	662	688	714	739	763	785	878	869	846	802	1
industrial	88	69	83	105	121	124	127	130	134	138	142	149	151	151	151	- 5
lawn & garden	6	12	13	14	26	29	32	34	37	39	42	47	50	53	53	2
farm	16	138	174	142	163	166	168	170	172	174	175	165	163	161	156	ŝ
light commercial	20	27	28	34	44	46	48	49	51	52	54	62	64	67	72	2
logging	43	38	49	61	58	58	58	57	57	56	55	63	58	52	46	2
airport service	1	1	1	2	3	4	4	5	5	5	6	7	7	8	8	Ę
railway maintenance	UA	UA	UA	1	2	2	2	2	2	3	3	3	3	3	3	=
recreational marine vessels	UA	UA	UA	3	4	4	4	4	4	4	5	7	7	7	7	š
Aircraft	506	600	743	831	955	904	888	901	905	915	942	949	958	995	1,002	Ę
Marine Vessels	23	28	62	73	98	129	136	132	126	127	127	132	135	137	138	ž
coal	2	2	4	5	7	4	4	4	4	5	4	4	4	4	5	č
diesel	21	25	57	67	90	80	83	79	75	76	77	127	129	130	131	5
residual oil	0	0	1	1	2	11	11	12	12	12	10	0	0	0	0	ā
gasoline	NA	NA	NA	NA	NA	2	2	2	2	2	2	2	2	2	2	ġ
other	NA	NA	NA	NA	NA	31	36	35	33	33	34	0	0	0	0	-
Railroads	65	77	96	106	121	121	120	125	120	114	114	117	121	120	119	Į
Non-Road Other	0	0	0	430	522	545	568	591	614	637	660	810	831	858	883	Ì
liquified petroleum gas	NA	NA	NA	288	376	398	420	442	464	486	508	704	724	749	773	5
compressed natural gas	NA	NA	NA	142	146	147	148	149	150	151	152	106	108	109	111	Ċ
Miscellaneous	7,909	5,263	8,344	7,927	8,153	11,122	8,618	6,934	7,082	9,656	7,298	10,534	12,534	9,364	9,378	Ę
Agriculture & Forestry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	0	
Other Combustion	7.909	5.263	8.344	7.927	8.153	11.122	8.618	6.934	7.082	9.656	7.298	10.534	12.534	9.364	9.378	-
structural fires	101	258	217	242	242	78	80	81	82	83	84	80	78	79	85	
agricultural fires	873	539	501	396	571	415	413	421	415	441	465	454	464	471	479	ç
slash/prescribed burning	1.146	2.268	2.226	4.332	4.332	4.668	4.666	4.729	4,966	4,990	5.252	5.402	5.769	6.152	6.152	Ģ
forest wildfires	5.620	2,165	5.396	2.957	3.009	5.928	3.430	1.674	1.586	4.114	1.469	4.574	6.200	2.638	2.638	Ģ
other	169	34	4	NA	NA	32	28	30	34	28	28	22	23	23	24	-
Health Services	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA	0	0	0	0	Ş
Cooling Towers	NA	NA	NA	NA	NA	NĂ	0	0	NA	0	0	0	0	0	0	ç
Fugitive Dust	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	Ş
TOTAL ALL SOURCES	129,444	116,757	117,434	117,013	106,439	99.119	101,797	99,007	99,791	103,713	94,058	101,294	101,459	96,872	97,441	č

Note: Some columns may not sum to totals due to rounding.

NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 1999 ites, 1970, 1975, 1980, 1985, 1989–1999 (thousand short tons) (cont.)

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Fuel Combustion	10,616	10,347	4,299	515	505	500	495	491	497	496	490	492	493	494	501
FUEL COMB. ELEC. UTIL.	327	230	129	64	67	64	61	59	62	62	57	61	64	69	72
Coal	300	189	95	51	46	46	46	47	50	50	50	53	54	55	56
bituminous	181	114	57	31	28	28	28	28	30	30	30	32	33	33	34
subbituminous	89	56	28	15	14	14	14	14	15	15	15	16	16	16	17
anthracite & lignite	30	19	9	5	4	4	4	4	5	5	5	5	5	5	5
Oil	28	41	34	13	21	18	15	12	12	12	7	8	10	14	16
residual	27	40	34	13	21	18	15	12	12	12	7	8	10	14	16
distillate	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
FUEL COMB. INDUSTRIAL	237	75	60	30	18	18	18	18	19	19	18	16	16	15	17
Coal	218	60	45	22	14	14	15	14	14	14	14	13	14	13	13
bituminous	146	40	31	15	10	10	10	10	10	10	10	9	9	9	9
subbituminous	45	12	10	5	3	3	3	3	3	3	3	3	3	3	3
anthracite & lignite	27	7	4	2	1	1	1	1	1	1	1	1	1	1	1
Oil	19	16	14	8	4	3	3	4	5	5	4	3	2	2	3
residual	17	14	14	7	3	3	2	3	4	4	3	2	2	1	3
distillate	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
FUEL COMB. OTHER	10,052	10,042	4,111	421	420	418	416	414	416	415	415	415	413	410	412
Commercial/Institutional Coal	1	16	12	6	4	4	3	4	4	3	4	5	5	4	4
bituminous	1	6	6	4	3	3	2	2	2	2	2	3	3	2	2
subbituminous	NA	2	2	1	1	1	1	1	1	1	1	1	1	1	1
anthracite, lignite	NA	7	4	1	1	0	0	0	1	0	1	1	1	1	1
Commercial/Institutional Oil	4	11	10	4	4	4	4	4	4	4	3	3	2	2	3
residual	3	10	9	3	3	3	3	3	3	3	2	2	2	1	3
distillate	NA	1	1	1	1	1	1	1	1	1	1	1	1	1	1
other	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0
Misc. Fuel Comb. (Except Resider	ntial)10,000	10,000	4,080	400	400	400	400	400	400	400	400	400	400	400	400
Residential Other	47	16	9	11	12	10	9	7	8	8	8	7	6	5	5
Inustrial Processes	28,554	12,976	5,148	3,402	3,161	3,278	3,081	2,736	2,872	3,007	2,875	3,061	3,121	3,045	3,162
CHEMICAL & ALLIED PRODUCT M	IFG 103	120	104	118	136	136	132	93	92	96	163	167	188	194	218
Inorganic Chemical Mfg	103	120	104	118	136	136	132	93	92	96	163	167	188	194	218
lead oxide and pigments	103	120	104	118	136	136	132	93	92	96	163	167	188	194	218
METALS PROCESSING	24,224	9,923	3,026	2,097	2,088	2,170	1,974	1,774	1,900	2,027	2,049	2,055	2,081	1,991	2,078
Nonferrous Metals Processing	15,869	7,192	1,826	1,376	1,337	1,409	1,258	1,112	1,210	1,287	1,337	1,333	1,342	1,259	1,329
primary lead production	12.134	5.640	1.075	874	715	728	623	550	637	633	674	588	619	608	623
primary copper production	242	171	20	19	19	19	19	20	21	22	21	22	24	25	25
primary zinc production	1,019	224	24	16	9	9	11	11	13	12	12	13	13	12	12
secondary lead production	1.894	821	481	288	433	449	414	336	341	405	432	514	484	413	465
secondary copper production	374	200	116	70	37	75	65	73	70	76	79	76	82	78	81
lead battery manufacture	41	49	50	65	74	78	77	77	81	94	102	103	107	110	117
lead cable coating	127	55	37	43	50	50	48	44	47	44	16	16	14	13	4
other	38	32	24	3	1	1	1	1	1	1	1	1	1	1	1

Table A-3.National Lead Emissions Estimates, 1970, 1975, 1980, 1985, 1989–1999 (short tons)

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Ferrous Metals Processing	7,395	2,196	911	577	582	576	517	461	496	540	528	529	538	536	555
coke manufacturing	11	8	6	3	4	4	3	3	2	0	0	0	0	0	0
ferroalloy production	219	104	13	7	20	18	14	14	12	13	8	8	8	7	6
iron production	266	93	38	21	19	18	16	17	18	18	19	18	18	18	18
steel production	3,125	1,082	481	209	138	138	145	139	145	160	159	160	165	168	173
gray iron production	3,773	910	373	336	401	397	339	288	319	349	342	343	348	343	357
Metals Processing NEC	960	535	289	144	170	185	199	202	194	200	184	193	201	196	195
metal mining	353	268	207	141	169	184	198	201	193	199	183	192	200	195	194
other	606	268	82	3	1	1	1	1	1	1	1	1	1	1	1
OTHER INDUSTRIAL PROCESSES	2,028	1,337	808	316	173	169	167	56	55	54	59	51	54	54	53
Mineral Products	540	217	93	43	23	26	24	26	27	28	29	29	30	30	31
cement manufacturing	540	217	93	43	23	26	24	26	27	28	29	29	30	30	31
Miscellaneous Industrial Process	ses 1,488	1,120	715	273	150	143	143	30	28	26	30	22	25	23	22
WASTE DISPOSAL & RECYCLING	2,200	1,595	1,210	871	765	804	808	812	825	830	604	788	798	806	813
Incineration	2,200	1,595	1,210	871	765	804	808	812	825	830	604	788	798	806	813
municipal waste	581	396	161	79	45	67	70	68	69	68	70	76	76	76	77
other	1,619	1,199	1,049	792	720	738	738	744	756	762	534	712	722	729	736
Transportation	181,698	136,336	64,706	18,973	1,802	1,197	592	584	547	544	564 5	525	523	518	536
ON-ROAD VEHICLES	171,961	130,206	60,501	18.052	982	421	18	18	19	19	19	19	20	21	22
Light-Duty Gas Vehicles & Motorcyc	les142,918	106,868	47,184	13,637	733	314	13	14	14	14	14	12	13	14	14
Light-Duty Gas Trucks	22,683	19,440	11,671	4,061	232	100	4	4	5	5	5	7	7	7	7
Heavy-Duty Gas Vehicles	6,361	3,898	1,646	354	16	7	0	0	0	0	0	0	0	1	1
NON-ROAD ENGINES AND VEHICI	LES9,737	6,130	4,205	921	820	776	574	565	529	525	544	505	503	497	515
Non-Road Gasoline	8,340	5,012	3,320	229	166	158	0	0	0	0	0	0	0	0	0
Aircraft	1,397	1,118	885	692	655	619	574	565	528	525	544	505	503	497	515
TOTAL ALL SOURCES	220,869	159,659	74,153	22,890	5,468	4,975	4,169	3,810	3,916	4,047	3,929	4,077	4,137	4,057	4,199

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
Fuel Combustion	10,061	10,486	11,320	10,048	10,537	10,895	10,779	10,928	11,111	11,015	10,827	10,523	10,576	10,396	10,026	
FUEL COMB. ELEC. UTIL.	4,900	5,694	7,024	6,127	6,593	6,663	6,519	6,504	6,651	6,565	6,384	6,141	6,279	6,231	5,715	Гab
Coal	3,888	4,828	6,123	5,240	5,676	5,642	5,559	5,579	5,744	5,636	5,579	5,574	5,644	5,436	4,935	ē
bituminous	2,112	2,590	3,439	4,378	4,595	4,532	4,435	4,456	4,403	4,207	3,830	3,776	3,828	3,635	3,229	<u>ې</u>
subbituminous	1,041	1,276	1,694	668	837	857	874	868	1,087	1,167	1,475	1,570	1,591	1,575	1,504	4.
anthracite & lignite	344	414	542	194	245	254	250	255	255	262	273	229	225	226	202	a
other	391	548	447	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	0	ö
Oil	1,012	866	901	193	285	221	212	170	180	163	96	118	145	223	202	ล
residual	40	101	39	178	268	207	198	158	166	149	94	116	142	220	199	<u>Z</u>
distillate	972	765	862	15	17	14	14	13	14	14	2	2	2	3	3	tro
other	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA	0	0	0	0	ge
Gas	NA	NA	NA	646	582	565	580	579	551	591	562	285	319	381	385	n
natural	NA	NA	NA	646	582	565	580	579	551	591	562	273	306	363	367	×.
process	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12	13	19	18	de
Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6	7	27	26	sE
Internal Combustion	NA	NA	NA	48	49	235	168	175	176	175	148	158	165	164	167	ä
FUEL COMB. INDUSTRIAL	4.325	4.007	3.555	3.209	3.209	3.035	2.979	3.071	3.151	3.147	3.144	3.157	3.102	3.051	3.136	iss
Coal	771	520	444	608	615	585	570	574	589	602	597	543	537	524	542	ö
bituminous	532	359	306	430	446	399	387	405	41.3	420	412	369	364	357	370	าร
subbituminous	164	111	94	14	14	18	20	21	28	.38	46	46	46	44	46	В
anthracite & lignite	75	51	44		30	26	26	26	26	27	26	19	19	18	18	tin
other	NA	NA	NA	131	124	141	137	122	122	117	112	109	108	105	108	lat
Oil	332	354	286	309	294	265	237	244	245	241	247	225	216	209	214	ŝ
residual	228	186	179	191	176	180	146	154	153	149	156	141	130	126	129	2
distillate	104	112	63	89	88	71	73	73	75	76	73	73	74	72	73	56
other	NΔ	56	44	20	20	14	18	17	17	17	17	11	12	11	11	<u> </u>
Gas	3 060	2 983	2 6 1 9	1 520	1 625	1 182	1 250	1 301	1 3 3 0	1 3 3 3	1 324	1 205	1 180	1 175	1 202	197
natural	3,000	2,303	2,010	1 282	1 405	967	1,230	1,068	1,000	1 103	1 102	1,203	970	958	085	੍ਹਹ
nrocess	3,005	2,037	2,703	202	200	907 211	222	230	7,090	228	220	210	216	215	905 211	5
other	NA	140	115	11	209	211	222	200	200	220	220	210	210	215	217	80
Othor	162	140	205	110	120	121	120	126	12/	124	102	120	115	115	110	, _
wood/bark waste	102	149	203	80	02	80	82	82	83	83	123	83	70	80	82	86
liquid waste	102 NA	100	130	12	92 10	03	11	10	11	11	11	00	/ 3 Q	00	02 Q	ζī
athor	60	1VA 11	67	17	12	24	26	24	20	20	11	3	20	27	20	19
Internal Combustion		47 NA	07 NA	655	556	97/	703	975 975	863	846 846	20	1 064	20 1 045	1 0 2 9	20	89
	026	705	744	742	726	1 106	1 201	1 252	1 200	1 202	1 200	1,004	1,045	1,020	1,039	<u> </u>
Commonsiel/Institutional Cool	030	700	741	27	730	1,190	1,201	1,303	1,300	1,303	1,290	1,225	1,195	1,114	1,175	66
	23	176	20	106	106	40	00	02	40	40	30 102	06	35	00	37 00	9
	210	170	100	100	100	200	210	93	90	90	103	90	97	00	00	t t
Miss Evel Camb (Event Desid				140	109	200	210	220	232	237	231	247	252	243	200	Snc.
Misc. Fuel Comb. (Except Resid		NA	NA 74	11	11	34	32	28	31	31	30	27	28	29	28	ă
Residential Wood	44	39	74	88	/5	40	50	53	45	44	49	51	43	38	40	đ
Residential Other	439	412	356	326	347	/80	865	916	867	857	847	//0	/40	688	/23	sho
distillate oil	118	113	85	/5	/8	209	211	210	210	210	210	193	188	1/2	1/5	h
natural gas	242	246	238	248	267	449	469	489	513	516	519	470	437	400	433	₫
other	79	54	33	3	3	121	185	218	144	131	118	108	114	117	116	ns)

Source Category 19	970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	_ T a
Industrial Processes 1,	215	697	666	891	852	892	816	857	861	878	873	903	939	950	942	ble /
CHEMICAL & ALLIED PRODUCT MFG	271	221	213	262	273	168	165	163	155	160	158	125	127	129	131	4
Organic Chemical Mfg	70	53	54	37	42	18	22	22	19	20	20	21	21	21	21	ż
Inorganic Chemical Mfg 2	201	168	159	22	18	12	12	10	5	6	7	6	6	6	6	atio
Polymer & Resin Mfg	NA	NA	NA	22	23	6	6	6	5	5	4	3	3	3	3	n
Agricultural Chemical Mfg	NA	NA	NA	143	152	80	77	76	74	76	74	50	51	52	53	a N
Paint, Varnish, Lacquer, Enamel Mfg	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	Litr
Pharmaceutical Mfg	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	Ő.
Other Chemical Mfg	NA	NA	NA	38	39	52	48	50	51	54	54	45	46	47	47	en
METALS PROCESSING	77	73	65	87	83	97	76	81	83	91	98	83	88	88	88	0
Nonferrous Metals Processing	NA	NA	NA	16	15	14	15	13	12	12	12	11	12	12	12	ă
Ferrous Metals Processing	77	73	65	58	54	78	56	62	67	75	83	66	71	71	70	es
Metals Processing NEC	NA	NA	NA	13	14	6	5	6	4	4	4	6	6	6	6	Щ
PETROLEUM & RELATED INDUSTRIES	240	63	72	124	97	153	121	148	123	117	110	139	143	143	143	nis
Oil & Gas Production	NA	NA	NA	69	47	104	65	68	70	63	58	86	88	88	88	ŝ
Petroleum Refineries & Related Ind. 2	240	63	72	55	49	47	52	76	49	49	48	47	48	48	48	Ŋ
Asphalt Manufacturing	NA	NA	NA	1	1	3	4	4	5	5	5	7	7	7	7	Ē
OTHER INDUSTRIAL PROCESSES	187	182	205	327	311	378	352	361	370	389	399	438	460	467	470	sti
Agriculture, Food, & Kindred Products	NA	NA	NA	5	5	3	3	3	4	3	6	5	5	5	5	m
Textiles, Leather, & Apparel Products	NA	NA	NA	0	0	0	0	0	0	0	0	1	1	1	1	ਵਿੱ
Wood, Pulp & Paper, & Pub. Prod.	18	18	24	73	77	91	88	86	86	89	89	86	89	91	93	Ű,
Rubber & Miscellaneous Plastic Prod.	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	19
Mineral Products	169	164	181	239	220	270	249	259	267	281	287	331	350	355	356	, ,
cement mfa	97	89	98	137	124	151	131	139	143	150	153	200	212	214	213	2
alass mfa	48	53	60	48	45	59	59	61	64	66	67	69	74	76	78	326
other	24	23	23	54	51	61	59	60	60	64	66	62	64	65	65	بو د
Machinery Products	NA	NA	NA	2	2	3	2	2	3	6	7	2	3	3	3	86
Electronic Equipment	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	ğ
Transportation Equipment	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	10
Miscellaneous Industrial Processes	NA	NA	NA	8	7	10	10	10	9	9	10	12	12	12	12	- Ö
SOLVENT UTILIZATION	NA	NA	NA	2	3	1	2	3	3	3	3	2	3	3	3	
Degreasing	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	86
Graphic Arts	NA	NA	NA	0 0	Õ	Õ	1	1	1	1	1	1	1	1	1	φ Ι
Dry Cleaning	NA	NA	NA	NĂ	NĂ	Õ	0	0	0	0	0	0	0	0	0	19
Surface Coating	NA	NA	NA	2	2	1	2	2	2	2	2	2	2	2	2	66
Other Industrial	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	(Ŧ
Nonindustrial	NΔ	NΔ	NΔ	NΔ	NΔ	0	0	0	0	0	0	0	0	0	0	ğ
Solvent Litilization NEC	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	0	0	0	0	0	0	SS
STORAGE & TRANSPORT	NΔ	NΔ	NΔ	2	2	3	6	5	5	5	6	15	16	16	16	Ind
Bulk Terminals & Plants	ΝΔ	ΝA	NA	ΝA		0	1	1	1	1	1	2	2	2	2	ŝ
Petroleum & Petroleum Prod. Storage	NΔ	NΔ	NΔ	1	1	2	2	0	0	0	0	2	2	2	2	ğ
Petroleum & Petroleum Prod. Trans	NΔ	NΔ	NΔ	، ٥	۰ ۵	<u>د</u> ٥	<u>د</u>	0	0	0	0	، ۱	0	0	0	t t
Sorvice Stations: State I				NA	NA	NA	NA	NA		NA		0	0	0	0	ŋ
Service Stations: Stage I			NA NA								NA 0	0	0	0	0	<u>s</u>
Organic Chemical Storage				11/1	11/14		NA C	NA כ	NA C	0 2	U A	U 1	U 1	U A	U 1	8
Organic Chemical Storage		INA NA	NA NA			0	2	о О	ა ი	о 0	4	4	4	4	4	nti
Inorganic Chemical Storage	NA NA					0	0	0	0	0	0	0	0	0	0	nu
norganic chemical Storage		INA NA	INA NA	0	0	U	0	U	0	0	U 4	0	0	0	0	ed
DUIK Materials Storage	NA	NA	NA	U	1	U	U	U	U	U	1	2	2	2	2	\sim

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
WASTE DISPOSAL & RECYCLING	440	159	111	87	84	91	95	96	123	114	99	101	102	104	91	ibie
Incineration	110	56	37	27	31	49	51	51	74	65	53	56	56	57	58	P
Open Burning	330	103	74	59	52	42	43	43	44	44	44	42	42	43	30	4
POTW	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	Va
Industrial Waste Water	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	
TSDF	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	a
Landfills	NA	NA	NA	0	0	0	0	1	1	1	1	2	2	2	2	Z
Other	NA	NA	NA	0	0	0	1	1	4	3	1	1	1	1	1	ITO
Transportation	9,322	11,284	12,150	11,948	12,210	12,014	12,457	12,692	12,902	13,191	13,085	14,211	14,436	14,355	14,105	ger
ON-ROAD VEHICLES	7,390	8,645	8,621	8,089	7,682	7,210	7,557	7,759	7,960	8,176	7,956	8,793	8,924	8,816	8,590	G
Light-Duty Gas Vehicles & Motorcy	/cles4,158	4,725	4,421	3,806	3,494	3,013	3,069	3,098	3,117	3,173	3,043	3,006	2,996	2,933	2,859	â
light-duty gas vehicles	4,156	4,722	4,416	3,797	3,483	3,002	3,058	3,086	3,105	3,161	3,031	2,994	2,983	2,920	2,846	Sa
motorcycles	2	3	5	9	11	11	11	12	12	13	12	12	12	12	13	Ц
Light-Duty Gas Trucks	1,278	1,461	1,408	1,530	1,386	1,552	1,839	2,004	2,131	2,160	1,991	1,709	1,742	1,703	1,638	nıs
light-duty gas trucks 1	725	819	864	926	803	901	1,074	1,171	1,242	1,251	1,183	1,166	1,185	1,157	1,110	SIC
light-duty gas trucks 2	553	642	544	603	584	651	766	833	888	909	809	543	557	546	529	ins
Heavy-Duty Gas Vehicles	278	319	300	330	343	306	321	309	316	351	330	518	505	467	459	П
Diesels	1,676	2,141	2,493	2,423	2,458	2,340	2,328	2,347	2,397	2,492	2,591	3,560	3,680	3,713	3,635	
heavy-duty diesel vehicles	1,676	2,118	2,463	2,389	2,416	2,248	2,284	2,302	2,351	2,446	2,544	3,538	3,662	3,698	3,620	nai
light-duty diesel trucks	NA	NA	5	6	7	63	11	11	12	12	13	8	7	6	6	les
light-duty diesel vehicles	NA	23	25	28	35	28	33	33	33	34	34	14	11	9	8	
NON-ROAD ENGINES AND VEHICL	.ES1,931	2,638	3,529	3,859	4,528	4,804	4,900	4,934	4,942	5,015	5,128	5,418	5,512	5,539	5,515	9/9
Non-Road Gasoline	85	92	101	108	114	120	121	123	124	126	127	142	160	176	187	ç
recreational	1	1	1	1	1	6	6	6	6	6	6	7	8	8	8	l u
construction	2	3	4	4	4	4	4	4	4	4	4	4	5	6	6	, j
industrial	10	10	13	14	13	12	12	12	11	11	11	14	14	14	13	7
lawn & garden	26	28	29	31	35	36	37	38	39	40	41	51	61	71	78	ğ
farm	3	3	5	5	5	6	6	6	6	6	6	4	4	4	4	
light commercial	10	10	11	12	14	15	16	16	17	18	18	22	27	31	34	99
logging	0	0	0	0	0	0	0	0	0	0	0	3	4	5	5	ğ
airport service	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
railway maintenance	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	80
recreational marine vessels	34	36	38	40	41	41	41	41	41	41	41	37	37	37	37	<u> </u>
Non-Road Diesel	1,109	1,666	2,125	2,155	2,472	2,513	2,552	2,595	2,640	2,687	2,739	2,746	2,760	2,751	2,707	99
recreational	0	2	2	2	3	3	3	3	3	3	3	5	5	5	5	9
construction	436	639	843	943	1,083	1,102	1,120	1,138	1,156	1,174	1,198	1,267	1,273	1,267	1,247	Inc
industrial	217	160	193	244	270	268	265	265	268	270	274	240	242	241	237	SDC
lawn & garden	9	18	19	22	40	45	50	54	59	64	69	70	76	81	83	än
farm	350	728	926	755	877	898	917	936	953	970	987	935	934	926	906	ā
light commercial	31	43	44	54	72	77	82	87	91	96	101	109	114	119	123	ŝno
logging	65	74	94	118	101	94	88	82	79	77	75	79	73	67	61	Ĩ
airport service	2	2	2	3	6	7	7	8	8	9	9	10	10	10	10	Ö
railway maintenance	UA	UA	UA	2	3	3	4	4	4	4	4	4	4	4	4	SI (SI
recreational marine vessels	UA	UA	UA	13	16	17	17	18	19	19	20	28	29	30	31	6
Aircraft	72	85	106	119	138	158	155	156	156	161	165	167	168	174	175	S

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Marine Vessels	171	207	467	557	747	943	995	961	917	929	936	970	985	996	1,007
coal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
diesel	144	175	396	469	628	630	649	621	593	604	615	960	974	984	995
residual oil	26	31	71	87	118	114	115	116	114	115	105	0	0	0	0
gasoline	NA	NA	NA	NA	NA	10	10	9	9	9	10	10	10	11	12
other	NA	NA	NA	NA	NA	190	221	214	201	201	206	0	0	0	0
Railroads	495	589	731	808	923	929	929	946	945	947	990	1,183	1,222	1,215	1,204
Non-Road Other	0	0	0	112	135	141	147	153	159	165	171	210	218	227	235
liquified petroleum gas	NA	NA	NA	75	98	103	109	115	120	126	132	183	190	199	206 9
compressed natural gas	NA	NA	NA	37	38	38	38	39	39	39	39	27	28	28	29
Miscellaneous	330	165	248	310	293	369	286	255	241	390	267	416	402	319	320
Agriculture and Forestry	NA	0	0	0	0										
agricultural livestock	NA	0	0	0	0										
Other Combustion	330	165	248	310	293	368	285	253	240	388	265	416	402	319	320
Health Services	NA	0	0	0	0	0	0	0	0						
Cooling Towers	NA	0	NA	0	0	0	0	0	0						
Fugitive Dust	NA	NA	NA	NA	NA	1	1	1	1	1	1	0	0	0	0
TOTAL ALL SOURCES	20,928	22,632	24,384	23,198	23,893	24,170	24,338	24,732	25,116	25,474	25,051	26,053	26,352	26,020	25,393

Note: Some columns may not sum to totals due to rounding.

APPENDIX A DATA TABLES 141

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	Та
Fuel Combustion	722	660	1,050	1,570	1,372	1,005	1,075	1,114	993	989	1,073	1,072	935	858	904	ble
FUEL COMB. ELEC. UTIL.	30	40	45	32	37	47	44	44	45	45	44	50	52	56	56	ъ Б
Coal	18	22	31	24	27	27	27	27	29	29	29	28	29	29	29	-
Oil	7	14	9	5	7	6	5	4	4	4	3	3	4	5	5	∠a,
Gas	5	4	5	2	2	2	2	2	2	2	2	8	8	10	9	tio
Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	1	1	าล
Internal Combustion	NA	NA	NA	1	1	12	10	10	10	10	10	10	11	11	11	\$
FUEL COMB. INDUSTRIAL	150	150	157	134	134	182	196	187	186	196	206	179	175	174	178	a
Coal	4	3	3	7	7	7	6	7	6	8	6	7	7	7	7	tile
Oil	4	5	3	17	16	12	11	12	12	12	12	9	8	8	8	Õ
Gas	77	71	62	57	61	58	60	52	51	63	73	59	59	59	60	ſġ
Other	65	71	89	35	36	51	51	49	51	50	50	35	34	34	35	ni
Internal Combustion	NA	NA	NA	18	15	54	68	66	66	64	65	69	68	67	69	õ
FUEL COMB. OTHER	541	470	848	1,403	1,200	776	835	884	762	748	823	843	708	628	670	ě
Commercial/Institutional Coal	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	np
Commercial/Institutional Oil	4	3	3	4	4	3	3	3	3	3	3	3	3	3	3	0 LI
Commercial/Institutional Gas	6	7	7	6	7	8	8	10	11	11	11	14	14	13	15	ğ
Misc. Fuel Comb. (Except Reside	ntial) NA	NA	NA	4	4	8	8	8	9	9	8	9	9	9	10	Ē
Residential Wood	460	420	809	1,372	1,169	718	776	822	698	684	759	779	645	569	608	m.
fireplaces	460	420	809	1,372	1,169	718	776	822	698	684	759	680	549	478	512	ssi
woodstoves	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41	39	37	39	on
other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	59	57	54	57	s E
Residential Other	70	38	28	16	15	38	39	40	40	40	41	36	35	33	34	st
Inudstrial Processes	14,310	12,081	12,861	10,474	10,755	10,000	10,178	10,380	10,578	10,738	10,780	8,540	8,761	8,304	7,996	mat
CHEMICAL & ALLIED PRODUCT MI	G 1,341	1,351	1,595	881	980	634	710	715	701	691	660	387	388	394	395	es
Organic Chemical Mfg	629	751	884	349	387	192	216	211	215	217	210	131	133	136	138	_
ethylene oxide mfg	8	9	10	2	2	0	1	1	1	1	1	0	0	0	0	97
phenol mfq	NA	NA	NA	0	0	4	4	4	4	4	2	2	2	2	2	,o
terephthalic acid mfg	29	46	60	24	27	20	23	17	19	21	17	11	11	11	11	19
ethylene mfg	70	79	111	28	33	9	11	10	10	9	10	5	5	5	5	75,
charcoal mfg	48	29	40	37	45	33	33	33	33	34	33	30	31	31	32	2
socmi reactor	81	96	118	43	49	26	30	30	32	33	33	27	28	28	29	80
socmi distillation	NA	NA	NA	7	7	8	9	8	8	8	8	4	4	4	4	, ,
socmi air oxidation processes	NA	NA	NA	0	1	2	2	2	2	2	2	1	1	1	1	36
socmi fuqitives	194	235	254	179	193	61	67	69	70	70	70	40	41	42	42	្ញុំប
other	199	257	291	27	30	29	38	37	36	35	34	12	12	12	12	19
Inorganic Chemical Mfg	65	78	93	3	3	2	3	3	2	2	3	3	3	3	3	89
Polymer & Resin Mfg	271	299	384	343	389	242	268	283	269	257	222	128	124	126	124	<u> </u>
polypropylene mfg	0	0	1	12	13	2	2	2	2	2	2	2	2	2	2	99
polyethylene mfg	17	18	22	51	57	39	44	45	46	46	35	16	17	17	17	0
polystyrene resins	10	11	15	6	7	4	5	5	5	5	5	5	3	3	3	t,
synthetic fiber	112	149	199	217	250	144	161	173	157	143	142	78	80	82	83	sne
styrene/butadiene rubber	77	68	70	45	50	15	15	16	17	18	16	11	7	7	7	än
other	55	54	77	12	13	37	41	42	42	43	22	16	16	16	13	ā
Agricultural Chemical Mfg	NA	NA	NA	11	12	6	7	8	7	6	5	8	8	8	8	shc
· · ·																ort tons
																÷

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Paint, Varnish, Lacquer, Enamel Mfg	61	66	65	8	8	14	16	17	18	17	18	7	8	8	8 8
paint & varnish mfg	61	66	65	8	8	13	15	16	16	16	16	6	6	6	6
other	NA	NA	NA	0	0	1	1	1	1	1	2	2	2	2	2 9
Pharmaceutical Mfg	40	55	77	43	48	20	21	24	23	24	38	7	7	7	8 2
Other Chemical Mfg	275	102	92	125	132	158	179	169	166	168	164	104	105	106	107
carbon black mfg	275	102	92	26	26	9	17	16	16	21	24	27	28	28	28
printing ink mfg	NA	NA	NA	2	3	1	1	1	1	2	2	1	1	1	1
fugitives unclassified	NA	NA	NA	12	12	23	23	21	20	27	30	13	13	13	13 🤶
carbon black furnace: fugitives	NA	NA	NA	4	5	0	1	1	1	1	1	0	0	0	0
other	NA	NA	NA	81	87	125	136	129	127	117	107	63	64	64	65 a
METALS PROCESSING	394	336	273	76	74	122	123	124	124	126	125	73	78	78	77
Nonferrous Metals Processing	NA	NA	NA	18	19	18	19	17	18	20	21	19	20	20	20 ق
Ferrous Metals Processing	394	336	273	57	54	98	99	100	98	97	96	44	47	47	46 ह
coke oven door & topside leaks	216	187	152	12	12	19	22	27	27	26	26	5	6	6	6 2
coke oven by-product plants	NA	NA	NA	3	3	7	9	9	9	9	9	5	5	5	5
other	177	149	121	41	39	71	68	63	62	62	61	35	37	36	36 0
Metals Processing NEC	NA	NA	NA	1	1	7	6	8	8	8	8	10	11	11	10 🛓
PETROLEUM & RELATED INDUSTRIES	S1,194	1,342	1,440	703	639	612	640	632	649	647	642	477	487	485	424 ⁰
Oil & Gas Production	411	378	379	107	68	301	301	297	310	305	299	271	274	272	271
Petroleum Refineries & Related Ind.	773	951	1,045	592	568	308	337	332	336	339	339	201	208	208	149 🖥
vaccuum distillation	24	31	32	15	13	7	7	7	7	7	6	3	3	3	3 6
cracking units	27	27	21	34	31	15	17	16	15	16	16	16	16	16	16 _ 1
process unit turnarounds	NA	NA	NA	15	13	11	11	11	11	10	12	2	2	2	28
, petroleum refinerv fuaitives	NA	NA	NA	76	65	99	105	103	109	109	111	84	87	86	27 E
other	721	893	992	454	446	177	196	195	194	198	194	97	101	101	101 L a
Asphalt Manufacturing	11	13	16	3	3	3	3	3	3	3	4	5	5	5	4 0
OTHER INDUSTRIAL PROCESSES	270	235	237	390	403	401	391	414	442	438	450	422	438	443	449 -
Agriculture, Food, & Kindred Product	ts 208	182	191	169	175	138	130	127	146	145	147	104	108	109	111 4
vegetable oil mfg	59	61	81	46	49	16	18	19	19	16	16	1	1	1	1 .5
whiskev fermentation: aging	105	77	64	24	23	24	16	12	24	24	25	15	16	16	16 -
bakeries	45	44	46	51	51	43	44	44	46	46	47	41	42	42	43 0
other	NA	NA	NA	49	52	55	52	51	58	58	60	47	49	50	51 -
Textiles, Leather, & Apparel Products	NA	NA	NA	10	10	20	18	19	19	19	19	10	10	10	10 9
Wood, Pulp & Paper, & Publishing P	rod.NA	NA	NA	42	44	96	92	101	112	105	122	154	160	164	167
Rubber & Miscellaneous Plastic Proc	d. 60	51	44	41	46	58	59	64	62	61	60	49	51	52	52 9
rubber tire mfa	60	51	44	10	11	5	5	5	5	6	6	6	6	6	6,0
areen tire sprav	NA	NA	NA	5	6	3	4	3	3	3	3	2	2	2	2 7
other	NA	NA	NA	26	29	50	50	55	53	52	51	41	43	44	44
Mineral Products	2	2	2	15	14	18	17	27	28	30	31	31	32	32	32
Machinery Products	NA	NA	NA	4	4	7		10		11	11	11	12	12	12 4
Electronic Equipment	NA	NA	NA	0	0	2	2	3	3	3	2	1	1	1	1 4
Transportation Equipment	NA	NA	NA	1	0	2	2	2	3	3	2	3	4	4	4
Construction	NA	NA	NA	NA.	NĂ	0	0	0	n n	0	0	n	0	n N	0 0
Miscellaneous Industrial Processes	NA	NA	NA	108	109	59	62	62	62	62	57	58	60	60	61 ^Q
															ים אוטור נטוא,

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999 ត្រ
SOLVENT UTILIZATION	7,174	5,651	6,584	5,699	5,964	5,750	5,782	5,901	6.016	6,162	6,183	5,474	5,621	5,149	4,825 D
Degreasing	707	448	513	756	757	744	718	737	753	775	789	602	624	372	371 P
open top	NA	NA	NA	28	29	18	25	26	26	27	24	8	8	4	ن 4
conveyorized	NA	NA	NA	5	4	5	6	6	6	6	5	4	5	2	2 Z
cold cleaning	NA	NA	NA	31	35	30	23	24	24	22	23	22	23	10	11 ati
other	707	448	513	691	689	691	664	680	697	719	737	567	588	356	354 🗋
Graphic Arts	319	254	373	317	363	274	301	308	322	333	339	287	293	300	293
letterpress	NA	NA	NA	2	2	4	8	8	8	8	8	6	6	6	6 0
flexographic	NA	NA	NA	18	20	20	24	26	26	25	24	19	19	20	15 [≞]
lithographic	NA	NA	NA	4	4	14	17	18	21	22	20	12	12	13	13 ^Ф
gravure	NA	NA	NA	131	150	75	82	81	87	93	91	50	51	52	44 G
other	319	254	373	162	187	162	171	175	180	185	196	200	205	210	214 an
Dry Cleaning	263	229	320	169	212	215	218	224	225	228	230	154	163	166	168 🗟
perchloroethylene	NA	NA	NA	85	107	110	112	115	116	117	118	58	61	63	63 🖓
petroleum solvent	NA	NA	NA	84	105	104	106	109	110	111	112	89	94	96	97 🚊
other	263	229	320	0	0	0	0	0	0	0	1	7	8	8	8 ğ
Surface Coating	3,570	2,977	3,685	2,549	2,635	2,523	2,521	2,577	2,632	2,716	2,681	2,373	2,456	2,193	2,136
industrial adhesives	52	41	55	381	375	390	374	386	400	419	410	351	366	147	148 🖸
fabrics	161	177	186	34	35	14	14	16	16	15	15	10	10	10	10 💾
paper	652	548	626	106	114	75	64	61	59	59	52	48	49	50	51 🐹
large appliances	49	43	36	22	18	21	20	20	21	22	21	23	24	23	22 <u>ö</u>
magnet wire	7	6	5	0	0	1	1	1	1	1	1	2	2	2	2 (^{ns}
autos & light trucks	165	204	165	85	87	92	90	93	92	96	96	94	100	102	106 얼 仄
metal cans	49	57	73	97	95	94	91	93	96	98	102	99	106	109	113 특 특
metal coil	18	19	21	50	50	45	49	47	49	48	47	45	47	48	49 IU at
wood furniture	211	231	231	132	140	158	154	159	171	185	179	175	185	127	130 <u> </u>
metal furniture	35	42	52	41	44	48	47	49	52	56	53	52	54	56	58 1
flatwood products	64	76	82	4	4	9	10	10	11	12	13	16	17	17	18 2
plastic parts	17	18	25	11	11	27	22	23	22	22	18	15	16	16	16 J
large ships	21	20	20	15	15	15	14	15	15	15	13	17	18	18	19 9
aircraft	1	1	2	27	34	7	7	7	7	7	6	11	11	12	5 ્ળ
misc. metal parts	NA	NA	NA	14	14	59	87	90	92	93	92	38	40	40	40 10
steel drums	NA	NA	NA	NA	NA	3	3	3	3	4	4	4	4	4	4 8
architectural	442	407	477	473	500	495	500	505	510	515	522	480	485	487	483 🛓
traffic markings	NA	NA	NA	100	106	105	106	107	108	109	111	93	94	94	93 <mark>9</mark> 8
maintenance coatings	108	125	106	79	80	79	76	78	81	85	84	80	83	84	85 ⁽⁵¹
railroad	5	7	9	4	3	3	3	3	3	4	4	3	3	3	4 19
auto refinishing	83	143	186	111	132	130	132	137	140	144	142	161	163	163	104 ⁶
machinery	39	51	62	37	28	28	26	26	27	27	25	25	25	22	20 1
electronic & other electrical	NA	NA	NA	79	79	78	75	77	80	85	85	78	82	82	82 00
general	79	61	52	146	154	121	127	129	133	140	138	100	105	106	107 🛱
miscellaneous	942	392	799	104	103	32	37	42	39	38	35	30	31	32	32 ਰੋ
thinning solvents	NA	NA	NA	90	96	96	97	100	94	96	99	51	53	54	54 <mark>U</mark> S
other	372	309	415	306	317	297	295	302	310	321	314	273	280	282	282 B

short tons)

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Other Industrial	640	499	690	125	131	94	98	102	102	99	96	106	110	111	113
miscellaneous	39	30	44	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
rubber & plastics mfg	309	245	327	25	29	28	28	28	29	31	31	38	40	40	40 ද
other	292	224	319	100	102	66	71	74	73	68	64	68	70	71	72 💈
Nonindustrial	1,674	1,243	1,002	1,783	1,867	1,900	1,925	1,952	1,982	2,011	2,048	1,949	1,973	2,004	1,743
cutback asphalt	1,045	723	323	191	199	199	202	207	214	221	227	135	140	144	147
other asphalt	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	43	44	45	46 ⁹
pesticide application	241	195	241	212	260	258	264	272	280	289	299	388	393	408	412
adhesives	NA	NA	NA	345	353	361	365	368	372	375	380	301	304	307	250
consumer solvents	NA	NA	NA	1.035	1.056	1.083	1.095	1,105	1,116	1.126	1,142	1.076	1.085	1.095	883 a
other	387	325	437	NA	NA	NA	NA	NA	NA	NA	NA	6	6	6	5
Other	NA	NA	NA	NA	NA	0	NA	NA	0	0	0	3	3	3	2 9
STORAGE & TRANSPORT	1.954	2.181	1.975	1.747	1.753	1.495	1.532	1.583	1.600	1.629	1.652	1.289	1.327	1.327	1.240 ह
Bulk Terminals & Plants	599	668	517	606	651	359	369	384	395	403	406	208	215	214	203
fixed roof	14	15	12	14	15	9	11	12	13	16	16	6	6	6	6 1
floating roof	45	50	39	46	50	26	29	30	34	29	19	11	11	11	11 0
variable vapor space	1	1	1	1	1	2	2	1	1	1	0	0	0	0	0
efr with seals	NA	NA	NA	NA	NA	2	3	3	4	4	3	2	2	2	2 0
ifr with seals	NA	NA	NA	NA	NA	2	2	3	5	3	3	3	- 3	- 3	3 [
underground tanks	NA	0	0	0	0	1	2	2	2	2	2	2	2	2	2
area source: gasoline	509	569	440	512	553	282	281	292	292	305	322	163	167	167	157 8
other	.30	.33	26	.32	.33	.36	40	42	44	43	41	21	22	22	22
Petroleum & Petroleum Product St	or 300	315	306	223	210	157	195	204	205	194	191	181	187	187	108 8
fixed roof assoline	۵۱. ۵۵۵ 47	52	43	26	23	13	17	17	16	16	16	14	14	14	1 of the set
fixed roof crude	135	141	148	26	21	21	25	26	28	24	21	25	26	25	10 U
floating roof gasoline	49	54	45	27	24	15	25	24	24	22	22	16	16	16	11 0
floating roof crude	32	34	36	5	5	2	7	7	21	6	6	5	6	6	2
efr / seal gasoline	3	4	3	2	2	7	11	13	14	14	15	9	ģ	9	2 4
efr / seal crude	1	2	2	0	0	3	3	3	3	3	2	3	3	4	, Ç
ifr / seal casoline	1	2	1	1	1	1	2	2	2	2	2	3	3	3	3 0
ifr / seal crude	2	2	2	0	0	0	0	0	0	0	0	1	1	1	1 0
variable vanor space dasoline	2	2	2	1	2	1	2	5	6	3	0	0	0	0	, <u>-</u>
area source: crude	NΔ	NΔ	NΔ	NΔ	ΝΔ	0	0	0	0	0	0	0	0	0	0 0
other	25	22	23	133	132	92	102	106	103	103	106	104	108	108	68
Petroleum & Petroleum Product Tr	ans t 02	84	61	126	125	151	146	140	142	130	134	115	110	110	120 4
asoline loading: normal / splas	2h 3	2	0	3	3	3	2	2	2	3	2	3	3	3	3 0
gasoline loading: holmal / spide	merced20	13	2	21	22	15	17	15	13	11	10	7	7	7	7 .
gasoline loading: balanced / sub	nerged20	26	2	2 I 11	12	26	25	26	24	25	23	13	11	13	11 0
gasoline loading: rionnal / subme	rand 2	20	0	2	24	20	20	20	27	20	25	15	0	13	
marine vessel loading: clean / Subine	R crude 26	38	50	2	2	31	30	30	20	28	20	31	32	33	34
other	x cruuezo 2	1	6	27	22	76	73	75	23 73	20 72	23 70	61	62	62	62
Sorvice Stations: Stage I	416	7 191	461	207	222	300	205	303	300	322	334	310	210	210	320 Ξ
Service Stations: Stage I	521	602	503	207	223	133	29J 430	442	110	JZZ 467	104	300	110	410	412 C
Sorvice Stations: Broathing & Emp	tving NA	NA	505 NA	405	52	400 50	400 51	52	53	407	57	13	410	410	412 0
Organia Chamical Storage		21	46	49	26	20	25	20	20	20	27	40	40	40	40 =
Organic Chemical Transport			40 NIA	04 17	30 15	30 10	33 Q	20 Q	39 7	59 7	37 7	20	20	21 5	20 E 2
Inorganic Chemical Storage		NA NA		۱ <i>۲</i>	10	0	1	0	1	1	1	1	1	1	
Inorganic Chemical Transport				0	0	0	۱ م	۱ ۵	۱ م	۱ ۵	1	۱ ۵	۱ ۵	۱ م	
Rulk Materiale Storage				0	0	0	0	0	U 1	U 1	U 1	U 1	U 1	U 1	
Duik Materiale Transport	INA NIA											1	1		
Buik Materials Transport	NA	NA	NA	INA	NA	NA	NA	NA	NA	INA	NA	U	U	U	U

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	Та
WASTE DISPOSAL & RECYCLING	1,984	984	758	979	941	986	999	1,010	1,046	1,046	1,067	418	422	428	586	ble
Incineration	548	453	366	64	59	48	50	51	76	65	54	50	50	51	51	≥
Open Burning	1,424	517	372	309	274	196	200	203	207	208	208	195	198	200	356	Ċ
industrial	NA	NA	NA	6	6	4	4	4	5	5	5	5	5	5	0	ž
commmercial/institutional	NA	NA	NA	1	2	9	9	10	10	10	10	18	19	19	0	atic
residential	NA	NA	NA	302	266	165	167	169	171	172	173	163	165	166	149	ž
other	1,424	517	372	NA	NA	19	20	20	21	21	20	9	10	10	207	2
POTW	NA	NA	NA	10	11	49	47	48	50	52	51	48	48	49	50	000
Industrial Waste Water	NA	NA	NA	1	2	14	18	19	19	19	16	19	20	20	21	atil
TSDF	NA	NA	NA	594	595	589	591	589	588	587	628	41	41	42	42	0
Landfills	NA	NA	NA	0	0	64	66	69	74	80	75	35	35	36	36,	ğ
Other	11	14	20	0	0	26	28	31	33	35	36	29	29	30	30	ani
Transportation	14,849	12,623	11,291	11,818	9,744	8,988	9,240	8,882	8,973	9,235	8,515	9,099	8,844	8,738	8,529	0
ON-ROAD VEHICLES	12,972	10,545	8,979	9,376	7,192	6,443	6,660	6,289	6,348	6,563	5,816	5,541	5,438	5,439	5,297	Ôn
Light-Duty Gas Vehicles & Motorc	ycles9,193	7,248	5,907	5,864	4,462	3,692	3,608	3,288	3,232	3,332	3,029	2,911	2,878	2,935	2,911 -	ğ
light-duty gas vehicles	9,133	7,177	5,843	5,810	4,412	3,635	3,571	3,256	3,198	3,295	2,991	2,875	2,842	2,895	2,870	ŭ
motorcycles	60	71	64	54	50	56	36	33	34	37	38	36	36	39	42	spi
Light-Duty Gas Trucks	2,770	2,289	2,059	2,425	1,867	2,016	2,318	2,347	2,471	2,488	2,135	1,786	1,789	1,788	1,722	Щ
light-duty gas trucks 1	1,564	1,251	1,229	1,437	1,018	1,103	1,245	1,255	1,313	1,307	1,172	1,157	1,164	1,171	1,132	nis
light-duty gas trucks 2	1,206	1,038	830	988	849	912	1,073	1,092	1,157	1,181	963	629	624	617	589	Sic
Heavy-Duty Gas Vehicles	743	657	611	716	517	405	416	335	327	414	325	488	439	400	375	SUC
Diesels	266	351	402	370	346	331	318	318	318	330	326	356	332	316	289 8	Ш
heavy-duty diesel vehicles	266	335	392	360	332	298	303	302	302	313	309	348	325	311	284 1	stir
light-duty diesel trucks	NA	NA	2	2	3	24	4	5	5	5	5	4	3	3	2 P	na
light-duty diesel vehicles	NA	15	8	8	11	9	11	11	11	12	12	5	4	3	3 8	tes
NON-ROAD ENGINES AND VEHICI	LES 1,878	2,078	2,312	2,442	2,552	2,545	2,581	2,594	2,624	2,672	2,699	3,558	3,406	3,299	3,232	<u> </u>
Non-Road Gasoline	1,564	1,669	1,787	1,886	1,907	1,889	1,920	1,925	1,957	1,991	2,021	2,888	2,738	2,637	2,593	97
recreational	138	145	151	156	160	128	130	132	133	135	138	189	186	185	185	, O
construction	27	29	39	45	44	44	44	44	44	44	44	68	59	54	51	19
industrial	25	27	33	37	33	33	32	31	30	29	28	42	34	32	30	5
lawn & garden	511	547	583	616	682	700	718	734	752	771	789	1,047	971	888	845	3
farm	10	14	17	19	20	20	21	21	21	22	22	17	17	16	15	80
light commercial	115	121	127	137	164	171	179	185	192	200	207	233	204	182	172	<u>ر</u>
logging	2	4	5	5	8	9	9	10	11	11	12	372	344	351	369	86
airport service	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	Ŭ
railway maintenance	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	19
recreational marine vessels	/36	782	830	869	793	/84	/8/	/68	//2	//8	//9	917	924	929	924	68
Non-Road Diesei	187	257	321	332	384	390	397	403	408	414	420	412	406	395	372	
recreational	0	1	1	1	1	1	1	1	1	1	1	1	005	1	105	906
construction	94	103	135	151	170	181	185	190	194	199	204	207	205	198	185	á
industriai	30	23	20	30	40	40	41	41	42	42	43	41	41	41	39	5
lawii & garden	3	4	4	0 11 0	407	10	106	12	13	14	14	107	10	101	17	SD
Tarm light commorcial	39	109	138	113	127	120	120	125	124	123	121	107	104	101	94	an
	1	ð	0 11	10	13	13	14 15	14	10	10	10	18	19	20	20	S
iogging airport convice	0	9	11	14	14	14	10	10	10	14	14	15	13	10	0	р
alipoit service	0	0	0	1	1	1	1	2	2	2	2	2	2	2	2	井
recreational marine vessels	UA	UA	UA	2	3	3	3	3	3	3	3	4	4	5	5	ons)

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Aircraft	97	116	146	165	190	180	177	179	176	176	178	177	178	183	183
Marine Vessels	7	8	19	22	30	32	34	33	32	43	32	33	33	34	34
coal	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1 \$
diesel	6	8	17	20	27	21	22	21	20	27	20	32	32	32	33 🚽
residual oil	0	1	1	1	2	3	3	3	3	4	3	0	0	0	0
gasoline	NA	NA	NA	NA	NA	1	1	1	1	1	1	1	1	1	1
other	NA	NA	NA	NA	NA	7	8	8	8	11	8	0	0	0	0
Railroads	22	27	33	37	42	52	52	54	52	49	49	48	50	50	49 9
Non-Road Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
liquified petroleum gas	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0
compressed natural gas	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0
Miscellaneous	1,101	716	1,134	566	642	1,059	756	486	556	720	551	753	1,192	714	716
Agriculture & Forestry	NA	NA	NA	NA	NA	5	6	6	6	6	7	7	7	7	8 6
Other Combustion	1,101	716	1,134	565	641	1,049	743	474	544	707	537	740	1,179	700	702
structural fires	19	47	40	44	44	14	14	15	15	15	15	14	14	15	15 -
agricultural fires	131	75	70	55	79	48	48	49	48	51	54	51	52	52	53
slash/prescribed burning	147	290	285	182	182	234	239	243	266	259	293	277	293	311	311 5
forest wildfires	770	297	739	283	335	749	439	164	212	379	171	395	817	319	319 r
other	34	7	1	NA	NA	3	3	3	3	3	3	3	3	3	3
Catastrophic/Accidental Releases	NA	NA	NA	NA	NA	4	4	4	4	4	4	4	5	5	5 2
Health Services	NA	NA	NA	0	1	1	0	1	1	1	1	0	1	1	1 5
Cooling Towers	NA	NA	NA	NA	NA	0	2	2	1	2	2	1	1	1	1 🕤
Fugitive Dust	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0 nt -
TOTAL AVAILABLE SOURCES	30,982	26,079	26,336	24,428	22,513	21,053	21,249	20,862	21,099	21,683	20,918	19,464	19,732	18,614	18,145 📃 🛔

Note: Some columns may not sum to totals due to rounding.

NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 1999 stimates, 1970, 1975, 1980, 1985, 1989–1999 (thousand short tons) intinued)

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	_
Fuel Combustion	2872	2247	2445	1,536	1,382	1,196	1,147	1,183	1,124	1,113	1,179	1,160	1,076	996	1,029	
FUEL COMB. ELEC. UTIL.	1,775	1,191	879	280	271	295	257	257	279	273	268	289	294	229	225	
Coal	1,680	1,091	796	268	255	265	232	234	253	246	244	264	268	197	194	
bituminous	1,041	661	483	217	193	188	169	167	185	181	174	195	196	134	131	Гat
subbituminous	513	326	238	35	39	37	39	43	46	44	48	51	51	47	46	ble
anthracite & lignite	126	104	75	16	22	41	23	23	22	21	21	19	21	17	17	Þ
other	NA	NA	NA	0	0	NA	NA	NA	NA	NA	NA	0	0	0	0	<u>.</u>
Oil	89	93	76	8	12	9	10	7	9	8	5	6	7	5	5	a,
residual	85	87	74	8	11	9	10	7	9	8	5	6	7	5	5	tio
distillate	3	6	2	0	0	0	0	0	0	0	0	0	0	0	0	nal
Gas	7	6	7	1	1	1	1	0	1	1	1	1	1	1	1	ס
Other	0	0	0	0	0	0	0	0	0	0	0	1	1	7	7	\leq
Internal Combustion	NA	NA	NA	3	3	20	15	16	17	17	18	17	18	18	19	10
FUEL COMB. INDUSTRIAL	641	564	679	247	243	270	233	243	257	270	302	239	233	230	236	Π
Coal	83	23	18	71	70	84	72	74	71	70	70	73	73	71	74	Sir
bituminous	52	14	12	48	49	59	48	53	51	49	49	43	43	42	44	sio
subbituminous	16	4	4	1	1	5	3	3	3	5	5	5	5	5	5	ns
anthracite & lignite	15	4	2	7	6	2	1	1	1	1	1	1	1	1	1	Ш
other	NA	NA	NA	15	14	19	19	17	16	16	15	24	23	23	23	stin
Oil	89	69	67	52	48	52	44	45	45	44	49	46	43	42	43	nat
residual	83	62	63	43	39	44	36	37	38	37	42	38	35	34	35	ie's
distillate	6	7	4	5	5	6	6	6	6	6	6	7	7	7	7	
other	0	0	0 0	4	4	2	2	1	1	1	1	1	1	1	1	97
Gas	27	25	23	47	44	41	34	40	43	43	45	42	42	42	43	, O
natural	24	22	20	24	24	30	24	26	29	30	30	28	27	27	28	19
process	4		3	22	20	11	10	13	13	14	15	14	15	15	14	75
other	NA	NA	NA		1	0	0	0	0	0	0	0	0	0	0	
Other	441	447	571	75	78	87	72	74	86	74	73	61	58	59	60	80
wood/bark waste	415	444	566	67	71	80	67	67	71	68	68	54	51	52	53	<u> </u>
liquid waste	NA	NA	NA	1	1	1	1	1	1	1	1	1	1	1	1	100
other	26		5	6	6	6	5	6	14	6	5	7	6	6	6	្ញី
Internal Combustion	NA	NĂ	NĂ	3	3	6	10	11	12	38	64	17	17	16	17	2
FUEL COMB OTHER	455	492	887	1 009	869	631	657	683	588	570	610	632	549	537	568	88
Commercial/Institutional Coal	13	10	8	13	13	15	14	15	15	15	16	16	16	17	17	Ţ
Commercial/Institutional Oil	52	34	30	12	13	13	11	12	11	12	12	12	12	10	9	36
Commercial/Institutional Gas	4	4	4	4	5	5	6	6	6	7	6		8	7	° 8	90
Misc Fuel Comb (Excent Resid	ontial)NA	ΝA	NΔ	3	3	79	73	73	72	73	73	72	76	79	81	f
Residential Wood	384	407	818	959	817	501	535	558	464	446	484	503	415	403	431	0 U
firenlaces	384	407	818	050	817	501	535	558	464	446	484	429	344	335	350	sar
woodstoves	NΔ	-07 NA	NA	505 MA	NA	NA	NA	NA	-04 ΜΔ	MA		38	36	34	36	Ы
other	NA	NA	ΝA		NA	NA	NA NA		NA NA		N/A	30 27	25	24	35	sh
Residential Other	2	27	07	11/1	10/1	10/1	10/1	10/1	10/1	10/1	10/4	07 00	20	00 01		Pt
	5	51	21	10	10	10	10	10	10	10	10	25	22	21	22	tons)

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	_
Inudstrial Processes	8,668	4,075	3,026	1339	1276	1306	1264	1269	1240	1219	1231	951	977	983	1263	
CHEMICAL & ALLIED PRODUCT MF	G 235	127	148	58	63	77	68	71	66	76	67	63	64	65	66	ab
Organic Chemical Mfg	43	21	19	19	22	26	28	28	28	29	29	29	29	30	30	e
Inorganic Chemical Mfg	61	31	25	7	8	19	4	5	5	5	5	4	4	4	4	P
Polymer & Resin Mfg	NA	NA	NA	4	5	5	4	5	4	4	4	3	3	3	3	6.7
Agricultural Chemical Mfg	46	38	61	9	10	11	11	11	11	10	10	8	9	9	9	a
Paint, Varnish, Lacquer, Enamel M	fg NA	NA	NA	0	0	1	1	1	1	1	1	1	1	1	1	ğ
Pharmaceutical Mfg	NA	NA	NA	0	0	1	0	0	0	0	0	0	0	0	0	a
Other Chemical Mfg	86	37	42	18	18	14	20	20	18	27	18	19	19	19	19	P
METALS PROCESSING	1.316	825	622	220	211	214	251	250	181	184	212	144	151	150	147	5
Nonferrous Metals Processing	593	229	130	46	45	50	46	47	40	39	41	34	35	35	35	
copper	343	66	32	3	3	14	14	15	12	11	12	6	6	6	6	Ë
lead	53	31	18	4	3	3	2	2	2	2	3	2	2	2	2	liss
zinc	20	11	3	3	3	6	6	6	1	2	2	2	2	2	2	ő
other	177	121	77	36	36	27	23	23	25	25	25	24	25	25	25	าร
Ferrous Metals Processing	198	275	322	164	156	155	123	115	121	125	149	91	96	95	93	В
primarv	31	198	271	136	129	128	99	92	97	100	123	64	68	68	67	tin
secondary	167	77	51	26	26	25	24	23	24	25	26	27	28	27	26	lat
other	NA	NA	NA	2	2	2	0	_0	0	_0					_0	es
Metals Processing NEC	525	321	170	10	10	9	82	88	20	20	22	19	20	20	19	
PETROI FUM & RELATED INDUSTRI	ES 286	179	138	63	58	55	43	43	38	38	40	29	30	30	29	97
Oil & Gas Production	NA	NA	NA	0	0	2	2	2	2	2	2	1	1	1	1	, O
Petroleum Refineries & Related In	4 69	56	41	28	24	20	20	21	20	19	20	17	17	17	17	19
fluid catalytic cracking units	4. 00 60	56	41	24	21	17	17	18	17	16	18	12	12	12	12	5
other	NΔ	NΔ	NΔ	4	2	3	3	,0	3	3	3	5	5	5	5	2
Asphalt Manufacturing	217	123	97	35	34	33	21	20	17	17	18	12	12	11	11	80
OTHER INDUSTRIAL PROCESSES	5 832	2 572	1 846	611	501	583	520	506	501	495	511	325	336	338	242	Ļ L
Agriculture Food & Kindred Produ	10,002	429	402	68	72	73	80	69	73	73	80	50	61	50	61	361
country elevators	257	247	258	7	<u>م</u>	, S Q	10	10	10	, S Q	00	5	5	5	5	្ញី
terminal elevators	147	111	200	6	6	6	7	8	8	7	7	2	2	2	2	6
feed mills	5	3	3	6	7	7	1	5	5	5	5	2	2	2	2	980
sovbean mills	25	27	22	13	14	14	15	11	12	12	12	7	7	7	7	Ţ
wheat mills	25	21	1	2	2	2	15	11	12	12	12	2	2	2	2	99
other grain mille	0	0	6	7	0	0	- -	7	-	-	7	2	2	2	2	0
other	20	22	26	25	25	25	24	26	20	20	27	26	27	21	26	Ť
Taytilaa Laathar & Apparal Brodu	oto NIA	52	20	25	20	20	0	20	20	50		1	37	1	1	С,
Wood Dulp & Dopor & Dub Drod	707	274	102	101	106	105	01	70	70	76	01	75	77	70	00	ă
wood, Pulp & Paper, & Pub. Plod.	121	274	100	71	74	105	0 I 5 2	79 50	10	70	0 I 5 2	10	11	19	00	p
suitate (krait) puiping	50	220	142	20	22	73	07	20	49	50	00	30	40	40	41	sh
Dubber & Missellenseus Diestie Dr		40	4 I	30	33	32	21	29	29	20	20	37	30	39	39	ñ
Rubber & Miscellaneous Plastic Pr	00. NA			3	274	4	4	4	3	3	3	4	4	4	4	₫
Mineral Products	4,620	1,869	1,261	401	374	367	320	318	316	313	317	160	166	167	168	ns
cement mtg	1,731	703	417	213	193	190	147	145	140	139	140	23	24	25	24	õ
surface mining	134	111	127	20	15	15	14	15	17	17	17	16	17	1/	1/	ğ
stone quarrying/processing	957	508	421	52	54	54	59	60	60	58	58	23	24	24	24	ıtin
other	1,798	547	296	116	111	108	99	98	99	100	102	97	101	102	103	iue
Machinery Products	NA	NA	NA	8	9	9	8	9	7	7	7	5	5	5	5	ä
Electronic Equipment	NA	NA	NA	0	0	0	0	0	0	0	0	1	1	1	1	
Transportation Equipment	NA	NA	NA	2	2	2	2	2	0	0	0	0	0	0	0	
Construction	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	
Miscellaneous Industrial Processes	s NA	NA	NA	28	23	23	25	24	22	22	23	21	21	21	22	

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	_
SOLVENT UTILIZATION	NA	NA	NA	2	2	4	5	5	6	6	6	6	6	6	6	
Degreasing	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	Ta
Graphic Arts	NA	NA	NA	0	0	0	0	0	0	0	0	1	1	1	1	ble
Dry Cleaning	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	Ď
Surface Coating	NA	NA	NA	2	2	3	4	4	5	5	5	4	5	5	5	<u>ە</u>
Other Industrial	NA	NA	NA	0	0	1	1	1	1	1	1	0	0	0	0	Za
Nonindustrial	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	0	tio
Solvent Utilization NEC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	0	na
STORAGE & TRANSPORT	NA	NA	NA	107	101	102	101	117	114	106	109	81	83	84	85	P
Bulk Terminals & Plants	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	Σ
Petroleum & Petroleum Prod. Sto	orage NA	NA	NA	0	0	0	1	1	1	0	0	1	1	1	1	10
Petroleum & Petroleum Prod. Tra	ans. NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	Щ
Service Stations: Stage II	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	0	0	0	nis
Organic Chemical Storage	NA	NA	NA	1	1	1	1	1	1	1	1	1	1	1	1	sic
Organic Chemical Transport	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	suc
Inorganic Chemical Storage	NA	NA	NA	0	0	1	1	1	1	1	1	0	0	1	1	Ē
Inorganic Chemical Transport	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	stii
Bulk Materials Storage	NA	NA	NA	105	99	100	99	115	111	104	107	78	80	81	82	na
storage	NA	NA	NA	33	31	31	27	30	32	31	30	26	26	27	27	teg
transfer	NA	NA	NA	72	67	69	71	85	79	73	76	51	53	54	54	رب در
combined	NA	NA	NA	1	1	1	0	0	0	0	0	0	0	0	0	10
other	NA	NA	NA	NA	NA	NA	0	Ő	NĂ	0	0	0	0	0	0	,o
Bulk Materials Transport	NA	NA	NA	0	0	1	0	0	0	0	0	0	0	0	0	10
WASTE DISPOSAL & RECYCLING	999	371	27.3	278	251	271	276	278	334	313	287	303	307	310	587	75
	229	95	75	52	50	65	66	65	119	96	69	89	90	91	92	
residential	51	<u>4</u> 9	42	30	35	30	41	43	44	45	45	62	63	63	63	86
other	178	46	32	13	15	26	25	23	74	52	25	26	27	28	28	õ
Open Burning	770	276	198	225	200	206	209	211	214	216	217	211	214	216	492	19
residential	770	276	108	221	105	105	107	100	202	203	204	104	105	107	188	85
other	NA	270 MA	NA	1	5	130	12	10	13	13	13	18	18	10	303	
POTW		NΔ		ΝA	ΝA	0	0	0	0	,5	0	10	10	19	0	86
Industrial Waste Water	ΝA	ΝA	ΝA	0	0	ΝA	0	0	0	0	0	0	0	0	0	9
						0	0	0	0	0	0	0	0	0	0	19
	INA NA		NA NA			0	0	1	1	1	0	2	2	2	2	99
Othor			NA NA	0	0	0	0	0	0	1	1	3	3	3	3	Ŧ
Transportation	786	786	786	786	844	838	842	839	810	804	756 8	18	801	779	753	shot
	112		207	262	267	240	252	240	227	224	200	245	221	212	205	än
Light Duty Gas Vahiclas & Matara	443	207	120	303 77	507 65	57	555	55	55	55	500	56	57	59	29 50	<u>о</u>
light duty gas vehicles & Motores	223	201	120	77	64	57	50	55	55	55	55	50	57	50	59	ĥc
ngni-duly gas venicles	224	200	119		04	57	55	54	55	54	55	50	50	50	50	Ă
Light Duty Cos Trucks	70	70	55	10	24	27	11	47	16	16	11	25	26	26	26	đ
Light-Duty Gas Trucks	70	12	55	43	34	37	44	47	40	40	41	35	30	30	30	(sr
light-duty gas trucks 1	41	39	25	19	16	18	21	22	22	22	23	23	24	24	25	ି
light-duty gas trucks 2	29	34	29	24	19	19	23	25	24	24	19	12	12	12	11	n.
Heavy-Duty Gas Vehicles	13	15	15	14	11	10	10	9	10	10	9	14	13	12	12	tini
Diesels	136	177	208	229	257	245	243	238	215	213	194	239	225	206	189	uei
heavy-duty diesel vehicles	136	166	194	219	247	225	233	228	206	204	185	235	221	203	186	д
light-duty diesel trucks	NA	NA	2	1	2	13	2	3	2	2	2	2	1	1	1	
light-duty diesel vehicles	NA	10	12	8	9	7	8	8	7	7	7	3	2	2	1	

NON-ROAD ENGINES AND VEHICLES 220 310 398 424 477 489 480 483 480 455 473 470 467 447 Non-Road Gasoline 12 39 42 44 46 477 47 48 48 48 46 49 86 677 88 67 is construction 0 1 1 1 1 1 1 1 1 1 1 1 1 2 <t< th=""><th>NON-ROAD ENGINES AND VEHICLES220310Non-Road Gasoline1239recreational3construction0lawn & garden8farm0light commercial1logging0airport service0recreational15420475recreational0recreational0airport service0naine vessels (other)26Non-Road Diesel15420475recreational0construction7592industrial3623lawn & garden3farm16light commercial6light commercial6light commercial6farm16667logging171231airport service0orailway maintenanceNAVAVAAircraft212626Marine Vessels91026coal113gasolineNANANARailroads2530Non-Road Other0liquified petroleum gasNANANAcompressed natural cosNA</th><th>310 39 39 4 3 1 0 1 0 0 8 8 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>8 424 2 44 3 3 1 1 0 0 9 9 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0</th><th>477 46 3 1 0 10 0 2</th><th>489 47 3 1 0 11</th><th>489 47 3 1 0 11</th><th>490 48 3 1 0 11</th><th>483 48 3 1 0 12</th><th>480 48 3 1 0 12</th><th>456 49 3 1 0 12</th><th>473 86 3 2 0</th><th>470 87 3 2 0</th><th>467 88 3 2 0</th><th>458 89 3 2 0</th></t<>	NON-ROAD ENGINES AND VEHICLES220310Non-Road Gasoline1239recreational3construction0lawn & garden8farm0light commercial1logging0airport service0recreational15420475recreational0recreational0airport service0naine vessels (other)26Non-Road Diesel15420475recreational0construction7592industrial3623lawn & garden3farm16light commercial6light commercial6light commercial6farm16667logging171231airport service0orailway maintenanceNAVAVAAircraft212626Marine Vessels91026coal113gasolineNANANARailroads2530Non-Road Other0liquified petroleum gasNANANAcompressed natural cosNA	310 39 39 4 3 1 0 1 0 0 8 8 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 424 2 44 3 3 1 1 0 0 9 9 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0	477 46 3 1 0 10 0 2	489 47 3 1 0 11	489 47 3 1 0 11	490 48 3 1 0 11	483 48 3 1 0 12	480 48 3 1 0 12	456 49 3 1 0 12	473 86 3 2 0	470 87 3 2 0	467 88 3 2 0	458 89 3 2 0
Non-Road Casoline 12 39 42 44 46 47 47 48 48 48 49 86 87 88 8 recrestional 3	Non-Road Gasoline1239recreational33construction01industrial00lawn & garden88farm00light commercial11logging00airport service00railway maintenanceNANArecreational marine vessels (other) UA26Non-Road Diesel154204recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAVAVArecreational marine vesselsNAUA26Non-Road Diesel171233gargen336light commercial6100railway maintenanceNAVAVAAircraft21265for residual oil333gasolineNANARailroads2530Non-Road Other0liquified petroleum gasNANANAcompresend natural gasNANANAcompresend natural gasNA	2 39 4 3 3 0 1 0 0 8 8 0 0 1 0 0 0 0 0 0 0 NA N	2 44 3 3 1 1 0 0 9 9 0 0 1 1 0 0 0 0	46 3 1 0 10 2	47 3 1 0 11 0	47 3 1 0 11	48 3 1 0 11	48 3 1 0 12	48 3 1 0 12	49 3 1 0 12	86 3 2 0	87 3 2 0	88 3 2 0	89 3 2 0
recreational 3 <t< td=""><td>recreational33construction01industrial00lawn & garden88farm00light commercial11logging00airport service00railway maintenanceNANArecreational marine vessels (other) UA26Non-Road Diesel154204recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAVAVArecreational marine vesselsNAUA1diesel561residual oil333gasolineNANANARailroads2530Non-Road Other0liquified petroleum gasNANANAcommercied natural gasNA</td><td>3 3 1 1 0 0 8 8 0 0 1 1 0 0 0 0 0 0 NA N</td><td>3 3 1 1 9 9 0 0 1 1 0 0</td><td>3 1 0 10 0 2</td><td>3 1 0 11 0</td><td>3 1 0 11</td><td>3 1 0 11</td><td>3 1 0 12</td><td>3 1 0 12</td><td>3 1 0 12</td><td>3 2 0 21</td><td>3 2 0</td><td>3 2 0</td><td>3 2 0</td></t<>	recreational33construction01industrial00lawn & garden88farm00light commercial11logging00airport service00railway maintenanceNANArecreational marine vessels (other) UA26Non-Road Diesel154204recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAVAVArecreational marine vesselsNAUA1diesel561residual oil333gasolineNANANARailroads2530Non-Road Other0liquified petroleum gasNANANAcommercied natural gasNA	3 3 1 1 0 0 8 8 0 0 1 1 0 0 0 0 0 0 NA N	3 3 1 1 9 9 0 0 1 1 0 0	3 1 0 10 0 2	3 1 0 11 0	3 1 0 11	3 1 0 11	3 1 0 12	3 1 0 12	3 1 0 12	3 2 0 21	3 2 0	3 2 0	3 2 0
construction 0 1 <t< td=""><td>construction01industrial00lawn & garden8farm0light commercial111logging0airport service0railway maintenanceNArecreational marine vessels (other) UA26Non-Road Diesel154204recreational0construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAVAVArecreational marine vesselsNAUA1712airport service00railway maintenanceNAVA1diesel565residual oil3gasolineNANA25Non-Road Other0liquified petroleum gasNANANAcommercised natural conNANANAcommercised natural con0</td><td>0 1 0 0 8 8 0 0 1 1 0 0 0 0 NA N</td><td>1 1 0 0 9 9 0 0 1 1 0 0</td><td>1 0 10 0 2</td><td>1 0 11 0</td><td>1 0 11</td><td>1 0 11</td><td>1 0 12</td><td>1 0 12</td><td>1 0 12</td><td>2 0 21</td><td>2 0</td><td>2 0</td><td>2 0</td></t<>	construction01industrial00lawn & garden8farm0light commercial111logging0airport service0railway maintenanceNArecreational marine vessels (other) UA26Non-Road Diesel154204recreational0construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAVAVArecreational marine vesselsNAUA1712airport service00railway maintenanceNAVA1diesel565residual oil3gasolineNANA25Non-Road Other0liquified petroleum gasNANANAcommercised natural conNANANAcommercised natural con0	0 1 0 0 8 8 0 0 1 1 0 0 0 0 NA N	1 1 0 0 9 9 0 0 1 1 0 0	1 0 10 0 2	1 0 11 0	1 0 11	1 0 11	1 0 12	1 0 12	1 0 12	2 0 21	2 0	2 0	2 0
industrial 0	industrial00lawn & garden88farm00light commercial11logging00airport service00recreational marine vessels (other) UA26Non-Road Diesel154204recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAVAVArecreational marine vesselsNAUA1idesel561residual oil333gasolineNANANARailroads2530Non-Road Other0liquified petroleum gasNANANA	0 0 8 8 0 0 1 1 0 0 0 0 NA N	0 0 9 9 0 0 1 1 0 0	0 10 0 2	0 11 0	0 11	0 11	0 12	0 12	0 12	0	0	0	0
hawn & garden 8 8 9 9 10 11 11 11 12 13 14 13 14 14 14 14	lawn & garden88farm00light commercial11logging00airport service00railway maintenanceNANArecreational marine vessels (other) UA26Non-Road Diesel154204recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAUAvecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANA	8 8 0 0 1 1 0 0 0 0 NA N	9 9 0 0 1 1 0 0	10 0 2	11 0	11	11	12	12	12	21	01		
farm 0	farm00light commercial11logging0airport service0railway maintenanceNArecreational marine vessels (other) UA26Non-Road Diesel154204recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAVAVArecreational marine vesselsNAVA1diesel565residual oil333gasolineNANA25Non-Road Other0liquified petroleum gasNANANAnon-Road Other0NA	0 0 1 0 0 0 0 NA N	0 0 1 1 0 0	0 2	0	0	-			• =	21	21	20	20
light commercial 1 1 1 1 2	light commercial11logging00airport service0railway maintenanceNArecreational marine vessels (other) UA26Non-Road Diesel154204recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAVAVArecreational marine vesselsNAVA1diesel565residual oil333gasolineNANa2530Non-Road Other0liquified petroleum gasNANANAcommercial natural cosNANANAairport service00112530Non-Road Other0NaNANANANANANANANANANANA1111111111111111111111111111 <td>1 0 0 0 0 NA N</td> <td>1 1 0 0</td> <td>2</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	1 0 0 0 0 NA N	1 1 0 0	2		0	0	0	0	0	0	0	0	0
degring 0 </td <td>logging00airport service00railway maintenanceNANArecreational marine vessels (other) UA26Non-Road Diesel154204recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAVAVArecreational marine vesselsNAVA1diesel565residual oil333gasolineNANA25Non-Road Other0liquified petroleum gasNANANAcommercial natural cas04</td> <td>0 0 0 0 NA N</td> <td>0 0</td> <td></td> <td>2</td>	logging00airport service00railway maintenanceNANArecreational marine vessels (other) UA26Non-Road Diesel154204recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAVAVArecreational marine vesselsNAVA1diesel565residual oil333gasolineNANA25Non-Road Other0liquified petroleum gasNANANAcommercial natural cas04	0 0 0 0 NA N	0 0		2	2	2	2	2	2	2	2	2	2
airport service 0	airport service00railway maintenanceNANArecreational marine vessels (other) UA26Non-Road Diesel154204recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAUAvecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA) O NA N	n n	0	0	0	0	0	0	0	19	20	22	23
railway maintenance NA NA NA 0 <td>railway maintenanceNANArecreational marine vessels (other) UA26Non-Road Diesel154204recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAUAvecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA</td> <td>NA N</td> <td>0</td>	railway maintenanceNANArecreational marine vessels (other) UA26Non-Road Diesel154204recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAUAvecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA	NA N	0	0	0	0	0	0	0	0	0	0	0	0
recreational marine vessels (other) UA 26 28 29 30 <th< td=""><td>recreational marine vessels (other) UA 26 Non-Road Diesel 154 204 recreational 0 0 construction 75 92 industrial 36 23 lawn & garden 3 3 farm 16 66 light commercial 6 7 logging 17 12 airport service 0 0 railway maintenance NA UA recreational marine vessels NA UA Aircraft 21 26 Marine Vessels 9 10 coal 1 1 diesel 5 6 residual oil 3 3 gasoline NA NA Railroads 25 30 Non-Road Other 0 0 liquified petroleum gas NA NA</td><td>26 2</td><td>4 <i>0</i></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	recreational marine vessels (other) UA 26 Non-Road Diesel 154 204 recreational 0 0 construction 75 92 industrial 36 23 lawn & garden 3 3 farm 16 66 light commercial 6 7 logging 17 12 airport service 0 0 railway maintenance NA UA recreational marine vessels NA UA Aircraft 21 26 Marine Vessels 9 10 coal 1 1 diesel 5 6 residual oil 3 3 gasoline NA NA Railroads 25 30 Non-Road Other 0 0 liquified petroleum gas NA NA	26 2	4 <i>0</i>	0	0	0	0	0	0	0	0	0	0	0
Non-Road Diesel 154 204 263 272 302 301 299 297 296 296 296 273 268 263 255 recreational 0 0 0 1	Non-Road Diesel154204recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAUArecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANAvance and the series of the ser	1 20 2	8 29	30	30	30	30	30	30	30	38	38	39	39
recreational 0 0 0 1 <th1< th=""> <th< td=""><td>recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAUArecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA</td><td>204 26</td><td>3 272</td><td>302</td><td>301</td><td>299</td><td>297</td><td>296</td><td>296</td><td>296</td><td>273</td><td>268</td><td>263</td><td>253</td></th<></th1<>	recreational00construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAUArecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA	204 26	3 272	302	301	299	297	296	296	296	273	268	263	253
construction 75 92 123 134 149 149 148 147 147 146 146 142 139 135 123 industrial 36 23 27 35 38 38 37 37 38 38 33<	construction7592industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAUArecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA	0	0 1	1	1	1	1	1	1	1	1	1	1	1
industrial 36 23 27 35 38 38 37 37 38 38 38 33	industrial3623lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAUArecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA	5 92 12	3 134	149	149	148	147	147	146	146	142	139	135	128
lawn & garden 3 3 4 4 8 8 9 10 11 11 12 11 11 12 11 11 12 12 11 11 11 12 12 11 11 11 12 12 11 11 11 12 12 11 11 11 12 12 12 13 13 14 13 14 13 14	lawn & garden33farm1666light commercial67logging1712airport service00railway maintenanceNAUArecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANA	i 23 2	7 35	38	38	37	37	38	38	38	33	33	33	33
farm 16 66 85 70 78 78 77 76 75 74 73 62 59 57 52 light commercial 6 7 7 9 11 12 12 12 13 13 14 13 14 </td <td>farm1666light commercial67logging1712airport service00railway maintenanceNAUArecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA</td> <td>3</td> <td>4 4</td> <td>8</td> <td>8</td> <td>9</td> <td>10</td> <td>11</td> <td>11</td> <td>12</td> <td>11</td> <td>11</td> <td>12</td> <td>12</td>	farm1666light commercial67logging1712airport service00railway maintenanceNAUArecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA	3	4 4	8	8	9	10	11	11	12	11	11	12	12
light commercial 6 7 7 9 11 12 12 12 13 13 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 14 13 14 13 14 14 14 14 16 19 15 13 11 10 9 9 8 8 7 7 airport service 0 0 0 1	light commercial67logging1712airport service00railway maintenanceNAUArecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANA	66 8	5 70	78	78	77	76	75	74	73	62	59	57	54
logging 17 12 16 19 15 13 11 10 9 9 8 8 7 7 airport service 0 0 0 1	logging1712airport service00railway maintenanceNAUArecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA	6 7	7 9	11	12	12	12	13	13	14	13	14	14	15
airport service 0 0 0 1	airport service00railway maintenanceNAUArecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANA	, 12 1	6 19	15	13	11	10	9	9	8	8	7	7	6
railway maintenance NA UA UA UA 0 1 <th1< th=""> 1 1 1<td>railway maintenanceNAUArecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANA</td><td>0</td><td>0 0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td></th1<>	railway maintenanceNAUArecreational marine vesselsNAUAAircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANA	0	0 0	1	1	1	1	1	1	1	1	1	1	1
necreational marine vessels NA UA UA 1 <	recreational marine vessels NA UA Aircraft 21 26 Marine Vessels 9 10 coal 1 1 diesel 5 6 residual oil 3 3 gasoline NA NA Railroads 25 30 Non-Road Other 0 0 liquified petroleum gas NA NA	UA U	A 0	1	1	1	1	1	1	1	1	1	1	1
Aircraft 21 26 33 37 43 44 44 45 43 41 40 40 39 39 33 Marine Vessels 9 10 23 28 38 44 46 45 43 44 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 44 44 44 44 45 43 44 44 45 43 44 44 45 43 44 44 45 43 <td< td=""><td>Aircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA</td><td>UA U</td><td>4 1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td></td<>	Aircraft2126Marine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA	UA U	4 1	1	1	1	1	1	2	2	2	2	2	2
Marine Vessels 9 10 23 28 38 44 46 45 43 44 45 44 44 45 44 44 45 44 44 45 44 44 45 44 44 44 45 44 46 45 44 46 45 44 44 45 44 44 45 44 44 <td>ModelPPMarine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA</td> <td>26 3</td> <td>3 37</td> <td>43</td> <td>44</td> <td>44</td> <td>45</td> <td>43</td> <td>41</td> <td>40</td> <td>40</td> <td>39</td> <td>39</td> <td>- 38</td>	ModelPPMarine Vessels910coal11diesel56residual oil33gasolineNANARailroads2530Non-Road Other00liquified petroleum gasNANANANANA	26 3	3 37	43	44	44	45	43	41	40	40	39	39	- 38
Indiring robotic 1	coal1diesel5residual oil3gasolineNANA25Non-Road Other0liquified petroleum gasNANANA	10 2	3 28	38	44	46	45	43	44	43	44	44	45	46
diesel 5 6 15 17 23 27 28 27 26 26 26 40 41 <	diesel 5 6 residual oil 3 3 gasoline NA NA Railroads 25 30 Non-Road Other 0 0 liquified petroleum gas NA NA	1	2 2	.3				.3	.3	.3			.3	
residual oil 3 3 7 9 12 14 14 14 14 14 13 0 0 0 gasoline NA NA NA NA NA NA 1	residual oil 3 3 gasoline NA NA Railroads 25 30 Non-Road Other 0 0 liquified petroleum gas NA NA	, 6 1	5 17	23	27	28	27	26	26	26	40	41	41	42
gasoline NA 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>	gasoline NA NA Railroads 25 30 Non-Road Other 0 0 liquified petroleum gas NA NA	3	7 9	12	14	14	14	14	14	13	0	0	0	0
Railroads 25 30 37 41 47 53 53 54 52 50 27 29 30	Railroads 25 30 Non-Road Other 0 0 liquified petroleum gas NA NA	NA N	A NA	NA	1	1	1	1	1	1	1	1	1	1
Non-Road Other 0 0 1 1 1 1 1 1 1 2 <th2< th=""> 2 2 <th2< th=""> <t< td=""><td>Non-Road Other 0 0 liquified petroleum gas NA NA</td><td>30 3</td><td>7 41</td><td>47</td><td>53</td><td>53</td><td>54</td><td>52</td><td>50</td><td>27</td><td>29</td><td>30</td><td>30</td><td>30</td></t<></th2<></th2<>	Non-Road Other 0 0 liquified petroleum gas NA NA	30 3	7 41	47	53	53	54	52	50	27	29	30	30	30
Non-roduction Composition Composition <thcomposition< th=""> <thcomposition< th=""></thcomposition<></thcomposition<>	liquified petroleum gas NA NA		י	1	1	1	1	1	1	1	20	2	2	2
compressed natural gas NA NA NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	compressed natural cas NA NA		Δ 1	1	1	1	1	1	1	1	1	1	1	1
TOTAL ALL SOURCES 12,325 7,108 6,258 3,662 3,502 3,340 3,253 3,292 3,174 3,136 3,165 2,929 2,854 2,758 3,04				0	0	0	0	0	0	0	0	0	0	,
$\frac{1}{2},\frac{1}$		7108 625	8 3 6 6 2	3 502	3 3/0	3 253	3 292	3 17/	3 136	3 165	2 9 2 9	2 854	2 7 5 8	3 0/5
	TOTAL ALL SOURCES 12,325 7,106	7,100 0,25	5 5,002	3,302	3,340	3,233	3,292	3,174	5,150	5,105	2,929	2,054	2,750	3,045

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Miscellaneous	839	569	852	37,736	37,461	24,541	24,233	23,958	24,328	25,620	22,765	21,761	23,046	23,282	20,634
Agriculture & Forestry	NA	NA	NA	7,108	7,320	5,292	5,234	5,017	4,575	4,845	4,902	4,911	4,952	4,951	4,888
agricultural crops	NA	NA	NA	6,833	6,923	4,745	4,684	4,464	4,016	4,281	4,334	4,330	4,373	4,366	4,298
agricultural livestock	NA	NA	NA	275	396	547	550	553	558	564	569	581	579	585	590
Other Combustion	839	569	852	894	912	1,181	924	770	801	1,053	850	1,152	1,300	1,005	1,007
wildfires	385	206	514	308	300	601	332	171	152	424	145	502	599	261	261
managed burning	390	325	315	527	553	558	569	576	625	606	680	631	680	723	725
other	64	37	23	59	59	22	23	23	23	24	24	20	21	21	21
Cooling Towers	NA	NA	NA	NA	NA	0	0	0	0	0	1	3	3	3	3
Fugitive Dust	NA	NA	NA	29,734	29,229	18,068	18,075	18,170	18,953	19,722	17,012	15,695	16,791	17,324	14,736
unpaved roads	NA	NA	NA	11,644	11,798	11,234	11,206	10,918	11,430	11,370	10,362	9,071	9,461	9,327	9,360
paved roads	NA	NA	NA	5,080	5,769	2,248	2,399	2,423	2,462	2,538	2,409	2,400	2,595	2,663	2,728
construction	NA	NA	NA	12,670	11,269	4,249	4,092	4,460	4,651	5,245	3,654	3,578	4,022	4,545	1,956
other	NA	NA	NA	339	392	336	377	369	409	569	586	645	713	788	692 ,
TOTAL ALL SOURCES	839	569	852	37,736	37,461	24,541	24,233	23,958	24,328	25,620	22,765	21,761	23,046	23,282	20,634

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
Fuel Combustion	23,456	22,661	21,391	20,021	19,924	20,290	19,796	19,493	19,245	18,887	16,230	16,234	16,651	16,746	16,091	
FUEL COMB. ELEC. UTIL.	17,398	18,268	17,469	16,272	16,215	15,909	15,784	15,416	15,189	14,889	12,080	12,730	13,195	13,416	12,698	2
Coal	15,799	16,756	16,073	15,630	15,404	15,220	15,087	14,824	14,527	14,313	11,603	12,206	12,615	12,470	11,856	
bituminous	9,574	10,161	NA	14,029	13,579	13,371	13,215	12,914	12,212	11,841	8,609	8,998	9,517	9,357	8,806	Þ
subbituminous	4,716	5,005	NA	1,292	1,422	1,415	1,381	1,455	1,796	1,988	2,345	2,632	2,490	2,486	2,427	ģ
anthracite & lignite	1,509	1,590	NA	309	404	434	491	455	519	484	649	576	608	627	623	N
Oil	1,598	1,511	1,395	612	779	639	652	546	612	522	413	460	514	762	657	
residual	1,578	1,462	NA	604	765	629	642	537	601	512	408	454	509	756	651	ina
distillate	20	49	NA	8	14	10	10	9	10	10	5	6	5	6	6	- u
Gas	1	1	1	1	1	1	1	1	1	1	9	7	6	6	12	Ĝ
Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4	4	121	115	4
Internal Combustion	NA	NA	NA	30	30	49	45	46	49	53	55	53	56	57	58	
FUEL COMB. INDUSTRIAL	4,568	3,310	2,951	3,169	3,086	3,550	3,256	3,292	3,284	3,218	3,357	2,863	2,805	2,742	2,805	X
Coal	3,129	1,870	1,527	1,818	1,840	1,914	1,805	1,783	1,763	1,740	1,728	1,321	1,306	1,274	1,317	de
bituminous	2,171	1,297	1,058	1,347	1,384	1,050	949	1,005	991	988	1,003	885	877	858	890	Π
subbituminous	669	399	326	28	29	50	53	60	67	77	81	63	63	61	64	
anthracite & lignite	289	174	144	90	79	67	68	67	68	68	68	61	60	57	57	SIC
other	NA	NA	NA	353	348	746	735	650	636	606	576	312	306	298	306	Uns
Oil	1,229	1,139	1,065	862	812	927	779	801	809	777	912	807	764	738	757	П
residual	956	825	851	671	625	687	550	591	597	564	701	626	578	559	574	STII
distillate	98	144	85	111	107	198	190	191	193	193	191	158	161	156	159	na
other	175	171	129	80	80	42	39	20	20	20	20	23	25	23	24	leg
Gas	140	263	299	397	346	543	516	552	555	542	548	575	582	578	576	, U
Other	70	38	60	86	82	158	142	140	140	141	147	140	134	133	135	191
Internal Combustion	NA	NA	NA	7	6	9	14	16	17	19	23	20	19	19	20	ç
FUEL COMB. OTHER	1,490	1,082	971	579	624	831	755	784	772	780	793	641	651	588	588	
Commercial/Institutional Coal	109	147	110	158	169	212	184	190	193	192	200	179	184	196	196	5
Commercial/Institutional Oil	883	638	637	239	274	425	376	396	381	391	397	308	314	250	246	_
Commercial/Institutional Gas	1	1	1	2	2	7	7	7	8	8	8	10	10	10	11	98
Misc. Fuel Comb. (Except Resider	ntial)NA	NA	NA	1	1	6	6	6	6	6	5	6	6	6	6	Ç
Residential Wood	6	7	13	13	11	7	7	8	6	6	7	7	6	5	6	l g
Residential Other	492	290	211	167	167	175	176	177	178	177	176	131	130	121	123	ů
distillate oil	212	196	157	128	132	137	141	144	145	145	144	108	106	97	98	-
bituminous/subbituminous coal	260	76	43	29	27	30	26	26	25	25	24	17	18	18	18	age of a second se
other	20	18	11	10	8	9	8	8	8	8	8	6	6	6	6	Ĩ
Industrial Processes	7,101	4,728	3,807	2,467	2,010	1,900	1,721	1,758	1,723	1,676	1,637	1,417	1,467	1,471	1,465	990
CHEMICAL & ALLIED PRODUCT MF	G 591	367	280	456	440	297	280	278	269	275	286	255	259	261	262	(II
Organic Chemical Mfg	NA	NA	NA	16	17	10	9	9	9	8	8	4	4	4	4	loc
Inorganic Chemical Mfg	591	358	271	354	334	214	208	203	191	194	199	173	176	178	179	sa
sulfur compounds	591	358	271	346	326	211	205	199	187	189	195	171	174	176	177	Ind
other	NA	NA	NA	8	8	2	3	4	4	4	4	2	2	2	2	<u>v</u>
Polymer & Resin Mfg	NA	NA	NA	7	7	1	1	1	1	1	0	1	1	1	1	G
Agricultural Chemical Mfg	NA	NA	NA	4	4	5	4	4	4	4	5	1	1	1	1	Ē
Paint, Varnish, Lacquer, Enamel M	lfg NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	SUC
Pharmaceutical Mfg	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	5
Other Chemical Mfg	NA	8	10	76	77	67	57	60	64	68	74	76	76	77	76	

Source Category	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
METALS PROCESSING	4,775	2,849	1,842	1,042	695	726	612	615	603	562	530	390	407	405	401	abl
Nonferrous Metals Processing	4,060	2,165	1,279	853	513	517	435	438	431	391	361	267	276	274	272	le ,
copper	3,507	1,946	1,080	655	327	323	234	247	250	206	177	93	99	98	97	4
lead	77	34	34	121	113	129	135	131	122	128	126	112	113	114	114	ž
aluminum	80	72	95	62	60	60	61	55	53	51	53	57	59	57	56	ati
other	396	113	71	14	13	4	5	5	6	6	6	5	5	5	5	P.
Ferrous Metals Processing	715	684	562	172	165	186	159	158	153	153	151	107	114	114	113	<u>a</u>
Metals Processing NEC	NA	NA	NA	18	17	22	18	18	19	19	18	17	17	17	17	Su
PETROLEUM & RELATED INDUSTRIE	S 881	727	734	505	429	430	378	416	383	379	369	335	344	342	341	f
Oil & Gas Production	111	173	157	204	156	122	98	93	98	95	89	90	90	90	90	ò
natural gas	111	173	157	202	155	120	96	92	96	93	88	89	90	89	89	ö
other	NA	NA	NA	2	1	2	2	2	2	2	1	1	1	1	1	ïd
Petroleum Refineries & Related Ind.	770	554	577	300	272	304	274	315	278	276	271	238	246	245	244	Ē
fluid catalytic cracking units	480	318	330	212	195	183	182	185	183	188	188	157	163	162	162	E.
other	290	236	247	88	77	121	92	130	95	88	83	81	83	83	82	SS
Asphalt Manufacturing	NA	NA	NA	1	1	4	7	7	7	8	9	8	8	8	7	ion
OTHER INDUSTRIAL PROCESSES	846	740	918	425	405	399	396	396	392	398	403	390	409	415	418	S
Agriculture, Food, & Kindred Produc	ts NA	NA	NA	3	3	3	3	3	3	3	3	4	4	4	5	st
Textiles, Leather, & Apparel Products	S NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	Ϊ
Wood, Pulp & Paper, & Publ, Prod.	169	168	223	131	136	116	123	119	113	109	114	101	105	107	109	ate
Rubber & Miscellaneous Plastic Pro	d. NA	NA	NA	1	1	0	0	0	0	0	0	1	1	1	1	ů,
Mineral Products	677	571	694	286	261	275	267	270	272	282	282	270	285	288	288	19
cement mfa	618	511	630	192	172	181	165	168	170	167	171	171	181	183	183	70
other	59	60	64	95	89	94	102	102	102	114	111	99	103	105	106	
Machinery Products	NA	NA	NA	0	0	0	0	1	0	1	1	0	0	0	0	97
Electronic Equipment	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	GI
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19
Miscellaneous Industrial Processes	NĂ	NĂ	NĂ	3	3	5	3	3	3	3	4	13	13	14	14	.08
SOLVENT UTILIZATION	NA	NA	NA	1	1	Ō	0	1	1	1	1	1	1	1	1	2
Degreasing	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	88
Graphic Arts	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0	, ,
Dry Cleaning	NA	NA	NA	NĂ	NĂ	NĂ	NĂ	0	NĂ	0	0	0	0	0	0	361
Surface Coating	NA	NA	NA	1	1	0	0	Õ	0	0	0	Õ	0	Ő	0	φ
Other Industrial	NA	NA	NA	0	0	0	0	Õ	0	0	0	1	1	1	1	<u>.</u>
STORAGE & TRANSPORT	NA	NA	NA	4	5	7	10	9	5	2	2	5	5	5	5	36(
Bulk Terminals & Plants	NA	NA	NA	NA	NA	0	1	1	0	0	0	1	1	1	1	Ē
Petroleum & Petroleum Prod. Storac	e NA	NA	NA	0	0	5	7	0	0	0	0	0	0	0	0	hoi
Petroleum & Petroleum Prod t Trans	NA	NA	NA	1	1	0	0	Õ	0	0	0	1	1	2	2	SSD
Service Stations: Stage II	NA	NA	NA	NA.	ΝA	NA	NA	NĂ	NĂ	0	0	0	0	0	0	DUE
Organic Chemical Storage	NA	NA	NA	1	1	0	0	0	0	0	0	0	0	0	0	s
Organic Chemical Transport	NA	NA	NA	NA.	ΝA	0	0	Õ	0	0	0	Õ	0	0 0	0	ho
Inorganic Chemical Storage	NΔ	NΔ	NΔ	0	0	0	0	0	0	0	0	0	0	0	0	구
Inorganic Chemical Transport	NΔ	NΔ	NΔ	0	0	0	0	0	0	0	0	0	0	0	0	9
Bulk Materials Storage	NA	NΔ	NΔ	1	2	1	1	7	1	1	1	2	2	2	2	s)
	NА		NA	1	Z	I	1	Ĩ	-	I	I	2	Z	Z	2	(continued

	1970	1975	1980	1985	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
NASTE DISPOSAL & RECYCLING	8	46	33	34	36	42	44	44	71	60	47	41	42	42	37
Incineration	4	29	21	25	28	32	32	32	51	42	35	29	29	30	30
industrial	NA	NA	NA	10	10	5	4	5	25	17	8	6	6	7	7
other	4	29	21	15	18	26	28	27	26	26	27	22	23	23	24
Open Burning	4	17	12	9	8	11	11	11	11	11	11	11	11	11	5
industrial	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0
other	4	17	12	8	7	10	10	11	11	11	11	11	11	11	5
POTW	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0
Industrial Waste Water	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0
TSDF	NA	NA	NA	NA	NA	0	0	0	0	0	0	0	0	0	0
Landfills	NA	NA	NA	0	0	0	0	0	0	0	0	1	1	1	1
industrial	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0
other	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	0
Other	NA	NA	NA	0	0 0	0	1	1	8	6	0	0	0	0	0
ransportation	494	602	697	1,159	1,349	1,476	1,517	1,553	1,497	1,297	1,311	1,192	1,230	1,262	1,299
DN-ROAD VEHICLES	411	503	521	522	570	560	573	586	526	307	311	343	353	358	363
Light-Duty Gas Vehicles & Motorcycle	s 132	158	159	146	145	129	126	125	124	125	126	128	131	134	137
light-duty gas vehicles	132	158	158	145	145	128	126	125	124	124	126	128	130	134	136
motorcycles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Light-Duty Gas Trucks	40	48	50	55	58	69	81	87	90	92	93	85	89	90	91
light-duty gas trucks 1	26	.32	33	36	.38	45	52	56	58	59	60	62	65	66	68
light-duty gas trucks 2	13	16	16	10	21	24	20	31	32	32	32	22	23	24	24
Heavy-Duty Gas Vehicles	8	, U Q	10	11	11	10	10	10	11	12	11	18	18	17	17
Diosolo	221	200	303	211	356	352	356	364	300	70	22	110	117	117	110
	201	200	175	627	770	016	044	069	072	000	02	9/0	977	001	026
Non Road Capalina	OJ NIA	99 NA	175 NA	20	22	910	944 00	300	912	990 00	333	049 20	0// 20	904 00	930
Non-Road Dissol				407	100	500	520	540	23 570	Z3 500	2J 610	20	20	400	507
Aircroft	INA 4	INA 4	NA 6	407	400	509	529	549	570	090	11	409	4/4	490	507
All Ciall Marina Massala	4	4 50	117	142	102	051	250	250	240	11	220	11	245	12	12
	43	52	50	143	193	201	209	200	249	202	209	201	240	200	213
Railfoads	30	43	53	59	67	122	120	125	117	113	113	111	115	114	113
Non-Road Other	NA	NA	NA	1	2	2	2	2	2	2	2	3	3	3	3
liscellaneous	110	20	11	11	11	12	11	10	10	15	10	16	15	12	12
Agriculture & Forestry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	0
Other Combustion	110	20	11	11	11	12	11	9	9	15	10	16	15	12	12
Fugitive Dust	NA	NA	NA	NA	NA	0	0	0	1	0	0	0	0	0	0
	1 161	28 011	25 905	23 658	23 293	23 678	23 045	22 813	22 474	21.875	19 188	18 859	10 363	19.491	18.867

Note: Some columns may not sum to totals due to rounding.

Source Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Fuel Combustion 909	893	927	852	841	898	848	776	735	766	
FUEL COMB. ELEC. UTIL.	121	105	106	112	108	107	157	161	130	128
Coal	97	85	87	90	86	86	133	135	103	102
bituminous	59	53	53	57	54	52	88	89	62	61
subbituminous	14	16	18	18	17	20	32	31	30	30
anthracite & lignite	23	16	16	15	15	15	13	15	11	11
Oil	5	5	4	5	5	3	5	6	4	4
Gas	NA	NA	NA	NA	NA	NĂ	1	1	1	1
Other	0	0	0	0	0	0	0	0	3	3
Internal Combustion	20	15	16	17	17	18	17	18	18	19
FUEL COMB. INDUSTRIAL	177	151	159	172	183	203	153	149	147	151
Coal	29	23	25	24	25	25	23	23	23	24
bituminous	23	18	20	20	19	19	18	18	18	18
subbituminous	2	1	1	2	3	3	3	3	3	3
anthracite & lignite	1	1	0	0	0	1	0	0	0	0
other	3	3	3	3	2	2	2	2	2	2
Oil	31	26	26	27	26	28	26	24	24	24
residual	26	22	22	23	22	24	22	20	19	20
distillate	4	3	3	4	4	4	4	4	4	4
other	1	1	1	1	1	1	0	1	0	0
Gas	39	34	39	41	42	44	39	39	38	39
natural	29	23	26	28	29	29	25	25	25	25
process	11	10	13	13	14	15	13	14	14	14
other	0	0	0	0	0	0	0	0	0	0
Other	73	58	59	69	60	59	50	48	48	49
wood/bark waste	68	55	54	58	55	55	44	42	42	43
liquid waste	1	0	0	1	0	0	0	0	0	0
other	4	3	4	10	4	3	6	5	5	5
Internal Combustion	5	10	10	11	29	48	15	15	15	15
FUEL COMB. OTHER	611	638	662	568	550	589	538	466	458	487
Commercial/Institutional Coal	6	6	6	6	6	6	7	7	7	7
Commercial/Institutional Oil	5	5	5	5	5	5	5	5	4	4
Commercial/Institutional Gas	5	5	6	6	6	6	7	7	7	7
Misc. Fuel Comb. (Except Residential)	78	73	72	72	72	73	72	75	78	81
Residential Wood	501	535	558	464	446	484	433	358	349	374
fireplaces	501	535	558	464	446	484	418	344	335	359
woodstoves	NA	NA	NA	NA	NA	NA	15	14	13	14
Residential Other	15	15	15	15	15	15	15	14	13	14
Industrial Processes 794	812	819	788	771	749	605	619	625	913	
CHEMICAL & ALLIED PRODUCT MFG	47	43	45	41	49	42	39	39	40	40
Organic Chemical Mfg	10	10	11	10	11	11	12	12	12	12
Inorganic Chemical Mfg	12	3	4	4	4	3	3	3	3	3
Polymer & Resin Mfg	4	3	4	3	3	3	2	2	2	2
Agricultural Chemical Mfg	8	8	8	8	8	8	5	6	6	6
Paint, Varnish, Lacquer, Enamel Mfg	0	0	0	0	0	0	0	0	0	0
Pharmaceutical Mfg	0	0	0	0	0	0	0	0	0	0
Other Chemical Mfg	13	17	17	15	23	16	16	16	17	17

Table A-9.National PM $_{2.5}$ Emissions Estimates, 1990–1999 (thousand short tons)

Source Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
METALS PROCESSING	157	197	198	125	125	134	100	105	105	103	
Non-Ferrous Metals Processing	31	29	29	25	25	25	22	23	23	23	
copper	9	9	9	8	8	8	4	5	4	4	
lead	2	2	2	2	2	2	2	2	2	2	
zinc	5	5	5	1	1	1	1	1	1	1	
other	14	13	13	14	14	14	15	15	15	15	
Ferrous Metals Processing	121	89	83	86	86	92	65	69	68	67	
primary	103	72	66	68	68	74	47	50	50	50	
secondary	17	16	16	17	18	19	18	18	18	17	
other	1	0	0	0	0	0	0	0	0	0	
Metals Processing NEC	5	80	85	14	14	16	13	14	14	14	
PETROLEUM & RELATED INDUSTRIES	27	24	24	22	22	22	17	17	17	17	
Oil & Gas Production	2	2	2	2	2	2	1	1	1	1	
Petroleum Refineries & Related Industries	13	14	14	13	13	13	12	12	12	12	
fluid catalytic cracking units	11	12	12	11	11	11	7	8	8	8	
other	2	2	2	2	2	2	4	4	4	4	
Asphalt Manufacturing	12	9	8	7	7	8	4	4	4	4	
OTHER INDUSTRIAL PROCESSES	284	264	259	260	256	256	180	186	189	191	
Agriculture, Food, & Kindred Products	39	46	40	44	43	40	20	21	21	22	
country elevators	6	6	7	6	6	6	1	1	1	1	
terminal elevators	3	3	4	5	4	4	0	0	0	0	
feed mills	2	2	2	2	2	2	1	1	1	1	
sovbean mills	5	4	4	5	5	5	3	3	3	3	
wheat mills	1	1	1	1	1	1	1	1	1	1	
other grain mills	4	3	3	3	3	3	2	3	3	3	
other	17	26	19	21	22	20	14	14	14	14	
Textiles, Leather, & Apparel Products	0	0	0	0	0	0	0	1	0	0	
Wood, Pulp & Paper, & Publishing Product	s 77	61	59	59	57	60	52	53	55	56	
sulfate (kraft) pulping	57	40	38	38	38	40	31	32	32	33	
other	21	21	21	21	19	20	21	22	22	23	
Rubber & Miscellaneous Plastic Products	3	3	3	3	3	3	2	2	2	2	
Mineral Products	144	134	135	136	133	134	88	92	93	93	
cement mfg	54	40	39	38	38	38	11	11	11	11	
surface mining	6	6	7	7	7	6	7	7	7	7	
stone quarrving/processing	24	28	28	28	26	26	9	9	9	9	
other	61	60	61	62	63	63	61	64	65	66	
Machinery Products	3	3	3	3	3	3	2	2	2	2	
Electronic Equipment	0	0	0	0	0	0	1	1	1	1	
Transportation Equipment	1	1	1	0	0	0	0	0	0	0	
Construction	0	0	0	Ő	0	0	Õ	0	Õ	0	
Miscellaneous Industrial Processes	16	16	17	15	16	16	14	14	15	15	
SOLVENT UTILIZATION	4	4	5	6	6	5	5	5	5	6	
Degreasing	0	0	0	0	0	0	0	0	0	0 0	
Graphic Arts	0	0 0	0	0	Õ	0 0	3 1	1	1	1	
Dry Cleaning	0	Ő	0	0	0	0	0	0	0	0	
Surface Coating	3	3	4	4	4	4	4	4	4	4	
Other Industrial		0	-	-	-	-	-	-	-	-	
	1	1	1	1	1	1	0	0	0	0	
Nonindustrial	1 NA	1 NA	1 NA	1 NA	1 NA	1 NA	0 0	0 0	0 0	0 0	

Source Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
STORAGE & TRANSPORT	42	42	50	46	43	42	30	31	31	31
Bulk Terminals & Plants	0	0	0	0	0	0	0	0	0	0
Petroleum & Petroleum Product Storage	0	1	1	1	0	0	0	0	0	0
Petroleum & Petroleum Product Transport	0	0	0	0	0	0	0	0	0	0
Service Stations: Stage II	0	0	0	0	0	0	0	0	0	0
Organic Chemical Storage	0	0	0	0	0	0	1	1	1	1
Organic Chemical Transport	0	0	0	0	0	0	0	0	0	0
Inorganic Chemical Storage	0	0	0	0	0	0	0	0	0	0
Inorganic Chemical Transport	0	0	0	0	0	0	0	0	0	0
Bulk Materials Storage	41	41	48	44	41	41	28	29	29	30
storage	13	11	12	13	13	12	11	11	11	11
transfer	28	29	36	31	28	29	17	18	18	18
combined	0	0	0	0	0	0	0	0	0	0
other	NA	0	0	NA	0	0	0	0	0	0
Bulk Materials Transport	0	0	0	0	0	0	0	0	0	0
WASTE DISPOSAL & RECYCLING	234	238	239	288	271	247	234	236	238	525
Incineration	46	47	46	93	73	50	45	46	46	47
residential	27	28	30	31	31	31	30	30	30	31
other	19	18	16	62	42	19	15	15	16	16
Open Burning	187	190	192	195	196	197	186	188	190	476
residential	177	179	181	183	184	185	176	177	179	173
other	10	11	11	11	12	11	10	11	11	303
POTW	0	0	0	0	0	0	0	0	0	0
Industrial Waste Water	0	0	0	0	0	0	0	0	0	0
TSDF	0	0	0	0	0	0	0	0	0	0
Landfills	0	0	1	1	1	0	2	2	2	2
Other	0	0	0	0	1	0	0	0	0	0
Transportation 719	720	717	688	682	640	701	686	665	640	
ON-ROAD VEHICLES	286	288	284	261	258	237	276	263	246	229
Light-Duty Gas Vehicles & Motorcycles	34	33	32	32	32	32	32	33	34	34
ldgv	34	33	32	32	32	32	32	33	33	34
motorcycles	0	0	0	0	0	0	0	0	0	0
Light-Duty Gas Trucks	24	28	30	30	29	26	22	22	22	22
ldgt1	12	13	14	14	14	14	14	15	15	15
ldgt2	13	15	16	16	15	12	8	8	7	7
Heavy-Duty Gas Vehicles	6	6	6	7	7	6	9	9	8	8
Diesels	221	220	216	192	190	173	212	199	181	166
hddv	204	211	207	184	182	165	208	196	179	164
lddt	12	2	2	2	2	2	1	1	1	1
lddv	6	7	7	6	6	6	2	2	1	1
NON-ROAD ENGINES AND VEHICLES	432	432	433	427	424	403	425	423	419	411
Non-Road Gasoline	43	43	43	44	44	45	79	80	81	82
recreational	2	3	3	3	3	3	3	3	3	3
construction	1	1	1	1	1	1	2	2	2	2
industrial	0	0	0	0	0	0	0	0	0	0
lawn & garden	10	10	10	11	11	11	19	19	19	19
farm	0	0	0	0	0	0	0	0	0	0
light commercial	1	2	2	2	2	2	2	2	2	2

Source Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
NON-ROAD ENGINES AND VEHICLES (cont.)										
logging	0	0	0	0	0	0	17	19	20	21	
airport service	0	0	0	0	0	0	0	0	0	0	
railway maintenance	0	0	0	0	0	0	0	0	0	0	
recreational marine vessels	27	27	27	28	28	28	35	35	36	36	
Non-Road Diesel	277	275	273	273	272	272	251	247	242	233	
recreational	1	1	1	1	1	1	1	1	1	1	
construction	137	136	136	135	134	134	130	128	124	118	
industrial	35	34	34	35	35	35	30	30	30	30	
lawn & garden	8	8	9	10	11	11	10	10	11	11	
farm	71	71	70	69	68	67	57	55	53	50	
light commercial	11	11	11	12	12	13	12	13	13	14	
logging	12	10	9	8	8	8	8	7	6	5	
airport service	1	1	1	1	1	1	1	1	1	1	
railway maintenance	1	1	1	1	1	1	1	1	1	0	
recreational marine vessels	1	1	1	1	1	1	2	2	2	2	
Aircraft	31	31	32	30	29	28	28	27	27	27	
Marine Vessels	32	34	33	31	32	31	39	39	40	40	
coal	1	1	1	1	1	1	1	1	1	1	
diesel	25	26	25	24	24	24	37	38	38	38	
residual oil	6	6	6	6	6	6	0	0	0	0	
gasoline	0	0	0	0	0	0	0	0	0	0	
Railroads	49	48	50	48	46	25	27	28	28	27	
Non-Road Other	1	1	1	1	1	1	2	2	2	2	
liquified petroleum gas	1	1	1	1	1	1	1	1	1	1	
compressed natural gas	0	0	0	0	0	0	0	0	0	0	
Miscellaneous 5,234	5,004	4,854	4,926	5,360	4,725	4755	5186	5040	4454		
Agriculture & Forestry	1 031	1 019	976	887	941	952	953	961	961	948	
agricultural crops	949	937	893	803	856	867	866	875	873	860	
agricultural livestock	82	83	83	84	85	85	87	87	88	89	
Other Combustion	1 037	807	666	693	913	734	946	1139	871	872	
wildfires	538	299	151	137	372	130	386	538	233	233	
managed burning	479	488	494	535	519	583	542	582	619	620	
other	20	20	21	21	21	22	18	19	19	19	
Cooling Towers	0	0	0	0	0		2	2	3	3	
Eugitive Dust	3 166	3 177	3 212	3 346	3 506	3 037	2853	3084	3206	2631	
unpaved roads	1 687	1 684	1 642	1 718	1 709	1 559	1366	1427	1406	1411	
paved roads	562	600	606	616	634	585	600	649	666	682	
construction	850	818	892	930	1.049	777	750	857	968	391	
other	67	75	73	81	11.3	117	136	150	165	146	
TOTAL ALL SOURCES	7.655	7.430	7.317	7.254	7.654	7.012	6.909	7.267	7.065	6.773	

Note: Some columns may not sum to totals due to rounding.

Source Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Fuel Combustion 25	25	25	26	26	26	47	47	47	48	
FUEL COMB. ELEC. UTIL.	0	0	0	0	0	0	6	6	8	7
Coal	NA	NA	NA	NA	NA	NA	0	0	0	0
Oil	NA	NA	NA	NA	NA	NA	2	2	3	3
Gas	NA	NA	NA	NA	NA	NA	4	4	4	4
Other	NA	NA	NA	NA	NA	0	0	0	0	
Internal Combustion	0	0	0	0	0	0	0	0	0	0
FUEL COMB. INDUSTRIAL	17	17	17	18	18	18	34	34	33	34
Coal	0	0	0	0	0	0	0	0	0	0
Oil	4	4	4	4	4	4	4	4	4	4
Gas	13	13	13	14	14	13	25	25	25	25
Other	0	0	0	0	0	0	0	0	0	0
Internal Combustion	0	0	0	0	0	0	5	5	5	5
	Ř	8	Ř	Ř	Ř	8 8	7	7	6	7
Commercial/Institutional Coal	0	0	0	0	0	0	0	0	0	0
Commercial/Institutional Oil	2	2	2	2	2	2	2	2	2	2
Commercial/Institutional Gas	1	1	1	1	1	1	1	1	1	1
Misc Fuel Comb (Excent Residential)	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	0	0	0	0
Residential Other	5	5	5	5	5	5	5	5	1	4
Industrial Processes 351	355	359	364	364	365	271	277	284	289	7
	183	183	183	183	183	183	122	125	130	122
Organic Chemical Mfg	NA	NΔ	ΝΔ	ΝΔ	ΝΔ	NΔ	125	125	130	0
Inorganic Chemical Mfg							0	0	0	0
Polymer & Resin Mfg	NΔ	ΝA	NΔ	NΔ	NΔ	ΝA	0	0	0	0
Agricultural Chomicals	102	192	192	192	192	102	100	111	115	118
ammonium nitrate/urea mfa	105	100	103	103	103	105	109	111	113	110
other	71	71	71	71	71	71	-1 68	70	70	72
Other Chamical Mfg							12	14	14	15
	n A E	INA 6	NA 6	NA 6	NA E	INA 6	13	14 E	14 E	15 <i>E</i>
Nen Forroug Motolo Dropposing	0	0	0	0	0	0	4	0	0	5
Non-Ferrous Metals Processing	0	0	0	0	0	0	0	5	5	0
Metala Braccosing	0	0	0	0	0	0	4	с 0	с 0	5
	42	42	40	40	42	42	46	47	47	47
Oil & Cos Dreduction	43	43	43	43	43	43	10	17	17	17
Oil & Gas Production	10	10	10	10	10	0	10	17	17	0
Petroleum Rennenes & Related Industries	43	43	43	43	43	43	10	17	17	17
catalytic cracking	43	43	43	43	43	43	10	17	17	17
	0	0	0	0	0	0	0	0	0	0
OTHER INDUSTRIAL PROCESSES	38	38	39	39	40	40	43	45	45	45
Agriculture, Food, & Kindred Products	2	2	3	3	2	2	4	4	4	4
lextiles, Leather, & Apparel Products	NA	NA	NA	NA	NA	NA	0	0	0	0
Wood, Pulp & Paper, & Publishing Products	NA	NA	NA	NA	NA	NA	1	1	1	1
Rubber & Miscellaneous Plastic Products	NA	NA	NA	NA	NA	NA	0	0	0	0
Mineral Products	0	0	0	0	0	0	0	0	0	0
Machinery Products	NA	NA	NA	NA	NA	NA	0	0	0	0
Electronic Equipment	NA	NA	NA	NA	NA	NA	0	0	0	0
Miscellaneous Industrial Processes	35	35	36	37	38	38	39	40	40	40

SOLVENT UTILIZATION00DegreasingNANAGraphic ArtsNANADry CleaningNANADry CleaningNANASurface CoatingNANAOther IndustrialNANASTORAGE & TRANSPORT00Bulk Terminals & PlantsNANAPetroleum & Petroleum Product StorageNANAPetroleum & Petroleum Product TransportNANAOrganic Chemical StorageNANABulk Materials Storage00WASTE DISPOSAL & RECYCLING8286IncinerationNANAOpen BurningNANAPOTW8286	0 NA	0	0	n	•	-			
DegreasingNANAGraphic ArtsNANADry CleaningNANADry CleaningNANASurface CoatingNANAOther IndustrialNANASTORAGE & TRANSPORT00Bulk Terminals & PlantsNANAPetroleum & Petroleum Product StorageNANAPetroleum & Petroleum Product TransportNANAOrganic Chemical StorageNANABulk Materials Storage00WASTE DISPOSAL & RECYCLING8286IncinerationNANAOpen BurningNANAPOTW8286	NA				0	0	0	0	
Graphic ArtsNANADry CleaningNANADry CleaningNANASurface CoatingNANAOther IndustrialNANASTORAGE & TRANSPORT00Bulk Terminals & PlantsNANAPetroleum & Petroleum Product StorageNANAPetroleum & Petroleum Product TransportNANAOrganic Chemical StorageNANAInorganic Chemical Storage00WASTE DISPOSAL & RECYCLING8286IncinerationNANAOpen BurningNANAPOTW8286westerets tractment8282		NA	NA	NA	0	0	0	0	
Dry CleaningNANASurface CoatingNANAOther IndustrialNANASTORAGE & TRANSPORT00Bulk Terminals & PlantsNANAPetroleum & Petroleum Product StorageNANAPetroleum & Petroleum Product TransportNANAOrganic Chemical StorageNANABulk Materials Storage00WASTE DISPOSAL & RECYCLING8286IncinerationNANAOpen BurningNANAPOTW8286	NA	NA	NA	NA	0	0	0	0	
Surface CoatingNANAOther IndustrialNANASTORAGE & TRANSPORT0Bulk Terminals & PlantsNAPetroleum & Petroleum Product StorageNANAPetroleum & Petroleum Product TransportNANANAOrganic Chemical StorageNABulk Materials Storage000WASTE DISPOSAL & RECYCLING8286IncinerationNANANANANANANANANANANANAStrage000	NA	NA	NA	NA	0	0	0	0	
Other IndustrialNANASTORAGE & TRANSPORT00Bulk Terminals & PlantsNANAPetroleum & Petroleum Product StorageNANAPetroleum & Petroleum Product TransportNANAOrganic Chemical StorageNANAInorganic Chemical StorageNANABulk Materials Storage00WASTE DISPOSAL & RECYCLING8286IncinerationNANAOpen BurningNANAPOTW8286	NA	NA	NA	NA	0	0	0	0	
STORAGE & TRANSPORT00Bulk Terminals & PlantsNANAPetroleum & Petroleum Product StorageNANAPetroleum & Petroleum Product TransportNANAOrganic Chemical StorageNANAInorganic Chemical StorageNANABulk Materials Storage00WASTE DISPOSAL & RECYCLING8286IncinerationNANAOpen BurningNANAPOTW8286	NA	NA	NA	NA	0	0	0	0	
Bulk Terminals & PlantsNANAPetroleum & Petroleum Product StorageNANAPetroleum & Petroleum Product TransportNANAOrganic Chemical StorageNANAInorganic Chemical StorageNANABulk Materials Storage00WASTE DISPOSAL & RECYCLING8286IncinerationNANAOpen BurningNANAPOTW8286	0	0	0	0	1	1	1	1	
Petroleum & Petroleum Product StorageNANAPetroleum & Petroleum Product TransportNANAOrganic Chemical StorageNANAInorganic Chemical Storage00WASTE DISPOSAL & RECYCLING8286IncinerationNANAOpen BurningNANAPOTW8286	NA	NA	NA	NA	0	0	0	0	
Petroleum & Petroleum Product TransportNANAOrganic Chemical StorageNANAInorganic Chemical StorageNANABulk Materials Storage00WASTE DISPOSAL & RECYCLING8286IncinerationNANAOpen BurningNANAPOTW8286	NA	NA	NA	NA	1	1	1	1	
Organic Chemical StorageNANAInorganic Chemical StorageNANABulk Materials Storage00WASTE DISPOSAL & RECYCLING8286IncinerationNANAOpen BurningNANAPOTW8286	NA	NA	NA	NA	0	0	0	0	
Inorganic Chemical StorageNANABulk Materials Storage00WASTE DISPOSAL & RECYCLING8286IncinerationNANAOpen BurningNANAPOTW8286wastewater tractment82	NA	NA	NA	NA	0	0	0	0	
Bulk Materials Storage00WASTE DISPOSAL & RECYCLING8286IncinerationNANAOpen BurningNANAPOTW8286wastewater tractment82	NA	NA	NA	NA	0	0	0	0	
WASTE DISPOSAL & RECYCLING8286IncinerationNANAOpen BurningNANAPOTW8286wastewater tractment82	0	0	0	0	0	0	0	0	
IncinerationNANAOpen BurningNANAPOTW8286wordswater tractment82	89	93	93	93	84	84	86	88	
Open Burning NA NA POTW 82 86	NA	NA	NA	NA	0	0	0	0	
POTW 82 86	NA	NA	NA	NA	0	0	0	0	
westswater treatment 82 96	89	93	93	93	84	84	86	87	
	89	93	93	93	84	84	86	87	
other NA NA	NA	NA	NA	NA	0	0	0	0	
Industrial Waste Water NA NA	NA	NA	NA	NA	0	0	0	0	
TSDF NA NA	NA	NA	NA	NA	0	0	0	0	
Landfills NA NA	NA	NA	NA	NA	0	0	0	0	
Other NA NA	NA	NA	NA	NA	0	0	0	0	
Transportation 194 205 214	224	239	258	238	267	262	270		
ON-ROAD VEHICLES 188 198	208	218	233	252	229	258	252	260	
Light-Duty Gas Vehicles & Motorcycles 149 151	155	159	168	180	157	168	169	174	
Light-Duty Gas Trucks 38 46	52	58	63	70	63	80	72	76	
Heavy-Duty Gas Vehicles 0 0	1	1	1	1	4	4	4	4	
Diesels 0 0	0	0	0	0	6	6	6	6	
NON-ROAD ENGINES AND VEHICLES 6 7	7	7	7	7	9	9	10	10	
Non-Road Gasoline 1 1	1	1	1	1	1	1	1	1	
Non-Road Diesel 2 3	3	3	3	3	3	3	3	3	
Aircraft NA NA	NA	NA	NA	NA	3	3	4	4	
Marine Vessels 1 1	1	1	1	1	1	1	1	1	
Railroads 2 2	2	2	2	2	1	1	1	1	
NATURAL SOURCES 30 29	28	29	30	31	32	33	34	35	
Biogenic 30 29	28	29	30	31	32	33	34	35	
Miscellaneous 3,727 3,770 3,814	3,869	3,924	3,979	4,106	4,163	4,258	4,322		
Agriculture & Forestry 3 727 3 770	3 814	3 869	3 924	3 979	4 106	4 163	4 258	4 322	
livestock agriculture 3.307 3.324	3 341	3 370	3 399	3 427	3 457	3 485	3 520	3 552	
fertilizer application 420 446	473	499	525	551	649	678	739	769	
Fugitive Dust 0 0	0	0	00	0	0	0	, 00	,	
TOTAL ALL SOURCES 4 327 4 383				v	•	v	5		

Note: Some columns may not sum to totals due to rounding.

APPENDIX & DATA TABLES 161

Year	CO 2nd Max. 8-hr ppm	Ρb Max. Qtr. µg/m³	NO₂ Arith. Mean ppm	Ozone 2nd Max. 1-hr ppm	PM₁₀ Wtd. Arith. Mean μg/m³	SO₂ Arith. Mear ppm
1980–89	(304 sites)	(216 sites)	(156 sites)	(441 sites)	_	(438 sites)
1980	8.6	0.65	0.024	0.134	_	0.0103
1981	8.4	0.54	0.024	0.125	_	0.0101
1982	8.1	0.53	0.023	0.124	_	0.0094
1983	7.9	0.40	0.022	0.137	_	0.0091
1984	7.8	0.37	0.023	0.124	_	0.0092
1985	7.1	0.25	0.023	0.122	_	0.0087
1986	7.2	0.15	0.023	0.118	_	0.0085
1987	6.7	0.11	0.023	0.124	_	0.0083
1988	6.5	0.10	0.023	0.135	_	0.0084
1989	6.4	0.08	0.023	0.115	—	0.0081
1990–99	(388 sites)	(175 sites)	(230 sites)	(703 sites)	(954 sites)	(480 sites)
1990	5.8	0.10	0.020	0.112	29.2	0.0081
1991	5.7	0.08	0.019	0.112	29.0	0.0079
1992	5.3	0.06	0.019	0.105	26.8	0.0073
1993	5.0	0.06	0.019	0.108	26.0	0.0072
1994	5.1	0.05	0.020	0.107	26.0	0.0069
1995	4.6	0.05	0.019	0.112	24.8	0.0056
1996	4.3	0.04	0.018	0.105	24.0	0.0056
1997	4.0	0.04	0.018	0.105	23.8	0.0054
1998	3.8	0.04	0.018	0.110	23.6	0.0053
1999	3.7	0.04	0.018	0.107	23.9	0.0052

Table A-11. National Long-Term Air Quality Trends, 1980–1999

Statistic	# of Sites	Units	Location	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
Carbon Monox	kide												
2nd Max. 8-hr. 2nd Max. 8-hr. 2nd Max. 8-hr.	3 132 166	ppm ppm ppm	Rural Suburban Urban	4.7 8.0 9.1	4.9 7.8 8.8	3.8 7.5 8.6	3.3 7.5 8.3	4.1 7.3 8.2	3.8 6.6 7.5	4.5 6.6 7.6	3.8 6.4 7.0	3.5 6.1 6.8	3.2 6.1 6.6
Lead													
Max. Qtr. Max. Qtr. Max. Qtr.	8 89 114	µg/m³ µg/m³ µg/m³	Rural Suburban Urban	0.53 0.68 0.64	0.49 0.56 0.53	0.32 0.50 0.57	0.26 0.41 0.41	0.24 0.36 0.38	0.16 0.25 0.25	0.11 0.15 0.15	0.10 0.11 0.11	0.09 0.09 0.09	0.09 0.08 0.08
Nitrogen Diox	ide												
Arith. Mean Arith. Mean Arith. Mean	23 75 57	ppm ppm ppm	Rural Suburban Urban	0.008 0.026 0.029	0.009 0.025 0.028	0.009 0.024 0.027	0.009 0.024 0.027	0.009 0.024 0.028	0.009 0.024 0.027	0.009 0.024 0.028	0.009 0.024 0.027	0.009 0.025 0.028	0.009 0.024 0.027
Ozone													
2nd Max. 1-hr. 2nd Max. 1-hr. 2nd Max. 1-hr.	121 215 96	ppm ppm ppm	Rural Suburban Urban	0.123 0.138 0.137	0.116 0.130 0.126	0.113 0.129 0.124	0.125 0.142 0.140	0.116 0.128 0.126	0.114 0.127 0.122	0.112 0.122 0.119	0.117 0.129 0.125	0.129 0.141 0.133	0.110 0.118 0.116
PM ₁₀ *													
Wtd. Arith. Mea Wtd. Arith. Mea Wtd. Arith. Mea	an — an — an —	µg/m³ µg/m³ µg/m³	Rural Suburban Urban						_ _ _				
Sulfur Dioxide	•												
Arith. Mean Arith. Mean Arith. Mean	117 180 133	ppm ppm ppm	Rural Suburban Urban	0.0087 0.0105 0.0116	0.0083 0.0101 0.0116	0.0076 0.0093 0.0109	0.0074 0.0091 0.0104	0.0076 0.0094 0.0104	0.0074 0.0090 0.0095	0.0072 0.0087 0.0096	0.0070 0.0084 0.0092	0.0070 0.0085 0.0095	0.0070 0.0082 0.0092

Table A-12a. National Air Quality Trends by Monitoring Location, 1980–1989

 * PM $_{10}$ trend data is not available for this 10-year period.

Statistic	# of Sites	Units	Location	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Carbon Mono	kide												
2nd Max. 8-hr. 2nd Max. 8-hr. 2nd Max. 8-hr.	13 157 215	ppm ppm ppm	Rural Suburban Urban	2.5 5.6 6.2	2.6 5.4 6.1	2.3 5.0 5.6	2.0 4.9 5.2	2.2 5.0 5.4	2.3 4.3 4.9	1.9 4.1 4.6	1.8 3.9 4.3	1.7 3.8 4.0	1.6 3.7 3.9
Max. Qtr. Max. Qtr. Max. Qtr.	6 86 78	µg/m³ µg/m³ µg/m³	Rural Suburban Urban	0.06 0.08 0.12	0.06 0.06 0.09	0.07 0.05 0.07	0.06 0.05 0.06	0.05 0.04 0.06	0.1 0.04 0.05	0.04 0.03 0.05	0.03 0.03 0.05	0.05 0.03 0.05	0.04 0.03 0.04
Nitrogen Dioxid	le												
Arith. Mean Arith. Mean Arith. Mean	43 105 80	ppm ppm ppm	Rural Suburban Urban	0.009 0.021 0.024	0.009 0.021 0.024	0.008 0.020 0.023	0.008 0.020 0.023	0.008 0.020 0.024	0.008 0.020 0.023	0.008 0.019 0.023	0.008 0.018 0.022	0.007 0.019 0.022	0.008 0.019 0.022
Ozone													
2nd Max. 1-hr. 2nd Max. 1-hr. 2nd Max. 1-hr.	239 325 121	ppm ppm ppm	Rural Suburban Urban	0.107 0.115 0.110	0.105 0.117 0.110	0.101 0.108 0.105	0.103 0.111 0.104	0.102 0.111 0.106	0.108 0.116 0.109	0.102 0.107 0.105	0.101 0.108 0.102	0.107 0.114 0.104	0.105 0.110 0.103
PM ₁₀													
Wtd. Arith. Me Wtd. Arith. Me Wtd. Arith. Me	an 153 an 375 an 408	μg/m³ μg/m³ μg/m³	Rural Suburban Urban	23.9 30.1 30.5	23.2 29.8 30.4	21.7 27.6 28.0	20.6 26.8 27.3	20.8 26.8 27.3	19.4 25.8 26.0	19.4 24.6 25.1	19.0 24.6 24.9	19.0 24.3 24.9	19.2 24.8 24.9
Sulfur Dioxide													
Arith. Mean Arith. Mean Arith. Mean	123 215 131	ppm ppm ppm	Rural Suburban Urban	0.0065 0.0086 0.0092	0.0063 0.0084 0.0088	0.0060 0.0078 0.0080	0.0061 0.0076 0.0077	0.0058 0.0072 0.0077	0.0050 0.0057 0.0060	0.0048 0.0059 0.0059	0.0046 0.0057 0.0057	0.0045 0.0057 0.0056	0.0042 0.0056 0.0055

Table A-12b. National Air Quality Trends by Monitoring Location, 1990–1999

	Statistic	# of Sites	Units	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
Region 1													
СО	2nd Max. 8-hr.	10	ppm	9.4	8.4	8.9	8.5	8.3	6.8	7.2	6.4	5.6	5.6
Pb	Max. Qtr.	15	µg/m³	0.53	0.49	0.54	0.41	0.33	0.29	0.11	0.08	0.06	0.06
NO ₂	Arith. Mean	4	ppm	0.032	0.030	0.028	0.026	0.032	0.031	0.029	0.030	0.030	0.028
0 ₃	2nd Max. 1-hr.	21	ppm	0.161	0.141	0.151	0.169	0.155	0.139	0.123	0.133	0.160	0.130
0 ₃	4th Max. 8-hr.	21	ppm	0.112	0.100	0.109	0.121	0.106	0.100	0.090	0.095	0.118	0.095
PM ₁₀ *	Wtd. Arith. Mean	n —	µg/m³			_	_	_			_	_	_
SO ₂	Arith. Mean	46	ppm	0.0107	0.0100	0.0099	0.0092	0.0099	0.0095	0.0101	0.0099	0.0100	0.0093
Region 2													
CO	2nd Max. 8-hr.	22	ppm	8.9	9.4	8.5	7.8	8.3	6.7	7.4	6.4	6.2	6.1
Pb	Max. Qtr.	7	µg/m³	0.61	0.62	0.63	0.47	0.53	0.38	0.12	0.08	0.08	0.05
NO ₂	Arith. Mean	7	ppm	0.029	0.029	0.031	0.031	0.030	0.029	0.028	0.029	0.029	0.027
O ₃	2nd Max. 1-hr.	25	ppm	0.142	0.132	0.133	0.152	0.130	0.130	0.123	0.139	0.158	0.117
O ₃	4th Max. 8-hr.	25	ppm	0.106	0.098	0.098	0.111	0.096	0.098	0.095	0.104	0.120	0.091
PM ₁₀ *	Wtd. Arith. Mea	n —	µg/m³	_	_	_	_	_	_	_	_	_	_
SO ₂	Arith. Mean	31	ppm	0.0148	0.0147	0.0135	0.0126	0.0131	0.0117	0.0114	0.0109	0.0119	0.0111
Region 3													
CO	2nd Max. 8-hr.	38	ppm	7.0	7.0	7.0	6.9	7.6	5.7	6.2	5.9	5.4	5.3
Pb	Max. Qtr.	29	µg/m³	0.46	0.39	0.44	0.34	0.34	0.22	0.15	0.12	0.14	0.10
NO ₂	Arith. Mean	36	ppm	0.024	0.023	0.023	0.023	0.024	0.023	0.024	0.024	0.023	0.023
O ₃	2nd Max. 1-hr.	62	ppm	0.133	0.122	0.125	0.138	0.119	0.118	0.114	0.128	0.150	0.111
O ₃	4th Max. 8-hr.	62	ppm	0.102	0.095	0.095	0.107	0.092	0.093	0.090	0.100	0.116	0.088
PM ₁₀ *	Wtd. Arith. Mea	n —	µg/m³	_	_	_	_	—	—	—	—	_	_
SO ₂	Arith. Mean	54	ppm	0.0141	0.0137	0.0130	0.0130	0.0133	0.0124	0.0127	0.0123	0.0130	0.0130
Region 4													
CO	2nd Max. 8-hr.	47	ppm	7.9	7.8	7.3	7.4	7.7	6.2	6.1	5.9	5.6	5.9
Pb	Max. Qtr.	39	µg/m³	0.49	0.41	0.52	0.42	0.37	0.21	0.12	0.10	0.08	0.08
NO ₂	Arith. Mean	8	ppm	0.018	0.019	0.019	0.019	0.018	0.018	0.017	0.018	0.018	0.018
03 Ū	2nd Max. 1-hr.	71	ppm	0.116	0.107	0.105	0.118	0.106	0.104	0.114	0.112	0.123	0.103
0 ₃	4th Max. 8-hr.	71	ppm	0.089	0.082	0.081	0.091	0.082	0.081	0.087	0.088	0.096	0.081
PM ₁₀ *	Wtd. Arith. Mea	n —	µg/m³	_	_	_	_	_	_	_	_	_	_
SO ₂	Arith. Mean	63	ppm	0.0096	0.0088	0.0078	0.0072	0.0071	0.0071	0.0072	0.0073	0.0076	0.0071
Region 5													
CO	2nd Max. 8-hr.	39	ppm	7.5	7.8	7.3	7.0	7.5	5.9	6.2	6.3	5.5	5.6
Pb	Max. Qtr.	48	µg/m³	0.59	0.48	0.56	0.36	0.31	0.20	0.13	0.10	0.09	0.09
NO ₂	Arith. Mean	17	ppm	0.019	0.020	0.020	0.021	0.021	0.020	0.020	0.021	0.020	0.021
0,	2nd Max. 1-hr.	90	ppm	0.119	0.114	0.112	0.129	0.109	0.106	0.108	0.119	0.131	0.107
0,	4th Max. 8-hr.	90	ppm	0.092	0.088	0.086	0.096	0.083	0.082	0.081	0.090	0.105	0.085
PM ₁₀ *	Wtd. Arith. Mea	n —	µg/m³	_	_	_	_	_	_	_	_	_	_
SO2	Arith. Mean	126	ppm	0.0112	0.0109	0.0102	0.0101	0.0101	0.0095	0.0090	0.0088	0.0086	0.0086

Table A-13a. National Air Quality Trends Statistics by EPA Region, 1980–1989

 * PM $_{10}$ trend data is not available for this 10-year period.

	Statistic	# of Sites	Units	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
Region 6													
СО	2nd Max. 8-hr.	24	ppm	8.2	8.1	8.0	7.4	7.3	7.3	7.3	7.5	6.5	6.5
Pb	Max. Qtr.	16	µg/m³	0.74	0.76	0.63	0.56	0.50	0.30	0.16	0.13	0.10	0.08
NO ₂	Arith. Mean	12	ppm	0.017	0.017	0.017	0.017	0.017	0.016	0.017	0.017	0.017	0.015
O ₃	2nd Max. 1-hr.	34	ppm	0.131	0.127	0.121	0.120	0.123	0.118	0.114	0.117	0.118	0.113
O ₃	4th Max. 8-hr.	34	ppm	0.093	0.090	0.086	0.086	0.089	0.087	0.083	0.087	0.089	0.083
PM ₁₀ *	Wtd. Arith. Mear	1 <u> </u>	µg/m³	—	—	—	_	—	_	_	—	_	_
SO ₂	Arith. Mean	29	ppm	0.0066	0.0073	0.0068	0.0076	0.0068	0.0071	0.0063	0.0059	0.0056	0.0056
Region 7													
CO	2nd Max. 8-hr.	13	ppm	7.7	7.4	7.3	5.8	6.1	5.2	6.0	5.7	4.9	5.3
Pb	Max. Qtr.	14	µg/m³	0.31	0.27	0.22	0.20	0.20	0.16	0.10	0.09	0.08	0.08
NO ₂	Arith. Mean	8	ppm	0.016	0.014	0.016	0.015	0.015	0.014	0.015	0.016	0.015	0.015
O ₃	2nd Max. 1-hr.	20	ppm	0.119	0.104	0.100	0.119	0.115	0.108	0.108	0.113	0.118	0.098
O ₃	4th Max. 8-hr.	20	ppm	0.087	0.074	0.075	0.090	0.087	0.079	0.077	0.082	0.092	0.077
PM ₁₀ *	Wtd. Arith. Mear	י ח	µg/m³	_	—	—	—	—	—	—	—	—	—
SO ₂	Arith. Mean	17	ppm	0.0094	0.0085	0.0095	0.0093	0.0093	0.0082	0.0083	0.0081	0.0076	0.0079
Region 8													
CO	2nd Max. 8-hr.	12	ppm	10.4	10.6	10.2	11.9	10.9	9.5	10.6	9.0	8.9	7.4
Pb	Max. Qtr.	5	µg/m³	0.90	0.73	0.77	0.64	0.62	0.49	0.22	0.12	0.07	0.06
NO ₂	Arith. Mean	14	ppm	0.013	0.013	0.012	0.013	0.013	0.014	0.014	0.013	0.013	0.013
O ₃	2nd Max. 1-hr.	13	ppm	0.102	0.101	0.103	0.110	0.104	0.102	0.109	0.097	0.104	0.103
O ₃	4th Max. 8-hr.	13	ppm	0.074	0.073	0.074	0.078	0.075	0.076	0.076	0.074	0.078	0.077
PM ₁₀ *	Wtd. Arith. Mear	י – ו	µg/m³	_	_	_	_	_	_	_	_	_	_
SO ₂	Arith. Mean	20	ppm	0.0064	0.0060	0.0055	0.0048	0.0050	0.0045	0.0043	0.0040	0.0043	0.0041
Region 9													
CO	2nd Max. 8-hr.	72	ppm	8.8	8.1	7.9	7.8	7.0	7.8	7.6	6.5	7.2	7.1
Pb	Max. Qtr.	38	µg/m³	0.84	0.61	0.57	0.44	0.41	0.25	0.19	0.13	0.10	0.09
NO ₂	Arith. Mean	50	ppm	0.031	0.031	0.029	0.027	0.028	0.029	0.029	0.028	0.030	0.029
O ₃	2nd Max. 1-hr.	99	ppm	0.164	0.152	0.149	0.161	0.151	0.155	0.137	0.141	0.143	0.137
O ₃	4th Max. 8-hr.	99	ppm	0.109	0.102	0.099	0.107	0.103	0.104	0.097	0.098	0.099	0.095
PM ₁₀ *	Wtd. Arith. Mear	י – ו	µg/m³	_	_	_	_	_	_	_	_	_	_
SO ₂	Arith. Mean	47	ppm	0.0051	0.0058	0.0045	0.0041	0.0046	0.0042	0.0036	0.0032	0.0034	0.0032
Region 10													
СО	2nd Max. 8-hr.	27	ppm	12.6	11.7	11.4	11.3	10.2	10.4	9.3	9.4	9.2	8.6
Pb	Max. Qtr.	8	µg/m³	2.05	1.50	0.58	0.47	0.46	0.44	0.24	0.17	0.14	0.12
NO ₂	Arith. Mean	_	ppm	_	_	_	_	_	_	_	_	_	_
O ₃	2nd Max. 1-hr.	6	ppm	0.095	0.121	0.108	0.093	0.098	0.105	0.107	0.098	0.110	0.089
O ₃	4th Max. 8-hr.	6	ppm	0.070	0.084	0.075	0.063	0.065	0.074	0.078	0.073	0.072	0.064
PM ₁₀ *	Wtd. Arith. Mear	ו <u>–</u> ו	µg/m³	—	_	_	_	_		_	_	—	_
SO ₂	Arith. Mean	5	ppm	0.0120	0.0126	0.0130	0.0115	0.0137	0.0122	0.0116	0.0106	0.0086	0.0079

Table A-13a. National Air Quality Trends Statistics by EPA Region, 1980–1989 (continued)

 * PM $_{10}$ trend data is not available for this 10-year period.

	Statistic #	# of Sites	Units	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Region 1													
CO	2nd Max. 8-hr.	18	ppm	6.0	5.5	5.6	4.8	5.9	5.3	4.8	4.1	3.7	3.7
Pb	Max. Qtr.	1	µg/m³	0.69	0.69	0.19	0.02	0.02	0.04	0.03	0.03	0.02	0.01
NO ₂	Arith. Mean	14	ppm	0.022	0.022	0.021	0.022	0.022	0.020	0.020	0.020	0.020	0.019
O ₃	2nd Max. 1-hr.	42	ppm	0.118	0.127	0.110	0.119	0.114	0.116	0.102	0.116	0.106	0.113
O ₃	4th Max. 8-hr.	42	ppm	0.090	0.097	0.086	0.087	0.086	0.089	0.080	0.089	0.083	0.087
PM ₁₀	Wtd. Arith. Mean	69	µg/m³	23.0	23.8	20.9	20.4	20.9	18.9	19.5	19.9	19.7	19.4
SO ₂	Arith. Mean	47	ppm	0.0080	0.0077	0.0072	0.0069	0.0068	0.0053	0.0052	0.0050	0.0050	0.0047
Region 2													
CO	2nd Max. 8-hr.	28	ppm	5.8	5.8	5.3	4.7	5.5	4.8	4.2	3.7	3.4	3.6
Pb	Max. Qtr.	4	µg/m³	0.10	0.07	0.06	0.07	0.07	0.06	0.06	0.06	0.06	0.05
NO ₂	Arith. Mean	12	ppm	0.030	0.029	0.028	0.028	0.029	0.027	0.028	0.027	0.027	0.027
O ₃	2nd Max. 1-hr.	39	ppm	0.120	0.122	0.109	0.109	0.105	0.115	0.103	0.111	0.108	0.115
0 ₃	4th Max. 8-hr.	39	ppm	0.094	0.099	0.085	0.088	0.085	0.095	0.082	0.092	0.088	0.093
PM ₁₀	Wtd. Arith. Mean	65	µg/m³	26.5	26.9	24.3	24.4	24.8	22.2	22.9	23.5	22.8	22.4
SO ₂	Arith. Mean	43	ppm	0.0090	0.0092	0.0085	0.0078	0.0079	0.0061	0.0062	0.0056	0.0055	0.0054
Region 3													
CO	2nd Max. 8-hr.	41	ppm	5.2	4.7	4.4	4.4	4.7	4.0	3.7	3.5	3.4	3.1
Pb	Max. Qtr.	25	µg/m³	0.07	0.07	0.06	0.05	0.05	0.04	0.04	0.03	0.03	0.03
NO ₂	Arith. Mean	35	ppm	0.022	0.021	0.021	0.021	0.022	0.020	0.021	0.020	0.020	0.019
O ₃	2nd Max. 1-hr.	74	ppm	0.110	0.117	0.102	0.116	0.111	0.117	0.105	0.116	0.115	0.120
O ₃	4th Max. 8-hr.	74	ppm	0.088	0.096	0.083	0.092	0.088	0.094	0.085	0.093	0.095	0.096
PM ₁₀	Wtd. Arith. Mean	71	µg/m³	29.4	30.2	26.5	26.6	27.3	26.1	24.9	24.9	24.7	24.0
SO ₂	Arith. Mean	76	ppm	0.0124	0.0119	0.0110	0.0111	0.0111	0.0084	0.0084	0.0088	0.0085	0.0080
Region 4													
CO	2nd Max. 8-hr.	61	ppm	5.2	4.9	4.9	5.0	4.7	4.3	3.8	4.0	3.7	3.7
Pb	Max. Qtr.	25	µg/m³	0.05	0.05	0.05	0.04	0.04	0.04	0.03	0.02	0.03	0.03
NO ₂	Arith. Mean	29	ppm	0.014	0.013	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
0 ₃	2nd Max. 1-hr.	131	ppm	0.103	0.096	0.095	0.103	0.099	0.104	0.101	0.102	0.111	0.109
0 ₃	4th Max. 8-hr.	131	ppm	0.082	0.075	0.076	0.081	0.080	0.082	0.081	0.082	0.090	0.089
PM ₁₀	Wtd. Arith. Mean	146	µg/m³	29.3	28.2	26.4	25.7	25.4	24.8	23.8	23.7	24.4	23.8
SO ₂	Arith. Mean	76	ppm	0.0059	0.0056	0.0053	0.0054	0.0050	0.0042	0.0044	0.0044	0.0045	0.0044
Region 5													
CO	2nd Max. 8-hr.	43	ppm	5.1	4.8	4.5	4.4	5.2	4.1	3.4	3.2	3.3	3.0
Pb	Max. Qtr.	44	µg/m³	0.16	0.10	0.08	0.08	0.08	0.07	0.06	0.06	0.05	0.05
NO ₂	Arith. Mean	13	ppm	0.021	0.021	0.022	0.022	0.023	0.023	0.023	0.022	0.022	0.022
O ₃	2nd Max. 1-hr.	135	ppm	0.102	0.110	0.098	0.097	0.104	0.110	0.103	0.101	0.105	0.105
0 ₃	4th Max. 8-hr.	135	ppm	0.082	0.088	0.079	0.077	0.083	0.089	0.085	0.083	0.085	0.088
PM ₁₀	Wtd. Arith. Mean	165	µg/m³	30.4	29.7	27.5	26.2	27.8	27.0	24.5	24.6	26.0	24.8
SO ₂	Arith. Mean	111	ppm	0.0094	0.0093	0.0081	0.0083	0.0077	0.0061	0.0062	0.0059	0.0059	0.0059

Table A-13b. National Air Quality Trends Statistics by EPA Region, 1990–1999
	Statistic	# of Sites	Units	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Region 6													
СО	2nd Max. 8-hr.	29	ppm	6.3	5.7	5.6	5.6	4.8	4.5	5.1	4.5	4.1	3.7
Pb	Max. Qtr.	17	µg/m³	0.14	0.13	0.10	0.10	0.07	0.10	0.09	0.05	0.06	0.04
NO ₂	Arith. Mean	24	ppm	0.014	0.014	0.015	0.014	0.015	0.015	0.015	0.015	0.014	0.014
O ₃	2nd Max. 1-hr.	71	ppm	0.121	0.113	0.109	0.111	0.110	0.121	0.110	0.114	0.116	0.112
O ₃	4th Max. 8-hr.	71	ppm	0.086	0.080	0.079	0.080	0.082	0.090	0.082	0.083	0.086	0.086
PM_{10}	Wtd. Arith. Mean	86	µg/m³	26.3	24.7	24.7	24.0	24.2	25.2	24.3	22.7	23.8	25.0
SO ₂	Arith. Mean	27	ppm	0.0067	0.0063	0.0066	0.0055	0.0048	0.0047	0.0049	0.0044	0.0043	0.0038
Region 7													
CO	2nd Max. 8-hr.	22	ppm	4.9	5.0	4.4	4.3	4.2	4.0	4.1	3.7	4.2	3.4
Pb	Max. Qtr.	19	µg/m³	0.03	0.03	0.02	0.02	0.01	0.01	0.02	0.03	0.04	0.04
NO ₂	Arith. Mean	12	ppm	0.015	0.015	0.016	0.015	0.016	0.016	0.016	0.016	0.016	0.017
0 ₃	2nd Max. 1-hr.	29	ppm	0.091	0.093	0.092	0.088	0.099	0.102	0.094	0.095	0.100	0.101
0 ₃	4th Max. 8-hr.	29	ppm	0.071	0.076	0.074	0.066	0.079	0.081	0.076	0.076	0.078	0.080
PM ₁₀	Wtd. Arith. Mean	50	µg/m³	30.3	29.6	29.0	27.9	28.7	28.3	28.3	26.4	26.1	26.7
SO ₂	Arith. Mean	28	ppm	0.0078	0.0074	0.0066	0.0065	0.0066	0.0054	0.0051	0.0047	0.0045	0.0047
Region 8													
CO	2nd Max. 8-hr.	22	ppm	6.6	6.7	6.7	5.7	5.3	4.9	4.9	4.6	3.9	3.9
Pb	Max. Qtr.	8	µg/m³	0.07	0.07	0.06	0.06	0.04	0.04	0.03	0.03	0.04	0.04
NO ₂	Arith. Mean	12	ppm	0.012	0.012	0.013	0.013	0.014	0.013	0.013	0.013	0.013	0.013
0 ₃	2nd Max. 1-hr.	19	ppm	0.090	0.088	0.084	0.082	0.085	0.085	0.088	0.083	0.093	0.086
0 ₃	4th Max. 8-hr.	19	ppm	0.068	0.069	0.066	0.089	0.096	0.066	0.068	0.066	0.074	0.067
PM ₁₀	Wtd. Arith. Mean	112	µg/m³	24.2	25.2	24.0	22.8	22.4	19.6	19.9	19.0	19.1	18.7
SO ₂	Arith. Mean	27	ppm	0.0061	0.0058	0.0064	0.0062	0.0055	0.0049	0.0041	0.0034	0.0031	0.0031
Region 9													
CO	2nd Max. 8-hr.	97	ppm	6.1	6.0	5.1	4.7	5.1	4.5	4.3	4.0	3.9	3.9
Pb	Max. Qtr.	27	µg/m³	0.07	0.06	0.04	0.04	0.03	0.03	0.03	0.03	0.02	0.03
NO ₂	Arith. Mean	79	ppm	0.022	0.022	0.021	0.020	0.021	0.020	0.019	0.018	0.018	0.019
0 ₃	2nd Max. 1-hr.	152	ppm	0.128	0.127	0.125	0.121	0.117	0.120	0.115	0.103	0.114	0.103
0 ₃	4th Max. 8-hr.	152	ppm	0.091	0.091	0.091	0.088	0.087	0.088	0.088	0.078	0.085	0.079
PM ₁₀	Wtd. Arith. Mean	120	µg/m³	37.8	36.8	32.1	31.1	30.2	30.1	28.3	28.8	26.3	30.5
SO ₂	Arith. Mean	36	ppm	0.0021	0.0021	0.0020	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0019
Region 10													
CO	2nd Max. 8-hr.	27	ppm	8.2	8.4	7.7	7.1	6.8	6.6	6.5	6.1	5.5	5.6
Pb	Max. Qtr.	5	µg/m³	0.06	0.06	0.04	0.05	0.05	0.05	0.04	0.05	0.06	0.04
NO ₂	Arith. Mean	—	ppm	—	_	_		_	_	_	_	_	_
O ₃	2nd Max. 1-hr.	14	ppm	0.100	0.088	0.089	0.081	0.088	0.086	0.097	0.076	0.098	0.073
0 ₃	4th Max. 8-hr.	14	ppm	0.073	0.065	0.069	0.058	0.063	0.063	0.076	0.058	0.069	0.058
PM ₁₀	Wtd. Arith. Mean	70	µg/m³	31.1	31.9	30.4	29.9	26.4	23.0	23.0	23.2	20.7	20.8
SO ₂	Arith. Mean	9	ppm	0.0071	0.0070	0.0073	0.0066	0.0066	0.0059	0.0051	0.0047	0.0047	0.0050

Table A-13b. National Air Quality Trends Statistics by EPA Region, 1990–1999 (continued)

Stat	e County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM₁₀ Wtd AM (µg/m³)	PM₁₀ 2nd Max (µg/m³)	SO₂ AM (ppm)	SO₂ 24-hr (ppm)
AL	CALHOUN CO	116,034	ND	ND	ND	ND	ND	ND	IN	ND	ND
AL	CLAY CO	13,252	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
AL	COLBERT CO	51,666	ND	ND	ND	ND	ND	ND	IN	0.003	0.017
AL	DE KALB CO	54,651	ND	ND	ND	ND	ND	24	48	ND	ND
AL	ELMORE CO	49,210	ND	ND	ND	0.10	0.08	ND	ND	ND	ND
AL	ESCAMBIA CO	35,518	ND	ND	ND	ND	ND	25	53	ND	ND
AL	ETOWAH CO	99.840	ND	ND	ND	ND	ND	30	66	ND	ND
AI	FRANKLIN CO	27 814	ND	ND	ND	ND	ND	ND	IN	ND	ND
	HOUSTON CO	81 331	ND	ND	ND	ND	ND	IN	IN	ND	ND
	JACKSON CO	47 796	ND	ND	ND	ND	ND	ND	ND	0.005	0.026
		651 525	5		ND	0.13	0.00	IN	108	IN	0.020
		31 513				0.10	0.03			0 002	0.020
		54 135					0.09 ND		IND	0.002 ND	
	MADISON CO	220 012	ND /			0.11	0.00	24*	5/*		
	MADISON CO	230,912	4				0.09	24	55		
	MARENGO CO	23,004				0.40		29	00		0.044
AL	MOBILE CU	378,043		ND		0.12	0.09	25	84	0.008	0.041
AL	MONTGOMERY CO	209,085	ND	ND	ND	0.11	0.09	24	48	ND	ND
AL	MURGAN CO	100,043	ND	ND	ND	ND	ND	IN	43	ND	ND
AL	PIKE CO	27,595	ND	0.83	ND	ND	ND	23	40	ND	ND
AL	RUSSELL CO	46,860	ND	ND	ND	ND	ND	IN	49	ND	ND
AL	SHELBY CO	99,358	ND	ND	0.010	0.12	0.10	28	57	ND	ND
AL	SUMTER CO	16,174	ND	ND	ND	0.09	0.07	ND	ND	ND	ND
AL	TALLADEGA CO	74,107	ND	ND	ND	ND	ND	26	59	ND	ND
AL	TUSCALOOSA CO	150,522	ND	ND	ND	ND	ND	28	61	ND	ND
AL	WALKER CO	67,670	ND	ND	ND	ND	ND	25	56	ND	ND
AK	ANCHORAGE BOROUGH	226,338	8	ND	ND	ND	ND	19*	73*	ND	ND
AK	FAIRBANKS NORTH STAR BOROUGH	77,720	10	ND	ND	ND	ND	IN	51	ND	ND
AK	JUNEAU BOROUGH	26,751	ND	ND	ND	ND	ND	IN	27	ND	ND
AK	MATANUSKA-SUSITNA BOROUGH	39,683	ND	ND	ND	ND	ND	16	149	ND	ND
AK	YUKON-KOYUKUK CA	8,478	ND	ND	ND	0.06	0.05	ND	ND	ND	ND
ΑZ	COCHISE CO	97,624	ND	ND	ND	0.08	0.07	IN	IN*	ND	ND
ΑZ	COCONINO CO	96,591	ND	ND	ND	0.09	0.08	IN	IN	ND	ND
AZ	GILA CO	40,216	ND	ND	ND	0.09	0.08	IN	IN	ND	ND
AZ	GRAHAM CO	26,554	ND	ND	ND	ND	ND	IN	IN*	ND	ND
AZ	MARICOPA CO	2,122,101	8	ND	0.041	0.12	0.09	60	219	0.003	0.014
AZ	NAVAJO CO	77,658	ND	ND	ND	ND	ND	IN	IN	ND	ND
AZ	PIMA CO	666.880	4	ND	0.019	0.09	0.07	49*	207*	0.002	0.005
AZ	PINAL CO	116.379	ND	ND	ND	ND	ND	ND	ND	IN	0.018
A7	SANTA CRUZ CO	29 676	ND	ND	ND	ND	ND	IN	IN*	ND	ND
A7	YAVAPALCO	107 714	ND	ND	ND	0.09	0.08	IN	IN	ND	ND
A7	YUMA CO	106,895	ND	ND	ND	0.09	0.08	IN	IN*	ND	ND
AR	ARKANSAS CO	21 653	ND	ND	ND	ND	ND	IN	IN*	ND	ND
AR	ASHLEY CO	24,000	ND	ND	ND	ND	ND	IN	IN*	ND	ND
		68 956	ND		ND	ND	ND	IN	IN*	ND	ND
		40,030				0.13	0.10	IN	IN*		ND
		49,909						IN	IN INI*		
		13,397							IIN INI*		
		00,407						IN	IN*		
		12,001						IN	IIN"		
AR	MILLER CU	38,467	ND	ND	ND	ND	ND	IN	IN*	IN	0.019
AR		7,841	ND	ND	ND	0.09	0.07	ND	ND	ND	ND
AR	NEWTON CO	7,666	ND	ND	ND	0.09	0.08	ND	ND	ND	ND
AR	OUACHITA CO	30,574	ND	ND	ND	ND	ND	IN	IN*	ND	ND
AR	PHILLIPS CO	28,838	ND	ND	ND	ND	ND	IN	IN*	ND	ND
AR	POLK CO	17,347	ND	ND	ND	ND	ND	IN	IN	ND	ND
AR	POPE CO	45,883	ND	ND	ND	ND	ND	IN	IN*	ND	ND

Table A-14. Maximum Air Quality Concentrations by County, 1999

County CU FP NO CI FP NO CI PP PM PM <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>•</th><th>•</th><th></th><th></th><th></th><th></th></th<>							•	•				
Population (pgm)	State County		1990	8-hr	Pb QMax	NO₂ AM	O₃ 1-hr	O₃ 8-hr	PM₁₀ Wtd AM	РМ ₁₀ 2nd Max	SO ₂ AM	SO₂ 24-hr
AR PLUASKI CO 349,860 4 ND D.011 D.01 D.02 322 T0* D.022 D.023 AR SEBASTM ACO 39,893 ND ND </th <th>-</th> <th></th> <th>Population</th> <th>(ppm)</th> <th>(µg/m³)</th> <th>(ppm)</th> <th>(ppm)</th> <th>(ppm)</th> <th>(µg/m³)</th> <th>(µg/m³)</th> <th>(ppm)</th> <th>(ppm)</th>	-		Population	(ppm)	(µg/m³)	(ppm)	(ppm)	(ppm)	(µg/m³)	(µg/m³)	(ppm)	(ppm)
AR SEBASTIAN CO 98,590 ND ND<	AR PULASKI CO		349,660	4	ND	0.011	0.11	0.09	32*	70*	0.002	0.005
AR UNION CO 46.719 ND	AR SEBASTIAN	CO	99,590	ND	ND	ND	ND	ND	IN	IN*	ND	ND
AR WAR ND ND <t< td=""><td>AR UNION CO</td><td></td><td>46,719</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>IN</td><td>IN*</td><td>0.005</td><td>0.022</td></t<>	AR UNION CO		46,719	ND	ND	ND	ND	ND	IN	IN*	0.005	0.022
AR WHTE CO 54.676 ND CA AMADOR CO 30.39 1 ND ND <td>AR WASHINGTO</td> <td>NCO</td> <td>113,409</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>IN</td> <td>IN*</td> <td>ND</td> <td>ND</td>	AR WASHINGTO	NCO	113,409	ND	ND	ND	ND	ND	IN	IN*	ND	ND
CA ALAMEDA CO 1.279.182 5 0.00 0.022 1.44 0.09 2.94 ND ND <t< td=""><td>AR WHITE CO</td><td></td><td>54,676</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>IN</td><td>IN*</td><td>ND</td><td>ND</td></t<>	AR WHITE CO		54,676	ND	ND	ND	ND	ND	IN	IN*	ND	ND
CA AMADOR CO 30.39 1 ND	CA ALAMEDA CO)	1,279,182	5	0.00	0.022	0.14	0.09	26*	94*	ND	ND
CA BUTTE CO 182,120 4 0.00 0.015 0.11 0.09 2.17 6.4 ND ND ND CA CALVAREAS CO 31.998 1 ND ND 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.18 0.13 0.00 0.08 30 138 ND ND CA CONTRA COSTACO 23.460 ND ND ND ND ND ND ND ND 1.10 1.01 2.11 ND ND <td>CA AMADOR CO</td> <td></td> <td>30,039</td> <td>1</td> <td>ND</td> <td>ND</td> <td>0.12</td> <td>0.10</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	CA AMADOR CO		30,039	1	ND	ND	0.12	0.10	ND	ND	ND	ND
CA CALAVERAS CO 31998 1 ND ND ND 1.2 0.10 2.11 6.4" ND ND COLUSACCO 16275 ND ND ND 0.09 0.8" 30 138 ND ND CA COLUSACCO 125995 2 ND 0.011 0.11 47' 42' ND ND CA ELORADCO 125995 2 ND 0.011 0.11 41' 42' ND ND <td< td=""><td>CA BUTTE CO</td><td></td><td>182,120</td><td>4</td><td>0.00</td><td>0.015</td><td>0.11</td><td>0.09</td><td>29*</td><td>139*</td><td>ND</td><td>ND</td></td<>	CA BUTTE CO		182,120	4	0.00	0.015	0.11	0.09	29*	139*	ND	ND
CA COLUSACO 16.275 ND ND ND 0.09 0.08 0.30 138 ND ND CA CONTRACOSTACO 23,460 ND ND ND ND ND ND ND ND ND AC CA LENORTE CO 125,995 ND ND ND ND ND ND AC AC ND ND <td< td=""><td>CA CALAVERAS</td><td>CO</td><td>31,998</td><td>1</td><td>ND</td><td>ND</td><td>0.12</td><td>0.10</td><td>21*</td><td>64*</td><td>ND</td><td>ND</td></td<>	CA CALAVERAS	CO	31,998	1	ND	ND	0.12	0.10	21*	64*	ND	ND
CA CONTRACOSTACO 803,732 3 0.00 0.018 0.13 0.02 28' 89' 0.003 0.020 CA DELNORTE CO 125,995 2 ND ND ND ND 111 47'' 42'' ND ND CA ELORADO CO 169,7490 8 0.00 0.014 0.16 0.11 47'' 120'' ND ND CA GENN CO 19,303 ND ND ND ND ND ND ND ND CA 14''' ND ND ND ND ND ND CA 14'''' ND	CA COLUSACO		16,275	ND	ND	ND	0.09	0.08	30	138	ND	ND
CA DELNORTE CO 23,460 ND ND ND ND ND ND ND ND CA FLEDRANCCO 125,995 2 ND 0.011 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.11 0.04 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.01 <td>CA CONTRACO</td> <td>STACO</td> <td>803,732</td> <td>3</td> <td>0.00</td> <td>0.018</td> <td>0.13</td> <td>0.09</td> <td>26*</td> <td>89*</td> <td>0.003</td> <td>0.020</td>	CA CONTRACO	STACO	803,732	3	0.00	0.018	0.13	0.09	26*	89*	0.003	0.020
CA ELDGRADC CO 125,995 2 ND 0.011 0.14 0.10 21' 42' ND ND CA GERNN CO 247,788 ND N	CA DEL NORTE	CO	23,460	ND	ND	ND	ND	ND	18	39	ND	ND
CA FRESNO CO 667,490 8 0.00 0.024 0.15 0.11 47" 130" ND ND ND CA GLENN CO 119,118 ND ND ND ND ND 19" 51" ND ND CA IMPERIALCO 119,303 14 0.00 0.018 51" 1916" ND ND ND CA INYO CO 18,281 ND ND ND 0.09 0.08 51" 1916" ND ND CA KINGS CO 101,469 ND ND 0.09 0.08 51" 1916" ND ND 0.00 CA LASEN CO 27,598 ND	CA EL DORADO	CO	125,995	2	ND	0.011	0.14	0.10	21*	42*	ND	ND
CA GLENN CO 24,798 ND	CA FRESNO CO		667,490	8	0.00	0.024	0.15	0.11	47*	130*	ND	ND
CA HUMBOLDT CO 119,118 ND ND ND ND 19' 51' ND ND ND CA IMPERIALCO 199,303 14 0.00 0.018 0.17 0.09 55' 36' 0.003 0.013 CA INFO CO 182,81 ND ND 0.09 0.025 0.14 0.11 61' 142' IN ND ND CA KINGS CO 101,469 ND	CA GLENN CO		24,798	ND	ND	ND	0.10	0.08	26	121	ND	ND
CA IMPERIAL CO 199,303 14 0.00 0.018 0.17 0.09 85 369 0.003 0.013 CA INYO CO 19,281 ND ND ND 0.00 0.08 51* 1918* ND ND CA KINGS CO 101,469 ND ND 0.016 0.13 0.10 54 146 ND ND CA LAKE CO 50,631 ND	CA HUMBOLDT	00	119,118	ND	ND	ND	ND	ND	19*	51*	ND	ND
CA INPO CO 161, 221 ND ND ND 0.098 61* 1918* ND ND ND CA KERCO 543, 477 4 0.00 0.025 0.14 0.11 0.61* 142* IN 0.066 CA KINGS CO 101,469 ND ND 0.09 0.07* IN 28 ND ND CA LASSEN CO 27,588 ND	CA IMPERIAL CO)	109,303	14	0.00	0.018	0.17	0.09	85	369	0.003	0.013
CA KEN CO 543,477 4 0.00 0.025 0.14 0.11 61* 142* IN 0.006 CA KINGS CO 101449 ND ND ND 0.01 54 146 ND ND CA LASSEN CO 27,598 ND ND ND ND ND ND 0.07 IN 28 ND ND CA LOS ANGELES CO 8.863,164 11 0.08 0.016 0.14 0.10 0.06 22* 66* ND ND <td>CA INYO CO</td> <td></td> <td>18,281</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>0.09</td> <td>0.08</td> <td>51*</td> <td>1918*</td> <td>ND</td> <td>ND</td>	CA INYO CO		18,281	ND	ND	ND	0.09	0.08	51*	1918*	ND	ND
CA KINGS CO 101.469 ND ND O.016 0.13 54 146 ND ND CA LAKE CO 50.631 ND ND <t< td=""><td>CA KERN CO</td><td></td><td>543,477</td><td>4</td><td>0.00</td><td>0.025</td><td>0.14</td><td>0.11</td><td>61*</td><td>142*</td><td>IN</td><td>0.006</td></t<>	CA KERN CO		543,477	4	0.00	0.025	0.14	0.11	61*	142*	IN	0.006
CA LAKE CO 50,631 ND	CA KINGS CO		101,469	ND	ND	0.016	0.13	0.10	54	146	ND	ND
CA LASSEN CO 27,598 ND ND ND ND IN 96 ND ND CA LOS ANGELES CO 8,803,164 11 0.09 0.051 0.14 0.10 0.56 119 0.005 0.019 CA MARIN CO 230,096 3 ND 0.018 0.010 0.06 22* 66* ND ND CA MARINCO 230,096 3 ND ND 0.11 0.10 IN IN ND ND CA MENDOCINO CO 80,345 4 ND 0.010 0.08 0.06 25* 67* ND ND CA MERCED CO 178,403 ND	CA LAKE CO		50,631	ND	ND	ND	0.09	0.07	IN	28	ND	ND
CA LOS ANGELES CO 8,863,164 11 0.09 0.014 0.10 0.09 ND ND ND CA MARIN CO 230,096 3 ND 0.014 0.10 0.09 ND ND ND ND CA MARIPOSA CO 14,302 ND ND ND 0.011 0.10 0.66 22° 66° ND ND CA MENDOCINO CO 80,345 4 ND 0.010 0.08 0.66 25° 67° ND ND CA MENDOCINO CO 80,345 4 ND 0.010 0.08 0.66 25° 67° ND ND ND CA MODOC CO 9,673 ND ND ND ND ND ND 0.11 0.81 0.31 ND ND ND AAPACO AAPACO 76 ND ND ND 0.11 0.08 0.06 29 76 ND ND ND AAPACO APACO 78,510 ND ND ND ND ND ND <td>CA LASSEN CO</td> <td></td> <td>27,598</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>IN</td> <td>96</td> <td>ND</td> <td>ND</td>	CA LASSEN CO		27,598	ND	ND	ND	ND	ND	IN	96	ND	ND
CA MADERA CO 88,090 ND ND 0.10 0.09 ND ND ND ND CA MARIN CO 230,096 3 ND 0.018 0.10 0.06 22* 66* ND ND CA MARINCO 14,302 ND ND 0.011 0.01 0.01 ND ND ND CA MERCECO 178,403 ND ND 0.012 0.13 0.11 NN ND ND CA MODOC CO 9,678 ND	CA LOS ANGELE	ES CO	8,863,164	11	0.09	0.051	0.14	0.10	56	119	0.005	0.019
CA MARIN CO 230,096 3 ND 0.10 0.06 22* 66* ND ND CA MARIPOSA CO 14,302 ND ND ND 0.11 0.10 IN IN ND ND CA MERCED CO 80,345 4 ND 0.010 0.08 0.06 25* 67* ND ND CA MENDOCINO CO 9,678 ND ND<	CA MADERACO		88,090	ND	ND	0.014	0.10	0.09	ND	ND	ND	ND
CA MARIPOSA CO 14,302 ND ND ND 0.11 0.10 IN IN ND ND CA MENDOCINO CO 80,345 4 ND 0.010 0.08 0.06 25* 67* ND ND CA MERCED CO 178,403 ND ND 0.012 0.13 0.11 IN IN ND ND ND CA MODOC CO 9,678 ND ND ND ND ND 26 73 ND ND CA MONTEREY CO 355,660 2 ND 0.010 0.08 0.06 29 76 ND ND CA NAPA CO 110,765 3 ND 0.011 0.08 107 73 0.002 0.005 CA NAPACO 2410,550 6 ND 0.035 0.11 0.08 37 73 0.002 0.009 CA PLACER CO 1170,413 4	CA MARIN CO		230,096	3	ND	0.018	0.10	0.06	22*	66*	ND	ND
CA MENDOCINO CO 80.345 4 ND 0.012 0.08 0.06 25* 67* ND ND ND CA MERCED CO 178,403 ND	CA MARIPOSA C	0	14,302	ND	ND	ND	0.11	0.10	IN	IN	ND	ND
CA MERCED CO 178,403 ND	CA MENDOCINC	0 CO	80,345	4	ND	0.010	0.08	0.06	25*	67*	ND	ND
CA MODOC CO 9,678 ND	CA MERCED CO		178,403	ND	ND	0.012	0.13	0.11	IN	IN	ND	ND
CA MONO CO 9,956 ND ND ND ND ND ND ND ND ND CA MONTEREY CO 355,660 2 ND 0.010 0.08 0.06 29 76 ND ND CA NAPA CO 110,765 3 ND 0.011 0.09 25 78 ND ND CA NEVADA CO 78,510 ND ND ND 0.011 0.09 25 78 ND ND CA PLACER CO 172,796 2 0.00 0.012 0.13 0.10 27* 92* ND ND CA PLACER CO 1,170,413 4 0.05 0.025 0.14 0.12 72 134 0.002 0.009 CA SACRAMENTO CO 1,641,219 6 ND ND 0.11 0.08 23* 53* ND ND CA SAN BERNARDINO CO 1,418,380 4 <	CA MODOC CO		9,678	ND	ND	ND	ND	ND	26	73	ND	ND
CA MONTEREY CO 355,660 2 ND 0.010 0.08 0.06 29 76 ND ND CA NAPA CO 110,765 3 ND 0.014 0.11 0.08 19" 54" ND ND CA NEXADA CO 78,510 ND ND ND 0.011 0.08 37 73 0.002 0.005 CA PLACER CO 172,796 2 0.00 0.012 0.13 0.10 27" 193" ND ND ND 0.02 0.03" CA ND ND <t< td=""><td>CA MONO CO</td><td></td><td>9,956</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>IN</td><td>33</td><td>ND</td><td>ND</td></t<>	CA MONO CO		9,956	ND	ND	ND	ND	ND	IN	33	ND	ND
CA NAPA CO 110,765 3 ND 0.014 0.11 0.08 19" 54" ND ND CA NEVADA CO 78,510 ND ND ND 0.011 0.09 25 78 ND ND CA ORANGE CO 2,410,556 6 ND 0.035 0.11 0.08 37 73 0.002 0.005 CA PLACER CO 172,796 2 0.00 0.012 0.13 0.10 27" 92" ND ND CA RIVERSIDE CO 1,170,413 4 0.05 0.025 0.14 0.12 72 134 0.002 0.009 CA SACRAMENTO CO 1,041,219 6 ND 0.021 0.14 0.11 3.4" 134" 4.003 0.002 0.009 CA SAN BERNARDINC CO 1,418,380 4 0.05 0.039 0.16 0.13 60 108 0.002 0.009 0.04 0.016 CA SAN PLACOCO 2,496,616 5 0.00 0.021 0.07	CA MONTEREY	CO	355,660	2	ND	0.010	0.08	0.06	29	76	ND	ND
CA NEVADA CO 78,510 ND ND ND 0.11 0.09 25 78 ND ND CA ORANGE CO 2,410,556 6 ND 0.035 0.11 0.08 37 73 0.002 0.005 CA PLACER CO 172,796 2 0.00 0.012 0.13 0.10 27* 92* ND ND ND CA PLACER CO 19,739 ND ND ND 0.08 0.07 27* 103* ND ND ND CA RIVERSIDE CO 1,170,413 4 0.05 0.025 0.14 0.11 34* 143* 0.004 0.012 CA SAR BENITO CO 1,418,380 4 0.05 0.039 0.16 0.13 0.09 52 114 0.002 0.009 CA SAN BERITO CO 2,498,016 5 0.00 0.021 0.07 0.05 27* 70* 0.002 0.006 <td>CA NAPA CO</td> <td></td> <td>110,765</td> <td>3</td> <td>ND</td> <td>0.014</td> <td>0.11</td> <td>0.08</td> <td>19*</td> <td>54*</td> <td>ND</td> <td>ND</td>	CA NAPA CO		110,765	3	ND	0.014	0.11	0.08	19*	54*	ND	ND
CA ORANGE CO 2,410,556 6 ND 0.035 0.11 0.08 37 73 0.002 0.005 CA PLACER CO 172,796 2 0.00 0.11 0.08 0.07 2* 92* ND ND ND CA PLUMAS CO 19,739 ND ND ND 0.08 0.07 27* 92* ND ND ND CA RIVERSIDE CO 1,170,413 4 0.05 0.021 0.14 0.11 34* 143* 0.004 0.012 CA SACRAMENTO CO 1,041,219 6 ND ND ND 0.11 0.08 23* 53* ND ND CA SAN BERNARDINO CO 1,418,380 4 0.05 0.039 0.16 0.13 60 108 0.002 0.009 CA SAN IDEGO CO 2,498,016 5 0.00 0.026 0.11 0.09 52* 70* 0.002 0.006 CA SAN FRANCISCO CO 723,959 5 0.00 0.024	CA NEVADA CO		78,510	ND	ND	ND	0.11	0.09	25	78	ND	ND
CA PLACER CO 172,796 2 0.00 0.012 0.13 0.10 27* 92* ND ND CA PLUMAS CO 19,739 ND ND ND 0.08 0.07 27* 103* ND ND CA RIVERSIDE CO 1,170,413 4 0.05 0.025 0.14 0.11 34* 143* 0.002 0.009 CA SACRAMENTO CO 1,041,219 6 ND ND ND 0.11 0.4* 143* 0.002 0.009 CA SAN BENITO CO 36,697 ND ND ND 0.11 0.08 23* 53* ND ND CA SAN BERNARDINO CO 1,418,380 4 0.05 0.039 0.16 0.13 60 108 0.002 0.009 CA SAN JAQUIN CO 2498,016 5 0.00 0.021 0.07 0.55 27* 70* ND ND ND ND N	CA ORANGE CO		2,410,556	6	ND	0.035	0.11	0.08	37	73	0.002	0.005
CA PLUMAS CO 19,739 ND ND ND 0.08 0.07 27* 103* ND ND CA RIVERSIDE CO 1,170,413 4 0.05 0.025 0.14 0.12 72 134 0.002 0.009 CA SACRAMENTO CO 1,041,219 6 ND ND ND 0.11 0.08 23* 53* ND ND CA SAN BERITO CO 36,697 ND ND ND 0.11 0.08 23* 53* ND ND CA SAN BERNARDINO CO 1,418,380 4 0.05 0.039 0.16 0.13 60 108 0.002 0.009 CA SAN FRANCISCO CO 723,959 5 0.00 0.021 0.07 0.05 27* 70* 0.002 0.006 CA SAN JAQAUIN CO 480,628 6 0.00 0.024 0.13 0.09 37* 123* ND ND ND CA SAN MATEO CO 217,162 3 ND 0.013 0.09	CA PLACER CO		172,796	2	0.00	0.012	0.13	0.10	27*	92*	ND	ND
CA RIVERSIDE CO 1,170,413 4 0.05 0.025 0.14 0.12 72 134 0.002 0.009 CA SACRAMENTO CO 1,041,219 6 ND 0.021 0.14 0.11 34* 143* 0.004 0.012 CA SAN BENITO CO 36,697 ND ND ND 0.11 0.08 23* 53* ND ND CA SAN BERNARDINO CO 1,418,380 4 0.05 0.039 0.16 0.13 60 108 0.002 0.009 CA SAN FRANCISCO CO 2,498,016 5 0.00 0.026 0.11 0.09 52 114 0.003 0.016 CA SAN FRANCISCO CO 723,959 5 0.00 0.021 0.07 0.05 27* 70* 0.002 0.006 CA SAN JOAQUIN CO 480,628 6 0.00 0.024 0.13 0.09 0.88 27 82 0.005 0.027 CA SANTA BARBARA CO 649,623 4 ND 0.019	CA PLUMAS CO		19,739	ND	ND	ND	0.08	0.07	27*	103*	ND	ND
CA SACRAMENTO CO 1,041,219 6 ND 0.021 0.14 0.11 34* 143* 0.004 0.012 CA SAN BENITO CO 36,697 ND ND ND 0.11 0.08 23* 53* ND ND CA SAN BERNARDINO CO 1,418,380 4 0.05 0.039 0.16 0.13 60 108 0.002 0.009 CA SAN FRANCISCO CO 2,498,016 5 0.00 0.026 0.11 0.09 52 114 0.002 0.006 CA SAN FRANCISCO CO 723,959 5 0.00 0.024 0.13 0.09 37* 123* ND ND CA SAN JOAQUIN CO 480,628 6 0.00 0.024 0.13 0.09 37* 123* ND ND CA SAN MATEO CO 649,623 4 ND 0.019 0.08 27* 75* ND ND CA SANTA BARBARA CO 369,608 4 0.00 0.022 0.10 0.08 29*	CA RIVERSIDE C	0	1,170,413	4	0.05	0.025	0.14	0.12	72	134	0.002	0.009
CA SAN BENITO CO 36,697 ND ND ND 0.11 0.08 23* 53* ND ND CA SAN BERNARDINO CO 1,418,380 4 0.05 0.039 0.16 0.13 60 108 0.002 0.009 CA SAN DIEGO CO 2,498,016 5 0.00 0.026 0.11 0.09 52 114 0.03 0.016 CA SAN FRANCISCO CO 723,959 5 0.00 0.021 0.07 0.05 27* 70* 0.002 0.006 CA SAN LUIS OBISPO CO 217,162 3 ND 0.013 0.09 0.08 27 82 0.002 0.003 CA SAN MATEO CO 649,623 4 ND 0.019 0.08 0.05 27* 75* ND ND CA SANTA BARBARA CO 369,608 4 0.00 0.022 0.10 0.08 29* 94* ND ND CA SANTA CLARA CO 1,497,577 6 0.00 0.026 0.12 0.08	CA SACRAMENT	TO CO	1,041,219	6	ND	0.021	0.14	0.11	34*	143*	0.004	0.012
CA SAN BERNARDINO CO 1,418,380 4 0.05 0.039 0.16 0.13 60 108 0.002 0.009 CA SAN DIEGO CO 2,498,016 5 0.00 0.026 0.11 0.09 52 114 0.003 0.016 CA SAN FRANCISCO CO 723,959 5 0.00 0.024 0.13 0.09 37* 123* ND ND CA SAN JOAQUIN CO 480,628 6 0.00 0.024 0.13 0.09 37* 123* ND ND CA SAN JOAQUIN CO 480,628 6 0.00 0.024 0.13 0.09 37* 123* ND ND CA SAN JOAQUIN CO 217,162 3 ND 0.013 0.09 0.08 27* 75* ND ND CA SANTA BARBARA CO 649,623 4 ND 0.019 0.08 29* 54* 0.002 0.003 CA SANTA CLARA CO 1,497,577 6 0.00 0.026 0.12 0.08 0.07 </td <td>CA SAN BENITO</td> <td>CO</td> <td>36,697</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>0.11</td> <td>0.08</td> <td>23*</td> <td>53*</td> <td>ND</td> <td>ND</td>	CA SAN BENITO	CO	36,697	ND	ND	ND	0.11	0.08	23*	53*	ND	ND
CA SAN DIEGO CO 2,498,016 5 0.00 0.026 0.11 0.09 52 114 0.003 0.016 CA SAN FRANCISCO CO 723,959 5 0.00 0.021 0.07 0.05 27* 70* 0.002 0.006 CA SAN JOAQUIN CO 480,628 6 0.00 0.024 0.13 0.09 37* 123* ND ND CA SAN LUIS OBISPO CO 217,162 3 ND 0.013 0.09 0.08 27 82 0.005 0.027 CA SAN MATEO CO 649,623 4 ND 0.019 0.08 0.05 27* 75* ND ND CA SANTA BARBARA CO 369,608 4 0.00 0.022 0.10 0.08 29* 94* ND ND CA SANTA CLARA CO 1,497,577 6 0.00 0.026 0.12 0.08 29* 94* ND ND CA SHASTA CO 147,036 ND ND ND 0.11 0.09 1	CA SAN BERNAR	RDINO CO	1,418,380	4	0.05	0.039	0.16	0.13	60	108	0.002	0.009
CA SAN FRANCISCO CO 723,959 5 0.00 0.021 0.07 0.05 27* 70* 0.002 0.006 CA SAN JOAQUIN CO 480,628 6 0.00 0.024 0.13 0.09 37* 123* ND ND CA SAN LUIS OBISPO CO 217,162 3 ND 0.013 0.09 0.08 27 82 0.005 0.027 CA SAN MATEO CO 649,623 4 ND 0.019 0.08 0.05 27* 75* ND ND CA SANTA BARBARA CO 369,608 4 0.00 0.022 0.10 0.08 29* 54* 0.002 0.003 CA SANTA CLARA CO 1,497,577 6 0.00 0.026 0.12 0.08 29* 94* ND ND CA SANTA CRUZ CO 29,734 1 ND 0.005 0.08 0.07 32* 75* 0.001 0.002 CA SHASTA CO 147,036 ND ND ND ND ND ND	CA SAN DIEGO	00	2,498,016	5	0.00	0.026	0.11	0.09	52	114	0.003	0.016
CA SAN JOAQUIN CO 480,628 6 0.00 0.024 0.13 0.09 37* 123* ND ND CA SAN LUIS OBISPO CO 217,162 3 ND 0.013 0.09 0.08 27 82 0.005 0.027 CA SAN MATEO CO 649,623 4 ND 0.019 0.08 0.05 27* 75* ND ND CA SANTA BARBARA CO 369,608 4 0.00 0.022 0.10 0.08 29* 54* 0.002 0.003 CA SANTA CLARA CO 1,497,577 6 0.00 0.026 0.12 0.08 29* 94* ND ND CA SANTA CRUZ CO 229,734 1 ND 0.005 0.08 0.07 32* 75* 0.001 0.002 CA SHASTA CO 147,036 ND N	CA SAN FRANCI	SCO CO	723,959	5	0.00	0.021	0.07	0.05	27*	70*	0.002	0.006
CA SAN LUIS OBISPO CO 217,162 3 ND 0.013 0.09 0.08 27 82 0.005 0.027 CA SAN MATEO CO 649,623 4 ND 0.019 0.08 0.05 27* 75* ND ND CA SANTA BARBARA CO 369,608 4 0.00 0.022 0.10 0.08 29* 54* 0.002 0.003 CA SANTA CLARA CO 1,497,577 6 0.00 0.026 0.12 0.08 29* 94* ND ND CA SANTA CRUZ CO 229,734 1 ND 0.005 0.08 0.07 32* 75* 0.001 0.002 CA SHASTA CO 147,036 ND	CA SAN JOAQUI	NCO	480,628	6	0.00	0.024	0.13	0.09	37*	123*	ND	ND
CA SAN MATEO CO 649,623 4 ND 0.019 0.08 0.05 27* 75* ND ND CA SANTA BARBARA CO 369,608 4 0.00 0.022 0.10 0.08 29* 54* 0.002 0.003 CA SANTA CLARA CO 1,497,577 6 0.00 0.026 0.12 0.08 29* 94* ND ND CA SANTA CLARA CO 1,497,577 6 0.00 0.026 0.12 0.08 29* 94* ND ND CA SANTA CRUZ CO 229,734 1 ND 0.005 0.08 0.07 32* 75* 0.001 0.002 CA SHASTA CO 147,036 ND ND ND ND ND 10.09 IN 42 ND ND CA SIERRA CO 3,318 ND ND ND ND ND 25 53 ND ND CA SISKIYOU CO 43,531 ND ND ND 0.07 0.06 17 47	CA SAN LUIS OF	SISPO CO	217,162	3	ND	0.013	0.09	0.08	27	82	0.005	0.027
CA SANTA BARBARA CO 369,608 4 0.00 0.022 0.10 0.08 29* 54* 0.002 0.003 CA SANTA CLARA CO 1,497,577 6 0.00 0.026 0.12 0.08 29* 94* ND ND CA SANTA CRUZ CO 229,734 1 ND 0.005 0.08 0.07 32* 75* 0.001 0.002 CA SHASTA CO 147,036 ND ND ND 0.11 0.09 IN 42 ND ND CA SHASTA CO 3,318 ND ND ND ND ND 25 53 ND ND CA SISKIYOU CO 43,531 ND ND ND 0.07 0.06 17 47 ND ND CA SOLANO CO 340,421 5 ND 0.014 0.12 0.09 20* 64* 0.002 0.006 CA SOLANO CO 388,222 3 ND 0.014 0.10 0.08 19* 65* ND	CA SAN MATEO	CO	649,623	4	ND	0.019	0.08	0.05	27*	75*	ND	ND
CA SANTA CLARA CO 1,497,577 6 0.00 0.026 0.12 0.08 29* 94* ND ND CA SANTA CRUZ CO 229,734 1 ND 0.005 0.08 0.07 32* 75* 0.001 0.002 CA SHASTA CO 147,036 ND ND ND 0.11 0.09 IN 42 ND ND CA SHASTA CO 3,318 ND ND ND ND ND 25 53 ND ND CA SISKIYOU CO 43,531 ND ND ND 0.07 0.06 17 47 ND ND CA SOLANO CO 340,421 5 ND 0.014 0.12 0.09 20* 64* 0.002 0.006 CA SONOMA CO 388,222 3 ND 0.014 0.10 0.08 19* 65* ND ND CA STANISLAUS CO 370,522 6 0.00 0.022 0.11 0.09 43 137 ND <td< td=""><td>CA SANTA BARE</td><td>SARA CO</td><td>369,608</td><td>4</td><td>0.00</td><td>0.022</td><td>0.10</td><td>0.08</td><td>29*</td><td>54*</td><td>0.002</td><td>0.003</td></td<>	CA SANTA BARE	SARA CO	369,608	4	0.00	0.022	0.10	0.08	29*	54*	0.002	0.003
CA SANTA CRUZ CO 229,734 1 ND 0.005 0.08 0.07 32* 75* 0.001 0.002 CA SHASTA CO 147,036 ND ND ND 0.11 0.09 IN 42 ND ND CA SHASTA CO 3,318 ND ND ND ND ND 25 53 ND ND CA SISKIYOU CO 43,531 ND ND ND 0.07 0.06 17 47 ND ND CA SOLANO CO 340,421 5 ND 0.014 0.12 0.09 20* 64* 0.002 0.006 CA SONMA CO 388,222 3 ND 0.014 0.10 0.08 19* 65* ND ND CA STANISLAUS CO 370,522 6 0.00 0.022 0.11 0.09 43 137 ND ND CA SUTTER CO 64,415 4 ND 0.014 0.11 0.08 39* 156* ND ND	CA SANTA CLAR	ACO	1,497,577	6	0.00	0.026	0.12	0.08	29*	94*	ND	ND
CA SHASTA CO 147,036 ND ND ND 0.11 0.09 IN 42 ND ND CA SIERRA CO 3,318 ND ND ND ND ND ND 25 53 ND ND CA SISKIYOU CO 43,531 ND ND ND ND 0.06 17 47 ND ND CA SOLANO CO 340,421 5 ND 0.014 0.12 0.09 20* 64* 0.002 0.006 CA SONOMA CO 388,222 3 ND 0.014 0.10 0.08 19* 65* ND ND CA STANISLAUS CO 370,522 6 0.00 0.022 0.11 0.09 43 137 ND ND CA SUTTER CO 64,415 4 ND 0.014 0.11 0.08 39* 156* ND ND	CA SANTA CRUZ	2 CO	229,734	1	ND	0.005	0.08	0.07	32*	75*	0.001	0.002
CA SIERRA CO 3,318 ND ND ND ND ND 25 53 ND ND CA SISKIYOU CO 43,531 ND ND ND ND 0.07 0.06 17 47 ND ND CA SOLANO CO 340,421 5 ND 0.014 0.12 0.09 20* 64* 0.002 0.006 CA SONOMA CO 388,222 3 ND 0.014 0.10 0.08 19* 65* ND ND CA STANISLAUS CO 370,522 6 0.00 0.022 0.11 0.09 43 137 ND ND CA SUTTER CO 64,415 4 ND 0.014 0.11 0.08 39* 156* ND ND	CA SHASTA CO		147,036	ND	ND	ND	0.11	0.09	IN	42	ND	ND
CA SISKIYOU CO 43,531 ND ND ND 0.07 0.06 17 47 ND ND CA SOLANO CO 340,421 5 ND 0.014 0.12 0.09 20* 64* 0.002 0.006 CA SONOMA CO 388,222 3 ND 0.014 0.10 0.08 19* 65* ND ND CA STANISLAUS CO 370,522 6 0.00 0.022 0.11 0.09 43 137 ND ND CA SUTTER CO 64,415 4 ND 0.014 0.11 0.08 39* 156* ND ND	CA SIERRACO		3,318	ND	ND	ND	ND	ND	25	53	ND	ND
CA SOLANO CO 340,421 5 ND 0.014 0.12 0.09 20* 64* 0.002 0.006 CA SONOMA CO 388,222 3 ND 0.014 0.10 0.08 19* 65* ND ND CA STANISLAUS CO 370,522 6 0.00 0.022 0.11 0.09 43 137 ND ND CA SUTTER CO 64,415 4 ND 0.014 0.11 0.08 39* 156* ND ND	CA SISKIYOU CO)	43,531	ND	ND	ND	0.07	0.06	17	47	ND	ND
CA SONOMA CO 388,222 3 ND 0.014 0.10 0.08 19* 65* ND ND CA STANISLAUS CO 370,522 6 0.00 0.022 0.11 0.09 43 137 ND ND CA SUTTER CO 64,415 4 ND 0.014 0.11 0.08 39* 156* ND ND	CA SOLANO CO		340,421	5	ND	0.014	0.12	0.09	20*	64*	0.002	0.006
CA STANISLAUS CO 370,522 6 0.00 0.022 0.11 0.09 43 137 ND ND CA SUTTER CO 64,415 4 ND 0.014 0.11 0.08 39* 156* ND ND	CA SONOMACO		388,222	3	ND	0.014	0.10	0.08	19*	65*	ND	ND
CA SUTTER CO 64,415 4 ND 0.014 0.11 0.08 39* 156* ND ND	CA STANISLAUS	CO	370,522	6	0.00	0.022	0.11	0.09	43	137	ND	ND
	CA SUTTER CO		64,415	4	ND	0.014	0.11	0.08	39*	156*	ND	ND

State	e County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM ₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (µg/m³)	SO₂ AM (ppm)	SO ₂ 24-hr (ppm)
CA	ТЕНАМА СО	49,625	ND	ND	ND	0.11	0.10	IN	IN	ND	ND
CA	TRINITY CO	13,063	ND	ND	ND	ND	ND	IN	78	ND	ND
CA	TULARE CO	311,921	4	ND	0.021	0.13	0.11	56*	137*	ND	ND
CA	TUOLUMNE CO	48,456	3	ND	ND	0.11	0.10	ND	ND	ND	ND
CA	VENTURA CO	669,016	3	0.00	0.022	0.13	0.10	32*	63*	0.002	0.005
CA	YOLO CO	141,092	1	ND	0.012	0.12	0.09	33	144	ND	ND
CO	ADAMS CO	265,038	4	0.08	0.020	0.09	0.07	37*	142*	0.003	0.012
CO	ALAMOSA CO	13,617	ND	ND	ND	ND	ND	IN	129	ND	ND
CO	ARAPAHOE CO	391,511	ND	ND	ND	0.10	0.08	ND	ND	ND	ND
CO	ARCHULETA CO	5,345	ND	ND	ND	ND	ND	IN	82	ND	ND
CO	BOULDER CO	225,339	4	ND	ND	0.10	0.08	IN	56	ND	ND
CO	DELTA CO	20,980	ND	ND	ND	ND	ND	26*	57*	ND	ND
CO	DENVER CO	467,610	5	0.02	IN	0.09	0.07	29*	83*	IN	0.014
CO	DOUGLAS CO	60,391	ND	ND	ND	0.09	0.08	IN	24	ND	ND
CO	EAGLE CO	21,928	ND	ND	ND	ND	ND	IN	36	ND	ND
CO	EL PASO CO	397,014	5	0.01	0.019	0.08	0.06	23*	80*	0.004	0.020
CO	FREMONT CO	32,273	ND	ND	ND	ND	ND	15*	41*	ND	ND
CO	GARFIELD CO	29,974	ND	ND	ND	ND	ND	IN	51	ND	ND
CO	GUNNISON CO	10,273	ND	ND	ND	ND	ND	30	111	ND	ND
CO	JEFFERSON CO	438,430	4	ND	0.010	0.11	0.08	14*	35*	ND	ND
CO	LAKE CO	6,007	ND	0.02	ND	ND	ND	ND	ND	ND	ND
CO	LA PLATA CO	32,284	ND	ND	ND	ND	ND	36	98	ND	ND
CO	LARIMER CO	186,136	5	ND	ND	0.09	0.07	16*	36*	ND	ND
CO	MESA CO	93,145	5	ND	ND	ND	ND	20	52	ND	ND
CO	MONTEZUMA CO	18,672	ND	ND	ND	80.0	0.07	ND	ND	ND	ND
CO	MONTROSE CO	24,423	ND	ND	ND	ND	ND	IN	88	ND	ND
CO	PITKIN CO	12,661	ND	ND	ND	ND	ND	31	/3	ND	ND
00	PROWERS CO	13,347	ND	ND	ND	ND	ND	29^	145^	ND	ND
00	PUEBLOCO	123,051	ND	ND	ND	ND	ND	IN	51	ND	ND
00		14,088	ND	ND	ND	ND	ND	IN	109	ND	ND
00		3,053	ND	ND	ND	ND	ND		00	ND	ND
00		12,881					ND	18"	54"	ND	ND
00	TELLER CO	12,468	ND	ND				10*	93		ND
CU		131,821	3			0.09	0.07	10	4/*		
CT		827,040 951,792	4		0.018	0.15	0.11	29° 10	49	0.000	0.026
CT		474.002			0.018	0.13	0.09	10	0 I 41*	0.004	0.019
CT		1/4,092				0.15	0.10				
СТ		904 210	2	0.01	0.026	0.10	0.11	ND 27*	76*	0.007	0.027
CT		254 057			0.020	0.13	0.11	17	26	0.007 INI	0.027
СТ		128 600				0.13	0.10			IN	0.008
СТ	WINDHAM CO	102 525					0.03 ND		IN		0.009 ND
		110 003				0.12	0.10	ND	ND		ND
	NEW CASTLE CO	441 946	3		0.018	0.12	0.10	24*	49*	0.008	0.049
	SUSSEX CO	113 220				0.17	0.10				0.043 ND
	WASHINGTON	606 900	6	0.03	0.024	0.12	0.10	IN	IN	0.008	0.020
FI		181 596				0.10	0.10	22*	30*		0.020 ND
FI	BAKER CO	18 486				0.10	0.00		ND		ND
FI	BAY CO	126 994	ND		ND		0.00 ND	IN	50	ND	ND
FI	BREVARD CO	398 978	ND	ND	ND	0.09	0.08	20*	53*	ND	ND
FI	BROWARD CO	1 255 488	5	0.02	0.011	0.00	0.00	19*	34*	0.003	0.015
FI	COLLIER CO	152 099	ND	ND	ND	ND	ND	17	30	ND	ND
FI	DADE CO	1 937 094	4	ND	0.017	0 11	0.08	25*	45*	0.001	0.003
FI		672 971	- -	0.02	0.016	0.10	0.08	28	53	0.004	0.020
FL	ESCAMBIA CO	262,798	ND	ND	IN	0.11	0.09	24*	57*	0.004	0.029

State	• County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO₂ AM (ppm)	O₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM ₁₀ Wtd AM (μg/m³)	PM ₁₀ 2nd Max (μg/m³)	SO ₂ AM (ppm)	SO₂ 24-hr (ppm)
FL (GULF CO	11.504	ND	ND	ND	ND	ND	IN	IN	ND	ND
FL I	HAMILTON CO	10,930	ND	ND	ND	ND	ND	25*	40*	0.004	0.013
FL I	HILLSBOROUGH CO	834.054	5	1.02	0.010	0.12	0.09	35	81	0.008	0.060
FL	HOLMESCO	15 778	ND	ND	ND	0.10	0.08	ND	ND	ND	ND
FI	AKE CO	152 104	ND	ND	ND	ND	ND	19	49	ND	ND
FI	LEF CO	335 113	ND	ND	ND	0.10	0.08	19	32	ND	ND
FII		192 493	ND	ND	ND	0.10	0.00	19	55	ND	ND
FI		211 707		ND	0.007	0.00	0.00	24	42	0 004	0.017
FI	MARION CO	104 833				0.10	0.00				
		78.024					0.00	15	30		
		10,024						20*	50*	0.004	0.036
		43,941	2		0.012	0.10		20 27*	09 45*	0.004	0.030
		107 709			0.012	0.10	0.00		40 ND	0.002	0.007
		107,720			ND 0.012	0.10	0.00	20*	20*		0.012
		201 121			0.013	0.10	0.00		33 ND	0.002	0.013
	PASCOCO	281,131	ND			0.09	0.08				
FL I	PINELLAS CO	851,659	3	0.01	0.016	0.11	0.09	25"	49"	0.007	0.038
FL I		405,382	ND	ND	ND	0.10	0.08	22	50	0.007	0.019
FL I		65,070	ND	ND	ND	ND	ND	25^	45^	0.003	0.015
FL 3	ST LUCIE CO	150,171	ND	ND	0.010	0.08	0.07	20	39	ND	ND
FL 3	SARASOTA CO	277,776	3	ND	ND	0.11	0.09	20*	42*	0.002	0.011
FL :	SEMINOLE CO	287,529	ND	ND	ND	0.10	0.08	IN	IN	ND	ND
FL '	VOLUSIA CO	370,712	ND	ND	ND	0.09	0.08	21*	57*	ND	ND
GA	BARTOW CO	55,911	ND	ND	ND	ND	ND	ND	ND	0.003	0.012
GA	BIBB CO	149,967	ND	ND	ND	0.13	0.11	IN	53	ND	ND
GA	CHATHAM CO	216,935	ND	ND	ND	0.11	0.08	27	59	0.003	0.018
GA	CHATTOOGA CO	22,242	ND	ND	ND	ND	ND	22	59	ND	ND
GA	CHEROKEE CO	90,204	ND	ND	ND	0.10	IN	ND	ND	ND	ND
GA	COBB CO	447,745	ND	ND	ND	0.11	ND	ND	ND	ND	ND
GA	COWETA CO	53,853	ND	ND	ND	0.13	0.11	ND	ND	ND	ND
GA	DAWSON CO	9,429	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
GA	DE KALB CO	545,837	4	0.05	0.020	0.15	0.11	23	44	ND	ND
GA	DOUGHERTY CO	96,311	ND	ND	ND	ND	ND	26	60	ND	ND
GA	DOUGLAS CO	71,120	ND	ND	ND	0.12	0.11	IN	47	ND	ND
GA	FANNIN CO	15,992	ND	ND	ND	0.10	0.08	ND	ND	0.004	0.018
GA	FAYETTE CO	62,415	ND	ND	ND	0.13	0.11	ND	ND	ND	ND
GA	FLOYD CO	81,251	ND	ND	ND	ND	ND	IN	IN	0.003	0.021
GA	FULTON CO	648,951	3	ND	0.024	0.16	0.12	35	72	0.005	0.023
GA	GLYNN CO	62,496	ND	ND	ND	0.09	0.08	26	45	ND	ND
GA	GWINNETT CO	352,910	ND	ND	ND	0.13	0.10	ND	ND	ND	ND
GA	HENRY CO	58,741	ND	ND	ND	0.15	0.13	ND	ND	ND	ND
GA	MUSCOGEE CO	179,278	ND	1.04	ND	0.11	0.10	24	45	ND	ND
GA	PAULDING CO	41,611	ND	ND	0.007	0.12	0.10	ND	ND	ND	ND
GA	RICHMOND CO	189,719	ND	ND	ND	0.11	0.09	IN	49	ND	ND
GA	ROCKDALECO	54 091	ND	ND	0.007	0.16	0.12	ND	ND	ND	ND
GA	SPALDING CO	54 457	ND	ND	ND	ND	ND	IN	IN	ND	ND
GA	SUMTER CO	30,228	ND	ND	ND	0.10	0.08	ND	ND	ND	ND
GA	WALKER CO	58 340	ND	ND	ND	ND	ND	26	57	ND	ND
GA 1	WASHINGTON CO	10 112				ND	ND	20	59	ND	ND
н		836 231	2		0.004	0.05	0.05	15	41	0.001	0.004
ш	KALIALCO	51 177				0.05 ND	0.05	IN	26		0.004
н	MALILCO	100 37/						22	20 07		
		100,374 205 775	5		0 021			21	106		
י סו		200,110	C D		0.02 I INI			30*	176*		
י סו		10,020						00 06*	FO*	0.007	0.040
י חו		13,552						20	59		
י טו		20,022	ND	ND	ND	ND	ND	21	04	ND	ND

ID BONNEVILLE CO 72,207 ND		ND				(µg/m³)	(µg/m³)	(ppm)	(ppm)
ID BUTTE CO 2,918 ND ND ND ND 0.08 0.07 ND ND ID CANYON CO 90,076 6 ND ND ND ND 36* 101* ID CARIBOU CO 6,963 ND ND ND ND ND 25* 78* ID KOOTENAI CO 69,795 ND ND ND ND ND 22* 97* ID LEMHI CO 6,899 ND ND ND ND ND ND 37* 95* ID LEWIS CO 3,516 ND ND ND ND ND ND 26* 74* ID MADISON CO 23,674 ND ND ND ND ND 25* 63* ID MINIDOKA CO 19,361 ND ND ND ND 25* 63* ID NEZ PERCE CO 3,754 5 ND ND			ND	ND	ND	IN	IN	ND	ND
ID CANYON CO 90,076 6 ND ND ND 36* 101* ID CARIBOU CO 6,963 ND ND ND ND ND 25* 78* ID KOOTENAI CO 69,795 ND ND ND ND ND 22* 97* ID LEMHI CO 6,899 ND ND ND ND ND 37* 95* ID LEWIS CO 3,516 ND ND ND ND ND 26* 74* ID MADISON CO 23,674 ND ND ND ND 26* 74* ID MINIDOKA CO 19,361 ND ND ND ND 25* 63* ID NEZ PERCE CO 33,754 5 ND ND ND 19 75 ID TWIN FALLS CO 13,931 ND 0.05 ND ND 10 24* 54* IL	1	ND	ND	0.08	0.07	ND	ND	ND	ND
ID CARIBOU CO 6,963 ND ND ND ND ND 25* 78* ID KOOTENAI CO 69,795 ND ND ND ND ND ND 22* 97* ID LEMHI CO 6,899 ND ND ND ND ND ND 37* 95* ID LEWIS CO 3,516 ND ND ND ND ND ND ND 26* 74* ID MADISON CO 23,674 ND ND ND ND ND ND 25* 63* ID MINIDOKA CO 19,361 ND ND ND ND ND 31* 65* ID NEZ PERCE CO 33,754 5 ND ND ND ND 19 75 ID TWIN FALLS CO 53,580 ND ND ND ND ND 24* 54* IL ADAMS CO 66,090		ND	ND	ND	ND	36*	101*	ND	ND
ID KOOTENAI CO 69,795 ND ND ND ND ND 22* 97* ID LEMHI CO 6,899 ND ND ND ND ND ND 37* 95* ID LEWIS CO 3,516 ND ND ND ND ND ND ND ND 7* 95* ID LEWIS CO 3,516 ND ND ND ND ND ND ND 26* 74* ID MADISON CO 23,674 ND ND ND ND ND ND 25* 63* ID MINIDOKA CO 19,361 ND ND ND ND ND 31* 65* ID NEZ PERCE CO 33,754 5 ND ND ND ND 19 75 ID TWIN FALLS CO 53,580 ND ND ND ND ND 24* 54* IL ADAMS		ND	ND	ND	ND	25*	78*	0.004	0.047
ID LEMHI CO 6,899 ND ND ND ND ND 37* 95* ID LEWIS CO 3,516 ND ND </td <td>I</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>22*</td> <td>97*</td> <td>ND</td> <td>ND</td>	I	ND	ND	ND	ND	22*	97*	ND	ND
ID LEWIS CO 3,516 ND	I	ND	ND	ND	ND	37*	95*	ND	ND
ID MADISON CO 23,674 ND ND ND ND 26* 74* ID MINIDOKA CO 19,361 ND ND ND ND ND 25* 63* ID NEZ PERCE CO 33,754 5 ND ND ND ND 31* 65* ID SHOSHONE CO 13,931 ND 0.05 ND ND ND 19 75 ID TWIN FALLS CO 53,580 ND ND ND ND 24* 54* IL ADAMS CO 66,090 ND ND ND 0.09 0.08 21 46 IL CHAMPAIGN CO 173,025 ND ND ND 0.11 0.09 23 47 IL COOK CO 5,105,067 5 0.06 0.032 0.11 0.10 40 120 IL DU PAGE CO 781,666 ND ND ND ND ND ND	ļ	ND	ND	ND	ND	IN	72	ND	ND
ID MINIDOKA CO 19,361 ND ND ND ND 25* 63* ID NEZ PERCE CO 33,754 5 ND ND ND ND 31* 65* ID SHOSHONE CO 13,931 ND 0.05 ND ND ND 19 75 ID TWIN FALLS CO 53,580 ND ND ND ND 24* 54* IL ADAMS CO 66,090 ND ND ND 0.09 0.08 21 46 IL CHAMPAIGN CO 173,025 ND ND ND 0.11 0.09 23 47 IL COOK CO 5,105,067 5 0.06 0.032 0.11 0.10 40 120 IL DU PAGE CO 781,666 ND N	I	ND	ND	ND	ND	26*	74*	ND	ND
ID NEZ PERCE CO 33,754 5 ND ND ND ND 31* 65* ID SHOSHONE CO 13,931 ND 0.05 ND ND ND 19 75 ID TWIN FALLS CO 53,580 ND ND ND ND 24* 54* IL ADAMS CO 66,090 ND ND ND 0.09 0.08 21 46 IL CHAMPAIGN CO 173,025 ND ND ND 0.11 0.09 23 47 IL COOK CO 5,105,067 5 0.06 0.032 0.11 0.10 40 120 IL DU PAGE CO 781,666 ND ND ND 0.09 0.08 ND IN IL EFFINGHAM CO 31,704 ND ND ND 0.10 0.09 ND ND IL HAMILTON CO 8,499 ND ND ND ND ND<	I	ND	ND	ND	ND	25*	63*	ND	ND
ID SHOSHONE CO 13,931 ND 0.05 ND ND ND 19 75 ID TWIN FALLS CO 53,580 ND ND ND ND ND 24* 54* IL ADAMS CO 66,090 ND ND ND ND 0.09 0.08 21 46 IL CHAMPAIGN CO 173,025 ND ND ND 0.11 0.09 23 47 IL COOK CO 5,105,067 5 0.06 0.032 0.11 0.10 40 120 IL DU PAGE CO 781,666 ND ND ND 0.09 0.08 ND IN IL EFFINGHAM CO 31,704 ND ND ND 0.10 0.09 ND		ND	ND	ND	ND	31*	65*	ND	ND
ID TWIN FALLS CO 53,580 ND ND ND ND 24* 54* IL ADAMS CO 66,090 ND ND ND ND 0.09 0.08 21 46 IL CHAMPAIGN CO 173,025 ND ND ND 0.11 0.09 23 47 IL COOK CO 5,105,067 5 0.06 0.032 0.11 0.10 40 120 IL DU PAGE CO 781,666 ND ND ND 0.09 0.08 ND IN IL EFFINGHAM CO 31,704 ND ND ND 0.10 0.09 ND ND IL HAMILTON CO 8,499 ND		0.05	ND	ND	ND	19	75	ND	ND
IL ADAMS CO 66,090 ND ND ND 0.09 0.08 21 46 IL CHAMPAIGN CO 173,025 ND ND ND ND 0.11 0.09 23 47 IL COK CO 5,105,067 5 0.06 0.032 0.11 0.10 40 120 IL DU PAGE CO 781,666 ND ND ND 0.09 0.08 ND IN IL EFFINGHAM CO 31,704 ND ND ND 0.10 0.09 ND ND IL HAMILTON CO 8,499 ND ND ND 0.10 0.08 ND ND IL JACKSON CO 61,067 ND ND ND ND ND 22 55 IL JERSEY CO 20,539 ND ND<		ND	ND	ND	ND	24*	54*	ND	ND
IL CHAMPAIGN CO 173,025 ND ND ND 0.11 0.09 23 47 IL COOK CO 5,105,067 5 0.06 0.032 0.11 0.10 40 120 IL DU PAGE CO 781,666 ND ND ND 0.09 0.08 ND IN IL EFFINGHAM CO 31,704 ND ND ND 0.10 0.09 ND ND IL HAMILTON CO 8,499 ND ND ND 0.10 0.08 ND ND IL JACKSON CO 61,067 ND ND ND ND ND 22 55 IL JERSEY CO 20,539 ND ND ND 0.13 0.10 ND ND		ND	ND	0.09	0.08	21	46	0.005	0.033
IL COCK CO 5,105,067 5 0.06 0.032 0.11 0.10 40 120 IL DU PAGE CO 781,666 ND ND ND 0.09 0.08 ND IN IL EFFINGHAM CO 31,704 ND ND ND 0.10 0.09 ND ND IL HAMILTON CO 8,499 ND ND ND 0.10 0.08 ND ND IL JACKSON CO 61,067 ND ND ND ND ND 22 55 IL JERSEY CO 20,539 ND ND ND 0.13 0.10 ND ND	0	ND	ND	0.11	0.09	23	47	0.002	0.010
IL DD PAGE CO 781,666 ND ND ND 0.09 0.08 ND IN IL EFFINGHAM CO 31,704 ND ND ND 0.10 0.09 ND ND ND IL HAMILTON CO 8,499 ND ND ND 0.10 0.08 ND ND IL JACKSON CO 61,067 ND ND ND ND ND 22 55 IL JERSEY CO 20,539 ND ND ND 0.13 0.10 ND ND	ט. י	J.U6	0.032	0.11	0.10	40	120	0.009	0.044
IL EFFINGRAM CO 31,704 ND ND ND 0.10 0.09 ND ND IL HAMILTON CO 8,499 ND ND ND 0.10 0.08 ND ND IL JACKSON CO 61,067 ND ND ND ND ND 22 55 IL JERSEY CO 20,539 ND ND ND 0.13 0.10 ND ND				0.09	0.08	ND		0.004	0.019
IL IAMILION CO 8,499 ND ND ND 0.10 0.06 ND ND IL JACKSON CO 61,067 ND ND ND ND ND 22 55 IL JERSEY CO 20,539 ND ND ND 0.13 0.10 ND ND				0.10	0.09				
IL JERSEY CO 20,539 ND ND ND 0.13 0.10 ND					0.00		ND 55		
				0.13	0.10				
IL KANECO 317.471 ND ND ND 0.09 0.08 IN 42	Ì	ND		0.15	0.10	INI	42		
IL LAKE CO 516418 ND ND IN 011 0.09 ND ND	ľ	ND	IN	0.03	0.00	ND		ND	ND
IL LA SALLE CO 106,410 ND ND ND ND ND 28 149	1	ND	ND	ND	ND	28	149	ND	ND
IL MC HENRY CO 183 241 ND ND ND ND ND ND ND	Ì	ND	ND	0.10	0.09		ND	ND	ND
II MACONICO 117.206 ND ND ND 0.10 0.09 ND IN	Ì	ND	ND	0.10	0.09	ND	IN	0.006	0 027
IL MACQUEIN CO 47,679 ND 0.03 ND 0.10 0.09 ND IN	Ì	0.03	ND	0.10	0.09	ND	IN	0.003	0.012
IL MADISON CO 249,238 2 2.50 ND 0.12 0.09 44 120	1	2.50	ND	0.12	0.09	44	120	0.009	0.059
IL PEORIACO 182.827 5 0.02 ND 0.10 0.08 23 52	I).02	ND	0.10	0.08	23	52	0.007	0.036
IL RANDOLPH CO 34,583 ND ND ND 0.10 0.08 ND ND	I	ND	ND	0.10	0.08	ND	ND	0.005	0.065
IL ROCK ISLAND CO 148,723 ND ND ND 0.09 0.07 ND IN	I	ND	ND	0.09	0.07	ND	IN	0.003	0.010
IL ST CLAIR CO 262,852 ND 0.09 0.019 0.11 0.08 32 79	.0	0.09	0.019	0.11	0.08	32	79	0.008	0.036
IL SANGAMON CO 178,386 2 ND ND 0.10 0.08 20 45	I	ND	ND	0.10	0.08	20	45	0.006	0.059
IL TAZEWELL CO 123,692 ND ND ND ND ND ND IN	I	ND	ND	ND	ND	ND	IN	0.005	0.035
IL WABASH CO 13,111 ND ND ND ND ND ND ND ND	I	ND	ND	ND	ND	ND	ND	IN	0.032
IL WILL CO 357,313 1 ND 0.010 0.10 0.09 23 52	.0	ND	0.010	0.10	0.09	23	52	0.005	0.023
IL WINNEBAGO CO 252,913 4 ND ND 0.09 0.08 ND IN	I	ND	ND	0.09	0.08	ND	IN	ND	ND
IN ALLEN CO 300,836 3 ND ND 0.10 0.09 IN IN	I	ND	ND	0.10	0.09	IN	IN	ND	ND
IN CLARK CO 87,777 ND ND ND 0.11 0.09 IN 57	I	ND	ND	0.11	0.09	IN	57	ND	ND
IN DAVIESS CO 27,533 ND ND ND ND ND ND ND ND	ļ	ND	ND	ND	ND	ND	ND	IN	0.030
IN DEARBORN CO 38,835 ND ND ND ND ND ND ND ND	I	ND	ND	ND	ND	ND	ND	0.008	0.030
IN DE KALB CO 35,324 ND ND ND ND IN IN		ND	ND	ND	ND	IN	IN	ND	ND
IN DELAWARE CO 119,659 ND 0.76 ND ND ND ND ND ND).76	ND	ND	ND	ND	ND	ND	ND
IN DUBOIS CO 36,616 ND ND ND ND ND 26* 54*		ND	ND	ND	ND	26*	54*	ND	ND
IN ELKHART CO 156,198 ND ND ND 0.09 0.08 ND ND		ND	ND	0.09	0.08	ND	ND	ND	ND
IN FLOYD CO 64,404 ND ND ND 0.12 0.09 ND ND		ND	ND	0.12	0.09	ND	ND	0.007	0.032
IN FOUNTAINCO 17,808 ND ND ND ND ND ND ND ND		ND	ND	ND	ND	ND	ND	IN	0.049
IN GIBSON CO 31,913 ND ND IN 0.10 0.08 ND ND ND		ND	IN	0.10	0.08	ND	ND	IN	0.057
IN HAMILTON CO 105,930 ND ND ND 0.11 0.10 ND ND ND				0.11	0.10	ND	ND	ND	ND
IN HENDDICKSCO 75.717 IN NU NU NU U.10 NU NU IN IN IN	1			0.10	0.09				NU 0.014
אין האסטרערעראלער איז						IÍN	IÍN		0.014
ווי אסטי באסט אים אים ואים ואים ואים ואים ואים ואים ו			סא		סא			0.003	0.010
אין ערא ערא געגעגעע געגעער איז איז איז געא איז איז איז איז איז איז איז איז איז אי								0.007 ND	0.023 ND
IN LAKECO 475.504 3 0.02 0.10 0.11 0.10 IND	0	108	0 010	0.11	0.10	35	166		0 032
IN LA PORTE CO 107,066 ND ND ND 0.11 0.09 ND IN	ں. ا	ND	ND	0.11	0.09	ND	IN	0.007	0.032

Stat	e County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM₁₀ Wtd AM (µg/m³)	PM₁₀ 2nd Max (µg/m³)	SO ₂ AM (ppm)	SO ₂ 24-hr (ppm)
IN	MADISON CO	130,669	ND	ND	ND	0.11	0.09	IN	IN	ND	ND
IN	MARION CO	797,159	3	0.12	0.018	0.11	0.10	27*	53*	0.007	0.024
IN	MORGAN CO	55,920	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
IN	PERRY CO	19,107	ND	ND	ND	0.12	0.09	IN	IN	IN	0.029
IN	PIKE CO	12,509	ND	ND	ND	ND	ND	ND	ND	IN	0.037
IN	PORTER CO	128,932	ND	ND	ND	0.12	0.10	26	79	0.005	0.020
IN	POSEY CO	25,968	ND	ND	ND	0.11	0.10	ND	ND	ND	ND
IN	ST JOSEPH CO	247 052	ND	ND	IN	0.11	0.09	IN	49	ND	ND
IN	SPENCER CO	19 490	ND	ND	0.008	ND	ND	ND	IN	0.008	0.028
IN	SULLIVAN CO	18,993	ND	ND	ND	ND	ND	ND	ND	IN	0.019
IN	VANDERBURGH CO	165.058	4	ND	IN	0 11	0.10	26	60	0.007	0.010
IN	VERMILLION CO	16 773			ND	ND			IN		ND
IN	VIGO CO	106 107				0.00	0.08	IN	IN	0.006	0.025
IN	WARRICK CO	44 920				0.03	0.00			INI	0.023
IN	WAYNE CO	71 951								0.006	0.007
		122 709							IND	0.000	
		123,790						20	140	0.006	0.122
		40,733				0.10		30	70	0.000	0.123
		51,040					0.00	20	/ O	0.004	0.021
		10,030									
	HARRISON CO	14,730				0.09	0.07				
		38,087	ND					ND		0.002	0.020
		108,707				0.10	0.08	IN	54 67	0.005	0.071
		39,907	ND	ND	ND				07	0.010	0.129
IA	PALO ALTO CO	10,669	ND	ND	ND	80.0	0.07	ND	ND	ND	ND
IA	POLK CO	327,140	4	ND	ND	0.07	0.06	IN	76	ND	ND
IA	POTTAWATTAMIE CO	82,628	ND	ND	ND	ND	ND	IN	IN	ND	ND
IA	SCOTICO	150,979	ND	ND	ND	0.10	0.08	44	1//	0.004	0.014
IA	STORY CO	74,252	ND	ND	ND	80.0	0.07	ND	ND	ND	ND
IA	VAN BUREN CO	7,676	ND	ND	ND	0.09	0.08	ND	ND	0.002	0.011
IA	WARREN CO	36,033	ND	ND	ND	0.08	0.07	ND	ND	ND	ND
IA	WOODBURY CO	98,276	ND	ND	ND	ND	ND	28	73	ND	ND
KS	CLOUD CO	11,023	ND	ND	ND	ND	ND	ND	IN	ND	ND
KS	FORD CO	27,463	ND	ND	ND	ND	ND	31	89	ND	ND
KS	GREELEY CO	1,774	ND	ND	ND	ND	ND	ND	IN	ND	ND
KS	JOHNSON CO	355,054	ND	ND	ND	ND	ND	ND	IN	ND	ND
KS	KEARNEY CO	4,027	ND	ND	ND	ND	ND	ND	IN	ND	ND
KS	LINN CO	8,254	1	ND	0.004	0.10	0.08	ND	ND	0.002	0.007
KS	MONTGOMERY CO	38,816	ND	ND	ND	ND	ND	26	68	0.007	0.046
KS	MORTON CO	3,480	ND	ND	ND	ND	ND	ND	IN	ND	ND
KS	NEOSHO CO	17,035	ND	ND	ND	ND	ND	35	98	ND	ND
KS	PAWNEE CO	7,555	ND	ND	ND	ND	ND	ND	IN	ND	ND
KS	SEDGWICK CO	403,662	5	ND	ND	0.10	0.08	31	86	ND	ND
KS	SHAWNEE CO	160,976	ND	ND	ND	ND	ND	25	74	ND	ND
KS	SHERMAN CO	6,926	ND	ND	ND	ND	ND	31	120	ND	ND
KS	SUMNER CO	25,841	IN	ND	ND	0.10	IN	ND	ND	ND	ND
KS	WYANDOTTE CO	161,993	5	ND	IN	0.09	0.08	40	118	IN	0.016
KΥ	BELL CO	31,506	2	ND	ND	0.11	0.08	IN	48	ND	ND
KΥ	BOONE CO	57,589	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
KΥ	BOYD CO	51,150	1	ND	0.016	0.12	0.09	39	89	0.008	0.024
KΥ	BULLITT CO	47,567	ND	ND	0.014	0.11	0.09	25	56	ND	ND
KΥ	CAMPBELL CO	83,866	ND	ND	0.017	0.10	0.09	26	46	0.006	0.025
KΥ	CARTER CO	24,340	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
KY	CHRISTIAN CO	68.941	ND	ND	ND	0.12	0.09	ND	ND	ND	ND
KΥ	DAVIESS CO	87,189	- 1	ND	0.011	0.10	0.09	25	63	0.006	0.024
ΚY	EDMONSON CO	10,357	ND	ND	ND	0.12	0.10	ND	ND	ND	ND

\mathbf{PM}_{10} CO NO, 0, SO, Pb 0, PM₁₀ SO, AM 8-hr Wtd AM AM State County 1990 8-hr QMax 1-hr 2nd Max 24-hr Population (µg/m³) (ppm) (µg/m³) (ppm) (ppm) (ppm) (µg/m³) (ppm) (ppm) KY FAYETTE CO 225 366 2 ND 0.013 0 11 0.09 23 54 0.008 0 0 2 0 FLOYD CO 47 KY 43,586 ND ND ND ND ND 23 ND ND KΥ GRAVES CO 33,550 ND ND ND 0.12 0.10 ND ND ND ND GREENUP CO ND 0.006 KΥ 36 742 ND ND 0 12 0 10 ND ND 0.026 KY HANCOCK CO 7,864 ND ND ND 0.11 0.09 ND ND 0.006 0.031 **KY HARDIN CO** 89,240 ND ND ND 0.11 0.09 IN 39 ND ND 44 KY HARLAN CO ND ND ND ND ND IN ND ND 36.574 HENDERSON CO 43,044 2 ND 0.016 0.11 0.10 24 59 0.007 0.056 KY JEFFERSON CO 5 28 60 0.007 KY 664,937 ND 0.014 0.12 0.10 0.027 KΥ JESSAMINE CO 30,508 ND ND ND 0.10 0.08 ND ND ND ND KENTON CO 142.031 3 ND 0.017 0.11 0.09 20 52 ND ND KΥ KΥ LAWRENCE CO 13,998 ND ND ND ND ND IN IN ND ND LIVINGSTON CO 9,062 ND ND ND 0.12 0.10 IN 61 0.005 0.024 KΥ 0.011 58 KΥ MC CRACKEN CO 62,879 2 ND 0.11 0.09 15 0.005 0.027 KΥ MC LEAN CO 9,628 ND ND ND 0.12 0.10 ND ND ND ND MADISON CO ND 46 KY 57,508 ND ND ND ND IN ND ND KΥ MARSHALL CO 27,205 ND ND ND ND ND IN 61 ND ND OLDHAM CO ND ND ND ND KΥ 33 263 ND ND 0 12 0 10 ND KY PERRY CO 30,283 ND ND ND 0.10 0.07 24 45 ND ND KY PIKE CO 72,583 ND ND ND 0.10 0.08 30 57 ND ND KY PULASKI CO 49.489 ND ND ND IN 45 ND ND 0 10 0 10 SCOTT CO 23,867 ND ND ND 0.11 0.08 ND ND ND ND KY SIMPSON CO 15,145 ND ND 0.009 ND ND ND ND KY 0.12 0.10 KΥ TRIGG CO 10,361 ND ND ND 0.12 0.10 ND ND ND ND WARREN CO 76.673 ND ND ND ND ND 21 45 ND ND KY KY WHITLEY CO 33,326 ND ND ND ND ND IN 48 ND ND LA ASCENSION PAR 58,214 ND ND ND 0.12 0.09 ND ND ND ND 0.007 0.08 **BEAUREGARD PAR** 30,083 ND ND ND ND ND ND LA 0.10 LA BOSSIER PAR 86,088 ND ND ND 0.11 0.09 ND ND 0.002 0.006 CADDO PAR 248,253 ND ND ND 0.09 22* 41* ND LA 0.10 ND LA CALCASIEU PAR 168,134 ND ND 0.005 0.13 0.09 ND ND 0.004 0.015 I A EAST BATON ROUGE PAR 380.105 5 0.06 0.019 0 12 0 10 IN 50 0 0 0 5 0 0 2 5 ΙA GRANT PAR 17,526 ND ND ND 0.09 0.08 ND ND ND ND LA IBERVILLE PAR 31,049 ND ND 0.009 0.12 0.09 ND ND ND ND JEFFERSON PAR I A 448.306 ND ND 0.011 0 11 0.09 ND ND ND ND ΙA LAFAYETTE PAR 164,762 ND ND ND 0.09 0.08 ND ND ND ND LA LAFOURCHE PAR 85,860 ND ND ND 0.12 0.09 ND ND ND ND ND 0.005 ND ND I A LIVINGSTON PAR 70.526 ND 0 11 0.09 ND ND ORLEANS PAR 0.022 0.08 25' 55' ND ND LA 496.938 3 0.03 0.09 LA **OUACHITA PAR** 142,191 ND ND ND 0.10 0.08 ND ND 0.003 0.010 POINTE COUPEE PAR 22,540 ND ND 0.009 0.11 0.08 ND ND ND ND LA ND ND ND 0.10 0.08 ND ND 0.005 0.023 ΙA ST BERNARD PAR 66,631 LA ST CHARLES PAR 42,437 ND ND ND 0.11 0.09 27 60 ND ND ST JAMES PAR 20,879 ND ND 0.012 0.12 0.09 ND ND ND ND LA LA ST JOHN THE BAPTIST PAR 39,996 ND 0.08 ND 0.11 0.09 ND ND ND ND LA ST MARY PAR ND ND ND ND ND ND 58 086 ND 0 10 0.09 IA WEST BATON ROUGE PAR 19,419 ND 0.02 0.015 0.11 0.09 34 79 0.006 0.019 ME ANDROSCOGGIN CO 105,259 ND ND ND ND ND IN 45 0.004 0.016 91 MF AROOSTOOK CO ND ND ND ND ND 31 ND 86.936 ND ME CUMBERLAND CO 243,135 ND ND ND 0.11 0.08 23 61 0.005 0.014 ME FRANKLIN CO 29,008 ND ND ND ND ND IN 27 ND ND MF HANCOCK CO ND IN ND 46.948 ND ND IN 0 12 0.09 ND ME KENNEBEC CO ND ND 76 ND 115.904 ND 0.10 0.08 IN ND ME KNOX CO 36,310 ND ND ND 0.11 0.08 IN 47 ND ND ME OXFORD CO 52,602 ND ND ND 0.08 0.06 IN 45 0.003 0.015

Stat	e County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO₂ AM (ppm)	O₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM ₁₀ Wtd AM (μg/m³)	PM ₁₀ 2nd Max (μg/m³)	SO ₂ AM (ppm)	SO₂ 24-hr (ppm)
ME	PENOBSCOT CO	146.601	ND	ND	ND	0.09	0.08	17*	32*	ND	ND
ME	PISCATAQUIS CO	18,653	ND	ND	ND	0.08	0.07	ND	ND	ND	ND
ME	SAGADAHOC CO	33,535	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
ME	YORK CO	164 587	ND	ND	IN	0.12	0.00	ND	ND	ND	ND
MD	ALLEGANY CO	74 946	ND	ND	ND	ND	ND	ND	IN	ND	ND
MD	ANNE ARUNDEL CO	427 239	ND	ND	IN	0.14	0.11	25	53	0.006	0.020
MD	BALTIMORE CO	692 134	ND	ND	0.020	0.14	0.11	15	29		ND
MD		51 372				0.14	0.11				ND
MD		102 272				0.11	0.03				
		71 247				0.15	0.10	14	22		
		101 154				0.15	0.11				
	CHARLES CO	101,154				0.13	0.11				ND
		150,208	ND			0.11	0.10	ND	ND		ND
	GARREITCO	28,138	ND	ND	ND	ND 0.45	ND 0.44	ND		ND	ND
MD	HARFORD CO	182,132	ND	ND	IN	0.15	0.11	ND	ND	ND	ND
MD	KENTCO	17,842	ND	ND	ND	0.13	0.10	ND	ND	ND	ND
MD	MONTGOMERY CO	757,027	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
MD	PRINCE GEORGES CO	729,268	4	ND	ND	0.13	0.10	24	58	ND	ND
MD	WASHINGTON CO	121,393	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
MD	WICOMICO CO	74,339	ND	ND	ND	ND	ND	12	31	ND	ND
MD	BALTIMORE	736,014	5	0.00	0.024	0.12	0.09	30*	61*	ND	ND
MA	BARNSTABLE CO	186,605	ND	ND	IN	0.13	0.10	ND	ND	ND	ND
MA	BERKSHIRE CO	139,352	ND	ND	ND	0.09	0.08	ND	ND	ND	ND
MA	BRISTOL CO	506,325	ND	ND	IN	0.13	0.10	ND	IN	0.004	0.021
MA	ESSEX CO	670,080	ND	ND	0.013	0.12	0.09	ND	IN	0.005	0.021
MA	HAMPDEN CO	456,310	6	ND	0.022	0.11	0.09	30	66	0.005	0.024
MA	HAMPSHIRE CO	146,568	ND	ND	0.007	0.11	0.09	14	42	0.005	0.017
MA	MIDDLESEX CO	1.398.468	4	ND	ND	0.11	0.09	ND	IN	0.007	0.040
MA	NORFOLKCO	616 087	ND	ND	ND	ND	ND	ND	IN	ND	ND
MA	SUFFOLK CO	663,906	4	0.03	0.030	0.11	0.09	.30	65	0.007	0.026
MA	WORCESTER CO	709 705	3	ND	0.020	0.11	0.09	IN	65	0.004	0.013
MI	ALLEGAN CO	90,509	ND	ND		0.12	0.00	ND			
MI		12 200				0.12	0.03				ND
N/I		161 279				0.11	0.10				
IVII NAL		101,370							50		
IVII NAL	CASS CO	100,902				0.11	0.10				
		49,477				0.11	0.10				
		57,883	ND			0.10	0.09	ND	ND		
IVII		37,780	ND	ND	ND	ND	ND 0.40	ND	ND	0.002	0.010
IVII	GENESEE CO	430,459	ND	0.01	ND	0.11	0.10	IN	IN	0.003	0.011
IVII	GRAND TRAVERSE CO	64,273	ND	ND	ND	0.09	80.0	ND	ND	ND	ND
MI	HURON CO	34,951	ND	ND	ND	0.12	0.09	ND	ND	ND	ND
MI	INGHAM CO	281,912	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
MI	KALAMAZOO CO	223,411	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
MI	KENT CO	500,631	4	0.00	ND	0.11	0.09	21	54	0.001	0.006
MI	LENAWEE CO	91,476	ND	ND	ND	0.09	0.08	ND	ND	ND	ND
MI	MACOMB CO	717,400	3	ND	ND	0.12	0.10	ND	ND	0.002	0.012
MI	MASON CO	25,537	ND	ND	ND	0.12	0.10	ND	ND	ND	ND
MI	MISSAUKEE CO	12,147	ND	0.00	ND	0.10	0.09	ND	ND	ND	ND
MI	MUSKEGON CO	158,983	ND	ND	ND	0.12	0.10	ND	ND	ND	ND
MI	OAKLAND CO	1,083,592	3	ND	ND	0.11	0.09	ND	ND	ND	ND
MI	ONTONAGON CO	8.854	ND	ND	ND	ND	ND	IN	IN	ND	ND
MI	OTTAWA CO	187.768	ND	ND	ND	0.11	0.09	IN	IN	ND	ND
MI	ST CLAIR CO	145 607	ND	ND	ND	0.12	0.09	ND	ND	0.008	0.048
MI	WASHTENAW CO	282 937	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
MI	WAYNE CO	2 111 687	4	0 10	0.018	0 11	0.00	36	126	0 009	0.053
MN		2,111,007	ד י			0.11	0.03			0.009 ND	0.000 NID
IVIIN		243,041	2	IND	ND	0.09	0.07	IND	IND	ND	ND

\mathbf{PM}_{10} NO, SO, CO Pb 0, 0, PM₁₀ SO, AM 8-hr Wtd AM State County 1990 8-hr QMax 1-hr 2nd Max AM 24-hr Population (ppm) (µg/m³) (ppm) (ppm) (ppm) (µg/m³) (µg/m³) (ppm) (ppm) MN BELTRAMI CO 34 384 ND ND ND ND ND IN IN ND ND 32 MN CARLTON CO 29,259 ND ND ND ND ND IN ND ND MN CLAY CO 50,422 ND ND ND ND ND IN IN ND ND MN DAKOTA CO 0 0 1 4 ND 0.003 0.013 275 227 1 0 47 0.08 0.07 ND MN FREEBORN CO 33,060 ND ND ND ND ND IN IN ND ND MN HENNEPIN CO 1,032,431 3 0.01 0.022 ND ND 30 70 0.004 0.030 ND ND MN KOOCHICHING CO ND ND ND 0 001 16.299 ND ND 0.003 MN LAKE CO 10,415 ND ND ND 0.08 0.07 IN IN ND ND MN MC LEOD CO 32,030 ND ND ND ND ND IN IN ND ND MN MILLE LACS CO 18,670 ND ND ND 0.10 0.08 IN 26 ND ND MN_OLMSTED.CO 106.470 ND ND ND ND ND IN IN ND ND MN OTTER TAIL CO 50,714 ND ND ND ND ND IN IN ND ND MN PINE CO 21,264 ND ND ND ND ND ND ND ND 1 5 MN RAMSEY CO 485,765 0.01 0.016 ND ND 35 88 0.002 0.007 MN ST LOUIS CO 198,213 2 ND ND 0.08 0.07 25 71 ND ND MN STEARNS CO 3 IN 118,791 ND ND ND ND IN ND ND MN SWIFT CO 10,724 ND ND ND ND ND IN IN ND ND MN WASHINGTON CO ND 0.003 145.896 ND ND 0.09 0.08 23 49 0.017 MN WINONA CO 47,828 ND ND ND ND ND IN IN ND ND MN WRIGHT CO 68,710 ND ND ND ND ND IN IN ND ND ND ND MS ADAMS CO ND ND ND 0.09 0.08 ND ND 35.356 MS BOLIVAR CO 41,875 ND ND ND 0.10 0.09 ND ND ND ND MS COAHOMA CO 31,665 ND ND ND IN ND ND ND ND IN MS DE SOTO CO 67,910 ND ND 0.012 0.13 0.09 ND ND ND ND MS HANCOCK CO 31.760 ND ND 0.006 0.11 0.09 ND ND ND ND MS HARRISON CO 165,365 ND ND ND 0.11 0.10 ND ND 0.003 0.024 MS HINDS CO 254,441 5 ND ND 0.11 0.08 25 53 0.002 0.007 38 MS JACKSON CO ND ND ND IN 0.003 0.016 115,243 0.11 0.09 MS JONES CO 62,031 ND ND ND ND ND IN IN ND ND MS LAUDERDALE CO 75,555 ND ND ND 0.09 0.08 ND ND ND ND MS LEE CO 65,581 ND ND ND 0.11 0.09 16 34 ND ND MS MADISON CO 53.794 ND ND ND 0 10 0.08 ND ND ND ND MS PANOLA CO 29,996 ND ND IN ND ND IN IN IN 0.004 MS WARREN CO 47,880 ND ND ND 0.09 0.07 ND IN ND ND MS WASHINGTON CO IN 67.935 ND ND ND ND ND IN ND ND MO AUDRAIN CO 23,599 ND ND ND ND ND ND IN ND ND MO BUCHANAN CO 83,083 ND ND ND ND ND IN 99 0.003 0.013 ND ND MO CEDAR CO 12.093 ND IN 0.09 0.08 ND ND ND MO CLAY CO ND 0.015 0.08 ND ND 0.002 0.011 153.411 5 0.11 MO GREENE CO 207,949 3 ND 0.013 0.10 0.08 18* 34* 0.004 0.039 MO HOLT CO 6,034 ND 0.28 ND ND ND ND ND ND ND MO IRON CO ND ND ND ND ND 0.009 0.083 10,726 1.24 ND MO JACKSON CO 633,232 4 0.01 ND 0.12 0.08 28 56 0.003 0.009 MO JASPER CO ND ND ND ND ND 34 105 ND ND 90,465 MO JEFFERSON CO 171,380 ND 6.75 ND 0.12 0.10 ND IN 0.008 0.045 MO LINCOLN CO 28 892 ND ND ND ND 61 ND IN ND ND MO MONROE CO 9,104 ND ND ND 0.11 0.09 13* 34* 0.004 0.011 MO PLATTE CO 57,867 ND ND 0.011 0.09 0.08 ND ND 0.002 0.008 MO ST CHARLES CO ND ND 0.012 0 13 ND ND 0 0 0 5 0.016 212.907 0 10 MO STE GENEVIEVE CO 16,037 ND ND IN 0.11 0.10 ND ND ND ND MO ST LOUIS CO 993,529 3 0.02 0.024 18 33 0.007 0.021 0.12 0.10 MO STLOUIS 396.685 4 ND 0 0 2 7 0 12 0.09 36 92 0 0 0 9 0.037 MT BIG HORN CO ND 29' 77* 11.337 ND ND ND ND ND ND MT BROADWATER CO 3,318 ND ND ND ND ND ND IN ND ND MT CASCADE CO 77,691 4 ND ND ND ND ND ND 0.003 0.011

Stat	te County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ 1-hr (ppm)	O₃ 8-hr (ppm)	PM ₁₀ Wtd AM (μg/m³)	PM ₁₀ 2nd Max (μg/m³)	SO₂ AM (ppm)	SO ₂ 24-hr (ppm)
МТ	FLATHEAD CO	59.218	5	ND	ND	0.06	IN	29*	96*	ND	ND
MT	GALLATIN CO	50,463	5	ND	ND	ND	ND	IN	62	ND	ND
MT	GLACIER CO	12,121	ND	ND	ND	ND	ND	26	69	ND	ND
MT	JEFFERSON CO	7,939	ND	ND	ND	ND	ND	IN	IN	0.004	0.029
MT	LAKE CO	21,041	ND	ND	ND	ND	ND	21	118	ND	ND
MT	LEWIS AND CLARK CO	47,495	ND	1.12	ND	ND	ND	25	125	0.006	0.036
MT	LINCOLN CO	17,481	ND	ND	ND	ND	ND	26	74	ND	ND
MT	MADISON CO	5,989	ND	ND	ND	ND	ND	6*	19*	ND	ND
MT	MISSOULA CO	78,687	4	ND	ND	ND	ND	20*	56*	ND	ND
MT	PARK CO	14,562	ND	ND	ND	ND	ND	IN	IN*	ND	ND
MT	PHILLIPS CO	5,163	ND	ND	ND	ND	ND	ND	IN	ND	ND
MT	RAVALLI CO	25,010	ND	ND	ND	ND	ND	21*	67*	ND	ND
MT	ROOSEVELT CO	10,999	ND	ND	ND	ND	ND	IN	IN	ND	ND
MT	ROSEBUD CO	10,505	ND	ND	ND	ND	ND	32	107	ND	ND
MT	SANDERS CO	8,669	ND	ND	ND	ND	ND	IN	53	ND	ND
MT	SILVER BOW CO	33,941	4	ND	ND	ND	ND	21	62	ND	ND
MT	STILLWATER CO	6,536	ND	ND	ND	ND	ND	IN	IN	ND	ND
MT	YELLOWSTONE CO	113,419	6	ND	ND	ND	ND	21	69	0.007	0.037
NE	CASS CO	21,318	ND	ND	ND	ND	ND	38	131	ND	ND
NE	DAWSON CO	19,940	ND	ND	ND	ND	ND	34	116	ND	ND
NE	DOUGLAS CO	416,444	9	0.81	ND	0.09	0.08	43	102	0.001	0.006
NE	LANCASTER CO	213,641	6	ND	ND	0.06	0.05	ND	ND	ND	ND
NV	CHURCHILL CO	17,938	ND	ND	ND	ND	ND	ND	IN	ND	ND
NV	CLARK CO	741,459	8	ND	ND	0.10	0.08	56	281	ND	ND
NV	DOUGLAS CO	27,637	2	ND	ND	0.09	0.07	IN	IN	ND	ND
NV	ELKO CO	33,530	ND	ND	ND	ND	ND	29	93	ND	ND
NV	LANDER CO	6,266	ND	ND	ND	ND	ND	24	120	ND	ND
NV	PERSHING CO	4,336	ND	ND	ND	ND	ND	ND	IN	ND	ND
NV	WASHOE CO	254,667	7	ND	IN	0.10	0.08	57*	120*	ND	ND
NV	WHITE PINE CO	9,264	ND	ND	ND	0.08	0.07	ND	IN	ND	ND
NV	CARSON CITY	40,443	4	ND	ND	0.08	0.07	ND	IN	ND	ND
NH	BELKNAP CO	49,216	ND	ND	ND	0.09	0.08	ND	ND	ND	ND
NH	CARROLL CO	35,410	ND	ND	ND	0.09	0.07	ND	ND	ND	ND
NH	CHESHIRE CO	70,121	ND	ND	ND	0.11	0.08	22	49	0.005	0.022
NH	COOS CO	34,828	ND	ND	ND	0.10	IN	29	63	0.004	0.034
NH	GRAFTON CO	74,929	ND	ND	ND	0.09	0.07	ND	ND	ND	ND
NH	HILLSBOROUGH CO	336,073	5	ND	IN	0.10	0.09	17	41	0.005	0.025
NH	MERRIMACK CO	120,005	ND	ND	ND	0.09	0.07	17	39	0.004	0.028
NH	ROCKINGHAM CO	245,845	ND	ND	0.010	0.12	0.09	16	34	0.004	0.019
NH	STRAFFORD CO	104,233	ND	ND	ND	0.10	0.08	ND	ND	ND	ND
NH	SULLIVAN CO	38,592	ND	ND	ND	0.10	0.08	16	46	0.003	0.015
NJ	ATLANTIC CO	224,327	ND	ND	ND	0.12	0.10	22	46	0.003	0.009
NJ	BERGEN CO	825,380	4	ND	ND	ND	ND	34	75	0.005	0.020
NJ	BURLINGTON CO	395,066	4	ND	ND	ND	ND	ND	ND	0.004	0.018
NJ	CAMDEN CO	502,824	4	0.08	0.022	0.13	0.11	22	51	0.006	0.023
NJ	CUMBERLAND CO	138,053	ND	ND	ND	0.12	0.10	ND	ND	0.003	0.012
NJ	ESSEX CO	778,206	4	ND	0.033	0.12	0.10	IN	66	0.007	0.022
NJ	GLOUCESTER CO	230,082	ND	ND	ND	0.13	0.10	ND	IN	0.005	0.020
NJ	HUDSON CO	553,099	6	ND	0.026	0.14	0.11	35	56	0.008	0.030
NJ	HUNTERDON CO	107,776	ND	ND	ND	0.13	0.11	ND	ND	ND	ND
NJ	MERCER CO	325,824	ND	ND	0.017	0.15	0.11	21	48	ND	ND
NJ	MIDDLESEX CO	671,780	3	0.18	0.019	0.15	0.11	ND	ND	0.005	0.016
NJ	MONMOUTH CO	553,124	3	ND	ND	0.12	0.10	ND	ND	ND	ND
NJ	MORRIS CO	421,353	4	ND	0.011	0.12	0.10	ND	ND	0.004	0.020
NJ	OCEAN CO	433,203	ND	ND	ND	0.14	0.11	ND	ND	ND	ND

\mathbf{PM}_{10} NO, SO, CO Pb 0, 0, PM₁₀ SO, AM 8-hr Wtd AM AM State County 1990 8-hr QMax 1-hr 2nd Max 24-hr Population (µg/m³) (ppm) (µg/m³) (ppm) (ppm) (ppm) (µg/m³) (ppm) (ppm) PASSAIC CO N.J 453 060 ND ND ND 0 13 0 10 ND IN ND ND UNION CO N.J 493,819 7 ND 0.042 ND ND 33 67 0 0 0 7 0.023 NJ WARREN CO 91,607 ND ND ND ND ND ND IN ND ND NM BERNALILLOCO 0.016 35' 123 480.577 5 ND 0 10 0.08 ND ND NM CHAVES CO 57,849 ND ND ND ND ND 19 33 ND ND NM DONA ANA CO 135,510 4 ND 0.012 0.10 0.08 47* 200* 0.001 0.008 ND ND NM FDDY CO ND 0.006 ND 48.605 0.08 0.07 0.001 0 0 0 7 NM GRANT CO 27,676 ND ND ND ND ND 23* 51* 0.003 0.030 NM HIDALGO CO 5,958 ND ND ND ND ND IN 53 0.003 0.025 NM LEACO 55,765 ND ND ND ND ND 18* 31* ND ND NM LUNA CO 18,110 ND ND ND ND ND 25' 112* ND ND NM OTERO CO 51,928 ND ND ND ND ND IN 45 ND ND NM SANDOVAL CO 63,319 ND 0.010 0.09 0.08 20* 46* ND ND 1 2 18' 0.038 NM SAN JUAN CO 91,605 ND 0.012 0.08 0.07 37 0.010 NM SANTA FE CO 98,928 2 ND ND ND ND 14* 31* ND ND NM TAOS CO ND ND 23,118 ND ND ND IN 38 ND ND NM VALENCIA CO 45,235 ND ND ND 0.09 0.07 ND ND ND ND ND 0.003 0.016 NY ALBANY CO 292.594 ND IN 0.08 ND 1 0 11 NY BRONX CO 1,203,789 4 ND 0.033 0.14 0.10 IN IN 0.011 0.041 NY CHAUTAUQUACO 141,895 ND ND ND 0.10 0.09 14 40 0.008 0.060 NY CHEMUNG CO ND ND 0.015 95.195 ND ND ND 0.08 0.003 0.09 NY DUTCHESS CO 259,462 ND ND ND 0.12 0.09 ND ND ND ND ERIE CO 968,532 2 ND 0.022 ND ND 0.010 0.052 NY 0.10 0.09 NY ESSEX CO 37,152 ND ND ND 0.10 0.08 10 40 0.002 0.007 NY HAMILTON CO 5.279 ND ND ND 0.09 0.08 ND ND 0.002 0.006 NY HERKIMER CO 65,797 ND ND ND 0.09 0.07 IN 46 0.001 0.007 NY JEFFERSON CO 110,943 ND ND ND 0.10 0.09 ND ND ND ND 2,300,664 5 ND ND ND IN 46 0.009 0.030 NY KINGS CO 0.10 NY MADISON CO 69,120 ND ND ND 0.09 0.08 ND ND 0.002 0.015 MONROE CO 3 ND ND 0.09 ND ND 0.007 0.041 NY 713,968 0.10 NY NASSAU CO 1,287,348 5 ND 0.024 ND ND 16 41 0.006 0.038 NY NEW YORK CO 1.487.536 5 ND 0 0 4 1 0 12 0.08 IN 45 0.013 0 0 4 5 NY NIAGARA CO 220,756 3 0.02 ND 0.10 0.09 IN 48 0.005 0.020 NY ONEIDA CO 250,836 ND ND ND 0.09 0.08 ND ND ND ND NY ONONDAGA CO 0.002 468.973 3 ND ND 0 10 0.09 ND ND 0.012 NY ORANGE CO 307,647 ND 0.20 ND 0.12 0.09 ND ND ND ND NY PUTNAM CO 83,941 ND ND ND 0.13 0.10 ND ND 0.003 0.010 NY QUEENS CO 1.951.598 3 ND 0 0 2 9 0.13 0.09 ND ND 0 0 0 7 0.028 ND RENSSELAER CO 154,429 ND ND ND ND ND 0.002 0.011 NY ND NY RICHMOND CO 378,977 ND 0.02 ND 0.15 0.11 IN 43 0.006 0.022 SARATOGA CO 181,276 ND ND ND 0.11 0.09 ND ND ND ND NY SCHENECTADY CO ND ND 0 11 0.08 ND ND 0.003 0.013 NY 149,285 4 NY SUFFOLK CO 1,321,864 ND ND ND 0.13 0.11 ND ND 0.007 0.025 NY ULSTER CO 165,304 ND ND ND 0.08 IN 41 0.002 0.010 0.10 NY WAYNE CO 89,123 ND ND ND 0.10 0.09 ND ND ND ND NY WESTCHESTER CO 874 866 ND ND ND ND ND ND ND 0 14 0 11 NC ALEXANDER CO 27,544 ND ND ND 0.11 0.08 ND ND 0.005 0.007 NC AVERY CO 14,867 ND ND ND 0.09 IN ND ND ND ND NC BEAUFORT CO 42.283 ND 0.006 0.015 ND ND ND ND ND ND NC BUNCOMBE CO 174,821 ND ND ND 0.10 0.08 22* 44* ND ND CABARRUS CO 98,935 ND ND ND ND ND 45 ND ND NC IN CALDWELL CO ND ND NC 70.709 ND ND ND 0 12 0.09 ND ND CAMDEN CO ND ND ND ND ND ND NC 5.904 ND 0.11 0.09 NC CASWELL CO 20,693 ND ND ND 0.11 0.09 ND ND ND ND NC CATAWBA CO 118,412 ND ND ND ND ND 26* 51* ND ND

State County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (μg/m³)	SO ₂ AM (ppm)	SO ₂ 24-hr (ppm)
NC CHATHAM CO	38,759	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
NC CUMBERLAND CO	274,566	5	ND	ND	0.12	0.10	25*	43*	0.005	0.007
NC DAVIDSON CO	126.677	ND	ND	ND	ND	ND	25*	46*	ND	ND
NC DAVIE CO	27.859	ND	ND	ND	0.13	0.10	ND	ND	ND	ND
NC DUPLIN CO	39,995	ND	ND	ND	0.10	0.09	ND	ND	0.005	0.007
NC DURHAM CO	181,835	5	ND	ND	0.11	0.09	23*	47*	ND	ND
NC EDGECOMBE CO	56,558	ND	ND	ND	0.10	0.09	IN	IN	0.005	0.007
NC FORSYTH CO	265,878	4	ND	0.016	0.12	0.10	23	58	0.005	0.020
NC FRANKLIN CO	36,414	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
NC GASTON CO	175,093	ND	ND	ND	ND	ND	23	43	ND	ND
NC GRANVILLE CO	38,345	1	ND	ND	0.09	0.08	ND	ND	ND	ND
NC GUILFORD CO	347,420	3	ND	ND	0.11	0.10	25*	48*	ND	ND
NC HARNETT CO	67,822	ND	ND	ND	ND	ND	26*	47*	ND	ND
NC HAYWOOD CO	46,942	ND	ND	ND	0.11	0.10	25*	42*	ND	ND
NC HENDERSON CO	69,285	ND	ND	ND	ND	ND	24*	44*	ND	ND
NC JACKSON CO	26,846	ND	ND	ND	0.09	0.09	ND	ND	ND	ND
NC JOHNSTON CO	81,306	ND	ND	ND	0.13	0.10	ND	ND	0.005	0.009
NC LENOIR CO	57,274	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
NC LINCOLN CO	50,319	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
NC MC DOWELL CO	35,681	ND	ND	ND	ND	ND	24	40	ND	ND
NC MARTIN CO	25,078	ND	ND	ND	0.10	0.08	ND	ND	ND	ND
NC MECKLENBURG CO	511,433	4	ND	0.018	0.13	0.10	31*	61*	0.004	0.013
NC MITCHELL CO	14,433	ND	ND	ND	ND	ND	29*	49*	ND	ND
NC NEW HANOVER CO	120,284	4	ND	ND	0.08	0.07	IN	45	0.007	0.027
NC NORTHAMPTON CO	20,798	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
NC ONSLOW CO	149,838	ND	ND	ND	ND	ND	IN	45	ND	ND
NC ORANGE CO	93,851	4	ND	ND	ND	ND	ND	ND	ND	ND
NC PASQUOTANK CO	31,298	ND	ND	ND	ND	ND	IN	43	ND	ND
NC PERSON CO	30,180	ND	ND	ND	0.12	0.10	ND	ND	ND	ND
NC PITT CO	107,924	ND	ND	ND	0.11	0.09	IN	43	ND	ND
NC ROCKINGHAM CO	86,064	ND	ND	ND	0.11	0.08	ND	ND	ND	ND
NC ROWAN CO	110,605	1	ND	ND	0.13	0.11	ND	ND	ND	ND
NC SWAIN CO	11,268	ND	ND	ND	0.09	0.08	21	41	ND	ND
NC UNION CO	84,211	ND	ND	ND	0.12	0.10	ND	ND	ND	ND
NC WAKE CO	423,380	5	ND	ND	0.13	0.11	21*	49*	ND	ND
NC WAYNE CO	104,666	ND	ND	ND	ND	ND	20	48	ND	ND
NC YANCEY CO	15,419	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
ND BILLINGS CO	1,108	ND	ND	ND	0.06	0.06	ND	ND	0.001	0.004
ND BURKE CO	3,002	ND	ND	0.003	ND	ND	17	45	0.002	0.010
ND BURLEIGH CO	60,131	ND	ND	ND	ND	ND	ND	IN	ND	ND
ND CASS CO	102,874	ND	ND	0.007	0.07	0.07	21	65	0.001	0.003
ND DUNN CO	4,005	ND	ND	0.003	0.06	0.06	ND	ND	0.001	0.005
ND GRAND FORKS CO	70,683	ND	ND	ND	ND	ND	ND	IN	ND	ND
ND MC KENZIE CO	6,383	ND	ND	ND	ND	ND	6	17	0.001	0.010
ND MC LEAN CO	10,457	ND	ND	ND	ND	ND	7	17	0.002	0.009
ND MERCER CO	9,808	ND	ND	0.004	0.07	0.06	ND	IN	0.003	0.016
ND MORTON CO	23,700	ND	ND	ND	ND	ND	ND	ND	0.006	0.071
ND OLIVER CO	2,381	ND	ND	0.003	0.08	0.06	ND	ND	0.002	0.014
ND STARK CO	22,832	ND	ND	ND	ND	ND	ND	IN	ND	ND
ND STEELE CO	2,420	ND	ND	0.003	0.07	0.06	ND	IN	0.001	0.004
ND WILLIAMS CO	21,129	ND	ND	ND	ND	ND	ND	IN	0.003	0.064
OH ADAMS CO	25,371	ND	ND	ND	ND	ND	ND	ND	0.008	0.056
OH ALLEN CO	109,755	ND	ND	ND	0.11	0.09	17	32	0.003	0.013
OH ASHTABULA CO	99,821	ND	ND	ND	0.10	0.09	ND	ND	0.005	0.019
OH ATHENS CO	59,549	ND	ND	ND	ND	ND	20	38	ND	ND

\mathbf{PM}_{10} NO, SO, CO Pb 0, 0, PM₁₀ SO, AM 8-hr Wtd AM State County 1990 8-hr QMax 1-hr 2nd Max AM 24-hr Population (µg/m³) (ppm) (µg/m³) (ppm) (ppm) (ppm) (µg/m³) (ppm) (ppm) OH BELMONT CO 71 074 ND ND ND ND ND 26 69 IN 0.030 OH BUTLER CO 291,479 ND 0.01 ND 0.12 0.10 31 85 0 0 0 7 0 0 2 4 OH CLARK CO 147,548 ND ND ND 0.11 0.09 ND ND 0.004 0.017 OH CLERMONT CO 150 187 ND ND ND 0 12 0.09 ND ND 0 0 0 5 0 0 2 0 OH CLINTON CO 35,415 ND ND ND 0.11 0.10 ND ND ND ND OH COLUMBIANA CO 108,276 ND ND ND ND ND IN 135 IN 0.039 OH CUYAHOGA CO 0.025 0 10 0.09 42 106 0 0 0 9 0.036 1.412.140 4 0.15 OH DELAWARE CO 66,929 ND ND ND ND ND ND ND 0.14 0.10 ERIE CO OH 76,779 ND ND ND ND ND IN IN ND ND OH FRANKLIN CO 961,437 3 0.05 ND 0.11 0.10 27 86 0.004 0.015 OH FULTON CO 38 498 ND 0.26 ND ND ND ND ND ND ND OH GEAUGACO 81,129 ND ND ND 0.12 0.10 ND ND ND ND OH GREENE CO 136,731 ND ND ND 0.10 0.09 18 39 ND ND 60 OH HAMILTON CO 866,228 3 0.01 0.022 0.12 0.09 31 0.006 0.028 OH HANCOCK CO ND ND ND ND ND IN 31 ND ND 65.536 75 0.011 OH JEFFERSON CO 80,298 3 ND ND 0.11 0.09 34 0 0 59 OH KNOX CO 47,473 ND ND ND 0.11 0.09 ND ND ND ND OH LAKE CO 50 0.011 215.499 ND ND 0 12 0 10 20 0.062 1 OH LAWRENCE CO 61,834 ND ND ND 0.12 0.10 27 52 0.005 0.025 OH LICKING CO 128,300 ND ND ND 0.11 0.09 ND ND ND ND ND OH LOGAN CO ND ND ND ND ND 42.310 0.23 0 10 0.08 OH LORAIN CO 271,126 ND ND ND 0.12 0.09 29 76 0.006 0.027 OH LUCAS CO 462,361 3 ND ND 23 58 0.004 0.052 0.13 0.09 OH MADISON CO 37,068 ND ND ND 0.11 0.09 ND ND ND ND OH MAHONING CO 264,806 ND ND ND 0.11 0.09 26 63 0.008 0.029 OH MEDINA CO 122,354 ND ND ND 0.11 0.09 ND ND ND ND OH MEIGS CO 22,987 ND ND ND ND ND ND ND 0.006 0.034 ND OH MIAMI CO ND ND 0.11 ND ND ND 93,182 0.09 ND OH MONROE CO 15,497 ND ND ND ND ND 25 52 ND ND OH MONTGOMERY CO 573,809 3 0.01 ND 0.13 0.10 24 53 0.005 0.018 OH MORGAN CO 14,194 ND ND ND ND ND ND ND 0.006 0.038 OH OTTAWA CO 40.029 ND ND ND ND ND 25 62 ND ND OH PORTAGE CO 142,585 ND ND ND 0.12 0.10 ND ND ND ND OH PREBLE CO 40,113 ND ND ND 0.10 0.09 ND ND ND ND OH RICHLAND CO 126.137 ND ND ND ND ND 23 53 ND ND OH SANDUSKY CO 61,963 ND ND ND ND ND 26 69 ND ND OH SCIOTO CO 80,327 ND ND ND ND ND 32 64 0.007 0.032 ND OH SENECA CO 59.733 ND ND ND ND IN 69 ND ND OH STARK CO ND ND 0.09 24 57 0.007 0.028 367.585 2 0.11 OH SUMMIT CO 514,990 3 0.01 ND 0.11 0.10 23 69 0.011 0.065 OH TRUMBULL CO 227,813 ND ND ND 0.11 0.10 22 59 ND ND OH TUSCARAWAS CO ND ND ND ND ND ND 0.006 0.028 84,090 ND OH UNION CO 31,969 ND ND ND 0.11 0.09 ND ND ND ND OH WARREN CO 113,909 ND ND ND 0.11 0.10 ND ND ND ND OH WASHINGTON CO 62,254 ND ND ND 0.12 0.10 28 72 ND ND OH WOOD CO 113 269 ND ND ND ND ND ND ND 0 10 0.09 OH WYANDOT CO 22,254 ND ND ND ND ND 22 63 ND ND OK CLEVELAND CO 174,253 2 ND 0.012 0.09 0.08 ND IN ND ND 2 IN OK COMANCHE CO ND ND 0.08 ND ND ND 111,486 0.09 OK CUSTER CO 26,897 ND ND ND ND ND ND IN ND ND OK GARFIELD CO 56,735 ND ND 0.008 ND ND ND IN ND ND OK JEFFERSON CO ND 7.010 ND ND 0 10 0.08 ND ND ND ND OK KAY CO ND ND IN* 0.019 48.056 ND ND ND IN 0.004 OK LATIMER CO 10,333 ND ND ND 0.10 0.07 ND ND ND ND OK LOVE CO 8,157 ND ND ND 0.11 0.09 ND ND ND ND

_											
Sta	te County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (µg/m³)	SO₂ AM (ppm)	SO₂ 24-hr (ppm)
ок	MC CLAIN CO	22,795	ND	ND	ND	0.10	0.08	ND	ND	ND	ND
OK	MARSHALL CO	10.829	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
OK	MAYES CO	33.366	ND	ND	0.007	ND	ND	ND	IN	ND	ND
OK	MUSKOGEE CO	68.078	ND	ND	0.008	ND	ND	32*	88*	0.003	0.017
OK	OKLAHOMA CO	599.611	4	ND	0.014	0.10	0.08	IN	IN*	0.004	0.009
OK	PITTSBURG CO	40,581	ND	ND	ND	ND	ND	ND	IN	ND	ND
OK	TULSA CO	503,341	4	ND	0.017	0.12	0.09	22*	44*	0.011	0.083
OR	CLACKAMAS CO	278,850	ND	ND	ND	0.09	0.07	IN	IN	ND	ND
OR	COLUMBIA CO	37,557	ND	ND	ND	0.07	0.05	ND	ND	ND	ND
OR	DESCHUTES CO	74,958	5	ND	ND	ND	ND	IN	75	ND	ND
OR	JACKSON CO	146,389	6	0.00	ND	0.08	IN	IN	93	ND	ND
OR	JOSEPHINE CO	62,649	5	ND	ND	ND	ND	IN	39	ND	ND
OR	KLAMATH CO	57,702	5	ND	ND	ND	ND	IN	82	ND	ND
OR	LAKE CO	7,186	ND	ND	ND	ND	ND	IN	94	ND	ND
OR	LANE CO	282,912	5	0.02	ND	0.08	0.07	IN	IN*	ND	ND
OR	MARION CO	228,483	6	ND	ND	0.08	0.07	ND	ND	ND	ND
OR	MULTNOMAH CO	583,887	6	0.00	IN	ND	ND	IN	63	ND	ND
OR	UMATILLA CO	59,249	ND	ND	ND	ND	ND	IN	53	ND	ND
OR	UNION CO	23,598	ND	ND	ND	ND	ND	IN	89	ND	ND
OR	YAMHILL CO	65,551	ND	0.18	ND	ND	ND	ND	ND	ND	ND
PA	ADAMS CO	78,274	1	ND	0.005	ND	ND	ND	ND	ND	ND
PA	ALLEGHENY CO	1,336,449	4	0.06	0.029	0.13	0.10	37	121	0.012	0.089
PA	ARMSTRONG CO	73,478	ND	ND	ND	0.12	0.10	ND	ND	ND	ND
PA	BEAVER CO	186,093	2	0.08	0.019	0.13	0.10	IN	IN	0.015	0.070
PA	BERKS CO	336,523	3	0.84	0.021	0.13	0.10	IN	IN*	0.008	0.027
PA	BLAIR CO	130,542	2	ND	0.013	0.11	0.09	IN	IN*	0.007	0.030
PA	BUCKS CO	541,174	4	ND	0.018	0.15	0.11	IN	IN*	0.005	0.020
PA	CAMBRIA CO	163,029	3	0.09	0.015	0.11	0.09	IN	IN	0.009	0.025
PA	CARBON CO	56,846	ND	0.07	ND	ND	ND	ND	ND	ND	ND
PA	CENTRE CO	123,786	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
PA	CHESTER CO	376,396	ND	ND	ND	ND	ND	ND	IN	ND	ND
PA	CLEARFIELD CO	78,097	ND	ND	ND	0.09	0.08	ND	ND	ND	ND
PA	DAUPHIN CO	237,813	4	ND	0.018	0.13	0.10	IN	IN*	0.005	0.021
PA	DELAWARE CO	547,651	ND	0.05	0.017	0.13	0.10	IN	IN*	0.010	0.034
PA	ERIE CO	275,572	6	ND	0.015	0.11	0.10	IN	IN*	0.010	0.043
PA	FRANKLIN CO	121,082	ND	ND	ND	0.12	0.10	ND	ND	ND	ND
PA	GREENE CO	39,550	2	ND	0.003	0.12	0.10	ND	ND	0.009	0.022
PA	LACKAWANNA CO	219,039	2	ND	0.014	0.12	0.10	IN	IN	0.005	0.021
PA	LANCASTER CO	422,822	2	ND	0.015	0.13	0.10	IN	IN	0.005	0.021
PA	LAWRENCE CO	96,246	3	ND	0.020	0.11	0.09	IN	IN*	0.008	0.035
PA	LEHIGH CO	291,130	3	ND	0.015	0.13	0.11	IN	IN*	0.007	0.030
PA	LUZERNE CO	328,149	3	ND	0.015	0.11	0.09	IN	IN	0.007	0.023
PA	LYCOMING CO	118,710	ND	ND	ND	0.09	0.08	IN	IN	0.005	0.021
PA	MERCER CO	121,003	ND	ND	ND	0.11	0.09	ND	IN	0.007	0.039
PA	MONROE CO	95,709	0	ND	ND	0.12	0.10	ND	ND	0.003	0.006
PA	MONTGOMERY CO	678,111	2	ND	0.016	0.13	0.10	IN	IN*	0.006	0.020
PA	NORTHAMPTON CO	247,105	3	ND	0.017	0.13	0.11	IN	IN	0.009	0.037
PA	PERRY CO	41,172	ND	ND	0.006	0.11	0.09	ND	IN	0.003	0.012
PA	PHILADELPHIA CO	1,585,577	5	0.84	0.032	0.12	0.10	IN	IN	0.006	0.028
PA	SCHUYLKILL CO	152,585	2	ND	ND	ND	ND	ND	ND	0.007	0.038
PA	TIOGACO	41,126	ND	ND	ND	0.09	0.08	ND	ND	ND	ND
PA	WARREN CO	45,050	ND	ND	ND	ND	ND	ND	ND	0.015	0.097
PA	WASHINGTON CO	204,584	2	ND	0.016	0.12	0.10	IN	IN	0.010	0.036
PA	WESTMORELAND CO	370,321	2	0.04	0.018	0.13	0.10	IN	IN	0.011	0.037
PA	YORK CO	339,574	2	ND	0.019	0.12	0.09	IN	IN	0.007	0.019

\mathbf{PM}_{10} CO NO, 0, SO, Pb 0, PM₁₀ SO, QMax AM 8-hr Wtd AM AM State County 1990 8-hr 1-hr 2nd Max 24-hr Population (µg/m³) (ppm) (µg/m³) (ppm) (ppm) (ppm) (µg/m³) (ppm) (ppm) KENT CO RI 161 135 ND ND IN 0 12 0.09 14 37 ND ND **PROVIDENCE CO** RI 596,270 4 ND 0 0 2 4 0.11 0.08 29 61 0 0 0 7 0.026 RI WASHINGTON CO 110,006 ND ND ND 0.13 0.09 ND ND ND ND ABBEVILLE CO ND SC 23.862 ND ND ND 0 11 0.09 ND ND ND SC AIKEN CO 120,940 ND 0.00 0.005 0.11 0.08 IN 44 IN 0.007 SC ANDERSON CO 145,196 ND ND ND 0.12 0.10 ND ND ND ND SC BARNWELL CO 20.293 ND ND 43' 0.002 0.004 IN 0.10 0.09 19' SC BEAUFORT CO 86,425 ND 0.00 ND ND ND ND ND ND ND BERKELEY CO ND SC 128,776 ND ND ND 0.10 0.08 ND ND ND SC CHARLESTON CO 295,039 4 0.01 0.010 0.10 0.08 21 47 0.002 0.011 SC CHEROKEE CO 44.506 ND ND ND 0 11 0.09 ND ND ND ND SC CHESTER CO 32,170 ND ND ND 0.11 0.09 ND ND ND ND SC COLLETON CO 34,377 ND ND ND 0.09 0.08 ND ND ND ND SC DARLINGTON CO 61,851 ND ND ND 0.10 0.09 ND ND ND ND SC **DILLON CO** 29,114 ND 0.01 ND ND ND ND ND ND ND SC EDGEFIELD CO 18,375 ND ND ND 0 10 0.09 ND ND ND ND SC FAIRFIELD CO 22,295 ND ND ND ND ND 24* 45* ND ND SC FLORENCE CO ND ND ND ND 114.344 0.01 ND ND ND ND SC GEORGETOWN CO 46,302 ND 0.02 ND ND ND 32 77 IN 0.015 SC GREENVILLE CO 320,167 5 0.01 0.017 ND ND IN 52 0.003 0.009 GREENWOOD CO ND ND ND SC 0.02 ND ND ND ND 59.567 ND SC HAMPTON CO 18,191 ND 0.01 ND ND ND ND ND ND ND SC HORRY CO 144,053 ND 0.01 ND ND ND ND ND ND ND SC KERSHAW CO 43,599 ND 0.01 ND ND ND ND ND ND ND SC LEXINGTON CO 167,611 ND 0.04 ND ND ND IN 148 0.004 0.017 SC OCONEE CO 57,494 ND ND ND 0.10 0.09 ND ND 0.002 0.006 SC PICKENS CO 93,894 ND ND ND 0.11 0.09 ND ND ND ND 24* SC RICHLAND CO 0.01 0.014 0.09 122* 0.003 0.010 285,720 4 0.12 SC SPARTANBURG CO 226,800 ND 0.01 ND 0.12 0.10 26 46 ND ND SC UNION CO 30,337 ND ND ND 0.10 0.09 ND ND ND ND SC WILLIAMSBURG CO 36,815 ND ND ND 0.09 0.08 ND ND ND ND SC YORK CO 131 497 ND 0.02 ND 0 11 0.09 26 49 ND ND SD BROOKINGS CO 25,207 ND ND ND ND ND 24 71 ND ND SD MINNEHAHA CO 123,809 ND ND ND 0.07 IN 22* 44* ND ND PENNINGTON CO ND 108 SD 81.343 ND ND ND ND 31' ND ND ΤN ANDERSON CO 68,250 ND ND ND 0.12 0.09 ND ND 0.004 0.028 ΤN BLOUNT CO 85,969 1 ND 0.003 0.12 0.11 ND IN 0.009 0.056 TN BRADLEY CO ND 52* 73.712 ND 0.015 ND ND 28 0.008 0.034 TN COFFEE CO 40,339 ND ND ND ND ND 0.005 IN ND IN TN DAVIDSON CO 510,784 5 ND 0.019 0.12 0.10 32 75 0.005 0.022 ΤN DICKSON CO 35,061 ND ND IN 0.11 0.10 ND IN 0.003 0.011 ΤN GREENE CO 55,853 ND ND ND ND ND IN 50 ND ND ΤN HAMBLEN CO 50,480 ND ND ND ND ND ND IN ND ND ΤN HAMILTON CO 285,536 ND ND ND 0.12 0.10 29 49 ND ND TN HAWKINS CO 44,565 ND ND ND ND ND ND ND 0.008 0.044 TN HAYWOOD CO 19 4 37 ND ND ND 0 11 0.09 ND ND ND ND TN HUMPHREYS CO 15,795 ND ND ND ND ND ND ND 0.004 0.026 TN JEFFERSON CO 33,016 ND ND ND 0.13 0.10 ND ND ND ND TN KNOX CO ND 0.00 30 61 ND ND 335,749 4 0 13 0 10 TN LAWRENCE CO 35,303 ND ND ND 0.12 0.10 ND IN ND ND ΤN MC MINN CO 42,383 ND ND 0.016 ND ND 39* 69* 0.008 0.027 TN MADISON CO ND 77.982 ND ND ND ND IN 43 ND ND MAURY CO ND ND ND ND IN ND ΤN 54.812 ND ND ND TN MONTGOMERY CO 100,498 ND ND ND ND ND 23 39 0.005 0.016 TN POLK CO 13,643 ND ND ND ND ND ND ND 0.007 0.021

State	e County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO₂ AM (ppm)	O₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (µg/m³)	SO₂ AM (ppm)	SO₂ 24-hr (ppm)
ΤN	PUTNAM CO	51.373	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
TN	ROANE CO	47,227	ND	ND	IN	0.12	0.09	26	44	0.003	0.019
ΤN	RUTHERFORD CO	118,570	ND	ND	ND	0.12	0.10	ND	ND	ND	ND
ΤN	SEVIER CO	51.043	ND	ND	ND	0.11	0.10	ND	ND	ND	ND
ΤN	SHELBY CO	826,330	5	0.65	0.025	0.13	0.10	27	64	0.006	0.028
ΤN	STEWART CO	9,479	ND	ND	ND	ND	ND	ND	ND	0.003	0.011
ΤN	SULLIVAN CO	143,596	3	0.12	0.016	0.11	0.09	ND	IN	0.010	0.039
ΤN	SUMNER CO	103,281	IN	ND	IN	0.12	0.10	ND	IN	0.004	0.035
ΤN	UNION CO	13,694	ND	ND	ND	ND	ND	43	148	ND	ND
ΤN	WASHINGTON CO	92,315	ND	ND	ND	ND	ND	ND	IN	ND	ND
ΤN	WILLIAMSON CO	81,021	ND	1.02	ND	0.11	0.10	ND	ND	ND	ND
ΤN	WILSON CO	67,675	ND	ND	ND	0.12	0.09	ND	ND	ND	ND
ТΧ	BEXAR CO	1,185,394	4	ND	0.025	0.11	0.09	IN	IN*	ND	ND
ТΧ	BOWIE CO	81,665	ND	ND	ND	ND	ND	ND	ND	IN	0.007
ТΧ	BRAZORIA CO	191,707	ND	ND	ND	0.16	0.11	ND	ND	ND	ND
ТΧ	BREWSTER CO	8,681	ND	ND	0.000	0.08	0.06	ND	ND	0.001	0.001
ТΧ	CAMERON CO	260,120	3	0.01	ND	0.08	0.07	22*	59*	0.002	0.004
ТΧ	CASS CO	29,982	ND	ND	ND	ND	ND	ND	ND	IN	0.008
ТΧ	COLLIN CO	264,036	ND	0.82	ND	0.14	0.10	IN	IN*	ND	ND
ТΧ	DALLAS CO	1,852,810	3	0.00	0.021	0.13	0.10	32*	61*	0.002	0.007
ТΧ	DENTON CO	273,525	ND	ND	0.008	0.14	0.11	ND	ND	ND	ND
ТΧ	ELLIS CO	85,167	ND	ND	ND	0.12	0.10	25*	52*	0.004	0.033
ТΧ	EL PASO CO	591,610	8	0.15	0.028	0.11	0.07	63	303	0.003	0.016
ТΧ	GALVESTON CO	217,399	ND	ND	0.005	0.18	0.12	23*	43*	0.007	0.040
ТΧ	GREGG CO	104,948	ND	ND	0.007	0.13	0.11	ND	ND	0.002	0.011
ТΧ	HARRIS CO	2,818,199	4	0.02	0.024	0.20	0.12	45*	116*	0.005	0.019
ТΧ	HIDALGO CO	383,545	ND	ND	ND	0.09	0.08	ND	IN	ND	ND
ТΧ	JEFFERSON CO	239,397	ND	ND	0.011	0.10	0.08	ND	ND	0.007	0.051
ТΧ	LUBBOCK CO	222,636	ND	ND	ND	ND	ND	18*	42*	ND	ND
ТΧ	MARION CO	9,984	ND	ND	0.005	0.12	0.09	ND	ND	ND	ND
ТΧ	MONTGOMERY CO	182,201	ND	ND	IN	0.12	ND	ND	ND	ND	ND
ТΧ	NUECES CO	291,145	ND	ND	ND	0.10	0.09	35*	88*	0.002	0.019
ТΧ	ORANGE CO	80,509	ND	ND	0.009	0.09	0.06	ND	ND	ND	ND
ТΧ	SMITH CO	151,309	ND	ND	0.007	0.12	0.10	ND	ND	ND	ND
ТΧ	TARRANT CO	1,170,103	3	ND	0.017	0.15	0.10	22*	44*	ND	ND
ΤХ	TRAVIS CO	576,407	1	ND	0.006	0.11	0.10	IN	IN	ND	ND
ТΧ	VICTORIA CO	74,361	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
ТΧ	WEBB CO	133,239	4	0.02	ND	0.08	0.07	IN	IN	ND	ND
UT	CACHE CO	70,183	IN	ND	ND	0.08	0.07	IN	65	ND	ND
UT	DAVIS CO	187,941	3	ND	0.020	0.11	0.08	ND	ND	0.002	0.006
UT	GRAND CO	6.620	ND	ND	ND	ND	ND	IN	57	ND	ND
UT	SALT LAKE CO	725,956	6	0.08	0.028	0.11	0.08	46*	113*	0.004	0.010
UT	SAN JUAN CO	12.621	ND	ND	ND	0.08	0.07	ND	ND	ND	ND
UT	UTAH CO	263,590	6	ND	0.024	0.11	0.08	33*	91*	ND	ND
UT	WASHINGTON CO	48,560	ND	ND	ND	ND	ND	ND	IN	ND	ND
UT	WEBER CO	158,330	6	ND	0.026	0.10	0.07	29*	70*	ND	ND
VT	BENNINGTON CO	35,845	ND	ND	ND	0.11	0.08	ND	ND	ND	ND
VT	CHITTENDEN CO	131.761	2	ND	0.017	0.09	0.08	ND	IN	0.002	0.008
VT	RUTI AND CO	62 142	2	ND	0.012	ND	ND	ND	IN	0.005	0.022
VT	WASHINGTON CO	54 928		ND	ND	ND	ND	ND	IN	ND	ND
VA	ARLINGTON CO	170,936	4	ND	0.025	0.13	0.10	ND	ND	ND	ND
VA	CAROLINE CO	19 217	ND	ND	IN	0.11	0.09	ND	ND	ND	ND
VA	CARROLLCO	26 594	ND	ND	ND	ND	ND	19	39	ND	ND
VA	CHARLES CITY CO	6 282	ND	ND	0 011	0.13	0.10	ND	ND	0.005	0.017
VA	CHESTEREIELD CO	209 274	ND	ND	ND	0.12	0.09	ND	ND	ND	ND
•••		200,214				0.12	0.00				

Stat	e County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (μg/m³)	SO ₂ AM (ppm)	SO ₂ 24-hr (ppm)
VA	CULPEPER CO	27,791	ND	ND	ND	ND	ND	18	40	ND	ND
VA	FAIRFAX CO	818,584	3	ND	0.023	0.12	0.10	20	56	0.009	0.026
VA	FAUQUIER CO	48,741	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
VA	FREDERICK CO	45,723	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
VA	HANOVER CO	63,306	ND	ND	ND	0.13	0.10	ND	ND	ND	ND
VA	HENRICO CO	217,881	ND	ND	ND	0.12	0.10	ND	ND	ND	ND
VA	KING WILLIAM CO	10,913	ND	ND	ND	ND	ND	18	45	ND	ND
VA	LOUDOUN CO	86,129	ND	ND	0.014	0.11	0.09	ND	ND	ND	ND
VA	MADISON CO	11,949	ND	ND	ND	0.11	0.09	ND	ND	IN	0.010
VA	NORTHUMBERLAND CO	10,524	ND	ND	ND	ND	ND	19	53	ND	ND
VA	PAGE CO	21,690	ND	ND	ND	0.09	0.09	ND	ND	ND	ND
VA	PRINCE WILLIAM CO	215,686	ND	ND	0.012	0.11	0.09	IN	IN	ND	ND
VA	ROANOKE CO	79,332	ND	ND	0.012	0.11	0.09	ND	ND	0.003	0.010
VA	ROCKBRIDGE CO	18,350	ND	ND	ND	0.10	0.08	ND	ND	ND	ND
VA	RUCKINGHAM CO	57,482	ND	ND	ND	ND	ND	25	41	0.003	0.013
VA	STAFFORD CO	61,236	ND	ND	ND	0.12	0.09	ND	ND	ND	ND
VA	IAZEWELL CO	45,960	ND	ND	ND	ND	ND	IN	IN 40	ND	ND
VA	WARREN CO	26,142	ND	ND	ND	ND	ND	20	40	ND	ND
VA	WISE CO	39,573		ND	ND	ND			39	ND	ND
VA		25,466	ND		ND 0.025	0.10	0.09	ND			ND 0.024
VA		111,183	4		0.025	0.12			07	0.005	0.024
VA		40,341						IN	57		
VA		10 027						10	44 27		
VA		132 702				0.14	0.10	10	50	0.004	0.014
VA		133,793	2			0.14 ND				0.004 ND	0.014 ND
VA		261 220	5		0.017			10	46		0.022
VΔ	RICHMOND	201,225	2		0.017			10	36	0.007	0.022
VA	ROANOKE	96 397	4	ND	0.020 ND	ND	ND	IN	64	0.000 ND	ND
VA	SUFFOLK	52 141	ND	ND	ND	0.13	0.09	ND	ND	ND	ND
VΔ	WINCHESTER	21 947	ND	ND	ND	ND	ND	22	46	ND	ND
WA	ASOTIN CO	17 605	ND	ND	ND	ND	ND	31	82	ND	ND
WA	BENTON CO	112 560	ND	ND	ND	ND	ND	IN	86	ND	ND
WA	CHELAN CO	52 250	ND	ND	ND	ND	ND	IN	44	ND	ND
WA	CLALLAM CO	56,464	ND	ND	ND	0.05	0.04	ND	IN	0.002	0.007
WA	CLARK CO	238.053	7	ND	ND	0.07	0.06	16*	34*	ND	ND
WA	COWLITZ CO	82,119	ND	ND	ND	0.07	0.05	20*	38*	ND	ND
WA	KING CO	1,507,319	6	0.05	0.019	0.09	0.07	IN	50	IN	0.018
WA	KITSAP CO	189,731	ND	ND	ND	ND	ND	15*	34*	ND	ND
WA	KITTITAS CO	26,725	ND	ND	ND	ND	ND	IN	46	ND	ND
WA	KLICKITAT CO	16,616	ND	ND	ND	0.08	0.06	ND	ND	ND	ND
WA	LEWIS CO	59,358	ND	ND	ND	0.06	IN	ND	ND	ND	ND
WA	PIERCE CO	586,203	7	ND	ND	0.09	0.07	17*	56*	IN	0.020
WA	SKAGIT CO	79,555	ND	ND	ND	0.06	0.05	ND	ND	IN	0.025
WA	SNOHOMISH CO	465,642	5	ND	ND	ND	ND	16*	35*	IN	0.011
WA	SPOKANE CO	361,364	6	ND	ND	0.07	0.07	26*	86*	ND	ND
WA	STEVENS CO	30,948	ND	ND	ND	ND	ND	IN	60	ND	ND
WA	THURSTON CO	161,238	5	ND	ND	0.08	0.06	IN	35	ND	ND
WA	WALLA WALLA CO	48,439	ND	ND	ND	ND	ND	40*	92*	ND	ND
WA	WHATCOM CO	127,780	ND	ND	ND	0.06	0.05	14	26	IN	0.016
WA	YAKIMA CO	188,823	5	ND	ND	ND	ND	25*	82*	ND	ND
WV	BERKELEY CO	59,253	ND	ND	ND	ND	ND	22	57	ND	ND
WV	BROOKE CO	26,992	ND	ND	ND	ND	ND	28	61	0.012	0.065
WV	CABELL CO	96,827	ND	ND	ND	0.12	0.10	IN	45	0.005	0.019
WV	FAYETTE CO	47,952	ND	ND	ND	ND	ND	IN	IN	ND	ND

Site: CMax Ani 1-fr 8-jr WetAiX 24-jr 24-jr WG GREENRIFERCO (ygm) (yg			со	Pb	NO,	Ο,	0,	PM ₁₀	PM ₁₀	SO,	SO,
Capacity	State County	1990 Population	8-hr (ppm)	QMax (ug/m ³)	ÂM (maa)	1-ĥr (ppm)	8-hr (ppm)	Wtd AM	2nd Max (ug/m ³)	AM (maga)	24-hr (ppm)
With Cold 34,843 ND			(PP)	((PP)	(PP)	(PP)	((-9)	(PP)	(PP)
MM ARACCOR CO 35,233 3 ND	WV GREENBRIER CO	34,693	ND	ND	ND	0.10	80.0	ND	ND	ND 0.010	ND
MM Desk ND N		35,233	5		ND	0.11	0.09	31	98	0.016	0.065
VM Advances 20,0 B IN ND		69,371	ND	ND	ND	ND 0.40	ND 0.40	18	45	ND 0.040	ND 0.040
M MACHARLA D ND ND <th< td=""><td></td><td>207,019</td><td></td><td></td><td></td><td>0.13</td><td>0.10</td><td></td><td>45 50</td><td>0.010</td><td>0.046</td></th<>		207,019				0.13	0.10		45 50	0.010	0.046
MIND MARKARLECC 15.5.9 ND ND <td></td> <td>37,330</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11N 01</td> <td>59</td> <td>0.015</td> <td>0.060</td>		37,330						11N 01	59	0.015	0.060
MIC DOLOG BL,		75,509	ND 2			0.10		21	00 50	0.010	0.049
NY PSIANCS 12.23 ND		JU,07 I					0.09	20 INI	50 INI		0.034
NI NICLEDITION NO ND		42,000						IN	20		
N. BOMIELS CO 14,253 ND	WV RALEIGH CO	14 204						IN	27		
N MARLEO 100 ND		41 636			IN			IN	IN		0.042
Image: No. Construction Image: No. No. No. Construction Image: No. Construc		41,000 86 015				0.12	0.10	25	63	0.009	0.042
MIC COLUMBIACO H508 ND	WI BROWN CO	194 594	ND	ND	ND	0.12	0.10			0.013	0.030
ID DAVE CO 367,062 ND		45 088	ND	ND	ND	0.10	0.00	ND	ND	0.000 ND	
IDD CODE CODER CO 76,559 ND ND <td>WI DANE CO</td> <td>367 085</td> <td>2</td> <td>ND</td> <td>ND</td> <td>0.10</td> <td>0.00</td> <td>21*</td> <td>49*</td> <td>IN</td> <td>0.008</td>	WI DANE CO	367 085	2	ND	ND	0.10	0.00	21*	49*	IN	0.008
Image: Note of the second se	WI DODGE CO	76 559		ND	ND	0.10	0.09		ND	ND	ND
Image: Note of the second se	WI DOOR CO	25 690	ND	ND	ND	0.10	0.00	ND	ND	ND	ND
IFLORENCE CO 4.590 ND ND ND ND 0.10 0.09 ND ND ND ND WI FLOREND LLAC CO 90,083 ND	WI DOUGLAS CO	41 758	ND	ND	ND	ND	ND	19	44	ND	ND
WI FOND DULAC CO 90.083 ND	WI FLORENCE CO	4,590	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
WI JEFFERSON CO 67,783 ND	WI FOND DU LAC CO	90.083	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
WI KENOSHA CO 128,181 ND	WI JEFFERSON CO	67.783	ND	ND	ND	0.11	0.10	ND	ND	ND	ND
WI KEWAUNEE CO 18,878 ND	WI KENOSHA CO	128,181	ND	ND	ND	0.13	0.10	ND	ND	ND	ND
WI MANITOWOC CO 80,421 ND	WI KEWAUNEE CO	18,878	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
WI MARATHON CO 115,400 ND ND ND ND 0.10 0.08 IN 64 0.003 0.004 WI MILWAUKEE CO 959,275 2 ND 0.022 0.10 27 60 0.006 ND ND<	WI MANITOWOC CO	80.421	ND	ND	ND	0.12	0.10	ND	ND	ND	ND
WI MILWAUKEE CO 959.275 2 ND 0.022 0.12 0.10 27 60 0.004 0.024 WI ONEIDA CO 31,679 ND ND ND 0.09 0.08 ND	WI MARATHON CO	115,400	ND	ND	ND	0.10	0.08	IN	64	0.003	0.040
WI ONEIDA CO 31,679 ND ND ND 0.09 0.08 ND	WI MILWAUKEE CO	959,275	2	ND	0.022	0.12	0.10	27	60	0.004	0.024
WI OUTAGAMIE CO 140,510 ND ND ND 0.11 0.09 ND ND <t< td=""><td>WI ONEIDA CO</td><td>31,679</td><td>ND</td><td>ND</td><td>ND</td><td>0.09</td><td>0.08</td><td>ND</td><td>ND</td><td>0.006</td><td>0.065</td></t<>	WI ONEIDA CO	31,679	ND	ND	ND	0.09	0.08	ND	ND	0.006	0.065
WI OZAUKEE CO 72,831 ND ND IN 0.12 0.10 ND N	WI OUTAGAMIE CO	140,510	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
WIPOLK CO34,773INND<	WI OZAUKEE CO	72,831	ND	ND	IN	0.12	0.10	ND	ND	ND	ND
WIRACINE CO175,0343NDND0.110.09NDNDNDNDNDWIROCK CO139,510NDNDNDND0.110.09NDNDNDNDNDWISAUK CO50,251NDND0.000.00NDNDNDNDNDNDWISAUK CO103,877NDNDND0.130.09NDNDNDNDWIVERNON CO25,617NDNDND0.080.0811*45*NDNDWIVILAS CO17,707NDNDND0.110.09NDNDNDNDWIWALWORTH CO95,328NDNDND0.110.09NDNDNDNDWIWALWESHA CO30,797NDNDNDNDNDNDNDNDNDWIWINEBAGO CO10,3,797NDNDNDNDNDNDNDNDNDWIVALBANY CO29,370NDNDNDNDNDNDNDNDNDNDWYCARBON CO11,128NDNDNDNDNDNDNDNDNDNDWIVILAS29,370NDNDNDNDNDNDNDNDNDNDWYCARBON CO11,128NDNDNDNDND	WI POLK CO	34,773	IN	ND	ND	ND	ND	ND	ND	ND	ND
WIROCK CO139,510NDNDNDND0.110.09NDNDNDNDWIST CROIX CO50,251NDNDNDND0.080.07NDNDNDNDWISAUK CO46,975NDNDND0.040.100.09NDNDNDNDWISHEBOYGAN CO103,877NDNDNDND0.080.08INNDNDNDWIVERNON CO25,617NDNDND0.090.0811*45*NDNDNDWIVALWORTH CO75,000NDNDND0.090.0811*45*NDNDNDWIWALWORTH CO95,328NDNDND0.100.09NDNDNDNDNDWIWALWESHA CO304,7152NDNDNDNDNDNDNDNDNDNDWIWALWESHA CO30,797NDNDNDNDNDNDNDNDNDNDNDWIWALBANY CO30,797NDNDNDNDNDNDNDNDNDNDNDNDWYCANERSE CO11,128NDN	WI RACINE CO	175,034	3	ND	ND	0.11	0.09	ND	ND	ND	ND
WI ST CROIX CO 50,251 ND ND ND 0.08 0.07 ND ND ND ND WI SAUK CO 46,975 ND ND 0.004 0.10 0.09 ND N	WI ROCK CO	139,510	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
WI SAUK CO 46,975 ND ND 0.004 0.10 0.09 ND ND ND ND WI SHEBOYGAN CO 103,877 ND ND ND 0.03 0.09 ND ND ND ND WI VERNON CO 25,617 ND ND ND 0.08 0.08 1N ND ND ND WI VILAS CO 17,707 ND ND ND 0.09 0.08 11* 45* ND ND WI WALWORTH CO 75,000 ND ND ND 0.10 0.09 ND ND ND WI WAUKESHA CO 304,715 2 ND ND <td>WI ST CROIX CO</td> <td>50,251</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>0.08</td> <td>0.07</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	WI ST CROIX CO	50,251	ND	ND	ND	0.08	0.07	ND	ND	ND	ND
WI SHEBOYGAN CO 103,877 ND ND ND 0.03 0.09 ND ND ND ND WI VERNON CO 25,617 ND ND ND 0.08 0.08 1N IN ND ND WI VILAS CO 17,707 ND ND ND 0.09 0.08 11* 45* ND ND ND WI WALWORTH CO 75,000 ND ND ND 0.11 0.09 ND ND ND ND WI WALWORTH CO 5,328 ND ND ND 0.10 0.09 ND ND ND ND WI WAUKESHA CO 304,715 2 ND ND 0.10 0.09 ND	WI SAUK CO	46,975	ND	ND	0.004	0.10	0.09	ND	ND	ND	ND
WI VERNON CO 25,617 ND ND ND 0.08 0.08 IN IN ND ND WI VILAS CO 17,707 ND ND ND 0.09 0.08 11* 45* ND ND WI WALWORTH CO 75,000 ND ND ND 0.10 0.09 ND <	WI SHEBOYGAN CO	103,877	ND	ND	ND	0.13	0.09	ND	ND	ND	ND
WI VILAS CO 17,707 ND ND ND 0.09 0.08 11* 45* ND ND WI WALWORTH CO 75,000 ND	WI VERNON CO	25,617	ND	ND	ND	0.08	0.08	IN	IN	ND	ND
WI WALWORTH CO 75,000 ND ND ND 0.11 0.09 ND ND ND ND WI WASHINGTON CO 95,328 ND ND ND 0.10 0.09 ND ND ND ND WI WAUKESHA CO 304,715 2 ND ND 0.11 0.10 23 57 ND ND WI WINNEBAGO CO 140,320 ND ND ND 0.10 0.09 ND ND ND ND WI WOOD CO 73,605 ND ND ND ND ND ND ND ND 0.03 0.042 WY ALBANY CO 30,797 ND ND <td>WI VILAS CO</td> <td>17,707</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>0.09</td> <td>0.08</td> <td>11*</td> <td>45*</td> <td>ND</td> <td>ND</td>	WI VILAS CO	17,707	ND	ND	ND	0.09	0.08	11*	45*	ND	ND
WI WASHINGTON CO 95,328 ND ND ND 0.10 0.09 ND ND ND ND WI WAUKESHA CO 304,715 2 ND ND 0.11 0.10 23 57 ND ND WI WINNEBAGO CO 140,320 ND ND ND 0.10 0.09 ND ND ND ND WI WOOD CO 73,605 ND ND ND ND ND ND ND ND 0.03 0.042 WY ALBANY CO 30,797 ND	WI WALWORTH CO	75,000	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
WI WAUKESHA CO 304,715 2 ND ND 0.11 0.10 23 57 ND ND WI WINNEBAGO CO 140,320 ND ND ND ND 0.09 ND ND ND ND WI WOOD CO 73,605 ND ND ND ND ND ND ND ND ND 0.003 0.042 WY ALBANY CO 30,797 ND	WI WASHINGTON CO	95,328	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
WI WINNEBAGO CO 140,320 ND ND ND 0.10 0.09 ND ND ND ND WI WOOD CO 73,605 ND ND ND ND ND ND ND ND ND 0.003 0.042 WY ALBANY CO 30,797 ND ND ND ND ND ND 39 132 ND ND WY CAMPBELL CO 29,370 ND	WI WAUKESHA CO	304,715	2	ND	ND	0.11	0.10	23	57	ND	ND
WI WOOD CO 73,605 ND	WI WINNEBAGO CO	140,320	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
WY ALBANY CO 30,797 ND	WI WOOD CO	73,605	ND	ND	ND	ND	ND	ND	ND	0.003	0.042
WY CAMPBELL CO 29,370 ND ND ND ND ND 39 132 ND ND WY CARBON CO 16,659 ND ND<	WY ALBANY CO	30,797	ND	ND	ND	ND	ND	IN	50	ND	ND
WY CARBON CO 16,659 ND ND<	WY CAMPBELL CO	29,370	ND	ND	ND	ND	ND	39	132	ND	ND
WY CONVERSE CO 11,128 ND N	WY CARBON CO	16,659	ND	ND	ND	ND	ND	ND	IN	ND	ND
WY FREMONT CO 33,662 ND ND ND ND ND IN 63 ND ND WY LARAMIE CO 73,142 ND	WY CONVERSE CO	11,128	ND	ND	ND	ND	ND	28	78	ND	ND
WY LARAMIE CO 73,142 ND ND ND ND ND 15 30 ND ND WY LINCOLN CO 12,625 ND	WY FREMONT CO	33,662	ND	ND	ND	ND	ND	IN	63	ND	ND
WY LINCOLN CO 12,625 ND ND ND ND IN IN ND ND WY NATRONA CO 61,226 ND ND ND ND ND ND S2 ND ND WY NATRONA CO 61,226 ND ND ND ND ND ND S2 ND ND WY PARK CO 23,178 ND N	WY LARAMIE CO	73,142	ND	ND	ND	ND	ND	15	30	ND	ND
WY NATRONA CO 61,226 ND ND ND ND IN 52 ND ND WY PARK CO 23,178 ND ND<	WY LINCOLN CO	12,625	ND	ND	ND	ND	ND	IN	IN	ND	ND
WY PARK CO 23,178 ND ND ND ND IN 40 ND ND WY SHERIDAN CO 23,562 ND ND ND ND ND 31* 117* ND ND WY SHERIDAN CO 38,823 ND ND ND ND ND 25* 72* ND ND WY TETON CO 11,172 ND ND ND 0.08 0.07 IN 39 ND ND PR BARCELONETA CO 18,942 ND ND ND ND ND 49 IN 0.014	WY NATRONA CO	61,226	ND	ND	ND	ND	ND	IN	52	ND	ND
WY SHERIDAN CO 23,562 ND ND ND ND 31* 117* ND ND WY SWEETWATER CO 38,823 ND ND ND ND ND 25* 72* ND ND WY TETON CO 11,172 ND ND ND 0.08 0.07 IN 39 ND ND PR BARCELONETA CO 18,942 ND ND ND ND ND 49 IN 0.014	WY PARK CO	23,178	ND	ND	ND	ND	ND	IN	40	ND	ND
WY SWEETWATER CO 38,823 ND ND ND ND 25* 72* ND ND WY TETON CO 11,172 ND ND ND 0.08 0.07 IN 39 ND ND PR BARCELONETA CO 18,942 ND ND ND ND ND 49 IN 0.014	WY SHERIDAN CO	23,562	ND	ND	ND	ND	ND	31*	117*	ND	ND
WY TETON CO 11,172 ND ND ND 0.08 0.07 IN 39 ND ND PR BARCELONETA CO 18,942 ND ND ND ND ND ND 49 IN 0.014	WY SWEETWATER CO	38,823	ND	ND	ND	ND	ND	25*	72*	ND	ND
PR BARCELONETA CO 18,942 ND ND ND ND ND IN 49 IN 0.014	WY TETON CO	11,172	ND	ND	ND	0.08	0.07	IN	39	ND	ND
	PR BARCELONETA CO	18,942	ND	ND	ND	ND	ND	IN	49	IN	0.014

Stat	e County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (μg/m³)	SO ₂ AM (ppm)	SO₂ 24-hr (ppm)
PR	BAYAMON CO	196,206	ND	ND	ND	ND	ND	IN	55	0.003	0.021
PR	CAROLINA CO	165,954	ND	ND	ND	ND	ND	IN	IN	ND	ND
PR	CATANO CO	26,243	ND	ND	IN	0.08	0.05	IN	IN	IN	0.017
PR	FAJARDO CO	32,087	ND	ND	ND	ND	ND	IN	73	ND	ND
PR	GUAYAMA CO	40,183	ND	ND	ND	ND	ND	27	61	ND	ND
PR	GUAYNABO CO	80,742	ND	ND	ND	ND	ND	38	84	ND	ND
PR	HUMACAO CO	46,134	ND	ND	ND	ND	ND	IN	60	ND	ND
PR	MANATI CO	36,562	ND	ND	ND	ND	ND	25	58	ND	ND
PR	PONCE CO	189,046	ND	ND	ND	ND	ND	39	86	ND	ND
PR	RIO GRANDE CO	34,283	ND	ND	ND	ND	ND	IN	IN	ND	ND
PR	SAN JUAN CO	434,849	8	0.02	ND	ND	ND	IN	60	ND	ND

со Highest second maximum non-overlapping 8-hour concentration (Applicable NAAQS is 9 ppm) _

Highest quarterly maximum concentration (Applicable NAAQS is 1.5 µg/m3) Pb _

 $NO_{2} - O_{3} (1-hr) - O_{3} (1-h$ Highest arithmetic mean concentration (Applicable NAAQS is 0.053 ppm)

Highest antimetic under Concentration (*Applicable NAAQS is 0.03 ppm*) Highest second daily maximum 1-hour concentration (*Applicable NAAQS is 0.12 ppm*) Highest fourth daily maximum 8-hour concentration (*Applicable NAAQS is 0.08 ppm*) Highest weighted annual mean concentration (*Applicable NAAQS is 50 µg/m3*)

O₃ (8-hr) -

РЙ₁₀

_ Highest second maximum 24-hour concentration (Applicable NAAQS is 150 µg/m3)

SO₂ Highest annual mean concentration (Applicable NAAQS is 0.03 ppm) _

_ Highest second maximum 24-hour concentration (Applicable NAAQS is 0.14 ppm)

Indicates data not available ND _

IN _ Indicates insufficient data to calculate summary statistic

Wtd _ Weighted

Annual mean AM _

µg/m³ _ Units are micrograms per cubic meter

PPM _ Units are parts per million

Data from exceptional events not included.

(*) - These PM₁₀ statistics were converted from local temperature and pressure to standard temperature and pressure to ensure all PM₁₀ data in this table reflect standard conditions.

Note: The reader is cautioned that this summary is not adequate in itself to numerically rank MSAs according to their air quality. The monitoring data represent the quality of air in the vicinity of the monitoring site but may not necessarily represent urban-wide air quality.

Metropolitan Statistical Area	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM₁₀ Wtd AM (µg/m³)	PM₁₀ 2nd Max (µg/m³)	SO ₂ AM (ppm)	SO₂ 24-hr (ppm)
AKRON. OH	657.575	3	0.01	ND	0.12	0.10	23	69	0.011	0.065
ALBANY, GA	112,561	ND	ND	ND	ND	ND	26	60	ND	ND
ALBANY-SCHENECTADY-TROY NY	861 424	4	ND	IN	0.11	0.09	ND	ND	0.003	0.016
ALBUQUERQUE NM	589 131	5	ND	0.016	0.10	0.08	35*	123*	ND	ND
ALLENTOWN-BETHLEHEM-FASTON PA	595 081	3	0.07	0.017	0.13	0.11	ND	36*	0 009	0.037
ALTOONA PA	130 542	2	ND	0.013	0.11	0.09	ND	ND	0.007	0.030
ANCHORAGE AK	226.338	8	ND	ND	ND	ND	15	73	ND	ND
ANN ARBOR MI	490 058	ND	ND	ND	0 11	0.09	ND	ND	ND	ND
APPI ETON-OSHKOSH-NEENAH WI	315 121	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
ASHEVILLE NC	191 774	ND	ND	ND	0.10	0.08	21	41	ND	ND
ATLANTA GA	2 959 950	4	0.05	0.024	0.16	0.00	35	72	0.005	0.023
ATLANTIC-CAPE MAY N.I	319 416	ND	ND		0.12	0 10	22	46	0.003	0.009
AUGUSTA-AIKEN GA-SC	415 184	ND	0.00	0.005	0.11	0.09	IN	49	IN	IN
AUSTIN-SAN MARCOS TX	846 227	1		0.000	0.11	0.00	ND		ND	ND
BAKERSEIELD CA	543 477	4	0.00	0.000	0.14	0.10	59	141	IN	IN
BALTIMORE MD	2 382 172	5	0.00	0.020	0.14	0.11	20	61	0.006	0.020
BANGOR ME	91 629	ND			0.19	0.08	17	32		0.020 ND
BATON BOLIGE LA	528 264	5	0.06a	0.019	0.00	0.00	34	78	0.006	0.025
	361 226			0.010	0.12	0.08			0.000	0.020
BELLINGHAM WA	127 780	ND	ND		0.10	0.00	14	26	IN	IN
BENTON HARBOR MI	161 378	ND	ND	ND	0.00	0.00			ND	ND
	1 278 440	4			0.11	0.10	34	73	0.005	0.020
BILLINGS MT	113 410	6					21	69	0.003	0.020
	312 368			0.006	0.11	0 10	IN	38	0.007	0.037
	840 140	5		0.000	0.11	0.10	28	108	INI	0.024 IN
BISMARCK ND	83 831								0.006	0.071
BOISE CITY ID	295 851	6		0.021	ND	ND	36	101		
BOSTON MA-NH	3 227 707	4	0.03	0.021	0.12	0.09	30	65	0.007	0.040
	225 339	4	0.05 ND	0.030 ND	0.12	0.03	IN	56		0.040 ND
BRAZORIA TX	101 707				0.16	0.00			ND	ND
BREMERTON WA	180 731						15	33		ND
BRIDGEPORT CT	443 722	3		0.018	0 14	0 11	10	41	0.006	0.023
BROCKTON MA	236 409			INI	0.14	0.08				0.025 ND
BROWNSVILLE-HARLINGEN-SAN BENITO TX	260,400	3	0.01	ND	0.10	0.00	22*	50*	0.002	0.004
BLIEFALO-NIAGARA FALLS NY	1 189 288	3	0.01	0.022	0.00	0.07	IN	48	0.002	0.004
BURLINGTON VT	151 506	2		0.022	ND		ND		0.010	0.002
	394 106	2	ND		0 11	0.09	24	57	0.002	0.000
CASPER WY	61 226		ND	ND	ND	ND	IN	52	ND	ND
CEDAR RAPIDS IA	168 767	2	ND	ND	0.10	0.08	IN	54	0.005	0.071
	173 025		ND	ND	0.10	0.00	23	47	0.000	0.010
CHARLESTON-NORTH CHARLESTON SC	506 875	4	0.01	0.010	0.10	0.08	21	47	0.002	0.010
CHARLESTON WV/	250 454	IN	ND		0.13	0.00	IN	45	0.002	0.046
	1 162 093	4	0.02	0.018	0.13	0.10	30	-5 60	0.010	0.040
	131 107						IN	37		
	424 347				0.12	0 10	20	57		ND
CHEVENNE WY	73 1/2						15	30		ND
	7 410 858	5	0.06	0.032	0.11	0.10	10	120		0.044
	122 120	л Л	0.00	0.052	0.11	0.10	 20	130	0.009 NID	
	1 526 002	+ 2	0.00	0.010	0.11	0.09	29 21	60	0 009	0 030
	1,020,092	2 0		0.022	0.12	0.10	01 22	20	0.000	0.030
	2 202 060			0.025	0.12	0.09	20 10	106	0.005	0.010
	2,202,009	4	0.15	0.020	0.12	0.10	+∠ 22	001 QA	0.011	0.002
COLUMBIA, SC	453,331	5 4	0.01	0.019	0.08	0.00	24	148	0.004	0.020

Metropolitan Statistical Area	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM ₁₀ Wtd AM (μg/m³)	PM₁₀ 2nd Max (µg/m³)	SO₂ AM (ppm)	SO₂ 24-hr (ppm)
COLUMBUS GA-AL	260 860	ND	1 04°	ND	0 11	0 10	24	49	ND	ND
COLUMBUS OH	1 345 450	3	0.05 ^d	ND	0.14	0.10	27	86	0 004	0.015
CORPUS CHRISTI TX	349 894	ND	ND	ND	0.10	0.09	35*	88*	0.002	0.019
DALLAS TX	2 676 248	3	0.82 ^e	0.021	0.14	0.11	32*	61*	0.004	0.033
DANBURY, CT	193,597	ND	ND	ND	0.15	0.11	ND	ND	0.004	0.024
DAVENPORT-MOLINE-ROCK ISLAND, IA-IL	350.861	ND	ND	ND	0.10	0.08	44	177	0.004	0.014
DAYTON-SPRINGEIFLD OH	951 270	3	0.01	ND	0.13	0.10	24	53	0.005	0.018
DAYTONA BEACH. FL	399,413	ND	ND	ND	0.09	0.08	21	56	ND	ND
DECATUR. AL	131,556	ND	ND	ND	0.10	0.09	IN	43	0.002	0.011
DECATUR, IL	117.206	ND	ND	ND	0.10	0.09	ND	ND	0.006	0.027
DENVER. CO	1.622.980	5	0.08	0.02	0.11	0.08	37	141	0.003	0.012
DES MOINES, IA	392.928	4	ND	ND	0.08	0.07	IN	76	ND	ND
DETROIT. MI	4.266.654	4	0.10	0.018	0.12	0.10	36	126	0.009	0.053
DOTHAN, AL	130,964	ND	ND	ND	ND	ND	IN	IN	ND	ND
DOVER, DE	110,993	ND	ND	ND	0.12	0.10	ND	ND	ND	ND
DULUTH-SUPERIOR, MN-WI	239,971	2	ND	ND	0.08	0.07	25	71	ND	ND
DUTCHESS COUNTY, NY	259,462	ND	ND	ND	0.12	0.09	ND	ND	ND	ND
EL PASO, TX	591,610	8	0.15	0.028	0.11	0.07	63	129	0.003	0.016
ELKHART-GOSHEN, IN	156,198	ND	ND	ND	0.09	0.08	ND	ND	ND	ND
ELMIRA, NY	95,195	ND	ND	ND	0.09	0.08	ND	ND	0.003	0.015
ENID, OK	56,735	ND	ND	0.008	ND	ND	ND	ND	ND	ND
ERIE, PA	275,572	6	ND	0.015	0.11	0.10	ND	54*	0.010	0.043
EUGENE-SPRINGFIELD, OR	282,912	5	0.02	ND	0.08	0.07	ND	ND	ND	ND
EVANSVILLE-HENDERSON, IN-KY	278,990	4	ND	0.016	0.11	0.10	26	60	0.007	0.056
FARGO-MOORHEAD, ND-MN	153,296	ND	ND	0.007	0.07	0.07	21	65	0.001	0.003
FAYETTEVILLE, NC	274,566	5	ND	ND	0.12	0.10	24	42	0.005	0.007
FLAGSTAFF, AZ-UT	101,760	ND	ND	ND	0.09	0.08	ND	ND	ND	ND
FLINT, MI	430,459	ND	0.01	ND	0.11	0.10	IN	IN	0.003	0.011
FLORENCE, AL	131,327	ND	ND	ND	ND	ND	ND	ND	0.003	0.017
FLORENCE, SC	114,344	ND	0.01	ND	ND	ND	ND	ND	ND	ND
FORT COLLINS-LOVELAND, CO	186,136	5	ND	ND	0.09	0.07	16	36	ND	ND
FORT LAUDERDALE, FL	1,255,488	5	0.02	0.011	0.10	0.08	19	33	0.003	0.015
FORT MYERS-CAPE CORAL, FL	335,113	ND	ND	ND	0.10	0.08	19	32	ND	ND
FORT PIERCE-PORT ST. LUCIE, FL	251,071	ND	ND	0.010	0.08	0.07	20	39	ND	ND
FORT WAYNE, IN	456,281	3	ND	ND	0.10	0.09	IN	IN	ND	ND
FORT WORTH-ARLINGTON, TX	1,361,034	3	ND	0.017	0.15	0.10	22*	44*	ND	ND
FRESNO, CA	755,580	8	0.00	0.024	0.15	0.11	47	130	ND	ND
GADSDEN, AL	99,840	ND	ND	ND	ND	ND	30	66	ND	ND
GAINESVILLE, FL	181,596	ND	ND	ND	0.10	0.08	21	38	ND	ND
GALVESTON-TEXAS CITY, TX	217,399	ND	ND	0.005	0.18	0.12	23*	43*	0.007	0.040
GARY, IN	604,526	3	0.08	0.019	0.12	0.10	35	166	0.007	0.032
GOLDSBORO, NC	104,666	ND	ND	ND	ND	ND	20	48	ND	ND
GRAND JUNCTION, CO	93,145	5	ND	ND	ND	ND	20	52	ND	ND
GRAND RAPIDS-MUSKEGUN-HOLLAND, MI	937,891	4	0.00	ND	0.12	0.10	21	54	0.001	0.006
GREAT FALLS, MT	77,691	4	ND	ND	ND		ND	ND	0.003	0.011
GREELEY, CO	131,821	3	ND	ND	0.09	0.07	18	47	ND	ND 0.011
GREEN BAY, WI	194,594	ND			0.10	0.09	ND		0.003	0.011
GREENSBURD-WINSTUN-SALEM-HIGH POINT	1,050,304	4		0.016	0.13	0.10	25 IN	5/	0.005	0.020
	107,924				0.11	0.09	IN	43		
GREENVILLE-SPARIANBURG-ANDERSON, SC	030,503	C	0.01	0.017	0.12	0.10	20		0.003	0.009
	121,383				0.11	0.09	24			
HAWILT UN-WIDDLET UWN, UH	291,479	ND	0.01	ND	0.12	0.10	31	00	0.007	0.024

Metropolitan Statistical Area	1990 Population	CO 8-hr (ppm)	Ρb QMax (µg/m³)	NO₂ AM (ppm)	O₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (μg/m³)	SO ₂ AM (ppm)	SO₂ 24-hr (ppm)
HARRISBURG-LEBANON-CARLISLE, PA	587,986	4	ND	0.018	0.13	0.10	ND	ND	0.005	0.021
HARTFORD, CT	1,157,585	6	ND	0.018	0.16	0.11	18	81	0.004	0.019
HICKORY-MORGANTON-LENOIR, NC	292,409	ND	ND	ND	0.12	0.09	25	49	0.005	0.007
HONOLULU, HI	836,231	2	ND	0.004	0.05	0.05	15	41	0.001	0.004
HOUMA, LA	182,842	ND	ND	ND	0.12	0.09	ND	ND	ND	ND
HOUSTON, TX	3,322,025	4	0.02	0.024	0.20	0.12	45*	116*	0.005	0.019
HUNTINGTON-ASHLAND, WV-KY-OH	312,529	1	ND	0.016	0.12	0.10	39	89	0.009	0.026
HUNTSVILLE, AL	293,047	4	ND	ND	0.11	0.09	24	52	ND	ND
INDIANAPOLIS, IN	1,380,491	3	0.12 ^f	0.018	0.11	0.10	27	53	0.007	0.024
JACKSON, MS	395,396	5	ND	ND	0.11	0.08	25	53	0.002	0.007
JACKSON, TN	90.801	ND	ND	ND	ND	ND	IN	43	ND	ND
JACKSONVILLE. FL	906.727	4	0.02	0.016	0.10	0.08	28	59	0.004	0.036
JACKSONVILLE, NC	149.838	ND	ND	ND	ND	ND	IN	45	ND	ND
JAMESTOWN, NY	141,895	ND	ND	ND	0.10	0.09	14	40	0.008	0.060
JANESVILLE-BELOIT, WI	139,510	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
JERSEY CITY, NJ	553.099	6	ND	0.026	0.14	0.11	35	56	0.008	0.030
JOHNSON CITY-KINGSPORT-BRISTOL, TN-VA	436.047	3	0.12	0.016	0.11	0.09	ND	ND	0.010	0.044
JOHNSTOWN. PA	241,247	3	0.09	0.015	0.11	0.09	ND	ND	0.009	0.025
JOPLIN. MO	134,910	ND	ND	ND	ND	ND	34	105	ND	ND
KALAMAZOO-BATTLE CREEK. MI	429,453	ND	ND	ND	0.10	0.09	IN	50	ND	ND
KANSAS CITY, MO-KS	1.582.875	5	0.01	0.015	0.12	0.08	40	118	0.003	0.011
KENOSHA, WI	128,181	ND	ND	ND	0.13	0.10	ND	ND	ND	ND
KNOXVILLE. TN	585,960	4	0.00	0.003	0.13	0.11	43	148	0.009	0.056
LAFAYETTE, LA	344,853	ND	ND	ND	0.09	0.08	ND	ND	ND	ND
LAKE CHARLES. LA	168,134	ND	ND	0.005	0.13	0.09	ND	ND	0.004	0.015
LAKELAND-WINTER HAVEN. FL	405.382	ND	ND	ND	0.10	0.08	22	50	0.007	0.019
LANCASTER. PA	422.822	2	ND	0.015	0.13	0.10	ND	ND	0.005	0.021
LANSING-EAST LANSING. MI	432.674	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
LAREDO. TX	133.239	4	0.02	ND	0.08	0.07	ND	ND	ND	ND
LAS CRUCES, NM	135,510	4	ND	0.012	0.10	0.08	45	88	0.001	0.008
LAS VEGAS. NV-AZ	852.737	8	ND	ND	0.10	0.08	56	281	ND	ND
LAWRENCE, MA-NH	353.232	ND	ND	ND	0.09	0.07	ND	ND	0.005	0.021
LAWTON, OK	111,486	2	ND	ND	0.09	0.08	ND	ND	ND	ND
LEWISTON-AUBURN, ME	93.679	ND	ND	ND	ND	ND	IN	45	0.004	0.016
LEXINGTON, KY	405,936	2	ND	0.013	0.11	0.09	23	54	0.008	0.020
LIMA, OH	154,340	ND	ND	ND	0.11	0.09	17	32	0.003	0.013
LINCOLN, NE	213,641	6	ND	ND	0.06	0.05	ND	ND	ND	ND
LITTLE ROCK-NORTH LITTLE ROCK, AR	513,117	4	ND	0.011	0.11	0.09	32*	70*	0.002	0.005
LONGVIEW-MARSHALL, TX	193,801	ND	ND	0.007	0.13	0.11	ND	ND	0.002	0.011
LOS ANGELES-LONG BEACH, CA	8,863,164	11	0.09	0.051	0.14	0.10	56	119	0.005	0.019
LOUISVILLE, KY-IN	948,829	5	ND	0.014	0.12	0.10	28	60	0.007	0.032
LOWELL, MA-NH	280,578	4	ND	ND	ND	ND	ND	ND	ND	ND
LUBBOCK, TX	222,636	ND	ND	ND	ND	ND	18*	42*	ND	ND
MACON, GA	290,909	ND	ND	ND	0.13	0.11	IN	53	ND	ND
MADISON, WI	367,085	2	ND	ND	0.10	0.09	21	48	IN	IN
MANCHESTER, NH	50,000	ND	ND	IN	ND	ND	16	41	IN	IN
MANSFIELD, OH	174.007	ND	ND	ND	ND	ND	23	53	ND	ND
MCALLEN-EDINBURG-MISSION, TX	383,545	ND	ND	ND	0.09	0.08	ND	ND	ND	ND
MEDFORD-ASHLAND. OR	146.389	6	0.00	ND	0.08	IN	IN	93	ND	ND
MELBOURNE-TITUSVILLE-PALM BAY. FL	398.978	ND	ND	ND	0.09	0.08	19	52	ND	ND
MEMPHIS. TN-AR-MS	1.007.306	5	0.65 ⁹	0.025	0,13	0.10	27	64	0.006	0.028
MERCED. CA	178.403	ND	ND	0.012	0.13	0.11	IN	IN	ND	ND
MIAMI, FL	1,937,094	4	ND	0.017	0.11	0.08	24	44	0.001	0.003

Metropolitan Statistical Area	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO₂ AM (ppm)	O₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM₁₀ Wtd AM (µg/m³)	PM₁₀ 2nd Max (µg/m³)	SO ₂ AM (ppm)	SO₂ 24-hr (ppm)
MIDDLESEX-SOMERSET-HUNTERDON. NJ	1.019.835	3	0.18 ^h	0.019	0.15	0.11	ND	ND	0.005	0.016
MILWAUKEE-WAUKESHA, WI	1,432,149	2	ND	0.022	0.12	0.10	27	60	0.004	0.024
MINNEAPOLIS-ST. PAUL, MN-WI	2.538.834	5	0.47 ⁱ	0.022	0.09	0.08	35	88	0.004	0.030
MOBILE AI	476 923	ND	ND	ND	0.12	0.09	25	84	0.008	0.041
MODESTO, CA	370.522	6	0.00	0.022	0.11	0.09	43	137	ND	ND
MONMOUTH-OCEAN NJ	986 327	3	ND	ND	0.14	0.11	ND	ND	ND	ND
MONROE LA	142 191	ND	ND	ND	0.10	0.08	ND	ND	0.003	0.010
MONTGOMERY AL	292 517	ND	ND	ND	0.10	0.09	24	48	ND	ND
MUNCIE IN	119 659	ND	0.76 ^j	ND	ND	ND	ND	ND	ND	ND
MYRTLE BEACH SC	144 053	ND	0.01	ND	ND	ND	ND	ND	ND	ND
NAPLES FL	152 099	ND	ND	ND	ND	ND	17	30	ND	ND
NASHUA NH	168 233	5	ND	IN	0.10	0.09	17	40	0.005	0.016
NASHVILLE TN	985 026	5	1 02 ^k	0.019	0.10	0.00	32	74	0.005	0.035
NASSAU-SUFFOLK NY	2 609 212	5	ND	0.010	0.12	0.10	16	41	0.007	0.038
NEW BEDEORD MA	175 641	ND	ND		0 13	0 10	ND	ND	ND	ND
NEW HAVEN-MERIDEN CT	530 180	3	ND	0.026	0.15	0 11	20	76	0.007	0.027
NEW LONDON-NORWICH CT-RI	290 734	ND	ND	ND	0.13	0.10	17	36	IN	IN
NEW ORLEANS LA	1 285 270	3	0.08	0.022	0.12	0.09	27	60	0.005	0.023
NEW YORK NY	8 546 846	5	0.00	0.022	0.12	0.00	IN	46	0.000	0.045
NEWARK NJ	1 915 928	7	ND	0.041	0.12	0.10	33	40 67	0.010	0.023
NEWBURGH NY-PA	335 613	ND	0.20		0.12	0.10		ND		ND
	1 443 244	5	0.20 ND	0.017	0.12	0.00	10	50	0.007	0.022
	2 082 014	5	0.00	0.017	0.14	0.10	26	04	0.007	0.022
	104 833				0.14	0.03			0.000 ND	0.020 ND
	958 839	4		0.014	0.10	0.00		ND	0.004	0.009
OLYMPIA WA	161 238	5	ND		0.10	0.00	IN	35		0.003 ND
	639 580	a	0.81m	ND	0.00	0.00	43	131	0.001	0.003
ORANGE COUNTY CA	2 410 556	6	ND	0.035	0.00	0.00	37	73	0.001	0.005
ORIANDO FI	1 224 852	3	ND	0.000	0.11	0.00	26	49	0.002	0.003
OWENSBORD KY	87 189	1	ND	0.012	0.10	0.00	25	63	0.002	0.024
	126 004						IN	50		
PARKERSBURG-MARIETTA W//-OH	140,554				0.12	0 10	28	72	0.013	0.058
	344 406			IN	0.12	0.10	20	56	0.013	0.000
	330 172	5	0.02		0.11	0.08	23	52	0.004	0.020
	4 922 175	5	0.02 0.84 ⁿ	0.032	0.10	0.00	20	59*	0.007	0.034
	2 238 480	8	ND	0.002	0.12	0.09	60	219	0.010	0.004
PITTSBURGH PA	2 384 811	4	0.08	0.029	0.12	0.00	37	121	0.015	0.089
PITTSEIELD MA	88 695	ND	ND	ND	0.09	0.08	ND	ND	ND	ND
POCATELLO ID	66 026	ND	ND	IN	ND	ND	30	168	0.007	0.046
PONCE PR	3 442 660	ND	ND	ND	ND	ND	30	86	ND	
PORTLAND ME	221 095	ND	ND	ND	0 11	0.08	23	61	0.005	0.014
PORTLAND-VANCOUVER OR-WA	1 515 452	7	0.18	IN	0.09	0.07	16	63		ND
PORTSMOUTH-ROCHESTER NH-ME	223 271	ND.	ND	0.010	0.00	0.09	16	34	0.004	0.019
PROVIDENCE-FALL RIVER-WARWICK RI-MA	1 134 350	4	ND	0.024	0.12	0.09	29	61	0.007	0.026
PROVO-OREM LIT	263 590	6	ND	0.024	0.11	0.08	32	91	ND	ND
PUEBLO CO	123 051	ND	ND		ND	ND	IN	51	ND	ND
RACINE WI	175 034	3	ND	ND	0.11	0.09	ND	ND	ND	ND
RALEIGH-DURHAM-CHAPEL HILL NC	855 545	5	ND	ND	0 13	0.00	23	49	0.005	0.009
RAPID CITY SD	81 343	ND	ND	ND	ND	ND	28	108	ND	ND
READING PA	336 523	3	0.840	0 021	0 13	0 10		55*	0.008	0 027
REDDING CA	147 036			ND	0 11	0.09	IN	42	ND	ND
RENO NV	254 667	7	ND	IN	0 10	0.08	55	116	ND	ND
RICHLAND-KENNEWICK-PASCO, WA	150,033	ND	ND	ND	ND	ND	IN	86	ND	ND

		<u> </u>	Dh	NO	0	0	DM	DM	80	<u>60</u>
Metropolitan Statistical Area	1990	8-hr	QMax		0₃ 1-hr	0₃ 8-hr	Wtd AM	2nd Max	SO₂ AM	30 ₂ 24-hr
	Population	(ppm)	(µg/m³)	(ppm)	(ppm)	(ppm)	(µg/m³)	(µg/m³)	(ppm)	(ppm)
	865 640	n		0.02	0 12	0 10	10	26	0.005	0.017
	2 588 703	2	0.05	0.02	0.15	0.10	72	134	0.005	0.017
	2,300,793	4	0.05	0.039	0.10	0.15		64	0.002	0.009
DOCHESTED MN	224,477	4				0.09	IN	04	0.003 ND	0.010
POCHESTER NY	1 062 470	3			0.10	0.00				0.041
	1,002,470	3			0.10	0.09			0.007	0.041
	329,070	4 ND			0.09	0.00				
	1 240 010	ND 6		0.021	0.10	0.09	22	142	0.005	0.007
SACRAMENTO, CA	1,340,010	0	0.00		0.14		55 INI	145	0.004	0.012
	190,921							00		0.012
	03,003				0.42	0.40	111	99	0.003	0.013
SILLOUIS, MU-IL	1,030,302	4	0./ 3 ^P	0.027	0.13	0.10	44 ND		0.009	0.059
SALEW, UR	270,024	0			0.00	0.07				
SALTIAKE CITY OCDEN LIT	300,000	2		0.010	0.08	0.00	29	/0		ND 0.010
SALI LAKE CITT-OGDEN, UT	1,072,227	0	0.08	0.028	0.11	0.08	40	113	0.004	0.010
	1,324,749	4		0.025	0.11	0.09	ND	40		
SAN DIEGO, CA	2,498,016	5	0.00	0.026	0.11	0.09	52	112	0.003	0.016
SAN FRANCISCO, CA	1,603,678	5	0.00	0.021	0.10	0.06	20	69	0.002	0.006
SAN JUSE, CA	1,497,577	6	0.00	0.026	0.12	0.08	29	94	ND	ND 0.015
SAN JUAN-BAYAMON, PR	1,836,302	8	0.02	IN	80.0	0.05	38	84	0.003	0.015
SAN LUIS OBISPO-ATASCADERO-PASO ROBLE	217,162	3	ND	0.013	0.09	0.08	27	82	0.005	0.027
SAN IA BARBARA-SAN IA MARIA-LOMPOC, CA	369,608	4	0.00	0.022	0.10	80.0	29	54	0.002	0.003
SANTA CRUZ-WATSONVILLE, CA	229,734	1	ND	0.005	80.0	0.07	31	75	0.001	0.002
SANTA FE, NM	117,043	2	ND	ND	ND	ND	13	31	ND	ND
SANTA ROSA, CA	388,222	3	ND	0.014	0.10	0.08	18	64	ND	ND
SARASOTA-BRADENTON, FL	489,483	3	ND	0.007	0.11	0.09	24	42	0.004	0.017
SAVANNAH, GA	258,060	ND	ND	ND	0.11	0.08	27	59	0.003	0.018
SCRANTON—WILKES-BARRE—HAZLETON, PA	638,466	3	ND	0.015	0.12	0.10	ND	ND	0.007	0.023
SEATTLE-BELLEVUE-EVERETT, WA	2,033,156	6	0.05 ^q	0.019	0.09	0.07	16	50	IN	IN
SHARON, PA	121,003	ND	ND	ND	0.11	0.09	ND	ND	0.007	0.039
SHEBOYGAN, WI	103,877	ND	ND	ND	0.13	0.09	ND	ND	ND	ND
SHREVEPORT-BOSSIER CITY, LA	376,330	ND	ND	ND	0.11	0.09	IN	41	0.002	0.006
SIOUX CITY, IA-NE	115,018	ND	ND	ND	ND	ND	28	73	ND	ND
SIOUX FALLS, SD	139,236	ND	ND	ND	0.07	IN	22	44	ND	ND
SOUTH BEND, IN	247,052	ND	ND	IN	0.11	0.09	IN	49	ND	ND
SPOKANE, WA	361,364	6	ND	ND	0.07	0.07	26	86	ND	ND
SPRINGFIELD, IL	189,550	2	ND	ND	0.10	0.08	20	45	0.006	0.059
SPRINGFIELD, MO	264,346	3	ND	0.013	0.10	0.08	18	34	0.004	0.039
SPRINGFIELD, MA	587,884	6	ND	0.022	0.11	0.09	30	66	0.005	0.024
STAMFORD-NORWALK, CT	329,935	4	ND	ND	0.14	0.11	29	49	0.006	0.026
STATE COLLEGE, PA	123,786	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
STEUBENVILLE-WEIRTON, OH-WV	142,523	5	ND	ND	0.11	0.09	34	98	0.016	0.065
STOCKTON-LODI, CA	480,628	6	0.00	0.024	0.13	0.09	36	123	ND	ND
SYRACUSE, NY	742,177	3	ND	ND	0.10	0.09	ND	ND	0.002	0.015
TACOMA, WA	586,203	7	ND	ND	0.09	0.07	17	56	IN	IN
TALLAHASSEE, FL	233,598	ND	ND	ND	0.09	0.08	19	55	ND	ND
TAMPA-ST. PETERSBURG-CLEARWATER, FL	2,067,959	5	1.02 ^r	0.016	0.12	0.09	35	81	0.008	0.060
TERRE HAUTE, IN	147,585	ND	ND	ND	0.09	0.08	IN	IN	0.006	0.025
TEXARKANA, TX-TEXARKANA, AR	120,132	ND	ND	ND	ND	ND	ND	ND	IN	IN
TOLEDO, OH	614,128	3	0.26	ND	0.13	0.09	23	58	0.004	0.018
TOPEKA, KS	160,976	ND	ND	ND	ND	ND	25	74	ND	ND
TRENTON, NJ	325,824	ND	ND	0.017	0.15	0.11	21	48	ND	ND
TUSCON, AZ	666,880	4	ND	0.019	0.09	0.07	48	207	0.002	0.005

Metropolitan Statistical Area	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (μg/m³)	SO₂ AM (ppm)	SO₂ 24-hr (ppm)
TUI SA OK	708 954	4	ND	0 017	0 12	0.09	22*	65*	0 011	0.083
TUSCALOOSA, AL	150,522	ND.	ND	ND	ND	ND	28	61	ND	ND
TYLER. TX	151.309	ND	ND	0.007	0.12	0.10	ND	ND	ND	ND
JTICA-ROME NY	316 633	ND	ND	ND	0.09	0.08	IN	46	0.001	0 007
ALLEJO-FAIRFIELD-NAPA. CA	451,186	5	ND	0.014	0.12	0.09	20	62	0.002	0.006
/ENTURA. CA	669.016	3	0.00	0.022	0.13	0.10	31	63	0.002	0.005
/ICTORIA. TX	74.361	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
/INELAND-MILLVILLE-BRIDGETON, NJ	138,053	ND	ND	ND	0.12	0.10	ND	ND	0.003	0.012
/ISALIA-TULARE-PORTERVILLE, CA	311,921	4	ND	0.021	0.13	0.11	55	137	ND	ND
WASHINGTON, DC-MD-VA-WV	4,223,485	6	0.03	0.025	0.13	0.11	24	57	0.009	0.026
NATERBURY, CT	221,629	ND	0.01	ND	ND	ND	20	47	0.005	0.020
WATERLOO-CEDAR FALLS, IA	123,798	ND	ND	ND	ND	ND	IN	IN	ND	ND
NAUSAU, WI	115,400	ND	ND	ND	0.10	0.08	IN	64	0.003	0.040
WEST PALM BEACH-BOCA RATON, FL	863,518	3	0.00	0.013	0.10	0.08	20	33	0.002	0.013
WHEELING, WV-OH	159,301	3	ND	ND	0.10	0.09	26	69	0.015	0.060
NICHITA, KS	485,270	5	ND	ND	0.10	0.08	31	86	ND	ND
WILLIAMSPORT, PA	118,710	ND	ND	ND	0.09	0.08	ND	ND	0.005	0.021
WILMINGTON-NEWARK, DE-MD	513,293	3	ND	0.018	0.15	0.11	24*	49*	0.008	0.049
VILMINGTON, NC	171,269	4	ND	ND	0.08	0.07	IN	45	0.007	0.027
NORCESTER, MA-CT	478,384	3	ND	0.020	0.11	0.09	IN	65	0.004	0.013
/AKIMA, WA	188,823	5	ND	ND	ND	ND	25	82	ND	ND
YOLO, CA	141,092	1	ND	0.012	0.12	0.09	33	144	ND	ND
(ORK, PA	339,574	2	ND	0.019	0.12	0.09	ND	ND	0.007	0.019
YOUNGSTOWN-WARREN, OH	600,859	ND	ND	ND	0.11	0.10	26	135	0.008	0.029
YUBA CITY, CA	122,643	4	ND	0.014	0.11	0.08	38	156	ND	ND
YUMA, AZ	106,895	ND	ND	ND	0.09	0.08	ND	ND	ND	ND

Highest second maximum non-overlapping 8-hour concentration (Applicable NAAQS is 9 ppm) Highest quarterly maximum concentration (Applicable NAAQS is $1.5 \mu g/m^3$) со -

Pb _

Highest value of the second daily maximum concentration (Applicable NAAQS is 0.053 ppm) Highest second daily maximum 1-hour concentration (Applicable NAAQS is 0.12 ppm) Highest fourth daily maximum 8-hour concentration (Applicable NAAQS is 0.08 ppm) Highest weighted annual mean concentration (Applicable NAAQS is 0.09 ppm) Highest weighted annual mean concentration (Applicable NAAQS is 0.09 ppm)

 $\begin{array}{ccc} NO_2 & - \\ O_3 (1-hr) & - \\ O_3 (8-hr) & - \\ PM_{10} & - \end{array}$

Highest weighted aimoar mean concentration (Applicable NAAQS is 50 µg/m²) Highest second maximum 24-hour concentration (Applicable NAAQS is 150 µg/m³) Highest annual mean concentration (Applicable NAAQS is 0.03 ppm) Highest second maximum 24-hour concentration (Applicable NAAQS is 0.14 ppm) Indicates data not available _

_ SO₂

_

ND

_ IN Indicates insufficient data to calculate summary statistic

Wtd Weighted

AM Annual mean _

Units are micrograms per cubic meter Units are parts per million _

µg/m³ PPM

Table A-16. Metropolitan Statistical Area Air Quality Trends, 1990–1999

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994 1998	5 1990	6 1997	7 1998	1999
AKRON, OH												
CO	2nd max 8-hour	Down	1	5.7	3.3	4.1	3.1	5.3 3.3	3.4	3.2	2.6	2.5
O ₃	4th max 8-hour	NS	2	0.09	0.101	0.087	0.093	0.086 0.092	0.091	0.087	0.097	0.097
	2nd daily max 1-hour	NS	2	0.111	0.12	0.108	0.108	0.1 0.117	0.105	0.103	0.112	0.115
PM ₁₀	90th percentile	Down	1	49	51	44	49	51 48	35	39	39	39
	weighted annual mean	Down	1	25.9	28.4	27.1	25	27.6 26.1	24.7	23.8	23.8	23.8
SO ₂	arithmetic mean	Down	1	0.015	0.015	0.013	0.015	0.012 0.009	0.01	0.012	0.01	0.011
	2nd max 24-hour	NS	1	0.061	0.051	0.064	0.056	0.042 0.046	0.042	0.072	0.044	0.065
ALBANY-SCHE	NECIADY-IROY, NY	Davia	4	~ ~	F 4	4 7	~ ~	50 40	0.7	4 5		4.0
CO	2nd max 8-nour	Down	1	6.2	5.4	4.7	3.8	5.2 4.3	3.7	4.5	4.4	4.2
PD	Ath max 9 hour	Down	1	0.133	0.037	0.033	0.033	0.043 0.041	0.032	0.031	0.032	0.032
O_3	2nd daily may 1 hour	NO	3	0.004	0.004	0.000	0.001	0.077 0.079	0.074	0.079	0.075	0.000
DM	20th percentile	NS	5	36.4	35.6	33.6	34.2	10 31 8	28.8	0.097	0.090	36
r IVI ₁₀	weighted annual mean	NS	5	20.98	21.3	21 46	19 74	21 4 18 22	19.08	19 52	19 64	19 64
SO.	arithmetic mean	Down	1	0.006	0.007	0.006	0.006	0.006 0.005	0.005	0 004	0.003	0.003
002	2nd max 24-hour	Down	1	0.000	0.007	0.000	0.000	0.027 0.016	0.000	0.004	0.000	0.000
ALBUQUERQU	E. NM	20111	·	0.020	0.00	0.022	0.020	0.02. 0.010	0.021	0.0	0.0.0	0.0.0
CO	2nd max 8-hour	Down	6	5.967	5.433	5.017	5.117	4.933 4.983	4.333	3.7	3.667	4.067
NO ₂	arithmetic mean	NS	1	0.018	0.004	0.021	0.024	0.023 0.018	0.022	0.019	0.016	0.016
03	4th max 8-hour	NS	7	0.069	0.065	0.066	0.063	0.067 0.065	0.068	0.066	0.07	0.071
5	2nd daily max 1-hour	NS	7	0.088	0.084	0.086	0.081	0.083 0.083	0.084	0.082	0.086	0.09
PM_{10}	90th percentile	Down	8	38.875	37.125	33.75	35.5	35.5 39.375	37.5	32.625	32	31.75
	weighted annual mean	Down	8	23.95	22.488	22.788	23.45	22.25 23.75	23.925	20.788	20.575	20.538
ALEXANDRIA,	LA											
PM ₁₀	90th percentile	Down	1	38	37	40	36	38 37	27	32	32	32
	weighted annual mean	NS	1	22.8	21.9	24.7	21.3	23.2 21.4	18.6	23.2	23.2	23.2
ALLENTOWN-E	BETHLEHEM-EASTON, PA	_										
CO	2nd max 8-hour	Down	1	5.8	6.5	3.9	3.5	4.7 4.8	3.2	2.7	2.9	3.2
Pb	max quarterly mean	Down	1	0.4	0.461	0.283	0.181	0.131 0.074	0.083	0.093	0.12	0.071
NO ₂	arithmetic mean	NS	1	0.017	0.018	0.018	0.02	0.021 0.018	0.018	0.016	0.016	0.015
O_3	4th max 8-hour	NS	2	0.093	0.101	0.081	0.084	0.082 0.094	0.089	0.097	0.092	0.102
80	2nd daily max 1-hour	NS NS	2	0.11	0.119	0.096	0.107	0.105 0.109	0.107	0.116	0.109	0.12
50 ₂	2nd max 24 hour	NO	2	0.000	0.000	0.007	0.000	0.006 0.006	0.000	0.009	0.009	0.007
	2110 11182 24-11001	NO	2	0.037	0.037	0.052	0.029	0.047 0.027	0.020	0.029	0.052	0.054
CO	2nd max 8-hour	NS	1	17	17	28	2	24 17	19	15	12	16
NO.	arithmetic mean	Down	1	0.015	0.015	0 014	0.015	0.015 0.013	0.013	0.014	0.013	0.013
0.	4th max 8-hour	NS	1	0.010	0.010	0.014	0.010	0.092 0.091	0.083	0.014	0.010	0.010
03	2nd daily max 1-hour		1	0.097	0 106	0.095	0.000	0 106 0 112	0 101	0 114	0 114	0 111
SO ₂	arithmetic mean	Down	1	0.011	0.011	0.009	0.009	0.01 0.008	0.008	0.01	0.008	0.007
2	2nd max 24-hour	Down	1	0.062	0.044	0.046	0.052	0.058 0.037	0.033	0.046	0.032	0.03
ANCHORAGE,	AK											
PM ₁₀	90th percentile	Down	3	63.333	57.333	61.333	55.333	50.333 50.667	48	51.333	37.333	32.667
10	weighted annual mean	Down	3	30.933	29.633	31.267	27.567	26.6 26.033	24.8	24.5	20.067	21.2
ANNISTON, AL	-											
PM ₁₀	90th percentile	NS	1	46	46	37	38	40 40	27	42	41	41
	weighted annual mean	NS	1	28	29.2	24.6	25	23.7 22.8	18.7	23.1	26	26
ASHEVILLE, N	C											
O ₃	4th max 8-hour	up	1	0.073	0.063	0.064	0.066	0.069 0.076	0.074	0.075	0.09	0.084
	2nd daily max 1-hour	up	1	0.091	0.079	0.083	0.079	0.084 0.085	0.084	0.09	0.114	0.099
PINI ₁₀	90th percentile	NS	1	41	41	40	43	30 28	29	38	36	36
	weighted annual mean	Down	1	25.1	24	22.8	22.3	19 18.4	18.8	20.7	20.1	20.5
AILANIA, GA	2nd may 8 hour	Down	1	54	65	51	10	53 45	37	13	11	11
NO	2110 111dX 0-11001	DOWII	2	0.021	0.0	0.02	4.9	0.018 0.017	0.021	4.3	4.1	4.1
	Ath max 8-hour	NS	2	0.021	0.02	0.02	0.02	0.018 0.017	0.021	0.02	0.021	0.022
03	2nd daily max 1-hour	NS	3	0.107	0.033	0.031	0.112	0.033 0.112	0.100	0.102	0.117	0.12
PM.	90th percentile	NS	3	68 333	53 333	45 667	47	43 333 45 333	41	48 667	49 667	46
1 10 10	weighted annual mean	Down	3	38.9	32 067	28 067	28 567	26 867 28 267	26.8	27 967	28 067	26 833
SO-	arithmetic mean	Down	3	0.006	0.006	0.006	0.006	0.004 0.004	0 004	0.004	0.003	0.003
002	2nd max 24-hour	Down	3	0.025	0.029	0.026	0.032	0.022 0.018	0.019	0.021	0.016	0.000
ATLANTIC-CAP	PE MAY, NJ	20111	U U	0.020	0.020	0.020	0.002	0.011	0.0.0	0.02.	0.0.0	0.0.1
0,	4th max 8-hour	NS	1	0.109	0.111	0.094	0.093	0.083 0.1	0.095	0.106	0.091	0.095
5	2nd daily max 1-hour	NS	1	0.157	0.136	0.119	0.115	0.099 0.116	0.108	0.131	0.118	0.118
SO ₂	arithmetic mean	Down	1	0.004	0.004	0.003	0.003	0.003 0.003	0.003	0.003	0.003	0.003
-	2nd max 24-hour	NS	1	0.012	0.011	0.016	0.014	0.019 0.011	0.014	0.011	0.01	0.009
AUGUSTA-AIKI	EN, GA-SC											
Pb	max quarterly mean	Down	1	0.017	0.013	0.011	0.01	0.009 0.007	0.004	0.008	0.019	0.002
O ₃	4th max 8-hour	NS	3	0.085	0.072	0.074	0.084	0.08 0.079	0.083	0.084	0.096	0.087
	2nd daily max 1-hour	NS	3	0.103	0.095	0.09	0.101	0.093 0.1	0.099	0.105	0.116	0.106
PM_{10}	90th percentile	NS	1	36	35	32	35	35 29	29	31	38	35
~~	weighted annual mean	NS	1	22.2	22.7	21.9	22.1	21.3 18.7	18.7	21.4	22.4	21.1
SO_2	arithmetic mean	NS	1	0.002	0.002	0.002	0.002	0.002 0.002	0.002	0.002	0.002	0.002
	∠nu max 24-nour	Down	T	0.009	0.01	0.009	0.009	0.008 0.009	0.007	0.008	0.007	0.007

Table A-16. Metropolitan Statistical Area Air Quality Trends, 1990–1999 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	5 1996	1997	′ 1998	3 1999
AUSTIN-SAN M	ARCOS, TX												
O ₃	4th max 8-hour	NS	1	0.088	0.083	0.081	0.08	0.085	0.089	0.08	0.075	0.088	0.087
0	2nd daily max 1-hour	NS	1	0.11	0.1	0.099	0.091	0.102	0.105	0.098	0.089	0.115	0.102
BAKERSFIELD	, CA	_											
NO ₂	arithmetic mean	Down	4	0.017	0.017	0.016	0.015	0.015	0.013	0.013	0.013	0.013	0.014
O_3	4th max 8-hour	NS	5	0.103	0.105	0.099	0.105	0.104	0.109	0.113	0.096	0.114	0.105
DM	20th percentile	Down	5	0.13 80.25	0.13	0.122	0.120	47.25	0.13	0.130	0.110	0.134	0.122
F 1VI ₁₀	weighted annual mean	Down	4	47 15	53 775	38.4	33 188	30.1	32 825	28 4 25	27.9	25 175	29 925
BALTIMORE, M	D	Domi	•	11.10	00.110	00.1	00.100	00.1	02.020	20.120	21.0	20.170	20.020
CO	2nd max 8-hour	Down	3	7.1	6.367	5.5	5.433	5.833	4.667	3.633	4.6	4.133	4.567
Pb	max quarterly mean	Down	1	0.058	0.036	0.043	0.035	0.032	0.029	0.027	0.005	0.005	0.005
NO ₂	arithmetic mean	Down	1	0.034	0.033	0.031	0.033	0.032	0.026	0.027	0.026	0.026	0.024
O ₃	4th max 8-hour	NS	7	0.098	0.108	0.092	0.106	0.096	0.104	0.091	0.105	0.098	0.106
	2nd daily max 1-hour	NS	7	0.126	0.136	0.117	0.132	0.128	0.137	0.119	0.137	0.123	0.138
PM ₁₀	90th percentile	Down	5	51.8	57.6	47	50.6	53.4	47.8	43.4	46.4	47.8	45
00	weighted annual mean	Down	5	32.72	35.64	30.26	29.44	30.46	28.78	27.1	28.12	28.56	28.02
SO_2	arithmetic mean	Down	2	0.008	0.009	0.009	0.008	0.009	0.006	0.007	0.008	0.007	0.007
BANGOD ME	2110 max 24-nour	Down	2	0.05	0.05	0.027	0.020	0.05	0.022	0.020	0.025	0.021	0.02
DM	90th percentile	NS	1	33	11	32	34	35	32	27	33	34	24
1 10110	weighted annual mean	Down	1	20.5	25.1	21.9	22.2	21.9	20	18.8	21 1	17.5	167
BATON ROUGE	LA	Down	•	20.0	20.1	21.5	~~~~	21.5	20	10.0	21.1	17.0	10.7
Pb	max quarterly mean	NS	3	0.051	0.03	0.104	0.027	0.038	0.049	0.032	0.041	0.045	0.043
NO ₂	arithmetic mean	NS	2	0.01	0.01	0.01	0.01	0.011	0.01	0.01	0.01	0.01	0.01
03	4th max 8-hour	NS	3	0.107	0.093	0.084	0.08	0.082	0.093	0.088	0.086	0.091	0.093
	2nd daily max 1-hour	NS	3	0.154	0.132	0.107	0.111	0.115	0.123	0.114	0.119	0.127	0.115
PM ₁₀	90th percentile	NS	2	42.5	48.5	37	34.5	40.5	37.5	34.5	43.5	45.25	47
	weighted annual mean	NS	2	28.15	27.6	26.7	22.2	26.3	24.35	24.45	27.35	29.025	30.7
SO ₂	arithmetic mean	NS	1	0.005	0.009	0.008	0.006	0.008	0.006	0.006	0.006	0.007	0.006
	2nd max 24-hour	NS	1	0.022	0.036	0.033	0.021	0.025	0.034	0.024	0.027	0.036	0.019
BEAUMONI-PC	DRIARIHUR, IX	NO	0	0 000	0.04	0.044	0 000	0.04	0.04	0.04	0.04	0 000	0.04
	Ath max 8 hour	NS NS	2	0.009	0.01	0.011	0.009	0.01	0.01	0.01	0.01	0.008	0.01
O_3	2nd daily may 1 hour	NO	3	0.007	0.097	0.094	0.000	0.00	0.090	0.002	0.092	0.005	0.072
SO.	arithmetic mean	Down	2	0.12	0.13	0.15	0.115	0.113	0.134	0.005	0.137	0.005	0.099
00_2	2nd max 24-hour	Down	2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BELLINGHAM.	WA	Domi	-	0.012	0.000	0.011	0.011	0.000	0.020	0.011	0.007	0.000	0.002
0 ₃	4th max 8-hour	NS	1	0.061	0.058	0.056	0.058	0.059	0.054	0.062	0.052	0.056	0.05
5	2nd daily max 1-hour	Down	1	0.082	0.073	0.069	0.08	0.082	0.079	0.078	0.07	0.07	0.062
SO ₂	arithmetic mean	NS	1	0.007	0.006	0.007	0.006	0.007	0.006	0.005	0.005	0.005	0.007
	2nd max 24-hour	Down	1	0.028	0.021	0.022	0.017	0.019	0.018	0.013	0.012	0.015	0.016
BERGEN-PASS	AIC, NJ	_											
CO	2nd max 8-hour	Down	2	6.8	6.6	4.45	5.15	6.15	4.9	3.75	4.85	3.7	4.1
NO ₂	arithmetic mean	Down	1	0.031	0.031	0.03	0.029	0.031	0.029	0.028	0.028	0.028	0.028
O_3	4th max 8-hour	NS	1	0.096	0.1	0.075	0.082	0.088	0.104	0.083	0.096	0.096	0.096
DM	20th perceptile	NS Down	1	0.129	0.137	0.104	0.111	0.114	40.222	47 667	10 022	0.12	0.12
F IVI ₁₀	weighted annual mean	Down	3	36 033	30 333	32 967	31 167	35 167	49.333	30 533	+0.000	28.5	26.0
SO.	arithmetic mean	Down	2	0.00	0.01	0 009	0.008	0.007	0.005	0.006	0.005	0.005	0.005
00_2	2nd max 24-hour	Down	2	0.041	0.035	0.000	0.000	0.007	0.000	0.000	0.000	0.000	0.000
BILLINGS. MT		20111	-	0.0	0.000	0.01	0.020	0.001	0.02.	0.011	0.02.	0.02.	0.011
SO ₂	arithmetic mean	Down	4	0.016	0.016	0.02	0.021	0.015	0.013	0.009	0.007	0.006	0.005
2	2nd max 24-hour	Down	4	0.066	0.069	0.081	0.104	0.066	0.059	0.056	0.032	0.025	0.022
BILOXI-GULFP	ORT-PASCAGOULA, MS												
O ₃	4th max 8-hour	NS	1	0.079	0.079	0.087	0.076	0.093	0.087	0.076	0.078	0.089	0.091
	2nd daily max 1-hour	NS	1	0.115	0.115	0.108	0.098	0.117	0.111	0.104	0.092	0.108	0.107
SO_2	arithmetic mean	Down	1	0.007	0.006	0.006	0.004	0.003	0.003	0.003	0.002	0.003	0.003
	2nd max 24-hour	NS	1	0.037	0.034	0.02	0.029	0.022	0.024	0.043	0.025	0.022	0.024
BIRMINGHAM,		D	2	~ ~	-	7 45	7.0	~ -	6 55		~		4
0		Down	2	0.000	0.075	1.45	1.3	6./	0.55	5.3	0 000	4.4	4.55
O_3	401 Max 0-MOUL	NO NO	0	0.093	0.075	0.083	0.082	0.077	0.090	0.093	0.083	0.097	0.09
DM	2nu dally max 1-nour	NS Down	5	0.119	0.1	0.108	0.11 42 0	0.097	0.125 11 0	0.120 20 0	47.0	0.121	0.121
F 1VI ₁₀	weighted annual mean	Down	5	34 64	31.89	-+0.2 28 79	43.2 27 31	25.24	26 / 9	24 62	26.1	40.4 27 34	24 82
SO	arithmetic mean	NS	1	0 008	0 007	0 007	0 009	0 007	0 006	0 004	0.006	0 007	0 007
002	2nd max 24-hour	NS	1	0.025	0.02	0.027	0.05	0.037	0.016	0.015	0.018	0.032	0.026
BOISE CITY. ID			•	0.020	0.01	0.021	0.00	0.007	0.010	0.010	2.310	0.002	0.020
PM ₁₀	90th percentile	Down	4	53.5	68	55.75	62	59.5	50	48.5	44.75	39.75	48.25
	weighted annual mean	Down	4	29.275	33.675	33.2	35.45	34.025	29.65	28.175	28.025	22.65	26.05

Table A-16. Metropolitan Statistical Area Air Quality Trends, 1990–1999 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	8 1999
BOSTON. MA-	NH												
CO	2nd max 8-hour	Down	4	5.6	4.05	4.725	3.95	4.85	3.55	3.6	3.775	2.875	3.425
NO ₂	arithmetic mean	Down	3	0.029	0.031	0.029	0.03	0.03	0.027	0.028	0.026	0.027	0.026
03	4th max 8-hour	NS	4	0.08	0.093	0.088	0.085	0.084	0.086	0.073	0.082	0.085	0.083
5	2nd daily max 1-hour	NS	4	0.101	0.126	0.109	0.113	0.109	0.108	0.092	0.102	0.101	0.102
PM ₁₀	90th percentile	NS	8	41.375	40	36.125	36	39.25	35.125	40.25	34.75	41.875	38.375
10	weighted annual mean	NS	8	25.913	24.775	22.775	22.325	23.05	21.938	23.625	22.013	24.413	24.2
SO ₂	arithmetic mean	Down	10	0.009	0.009	0.009	0.009	0.008	0.006	0.006	0.006	0.006	0.006
	2nd max 24-hour	Down	10	0.038	0.03	0.037	0.031	0.032	0.024	0.025	0.03	0.023	0.025
BOULDER-LON	NGMONT, CO												
CO	2nd max 8-hour	Down	2	5.7	5.7	5.85	5.25	4.45	4.2	4	4.35	3.4	2.9
O ₃	4th max 8-hour	NS	1	0.074	0.077	0.07	0.073	0.071	0.072	0.072	0.071	0.08	0.08
	2nd daily max 1-hour	NS	1	0.096	0.102	0.092	0.096	0.091	0.095	0.092	0.092	0.1	0.1
PM_{10}	90th percentile	Down	2	39	43.5	34.5	43.5	28.5	27	27	24	26	26.5
	weighted annual mean	Down	2	22.9	23.2	22.6	24.25	18.95	16.2	17.2	16.6	16.9	18.15
BRAZORIA, TX													
O ₃	4th max 8-hour	NS	1	0.1	0.091	0.097	0.092	0.085	0.113	0.079	0.085	0.09	0.112
	2nd daily max 1-hour	NS	1	0.15	0.13	0.129	0.132	0.112	0.148	0.11	0.137	0.111	0.161
BREMERTON,	WA	_											
PM_{10}	90th percentile	Down	1	41	41	41	47	36	33	24	27	21	23
	weighted annual mean	Down	1	22.6	22.6	22.6	23.4	19.7	20.6	16.9	17.3	12.9	15
BRIDGEPORT,	СТ	_		_									
CO	2nd max 8-hour	Down	1	5	5.5	4.7	3.7	5.8	4.9	3	4	2.8	3.2
NO ₂	arithmetic mean	Down	1	0.026	0.025	0.024	0.024	0.026	0.024	0.024	0.023	0.023	0.023
O_3	4th max 8-hour	NS	2	0.098	0.108	0.084	0.098	0.088	0.101	0.088	0.096	0.093	0.093
	2nd daily max 1-hour	NS	2	0.145	0.147	0.119	0.157	0.152	0.131	0.114	0.132	0.132	0.135
PM_{10}	90th percentile	Down	1	41	49	37	43	44	37	32	34	33	30
00	weighted annual mean	Down	1	25.2	27.7	22.4	20.8	25.7	21.8	20.6	21.4	20.8	19.4
SO_2	arithmetic mean	Down	1	0.013	0.012	0.011	0.01	0.01	0.007	0.006	0.007	0.007	0.006
BBOM	2nd max 24-nour	Down	1	0.05	0.044	0.04	0.035	0.049	0.028	0.023	0.031	0.024	0.023
BROWNSVILLI	E-HARLINGEN-SAN BENITO, I	X	4	20	20	20	45	20	25	00	20	20	20
PIVI ₁₀	90th percentile	NS	1	30	30	30	45	30	35	28	30	30	30
		Down	1	21.7	23.9	23.7	22.4	22.5	21.4	18.9	20.6	20.6	20.6
BUFFALU-NIA	JARA FALLS, NY	Dawa	2	2 267	2.4	4 600	2 422	2.0	0 567	2 0 2 2	0 467	0 467	1 0 2 2
		DOWI	3	3.307	0.021	4.033	3.433	0.046	2.007	2.933	2.107	2.107	1.000
PD	niax quarterly mean	NO	1	0.029	0.031	0.034	0.047	0.040	0.033	0.034	0.042	0.030	0.030
	Ath may 9 hour	NO	2	0.02	0.010	0.010	0.017	0.019	0.019	0.019	0.010	0.017	0.019
O_3	4 III IIIdX 0-IIUUI	NO	2	0.069	0.094	0.00	0.077	0.002	0.000	0.077	0.077	0.092	0.009
	20th perceptile	NO	2	0.100	0.100	0.109	0.009	0.092	0.103	0.095	0.091	0.100	0.101
PIVI ₁₀	90th percentile	NO	11	30.304	24 045	21 226	34.343	10 661	34.304 10 261	10 127	10 7	10 045	10 045
80	arithmetic mean	NO Down	1	19.391	24.040	21.230	19.145	10.004	0.004	19.127	10.7	19.045	19.045
302	2nd max 24 hour	Down	4	0.011	0.012	0.011	0.01	0.01	0.008	0.007	0.007	0.007	0.007
		Down	4	0.054	0.002	0.056	0.042	0.039	0.04	0.035	0.041	0.029	0.03
CO	2nd max 8-bour	Down	1	4.6	3.8	30	30	30	25	33	2	21	15
NO	arithmetic mean	NS	1	0.018	0.017	0.016	0.017	0.017	0.017	0.017	0.017	0.018	0.017
PM.	90th percentile	Down	2	37.5	36.5	38.5	36	34.5	34.5	29	29.5	29.5	29.5
1 10110	weighted annual mean	Down	2	24 25	23.2	22.7	20.5	21.1	20.1	203	20.05	20.6	20.6
SO.	arithmetic mean	Down	1	0.008	0 008	0 003	0.003	0.003	0.002	0 002	0 002	0.002	0.002
002	2nd max 24-hour	Down	1	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.002	0.002	0.002
CANTON-MASS	SILLON, OH	Domi		0.021	0.0LL	0.010	0.011	0.010	0.000	0.011	0.012	0.000	0.000
0.	4th max 8-hour	NS	4	0.086	0 089	0 081	0 091	0 084	0 091	0.086	0.083	0 096	0.09
03	2nd daily max 1-hour	NS	4	0.103	0.106	0.094	0.105	0.097	0.11	0.096	0.097	0.113	0.104
PM ₁₀	90th percentile	Down	2	52	50	45	45	50	51.5	35.5	44	43	36
10	weighted annual mean	Down	2	29.55	31.2	27.65	26.25	28.45	28.75	25	25.6	25.05	23.45
SO ₂	arithmetic mean	Down	1	0.011	0.01	0.01	0.01	0.009	0.006	0.006	0.007	0.007	0.007
2	2nd max 24-hour	Down	1	0.036	0.037	0.04	0.046	0.052	0.033	0.032	0.025	0.029	0.028
CASPER. WY													
PM ₁₀	90th percentile	Down	1	38	38	38	27	34	32	33	29	31	29
10	weighted annual mean	NS	1	21.3	21.3	21.3	17.7	17.3	19.4	19.1	15.7	17.2	19.7
CEDAR RAPID	S. IA												
CO	2nd max 8-hour	NS	1	3.5	4.1	4.9	3.2	4.2	2.6	7.8	2.4	2.5	2
03	4th max 8-hour	NS	1	0.054	0.065	0.071	0.058	0.063	0.065	0.061	0.06	0.059	0.059
- 3	2nd daily max 1-hour	NS	1	0.065	0.081	0.081	0.067	0.07	0.075	0.073	0.071	0.068	0.068
PM ₁₀	90th percentile	NS	2	41.5	43.5	43.5	34	34	39	36	40.5	39.5	30.5
10	weighted annual mean	NS	2	27.3	28.45	26.1	21.55	22.8	23.55	23.55	24.25	25.35	22.2
SO ₂	arithmetic mean	NS	2	0.004	0.004	0.005	0.003	0.003	0.003	0.002	0.003	0.003	0.003
2	2nd max 24-hour	Down	2	0.031	0.025	0.024	0.017	0.016	0.013	0.011	0.012	0.01	0.016

Table A-16. Metropolitan Statistical Area Air Quality Trends, 1990–1999 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
CHAMPAIGN-U	RBANA II												
0.	4th max 8-hour	un	1	0 076	0 072	0 071	0 066	0.083	0 084	0 085	0 076	0.083	0 094
03	2nd daily max 1-hour	up	1	0.070	0.072	0.085	0.000	0.000	0.004	0.000	0.070	0.000	0.004
PM.	90th percentile	Down	1	46	47	47	41	0.004 44	0.000 44	31	35	30	35
1 10 10	weighted annual mean	NS	1	28.2	30 4	31.4	22	24 9	223	19.2	22 5	24 3	22 7
SO.	arithmetic mean	Down	1	0 004	0.005	0 004	0 004	0 004	0 003	0.003	0 004	0.003	0 002
002	2nd max 24-hour	NS	1	0.03	0.038	0.018	0.015	0.024	0.011	0.013	0.018	0.019	0.001
CHARLESTON	NORTH CHARLESTON SC	NO		0.00	0.000	0.010	0.010	0.024	0.011	0.010	0.010	0.010	0.01
CO	2nd max 8-hour	NS	1	47	49	52	5.8	4	64	47	3 9	29	4
Ph	max quarterly mean	NS	1	0.039	0.039	0.01	0 007	0.012	0.01	0.01	0 011	0 026	0.008
NO.	arithmetic mean	Down	2	0.008	0.008	0.008	0.008	0.007	0.007	0 007	0.007	0.007	0.007
0.	4th max 8-hour	un	3	0.071	0.068	0.071	0.075	0.073	0.071	0.074	0.072	0.08	0.082
03	2nd daily max 1-hour	NS	3 3	0.089	0.085	0.09	0.01	0.088	0.089	0.097	0.089	0.097	0.099
PM.	90th percentile	Down	4	44	40	35.5	35 75	33.5	29	29.5	29 25	36 75	30
1 10110	weighted annual mean	Down	4	20 175	18.5	17 05	16 1	15.35	13 875	14.2	14 375	15 4 25	14 25
SO.	arithmetic mean	Down	2	0.002	0.003	0.003	0 002	0.002	0.002	0 002	0.002	0.002	0.002
002	2nd max 24-hour	Down	2	0.016	0.017	0.021	0.014	0.021	0.012	0.014	0.014	0.01	0.009
CHARLESTON	WV	Down	-	0.010	0.017	0.021	0.011	0.021	0.012	0.011	0.011	0.01	0.000
CO	2nd max 8-hour	Down	1	28	3 05	33	22	35	24	23	19	2	2
Ph	max quarterly mean	Down	3	0.035	0.022	0.027	0.018	0.026	0.02	0 016	0.01	0.01	0.01
0.	4th max 8-hour	NS	1	0.000	0.022	0.055	0.063	0.025	0.001	0.078	0.075	0.001	0 104
03	2nd daily max 1-hour	NS	1	0.073	0.00	0.000	0.000	0.070	0.001	0.070	0.070	0.001	0.104
PM.	90th percentile	Down	1	58	47	44	52	0.000 49	40	۵.104 1	32	35	37
1 10 10	weighted annual mean	Down	1	36	20.3	27.6	20.2	28.1	26	24	21 1	21 /	21 0
50	arithmetic mean	NS	2	0.012	0 000	0.000	0 000	0.01	0.007	0 008	0 000	0 000	0 000
002	2nd max 21-hour	NS	2	0.012	0.003	0.003	0.003	0.01	0.007	0.000	0.003	0.003	0.003
CHARLOTTE-G		NO	2	0.000	0.000	0.052	0.004	0.007	0.025	0.001	0.001	0.001	0.000
	2nd max 8-hour	Down	5	7.06	63	6	5 56	5 78	4 68	1 36	1 81	12	3 82
Ph	max quarterly mean	NS	1	0.038	0.014	0.077	0.015	0.70	0.012	0 0 0 0	0.007	0 021	0.02
NO.	arithmetic mean	NS	1	0.000	0.014	0.016	0.017	0.002	0.012	0.000	0.007	0.021	0.018
	4th max 8-hour		3	0.095	0.010	0.010	0.017	0.010	0.010	0.010	0.010	0.0105	0.010
03	2nd daily max 1-hour	NS	3	0.000	0.001	0.000	0.007	0.000	0.002	0.000	0 117	0.100	0.102
PM.	90th percentile	NS	4	47 75	47.5	46	41	42	40	41 5	41 75	47	42 25
1 10110	weighted annual mean	Down	4	31.3	29 875	29 375	27.35	27 875	26 4 25	28 225	27.4	28 125	26 775
CHARLOTTES		Down		01.0	20.010	20.010	21.00	21.010	20.120	LO.LLO	2	20.120	20.770
PM	90th percentile	NS	1	44	47	32	40	33	41	35	36	33	32
1 10110	weighted annual mean	Down	1	26.9	28.4	216	237	21.5	22.5	21.3	20.9	22 7	199
CHATTANOOG		Domi	•	20.0	20.1	21.0	20.7	21.0	22.0	21.0	20.0	,	10.0
0.	4th max 8-hour	NS	2	0 092	0.08	0 079	0.088	0 088	0.09	0 088	0.088	0.1	0.096
03	2nd daily max 1-hour	NS	2	0 116	0.098	0.094	0 104	0.114	0 108	0.113	0.000	0 129	0 117
PM.	90th percentile	Down	2	61	63	51.5	51.5	50.5	49	52.5	45	45	42.5
1 10110	weighted annual mean	Down	2	37 85	37 65	34 45	31 75	32.7	32 05	32.3	27 2	27 95	27 85
CHEYENNE, W	Y	20111	-	01.00	01.00	00	• … •	•=	02.00	02.0			20.00
PM.	90th percentile	Down	1	30	30	25	24	28	26	25	20	22	23
1 10110	weighted annual mean	Down	1	194	194	16.6	15.5	17.8	14.6	15 1	12 9	13.9	14 9
CHICAGO II	weighted annual mean	Domi	•	10.1	10.1	10.0	10.0	11.0	11.0	10.1	12.0	10.0	11.0
CO	2nd max 8-hour	Down	6	4 817	4 183	4 533	4 85	6 283	3 633	3 383	3 4 5	3 55	3 4 1 7
Ph	max quarterly mean	Down	q	0.072	0.056	0.065	0.063	0.200	0.000	0.000	0.40	0.00	0.417
NO.	arithmetic mean	NS	5	0.072	0.000	0.000	0.000	0.004	0.004	0.044	0.04	0.07	0.004
	4th max 8-hour	NS	17	0.022	0.022	0.025	0.020	0.020	0.020	0.020	0.020	0.027	0.027
03	2nd daily max 1-hour	NS	17	0.071	0.004	0.070	0.000	0.070	0.000	0.070	0.070	0.074	0.000
PM.	90th percentile	NS	13	60 154	50 538	53 538	50 846	56 231	55 308	45 077	45 769	50 308	51 615
1 10 10	weighted annual mean	NS	13	35.1	32 777	32 577	31 238	35 123	32 315	29.6	29 631	32 554	32 077
SO.	arithmetic mean	Down	9	0.007	0 009	0.006	0.006	0.006	0.005	0.005	0.005	0.005	0.006
002	2nd max 21-hour	NS	å	0.007	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.000
CHICO-PARAD	ISE CA	NO	0	0.000	0.042	0.020	0.002	0.000	0.024	0.022	0.024	0.020	0.027
CO	2nd max 8-hour	NS	1	3 9	56	46	39	41	35	34	35	3.8	4
NO.	arithmetic mean	NS	1	0.015	0.016	0.016	0.016	0.015	0.014	0.13	0.013	0.013	0.015
	Ath max 8-hour	NS	1	0.078	0.010	0.010	0.076	0.010	0.076	0.010	0.066	0.010	0.010
O_3	2nd daily max 1-hour	NS	1	0.070	0.073	0.077	0.070	0.002	0.070	0.074	0.000	0.070	0.007
DM	20th percentile	Down	1	67	67	67	60.0	0.037	52	10.030	10.07	37	50
1 10 10	weighted annual mean	NS	1	22	29	28	27.2	22.2	26.2	25	25.0	22 2	28.6
		110	I	20	20	20	21.2	55.5	20.5	20	20.9	22.3	20.0
CO	2nd may 8 hour	Down	2	1 000	10	1 167	1 667	1 267	o ∧	2 022	2 722	3 167	2 622
NO	arithmetic mean	DOMI	3	4.200	4.2	4.40/	4.00/	4.20/	0.024	2.900	2.100	0.000	2.000
	Ath may 8 hour		2	0.022	0.022	0.021	0.022	0.022	0.021	0.022	0.023	0.022	0.019
O_3	and doily may 1 hour	NO NC	0	0.000	0.092	0.074	0.001	0.091	0.093	0.008	0.000	0.000	0.009
DM	2nu dally max 1-nour	INS Dours	0	0.107	57 4 40	0.09	0.102	0.112	0.114	0.107	10.000	0.114	0.100
F IVI ₁₀	weighted appual mean	Down	<i>i</i> 7	26 042	32 000	30 1 20	30 E 42	20.714	24.429	42.429	70 00C	40.00/ 20 226	76 671
80	weighten annual mean	Down	1	30.043	32.080	0.014	0.043	30.4	0.000	21.914	20.000	20.230	20.0/1
50 ₂	anumence mean	Down	4	0.012	0.012	0.011	0.011	0.009	0.000	0.009	0.009	0.009	0.000
	2110 111dX 24-11001	DOMU	4	0.054	0.044	0.045	0.044	0.044	0.025	0.035	0.037	0.038	0.033

Table A-16. Metropolitan Statistical Area Air Quality Trends, 1990–1999 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	3 1999
SO ₂	arithmetic mean	NS	1	0.007	0.006	0.009	0.01	0.007	0.006	0.006	0.005	0.006	0.005
2	2nd max 24-hour	Down	1	0.038	0.029	0.036	0.058	0.037	0.019	0.023	0.026	0.02	0.016
CLEVELAND-L	ORAIN-ELYRIA, OH												
co	2nd max 8-hour	NS	3	5.3	5.433	5.5	4.267	6.767	6.033	5.867	4.667	4.5	3.567
0 ₃	4th max 8-hour	NS	6	0.084	0.09	0.083	0.088	0.085	0.09	0.088	0.085	0.093	0.089
PM.	90th percentile	NS	10	0.105	57.3	48.2	50.9	0.105	53.4	44 5	46	0.113	0.109 40.1
1 10110	weighted annual mean	NS	10	32 09	33 17	29 25	27 97	32 31	31.09	29 24	28 72	30.04	28.52
SO	arithmetic mean	Down	8	0.01	0.01	0.009	0.009	0.008	0.006	0.007	0.006	0.006	0.006
2	2nd max 24-hour	NS	8	0.041	0.04	0.039	0.041	0.043	0.025	0.03	0.03	0.027	0.031
COLORADO SI	PRINGS, CO												
CO	2nd max 8-hour	Down	4	5.2	4.825	4.4	4.1	3.625	4.05	3.625	3.8	3.125	3.425
Pb	max quarterly mean	Down	1	0.027	0.026	0.016	0.015	0.016	0.012	0.007	0.007	0.012	0.01
NO ₂	arithmetic mean	NS	3	0.016	0.016	0.016	0.015	0.017	0.017	0.016	0.015	0.015	0.014
O_3	4th max 8-hour	Down	1	0.06	0.065	0.059	0.055	0.055	0.056	0.059	0.054	0.054	0.054
РM	20th percentile	Down	9	34 667	30 111	0.000	36 222	0.000	0.07	30 880	28 222	0.003	0.003
1 10110	weighted annual mean	Down	9	22 056	24 322	21 722	22 056	20 678	19	19 211	18 022	19 322	18 022
SO ₂	arithmetic mean	NS	3	0.003	0.003	0.004	0.003	0.004	0.004	0.003	0.003	0.003	0.003
2	2nd max 24-hour	NS	3	0.011	0.011	0.013	0.011	0.018	0.015	0.01	0.007	0.009	0.014
COLUMBIA, SO													
CO	2nd max 8-hour	Down	1	5.8	6	6.3	5.6	4.7	4	3.4	2.9	3.7	3.7
Pb	max quarterly mean	Down	3	0.034	0.043	0.031	0.017	0.015	0.011	0.01	0.009	0.011	0.009
NO ₂	arithmetic mean	NS	1	0.013	0.009	0.011	0.013	0.011	0.013	0.013	0.011	0.014	0.014
O_3	4th max 8-hour	NS	3	0.092	0.071	0.075	0.082	0.077	0.079	0.077	0.078	0.091	0.089
DM	20th percentile	Down	3	57 1/3	55 571	51 286	50 571	16 786	13 286	12 714	16 1/3	52 / 20	18 71/
F 1VI ₁₀	weighted annual mean	Down	7	21 571	19 157	20 071	18 7	17.5	14 014	15 829	16 343	17 286	16 171
SO ₂	arithmetic mean	NS	4	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.003
2	2nd max 24-hour	NS	4	0.012	0.013	0.013	0.011	0.011	0.008	0.013	0.012	0.011	0.011
COLUMBUS, G	A-AL												
O ₃	4th max 8-hour	up	2	0.073	0.07	0.079	0.077	0.076	0.085	0.082	0.081	0.09	0.093
	2nd daily max 1-hour	up	2	0.099	0.093	0.095	0.096	0.101	0.106	0.094	0.096	0.111	0.109
PM_{10}	90th percentile	NS	1	46	40	43	37	44	44	33	39	45	40
	weighted annual mean	NS	1	28.0	26.9	25.8	25.4	20.5	28.2	22.2	20.4	30.1	20.5
	2nd max 8-bour	Down	з	4 133	4 767	4 933	3 933	4 467	3 833	2 467	2 4 3 3	3	2 367
0.	4th max 8-hour	NS	3	0.087	0.095	0.079	0.084	0.087	0.089	0.09	0.087	0 095	0.094
•3	2nd daily max 1-hour	NS	3	0.112	0.114	0.093	0.1	0.102	0.11	0.107	0.101	0.111	0.111
PM ₁₀	90th percentile	NS	2	57.5	52.5	43.5	48	46.5	51.5	36	52	51	48.5
	weighted annual mean	NS	2	30.7	29.65	26.15	26.65	26.65	29.15	24.45	27.35	30.25	27.9
SO ₂	arithmetic mean	Down	1	0.008	0.007	0.006	0.007	0.007	0.004	0.004	0.004	0.005	0.004
	2nd max 24-hour	Down	1	0.038	0.033	0.03	0.034	0.041	0.019	0.021	0.025	0.019	0.015
CORPUS CHRI	SII, IX	NO	2	0.001	0 072	0.070	0.001	0.070	0.000	0.00	0.074	0.070	0.005
O_3	2nd daily may 1-bour		2	0.001	0.073	0.079	0.001	0.079	0.009	0.00	0.074	0.079	0.065
PM.	90th percentile	NS	1	43	45	41	51	48	47	37	50	50	50
1 10110	weighted annual mean	NS	1	29.8	32.9	29.9	30.6	31.3	31.1	25.1	30.5	30.5	30.5
SO ₂	arithmetic mean	NS	2	0.002	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002
2	2nd max 24-hour	NS	2	0.013	0.027	0.018	0.024	0.012	0.016	0.013	0.012	0.017	0.01
CUMBERLAND), MD-WV												
SO ₂	arithmetic mean	NS	1	0.01	0.009	0.006	0.008	0.01	0.005	0.003	0.006	0.006	0.006
DALLAG TY	2nd max 24-hour	NS	1	0.031	0.028	0.024	0.027	0.037	0.015	0.019	0.02	0.02	0.02
DALLAS, IX	and may 9 hour	NC	1	47	20	56	5 4	5.2	5.0	5 5	27	27	27
Ph	max quarterly mean	Down	0 0	0 215	0.163	0 178	0 187	0.11/	0 1 20	0.0	0.07	0.075	0.086
NO ₂	arithmetic mean	un	1	0.012	0.100	0.015	0.014	0.016	0.019	0.019	0.018	0.016	0.000
0,	4th max 8-hour	NS	3	0.095	0.071	0.089	0.096	0.092	0.109	0.094	0.093	0.094	0.102
- 3	2nd daily max 1-hour	NS	3	0.137	0.11	0.124	0.129	0.118	0.137	0.115	0.124	0.114	0.13
PM ₁₀	90th percentile	NS	5	43.2	39.4	39.8	41	41.2	48.8	49.4	41.4	41.4	41.4
	weighted annual mean	NS	5	27.88	26.12	26.26	26.88	26.24	30.3	30.12	26.3	26.3	26.3
DANBURY, CT				• • • • •									
0 ₃	4th max 8-hour	NS	1	0.105	0.101	0.082	0.096	0.093	0.093	0.081	0.105	0.092	0.106
DM	2nu ually max 1-nour	NS Down	1	0.149	0.136	0.121	0.14	0.125	0.134	0.11	0.138	0.115	0.151
F 1VI ₁₀	weighted annual mean	Down	1	00 22 1	25.6	20 <u>/</u>	40 18 0	26	34 22	21.6	21 3	20.2	20.2
SO	arithmetic mean	Down	1	0.007	0.008	0.007	0.006	0.006	0.004	0.005	0.005	0.004	0.004
2	2nd max 24-hour	Down	1	0.033	0.032	0.027	0.024	0.037	0.02	0.02	0.024	0.02	0.024

Table A-16. Metropolitan Statistical Area Air Quality Trends, 1990–1999 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	8 1994	1995	1996	1997	1998	1999
DAVENPORT-M	OLINE-ROCK ISLAND, IA-IL												
Pb	max quarterly mean	NS	1	0.031	0.013	0.019	0.016	0.015	0.013	0.019	0.015	0.014	0.014
O ₃	4th max 8-hour	NS	2	0.067	0.08	0.076	0.067	0.073	0.077	0.076	0.069	0.072	0.076
DM	2nd daily max 1-hour	NS	2	0.084	0.092	0.096	0.082	0.087	0.093	0.086	0.084	0.092	0.093
PM ₁₀	90th percentile	NS	5	59.4	55.4	59.8	50.6	59.333 0	03.867	58.2	57.2	58	58.6
SO.	arithmetic mean	Down	3	0.005	0 004	0 004	0 004	0 004	0 004	0.003	0.003	0.003	0.003
002	2nd max 24-hour	Down	3	0.022	0.02	0.019	0.018	0.023	0.004	0.016	0.015	0.013	0.012
DAYTON-SPRIM	IGFIELD, OH	20111	Ũ	0.011	0.02	0.0.0	0.0.0	0.020	0.0.1	0.0.0	0.0.0	0.0.0	0.0.2
CO	2nd max 8-hour	Down	2	3.2	3.45	3.6	3.55	3.35	2.95	2.35	2.95	2.8	2.25
O ₃	4th max 8-hour	NS	3	0.091	0.094	0.077	0.087	0.091	0.091	0.097	0.089	0.096	0.093
5.4	2nd daily max 1-hour	NS	3	0.114	0.111	0.097	0.109	0.114	0.116	0.113	0.107	0.117	0.116
PM_{10}	90th percentile	NS	3	47.667	43.333	41	45.667	39.667 4	13.667	38	41	42.333	43
50	arithmetic mean	Down	3	20.033	28.2	25.233	24.0	24.433	25.033	22.733	24	24.033	23.8
302	2nd max 24-bour	NS	2	0.000	0.003	0.003	0.000	0.000	0.004	0.003	0.003	0.005	0.003
DAYTONA BEA	CH. FL	NO	2	0.020	0.022	0.02	0.002	0.002	0.010	0.027	0.027	0.010	0.010
O ₃	4th max 8-hour	NS	2	0.073	0.073	0.073	0.074	0.072	0.068	0.066	0.072	0.079	0.075
Ū	2nd daily max 1-hour	NS	2	0.082	0.082	0.082	0.094	0.084	0.083	0.079	0.086	0.094	0.087
PM ₁₀	90th percentile	NS	1	29	29	29	32	28	34	28	28	30	26
	weighted annual mean	NS	1	19.2	19.2	19.2	19.6	20.2	20.9	20.2	19.3	20	18.6
DECATUR, AL	Ath may 9 hour		1	0.060	0.060	0.060	0.00	0.077	0 002	0.006	0.076	0.005	0.002
O_3	2nd daily may 1-bour	up	1	0.009	0.009	0.009	0.00	0.077	0.003	0.000	0.070	0.005	0.092
PM	90th percentile	NS	1	42	54	41	44	35	40	32	41	41	41
10	weighted annual mean	NS	1	24.7	28.1	24.9	24.8	22.4	25	20.5	22.5	24.5	24.5
DECATUR, IL	0												
Pb	max quarterly mean	NS	1	0.026	0.031	0.03	0.026	0.046	0.028	0.023	0.027	0.024	0.024
O ₃	4th max 8-hour	NS	1	0.076	0.087	0.078	0.065	0.079	0.08	0.094	0.077	0.078	0.087
DM	2nd daily max 1-hour	NS	1	0.088	0.095	0.086	0.077	0.095	0.097	0.1	0.087	0.094	0.102
PIVI ₁₀	youn percentile	NS NS	1	33.0	54 36 3	28 /	40 27 5	280	20 5	27.0	27.1	49 31 5	49 31 5
SO.	arithmetic mean	NS	1	0.008	0.007	0.005	0.006	0.007	29.5	0.005	0.006	0.005	0.006
002	2nd max 24-hour	Down	1	0.06	0.039	0.023	0.025	0.03	0.024	0.022	0.021	0.02	0.027
DENVER, CO													
CO	2nd max 8-hour	Down	6	7.217	7	8.3	6.6	6.1	5.567	4.833	4.733	3.883	4.05
Pb	max quarterly mean	Down	4	0.072	0.07	0.071	0.074	0.048	0.048	0.037	0.024	0.045	0.04
NO ₂	arithmetic mean	NS	1	0.024	0.024	0.024	0.021	0.028	0.023	0.022	0.023	0.023	0.02
O_3	4th max 8-hour	NS	6	0.072	0.072	0.068	0.067	0.069	0.067	0.07	0.067	0.08	0.069
PM	90th percentile	Down	12	44 333	46 667	41 167	52 667	43 417	0.09	35 833 '	30 833	38 833	36 917
1 10110	weighted annual mean	NS	12	23 35	23 833	23 575	25 858	22 183	19 025	19 783 2	20 242	20 292	19 892
SO ₂	arithmetic mean	Down	2	0.006	0.006	0.007	0.006	0.006	0.004	0.005	0.005	0.004	0.004
2	2nd max 24-hour	NS	2	0.02	0.026	0.038	0.025	0.025	0.016	0.02	0.021	0.018	0.018
DES MOINES, I	Α												
co	2nd max 8-hour	NS	3	4.567	4.6	3.933	4.533	3.933	3.967	3.2	2.967	5.733	2.767
O_3	4th max 8-hour	NS NS	1	0.037	0.033	0.071	0.041	0.052	0.071	0.064	0.063	0.056	0.059
PM	90th percentile	NS	3	0.00	0.040	55 333	0.08	52 333	0.001 54	0.002	58 667	44 667	48 667
1 11110	weighted annual mean	NS	3	32,133	28.533	28	28.7	30.067	29.867	31.3 3	32.133	25.967	25.6
DETROIT, MI			-										
co	2nd max 8-hour	Down	5	4.12	4.5	4.08	4.26	5.8	4.3	3.74	3.04	2.98	3.08
NO ₂	arithmetic mean	NS	2	0.021	0.02	0.02	0.021	0.022	0.02	0.021	0.02	0.021	0.021
O ₃	4th max 8-hour	NS	8	0.084	0.094	0.078	0.079	0.089	0.087	0.084	0.084	0.089	0.089
DM	2nd daily max 1-nour	NS	8	0.101	0.119	0.098	0.104	0.124	0.117	0.1	0.108	0.11	0.11
PIVI ₁₀	weighted annual mean		6	36 333	33 /67	40.0	32.8	37 65	20.000	49.0	40	20 /67	20 033
SO.	arithmetic mean	Down	10	0.01	0.008	0.007	0 007	0.007	0.006	0.006	0.006	0 007	0.006
002	2nd max 24-hour	NS	10	0.038	0.033	0.03	0.03	0.032	0.03	0.034	0.028	0.032	0.031
DOTHAN, AL													
PM ₁₀	90th percentile	NS	1	64	44	43	52	47	46	36	45	41	43
	weighted annual mean	NS	1	30.6	27.6	24.7	26.4	27.8	28.1	22.3	24.9	27.3	28.8
DULUIH-SUPE		NO	4			,		4.0		4 5		o 7	~ ~
PM	211u Max 8-110ur 90th perceptile		1	4.4 10 932	5.2	33 667	4.1 31 F	4.3 30 F	4.5	4.5 31 F 1	3.2	30 333	2.3
	weighted annual mean	NS	6	22 433	23 133	20 417	18.9	18 733	18 817	19 117	18 483	19 65	20 567
DUTCHESS CO	UNTY. NY		5	LL.700	20.100	_0	10.0	10.700		10.117		10.00	_0.007
O ₃	4th max 8-hour	NS	1	0.101	0.101	0.092	0.099	0.087	0.093	0.089	0.089	0.089	0.093
-	2nd daily max 1-hour	NS	1	0.126	0.126	0.112	0.139	0.117	0.115	0.109	0.111	0.108	0.12

Table A-16. Metropolitan Statistical Area Air Quality Trends, 1990–1999 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
EL PASO, TX													
CO	2nd max 8-hour	Down	6	10.033	8.55	7.533	7.383	6.167	6.3	7.767	6.35	6.083	4.633
Pb	max quarterly mean	Down	4	0.267	0.274	0.187	0.179	0.117	0.135	0.203	0.092	0.112	0.1
NO ₂	arithmetic mean	NS	2	0.022	0.023	0.026	0.026	0.029	0.029	0.029	0.027	0.025	0.023
0,	4th max 8-hour	NS	4	0.076	0.068	0.073	0.068	0.081	0.078	0.078	0.07	0.077	0.062
- 3	2nd daily max 1-hour	Down	4	0.121	0.119	0.119	0.108	0.127	0.117	0.118	0.113	0.11	0.088
PM ₁₀	90th percentile	NS	8	62.625	52.75	49.75	42.875	47.375	50.75	50.5	44.875	44.25	56.25
10	weighted annual mean	NS	8	32.475	27.8	27.725	24.488	24.863	27.813	26.588	22.775	23.45	29.313
SO ₂	arithmetic mean	Down	2	0.011	0.009	0.012	0.009	0.007	0.008	0.008	0.007	0.006	0.004
002	2nd max 24-hour	Down	2	0.057	0.047	0.055	0.056	0.028	0.044	0.035	0.026	0.022	0.017
ELKHART-GOS	HEN. IN		-										
0,	4th max 8-hour	NS	1	0.078	0.078	0.078	0.078	0.083	0.09	0.091	0.089	0.082	0.077
- 3	2nd daily max 1-hour	NS	1	0.092	0.092	0.092	0.09	0.095	0.102	0.115	0.108	0.106	0.085
ELMIRA. NY													
0,	4th max 8-hour	NS	1	0.079	0.091	0.066	0.08	0.074	0.076	0.072	0.073	0.082	0.082
- 3	2nd daily max 1-hour	NS	1	0.096	0.101	0.085	0.09	0.084	0.088	0.088	0.081	0.094	0.092
SO ₂	arithmetic mean	Down	1	0.005	0.005	0.005	0.005	0.004	0.004	0.004	0.003	0.003	0.003
2	2nd max 24-hour	Down	1	0.021	0.022	0.021	0.019	0.023	0.014	0.016	0.015	0.011	0.015
ERIE. PA													
NÓ2	arithmetic mean	NS	1	0.015	0.013	0.014	0.014	0.015	0.015	0.015	0.015	0.014	0.015
0,	4th max 8-hour	NS	1	0.084	0.091	0.084	0.081	0.09	0.088	0.083	0.087	0.098	0.096
- 3	2nd daily max 1-hour	NS	1	0.1	0.113	0.098	0.107	0.101	0.105	0.1	0.103	0.122	0.112
SO ₂	arithmetic mean	NS	1	0.014	0.01	0.011	0.011	0.01	0.009	0.011	0.009	0.01	0.01
2	2nd max 24-hour	NS	1	0.057	0.044	0.056	0.072	0.076	0.05	0.066	0.035	0.068	0.043
EUGENE-SPRI	NGFIELD. OR												
CO	2nd max 8-hour	NS	2	4.9	5.2	6.2	5.3	5.85	5.2	5.15	4.95	4.25	4.45
0,	4th max 8-hour	NS	2	0.068	0.069	0.074	0.054	0.069	0.062	0.086	0.058	0.076	0.062
- 3	2nd daily max 1-hour	NS	2	0.09	0.091	0.095	0.077	0.086	0.082	0.108	0.072	0.098	0.076
PM ₁₀	90th percentile	Down	5	55.6	65	55.8	62.6	45.6	43.6	37.4	36.8	33.8	33.8
10	weighted annual mean	Down	5	28.4	31.86	28.48	28.68	24.58	22.86	19.94	20.98	18.14	18.14
EVANSVILLE-H	IENDERSON, IN-KY												
CO	2nd max 8-hour	NS	2	3.7	3.45	3.6	4.35	4.05	3.2	3.05	3.65	3.05	3.1
NO ₂	arithmetic mean	Down	1	0.018	0.021	0.018	0.017	0.018	0.017	0.017	0.016	0.018	0.016
0,2	4th max 8-hour	NS	6	0.086	0.087	0.076	0.082	0.092	0.092	0.089	0.088	0.088	0.091
- 3	2nd daily max 1-hour	NS	6	0.103	0.104	0.091	0.103	0.108	0.112	0.105	0.103	0.111	0.109
PM ₁₀	90th percentile	NS	4	49.75	47	48.5	49.25	50.75	52	40	43.5	43.5	43.75
10	weighted annual mean	Down	4	30.85	32.25	29.175	29.1	31.425	30.775	25.225	26.15	27.425	25.775
SO ₂	arithmetic mean	Down	5	0.014	0.013	0.012	0.012	0.012	0.009	0.01	0.01	0.011	0.008
2	2nd max 24-hour	Down	5	0.066	0.064	0.071	0.055	0.049	0.043	0.052	0.052	0.05	0.046
FAYETTEVILLE	, NC												
O3	4th max 8-hour	NS	1	0.087	0.078	0.079	0.093	0.084	0.081	0.086	0.085	0.093	0.1
5	2nd daily max 1-hour	NS	1	0.1	0.101	0.092	0.115	0.098	0.1	0.099	0.098	0.112	0.12
PM ₁₀	90th percentile	NS	1	50	45	39	41	40	35	39	41	41	39
10	weighted annual mean	Down	1	31.4	26.9	26.2	27.3	25.1	23.3	25.3	24.8	26.5	24.4
FAYETTEVILLE	-SPRINGDALE-ROGERS, AR												
PM_{10}	90th percentile	NS	1	38	38	30	39	40	36	36	31	31	31
10	weighted annual mean	NS	1	23.2	23.6	21.5	23.9	24.8	24.2	22.5	20.4	20.4	20.4
FLAGSTAFF, A	Z-UT												
O ₃	4th max 8-hour	NS	1	0.072	0.073	0.074	0.066	0.073	0.069	0.073	0.072	0.072	0.076
-	2nd daily max 1-hour	NS	1	0.082	0.079	0.079	0.07	0.081	0.075	0.082	0.076	0.076	0.086
FLINT, MI	-												
O ₃	4th max 8-hour	up	2	0.076	0.08	0.07	0.07	0.075	0.081	0.087	0.083	0.089	0.092
-	2nd daily max 1-hour	NS	2	0.095	0.099	0.091	0.105	0.089	0.094	0.106	0.097	0.109	0.109
SO_2	2nd max 24-hour	NS	1	0.014	0.014	0.014	0.017	0.017	0.016	0.012	0.012	0.014	0.011
FLORENCE, AL	-												
PM_{10}	90th percentile	NS	1	39	41	34	37	34	37	29	32	35	35
	weighted annual mean	NS	1	23.5	23.7	21.3	22.6	20.1	22	17.8	18.7	22.2	22.2
SO ₂	arithmetic mean	Down	1	0.005	0.004	0.004	0.004	0.003	0.003	0.003	0.003	0.003	0.003
-	2nd max 24-hour	Down	1	0.027	0.025	0.019	0.022	0.022	0.018	0.019	0.02	0.019	0.017
FORT COLLINS	S-LOVELAND, CO												
CO	2nd max 8-hour	Down	1	7	9.8	6.9	6.6	6	5.2	5.1	5.2	4.1	5.1
O ₃	4th max 8-hour	NS	2	0.066	0.074	0.069	0.068	0.072	0.072	0.069	0.07	0.076	0.069
č	2nd daily max 1-hour	NS	2	0.083	0.09	0.091	0.091	0.095	0.089	0.092	0.088	0.092	0.085
PM_{10}	90th percentile	Down	1	39	50	35	36	34	41	33	24	26	26
	weighted annual mean	Down	1	23.4	25.1	22.6	22.4	21.6	22.3	20.4	15.7	16.2	16

Table A-16. Metropolitan Statistical Area Air Quality Trends, 1990–1999 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	6 1997	1998	1999
FORTLAUDER	DALE. FL												
CO	2nd max 8-hour	Down	6	4 333	4 467	4 567	3 95	4 05	4 333	3 4 1 7	3 483	27	3 4 1 7
Pb	max quarterly mean	up	1	0.013	0.021	0.037	0.027	0.029	0.019	0.047	0.037	0.037	0.037
NO ₂	arithmetic mean	ŇŠ	1	0.009	0.009	0.009	0.01	0.009	0.011	0.01	0.01	0.01	0.011
0,	4th max 8-hour	NS	3	0.07	0.063	0.077	0.078	0.07	0.065	0.065	0.07	0.074	0.071
- 3	2nd daily max 1-hour	NS	3	0.092	0.093	0.098	0.098	0.092	0.093	0.094	0.089	0.095	0.097
PM ₄₀	90th percentile	NS	5	26	26	26	28.2	22	22.2	24	23	29	21.4
10	weighted annual mean	NS	5	17.78	17.78	17.78	18.34	16.22	15.34	16.26	16.28	18.68	15.84
SO ₂	arithmetic mean	up	1	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.003
2	2nd max 24-hour	up	1	0.006	0.006	0.006	0.011	0.013	0.008	0.008	0.011	0.017	0.015
FORT MYERS-	CAPE CORAL, FL	- 1-											
O3	4th max 8-hour	NS	1	0.069	0.064	0.073	0.069	0.076	0.066	0.062	0.067	0.092	0.077
Ū.	2nd daily max 1-hour	NS	1	0.08	0.082	0.082	0.078	0.09	0.086	0.072	0.076	0.109	0.096
FORT SMITH, A	AR-OK												
PM_{10}	90th percentile	NS	1	38	37	36	39	38	44	36	39	39	39
	weighted annual mean	NS	1	25.7	24.7	23.5	24.9	23.8	25.7	25.3	22.3	22.3	22.3
FORT WAYNE,	IN												
O3	4th max 8-hour	NS	2	0.086	0.088	0.088	0.081	0.094	0.094	0.091	0.087	0.089	0.089
	2nd daily max 1-hour	NS	2	0.094	0.1	0.095	0.093	0.113	0.109	0.1	0.095	0.103	0.1
PM ₁₀	90th percentile	Down	1	53	44	38	36	43	44	28	28	39	31
	weighted annual mean	NS	1	27.2	27.2	22.7	22.9	23.5	23.9	17.2	19.6	23.7	17
FORT WORTH-	ARLINGTON, TX												
CO	2nd max 8-hour	Down	1	3.6	3.4	3.8	3.5	2.7	3.3	2.8	2.8	2.5	2.6
NO ₂	arithmetic mean	NS	1	0.012	0.014	0.015	0.013	0.017	0.017	0.015	0.016	0.013	0.017
O_3	4th max 8-hour	NS	2	0.099	0.108	0.084	0.093	0.101	0.104	0.094	0.092	0.099	0.102
	2nd daily max 1-hour	NS	2	0.135	0.145	0.122	0.113	0.133	0.141	0.129	0.123	0.126	0.145
PM ₁₀	90th percentile	NS	2	40	32	29	32	32.5	36	39	30	30	30
	weighted annual mean	NS	2	23.65	21.55	19.85	19.7	19.55	22.45	22.95	19.75	19.75	19.75
FRESNO, CA		_											
CO	2nd max 8-hour	Down	4	5.725	6.125	4.575	4.175	4.925	4.225	4.15	3.5	3.5	3.4
Pb	max quarterly mean	Down	1	0.065	0.037	0.035	0.025	0.02	0.015	0.008	0.011	0.013	0.013
NO ₂	arithmetic mean	Down	4	0.021	0.021	0.02	0.021	0.02	0.02	0.019	0.018	0.018	0.021
O_3	4th max 8-hour	NS	5	0.1	0.105	0.105	0.106	0.096	0.103	0.108	0.102	0.116	0.103
514	2nd daily max 1-nour	NS	5	0.138	0.146	0.142	0.14	0.128	0.134	0.142	0.128	0.154	0.132
PM ₁₀	90th percentile	NS	5	106.6	100.4	/2.6	85.6	63	08	59.2	76.8	61.8	81.2
	weighted annual mean	Down	5	54.96	53.76	45.22	43.18	40.24	41.04	35.14	40.38	34.42	42.38
GADSDEN, AL		NO	0	F 4 F	50	50	F7 F	40	40 5	0F F	47	50	40 5
PIVI ₁₀	90th percentile	NS Davies	2	54.5	00	52	57.5	40	42.5	35.5	47	20 05	40.5
CALVESTON T		Down	2	32.8	32.Z	31.35	33.Z	30.3	29.6	23.4	20.25	30.95	28.25
GALVESTON-I	Ath max 9 hour	NC	1	0.00	0.001	0.067	0 11 4	0 000	0.14	0.00	0.007	0.005	0 100
O_3	4(I) IIIdX 0-IIUUI 2nd daily may 1 hour	NS NC	1	0.09	0.091	0.007	0.114	0.000	0.14	0.00	0.097	0.095	0.100
DM	2110 Ually Max 1-11001	ING NC	1	0.15	27 5	0.097	0.170	0.120	0.190	0.107	0.175	0.140	0.172
F IVI ₁₀	woighted annual mean	NS	2	45.5	22.3	22.2	23 15	24 15	27.9	21.1	22.25	22.25	23.25
80	arithmetic mean	NS	2	0.007	0.007	0.005	20.10	0.006	0.006	0.014	20.20	20.20	0.007
302	2nd max 24-bour	NS	1	0.007	0.007	0.000	0.005	0.000	0.000	0.014	0.000	0.004	0.007
GARY IN	2110 1118X 24-11001	110	1	0.005	0.05	0.059	0.050	0.052	0.009	0.007	0.055	0.059	0.04
	2nd max 8-hour	NS	2	1 15	1 05	1 35	17	5 55	3 85	3 25	3 65	3 85	3.8
Ph	max quarterly mean	NS	2	0.21	0.008	00	0 074	0.00	0.00	0.20	0.00	0.00	0.0
0.	4th max 8-hour	NS	2	0.08	0.000	0.084	0.074	0.084	0.000	0.095	0.000	0.000	0.098
03	2nd daily max 1-hour	NS	2	0.00	0.000	0.004	0.087	0.004	0.101	0.000	0.000	0.000	0.000
PM.	90th percentile	Down	7	50 571	43 429	42 286	38 571	41 571	40 857	32 286	31 429	35 429	29 857
1 10110	weighted annual mean	Down	7	32 443	28.329	25.4	22 886	25 4 1 4	24 129	20.4	20.993	22 571	20 486
SO.	arithmetic mean	Down	4	0.01	0.008	0 008	0.008	0.007	0.005	0 005	0.006	0.006	0.005
002	2nd max 24-hour	Down	4	0.052	0.029	0.031	0.034	0.034	0.024	0.025	0.026	0.03	0.021
GOLDSBORO.	NC		-										
PM ₄₀	90th percentile	NS	1	46	46	36	36	33	30	33	36	34	34
10	weighted annual mean	Down	1	26.8	26.8	24.3	23.8	21	20.2	22.6	23.1	21.9	21.9
GRAND JUNC	ION. CO												
CO	2nd max 8-hour	Down	1	6.7	6.7	6.7	6.1	6	5.4	5.8	5.4	5.3	4.7
PM ₁₀	90th percentile	Down	4	39.5	49.25	41.5	32.5	36	30.75	30.25	29.5	30.5	33
10	weighted annual mean	Down	4	18.925	20.95	18.45	17.35	17.15	15.2	14.875	14.5	15.3	15.325
GRAND RAPID	S-MUSKEGON-HOLLAND, MI												
CO	2nd max 8-hour	NS	1	3.5	4	3.2	3.2	4	4.6	3.3	2.4	2.9	3.5
Pb	max quarterly mean	Down	3	0.023	0.016	0.019	0.014	0.013	0.01	0.012	0.012	0.012	0.012
O ₃	4th max 8-hour	NS	4	0.101	0.099	0.082	0.082	0.086	0.098	0.089	0.083	0.086	0.092
÷	2nd daily max 1-hour	NS	4	0.129	0.13	0.108	0.099	0.11	0.122	0.122	0.103	0.105	0.108
PM ₁₀	90th percentile	Down	2	55	40.5	54	39	46	40	34.5	32	37.5	36
10	weighted annual mean	Down	2	30	25.65	34.8	21.7	26.85	20.95	20.25	18.65	21.25	18.9
SO ₂	arithmetic mean	Down	1	0.004	0.004	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.001
	2nd max 24-hour	Down	1	0.012	0.014	0.015	0.012	0.013	0.011	0.011	0.008	0.008	0.006

Table A-16. Metropolitan Statistical Area Air Quality Trends, 1990–1999 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
GREAT FALLS,	МТ												
CO	2nd max 8-hour	NS	1	5.6	6.6	5.8	6.9	4.8	6.2	5.4	6.4	4.5	3.5
PM_{10}	90th percentile	Down	1	39	44	40	40	34	30	35	32	32	32
	weighted annual mean	Down	1	23.7	21.1	21.4	21.4	20.8	17.9	19.1	20.3	20.3	20.3
CO	2nd max 8-bour	Down	1	71	78	75	58	52	53	7	48	44	34
0,	4th max 8-hour	NS	1	0.076	0.077	0.064	0.063	0.071	0.072	0.07	0.069	0.075	0.069
- 3	2nd daily max 1-hour	NS	1	0.109	0.096	0.084	0.087	0.087	0.093	0.097	0.095	0.102	0.092
PM ₁₀	90th percentile	Down	1	43	51	43	39	37	34	30	30	30	29
	weighted annual mean	Down	1	24.7	25.9	25.4	22.6	23.1	19.9	17.7	17.8	16.5	17.5
GREEN BAY, W		Davia	4	0.005	0.005	0.004	0 000	0.000	0.004	0 000	0.000	0 000	0.000
S0 ₂	antinmetic mean	Down	1	0.005	0.005	0.004	0.003	0.003	0.004	0.003	0.003	0.003	0.003
GREENSBORG	WINSTON-SALEM—HIGH P		I	0.02	0.042	0.021	0.010	0.015	0.017	0.011	0.017	0.011	0.011
CO	2nd max 8-hour	Down	1	6.8	6.6	5.7	5.5	6	6.2	4.3	4.7	5.4	3.6
NO ₂	arithmetic mean	NS	1	0.017	0.016	0.015	0.017	0.017	0.016	0.016	0.017	0.017	0.016
O ₃	4th max 8-hour	up	2	0.091	0.084	0.08	0.091	0.087	0.088	0.088	0.088	0.096	0.096
514	2nd daily max 1-hour	NS	2	0.112	0.102	0.1	0.118	0.108	0.11	0.114	0.11	0.119	0.112
PM_{10}	90th percentile	Down	3	49.333	47.667	41	44.667	35.333	39	35.333	36.667	38.667	37.667
SO.	arithmetic mean	NS	1	0.008	0.007	20.9	0.006	24.0	25.9	24.033	23.933	24.4	0.005
00_2	2nd max 24-hour	NS	1	0.023	0.027	0.019	0.022	0.021	0.025	0.026	0.023	0.023	0.02
GREENVILLE,	NC		-										
O ₃	4th max 8-hour	NS	1	0.082	0.082	0.078	0.091	0.077	0.082	0.086	0.097	0.089	0.093
	2nd daily max 1-hour	up	1	0.091	0.091	0.095	0.108	0.086	0.098	0.097	0.122	0.109	0.109
GREENVILLE-S	SPARTANBURG-ANDERSON,	SC	2	0.04	0.005	0.040	0 000	0.040	0.040	0.000	0.04	0.045	0.014
	max quarterly mean	Down	3	0.04	0.035	0.018	0.022	0.019	0.016	0.009	0.017	0.015	0.011
Ω_2	4th max 8-hour	UDUWII	4	0.019	0.019	0.019	0.010	0.010	0.017	0.010	0.017	0.017	0.017
03	2nd daily max 1-hour	up	4	0.094	0.098	0.094	0.113	0.099	0.112	0.105	0.102	0.116	0.115
SO ₂	arithmetic mean	NS	1	0.002	0.003	0.003	0.003	0.003	0.001	0.002	0.003	0.003	0.003
	2nd max 24-hour	NS	1	0.011	0.017	0.013	0.012	0.016	0.007	0.012	0.014	0.015	0.009
HAMILTON-MIE	DLETOWN, OH												
O_3	4th max 8-hour	NS	2	0.099	0.094	0.071	0.091	0.091	0.092	0.093	0.09	0.091	0.096
PM.	90th percentile	NS	2	59.5	61 25	50 75	62 75	53 25	57 75	44.5	53 75	53 25	49 75
1 10110	weighted annual mean	NS	4	34.275	35.55	30.075	31.125	30.375	33.8	29.325	30.425	30.45	28.25
SO ₂	arithmetic mean	Down	2	0.01	0.009	0.007	0.008	0.008	0.005	0.007	0.007	0.006	0.006
-	2nd max 24-hour	Down	2	0.037	0.04	0.033	0.035	0.038	0.019	0.025	0.034	0.021	0.023
HARRISBURG-	LEBANON-CARLISLE, PA												
Pb	max quarterly mean	NS	1	0.039	0.039	0.039	0.041	0.041	0.041	0.04	0.039	0.036	0.036
	Ath max 8 hour	NS	2	0.013	0.014	0.013	0.011	0.015	0.014	0.015	0.013	0.012	0.012
03	2nd daily max 1-hour	NS	3	0.031	0.030	0.093	0.034	0.003	0.000	0.00	0.003	0.032	0.030
PM ₁₀	90th percentile	NS	1	35	39	27	30	44	32	31	33	33	33
10	weighted annual mean	NS	1	18.5	22	17.8	20.7	22.3	20.7	18.8	21.9	21.9	21.9
SO ₂	arithmetic mean	Down	2	0.005	0.006	0.005	0.006	0.007	0.005	0.005	0.005	0.005	0.004
	2nd max 24-hour	NS	2	0.021	0.021	0.022	0.021	0.035	0.017	0.021	0.022	0.017	0.017
CO	2nd max 8-bour	Down	2	6 4 5	6 1	6.05	5 55	6 35	5 75	1 075	18	51	1 35
NO ₂	arithmetic mean	NS	1	0.19	0.02	0.00	0.018	0.00	0.017	0.016	0.018	0.02	0.018
03	4th max 8-hour	Down	3	0.103	0.108	0.093	0.1	0.099	0.097	0.082	0.099	0.09	0.097
5	2nd daily max 1-hour	NS	3	0.149	0.157	0.123	0.146	0.133	0.134	0.098	0.143	0.12	0.138
PM_{10}	90th percentile	Down	6	34.667	38.167	33.667	30.833	34.667	28.5	30	33.167	31	29.833
00	weighted annual mean	NS	6	19.9	23	19.917	17.783	20.017	16.417	17.383	18.45	17.983	17.417
S0 ₂	antinmetic mean	Down	4	0.007	0.007	0.006	0.005	0.006	0.004	0.004	0.004	0.004	0.004
		DOWI	4	0.05	0.05	0.027	0.019	0.027	0.019	0.010	0.021	0.019	0.019
CO	2nd max 8-hour	Down	4	1.95	1.775	1.875	2	1.85	1.7	1.575	1.525	1.45	1.2
O ₃	4th max 8-hour	NS	1	0.034	0.041	0.047	0.049	0.052	0.051	0.041	0.047	0.049	0.048
	2nd daily max 1-hour	NS	1	0.053	0.05	0.059	0.055	0.055	0.056	0.047	0.053	0.056	0.054
PM ₁₀	90th percentile	NS	3	21.667	22.333	21.333	21	23	21	22.667	19 3	21.667	21
80	arithmetic mean	NS	3	10.167	10.533	10.567	11.16/	12.16/	10.5	11.467	11.633	12.2	10.067
30 ₂	2nd max 24-hour	NS	3	0.001	0.001	0.002	0.002	0.001	0.001	0.001	0.002	0.002	0.001
HOUMA. LA			5	0.000	0.000	0.000	0.000	0.000	5.500	0.007	0.000	5.507	0.000
O ₃	4th max 8-hour	NS	1	0.083	0.076	0.07	0.075	0.086	0.101	0.075	0.079	0.089	0.087
	2nd daily max 1-hour	NS	1	0.115	0.097	0.091	0.096	0.103	0.141	0.094	0.103	0.11	0.115

Table A-16. Metropolitan Statistical Area Air Quality Trends, 1990–1999 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	5 1996	1997	' 1998	3 1999
HOUSTON, TX													
CO	2nd max 8-hour	Down	4	6.775	6.025	6.775	5.6	4.9	4.025	5.25	4.275	3.8	3.35
NO ₂	arithmetic mean	Down	4	0.023	0.022	0.022	0.019	0.021	0.021	0.02	0.021	0.019	0.02
O3 _	4th max 8-hour	NS	9	0.116	0.098	0.102	0.095	0.097	0.114	0.097	0.107	0.109	0.102
	2nd daily max 1-hour	NS	9	0.192	0.167	0.162	0.161	0.147	0.168	0.154	0.171	0.174	0.159
PM_{10}	90th percentile	Down	5	50.2	48.2	48	50.4	50.2	48	39	47.8	47.8	47.8
	weighted annual mean	Down	5	31.4	31.4	30.22	30.36	30.96	29.54	26	29.42	29.42	29.42
SO_2	arithmetic mean	Down	5	0.005	0.006	0.005	0.005	0.004	0.004	0.004	0.003	0.003	0.003
	2nd max 24-hour	Down	5	0.025	0.027	0.024	0.022	0.02	0.025	0.023	0.017	0.018	0.015
	ASILAND, WV-KI-OI	NC	1	0.040	0 0 2 0	0 022	0 022	0.02	0.026	0.040	0 0 2 2	0 0 2 2	0 0 2 2
0.	4th max 8-bour	NS	3	0.040	0.020	0.033	0.022	0.03	0.030	0.049	0.023	0.023	0.023
O_3	2nd daily max 1-hour	NS	3	0.033	0.030	0.070	0.03	0.032	0.003	0.077	0.001	0.037	0.034
PM	90th percentile	Down	5	53.8	50.4	46	52.2	51.6	48.2	39	45.2	44	47
• •••10	weighted annual mean	Down	5	33.82	32.44	29.18	28.46	30.68	29.86	26.46	28.4	26.48	27.9
SO ₂	arithmetic mean	Down	8	0.012	0.012	0.01	0.011	0.01	0.009	0.008	0.008	0.008	0.008
2	2nd max 24-hour	Down	8	0.07	0.05	0.043	0.052	0.049	0.034	0.028	0.031	0.033	0.03
HUNTSVILLE,	AL .												
CO	2nd max 8-hour	NS	1	4.2	4.1	4.2	4	3.5	3.6	3	3.1	3.3	4.3
O ₃	4th max 8-hour	NS	1	0.079	0.082	0.087	0.087	0.075	0.08	0.081	0.086	0.092	0.093
	2nd daily max 1-hour	NS	1	0.087	0.106	0.114	0.112	0.107	0.102	0.096	0.096	0.118	0.106
PM ₁₀	90th percentile	Down	3	47.333	49.333	43	40	35.5	34.333	31.333	37.333	34.667	35.667
	weighted annual mean	Down	3	29.5	27.3	25.967	23.6	22.667	22.567	20.767	20.8	22.033	22.867
	, IN 2nd may 8 hour	Down	2	2.05	5 1 5	2 5	4	2 45	2 05	2 75	2 1 5	265	2.4
Ph	max quarterly mean	Down	2	3.95	0 738	0.506	0 654	1 003	0.00	2.75	0.054	2.00	0.005
NO.	arithmetic mean	NS	1	0.018	0.730	0.030	0.004	0.019	0.233	0.073	0.004	0.000	0.035
0	4th max 8-hour		6	0.085	0.086	0.082	0.083	0.093	0 094	0.096	0.088	0.094	0.094
•3	2nd daily max 1-hour	ŇŠ	õ	0.102	0.1	0.094	0.098	0.11	0.111	0.116	0.104	0.113	0.107
PM ₁₀	90th percentile	Down	13	54.308	49.077	43	51.231	46.462	46.077	34.308	36.308	38.923	37
10	weighted annual mean	Down	13	32.8	30.562	27.608	27.677	28.254	28.115	22.508	22.523	23.9	21.838
SO ₂	arithmetic mean	Down	6	0.009	0.008	0.007	0.008	0.007	0.005	0.005	0.005	0.005	0.005
	2nd max 24-hour	Down	6	0.033	0.03	0.028	0.037	0.038	0.021	0.024	0.023	0.021	0.02
JACKSON, MS												~ -	-
co	2nd max 8-hour	NS	1	4.3	4.3	4.3	6.2	5.1	4.4	4.8	3.8	3.7	5
O_3	4th max 8-hour	up	2	0.08	0.072	0.071	0.073	0.073	0.076	0.077	0.077	0.084	0.083
DM	200 daily max 1-nour	up	2	0.1	0.005	0.003	0.009	0.000	0.09	0.093	0.095	0.105	0.103
FIVI ₁₀	weighted annual mean	Down	1	25.7	25.7	43	22.3	20.0	22.8	21 5	24	10.0	10.0
SO.	arithmetic mean	NS	1	0.005	0.005	0.005	0.003	0.002	0 002	0.002	0 002	0.002	0.002
002	2nd max 24-hour	Down	1	0.000	0.000	0.000	0.000	0.002	0.002	0.002	0.002	0.002	0.002
JACKSON, TN	2.1.0	20111	·	0.0.0	0.010	0.0.0	0.01	0.000	0.001	0.000	0.001	0.000	0.001
PM ₁₀	90th percentile	NS	2	44	39	41	37	31.5	42.5	33.5	34	34	34
10	weighted annual mean	Down	2	27.7	26.9	27.4	23.35	22.6	25.1	22.1	22.55	23.3	23.3
JACKSONVILL	E, FL												
CO	2nd max 8-hour	Down	4	4.05	3.6	4.15	4.075	3.85	3.6	3.075	2.5	2.675	3.375
Pb	max quarterly mean	Down	2	0.038	0.025	0.024	0.048	0.02	0.028	0.022	0.017	0.018	0.018
NO ₂	arithmetic mean	NS	1	0.015	0.014	0.014	0.015	0.014	0.016	0.015	0.014	0.015	0.016
O ₃	4th max 8-hour	NS	2	0.081	0.072	0.079	0.081	0.074	0.074	0.075	0.08	0.082	0.079
DM	2nd daily max 1-nour	NS NS	2	0.11	0.089	0.102	0.11	20.5	0.112	0.091	0.101	0.101	0.099
PIVI ₁₀	yoighted annual mean	NO NG	2	40 33 75	40.0	41.5	30.5 27.6	39.5 26.55	25.0	34.3 25.25	30.5 25.5	43	41.0
SO.	arithmetic mean	NS	6	0.004	0.003	0.003	0.003	20.00	0.003	0.003	0.003	0.003	0.003
002	2nd max 24-hour	Down	6	0.004	0.000	0.003	0.000	0.000	0.000	0.003	0.000	0.000	0.000
JACKSONVILL	E. NC	Down	0	0.004	0.022	0.022	0.020	0.001	0.010	0.010	0.010	0.021	0.010
PM ₄₀	90th percentile	NS	1	39	39	35	35	28	29	32	32	37	37
10	weighted annual mean	NS	1	23.9	23.9	22.9	22.9	20.4	19.8	21.9	20.2	22.1	22.1
JAMESTOWN,	NY												
O ₃	4th max 8-hour	up	1	0.076	0.076	0.083	0.081	0.08	0.089	0.081	0.087	0.095	0.087
Ū	2nd daily max 1-hour	NS	1	0.098	0.098	0.098	0.104	0.094	0.104	0.097	0.105	0.111	0.101
PM ₁₀	90th percentile	NS	2	38.5	38.5	29	31.5	32.5	30	27.5	33.5	37	35.5
	weighted annual mean	NS	2	20.5	20.5	17.75	16.15	15.8	16.4	16.6	16.85	18.7	17.3
SO ₂	arithmetic mean	Down	2	0.01	0.01	0.009	0.009	0.008	0.007	0.007	0.006	0.006	0.006
	2nd max 24-hour	Down	2	0.047	0.039	0.039	0.041	0.053	0.039	0.033	0.029	0.026	0.03
JANESVILLE-B	SELOIT, WI			0.070	0.070	0.070	0.000	0.070	0.000	0.000	0.075	0.07-	0.00
0 ₃	4th max 8-hour	NS	1	0.076	0.076	0.076	0.063	0.076	0.083	0.082	0.075	0.077	0.08
	∠nd dally max 1-hour	NS	1	0.091	0.091	0.091	0.083	0.092	0.095	0.101	0.088	0.087	0.095
Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	' 1998	1999
--------------------	----------------------------	-------	-----------------	--------	--------	--------	--------	--------	---------	--------	---------	--------	------------
JERSEY CITY.	NJ												
CO	2nd max 8-hour	Down	2	8.45	8.6	7.85	6.6	8.3	7.15	5.8	5.5	4.85	5
NO ₂	arithmetic mean	Down	1	0.03	0.028	0.028	0.027	0.026	0.026	0.027	0.026	0.027	0.026
03 ⁻	4th max 8-hour	NS	1	0.106	0.115	0.092	0.103	0.095	0.104	0.087	0.105	0.089	0.106
5	2nd daily max 1-hour	NS	1	0.175	0.136	0.112	0.131	0.118	0.125	0.12	0.119	0.118	0.139
PM ₁₀	90th percentile	Down	2	51.5	55	44.5	46.5	56.5	42	43	42.5	36	36.5
	weighted annual mean	Down	2	31.2	32.35	26.8	29.05	34	26.5	28.35	26.75	22.85	23.3
SO ₂	arithmetic mean	Down	2	0.013	0.012	0.01	0.009	0.009	0.007	0.008	0.008	0.007	0.007
	2nd max 24-hour	Down	2	0.043	0.035	0.041	0.03	0.036	0.026	0.027	0.025	0.022	0.024
JOHNSON CIT	Y-KINGSPORT-BRISTOL, TN-VA												
CO	2nd max 8-hour	NS	1	3.4	3.3	3	6.5	3.4	3	3	3.5	3.4	2.8
NO ₂	arithmetic mean	Down	1	0.019	0.019	0.018	0.017	0.017	0.018	0.018	0.018	0.017	0.016
O ₃	4th max 8-hour	NS	1	0.1	0.078	0.082	0.088	0.083	0.091	0.083	0.082	0.096	0.086
514	2nd daily max 1-hour	NS	1	0.117	0.115	0.103	0.125	0.103	0.114	0.099	0.111	0.115	0.106
PM ₁₀	90th percentile	Down	1	44	48	38	46	38	40	37	37	30	30
00	weighted annual mean	Down	1	29.3	30.5	24.9	25.2	25	24.7	22.7	20.8	20.7	20.7
50 ₂	antinmetic mean	NS	3	0.009	0.009	0.009	0.008	0.009	0.008	0.009	0.009	0.009	0.009
		115	3	0.044	0.044	0.039	0.042	0.045	0.039	0.044	0.05	0.043	0.030
	2nd max 9 hour	Down	1	27	10	4.4	10	11	25	10	27	2.1	20
NO	arithmetic mean	Down	1	0.019	4.0	4.4	4.2	4.1	0.015	4.0	2.7	0.015	2.0
	Ath max 8 hour	NS	1	0.010	0.019	0.010	0.017	0.010	0.015	0.010	0.010	0.015	0.015
O_3	2nd daily may 1-bour	NS	1	0.00	0.090	0.074	0.005	0.000	0.09	0.000	0.092	0.090	0.09
SO	arithmetic mean	Down	1	0.103	0.115	0.003	0.035	0.034	0.101	0.030	0.104	0.124	0.107
002	2nd max 24-hour	Down	1	0.014	0.013	0.013	0.013	0.014	0.012	0.011	0.003	0.000	0.003
IONESBORO		Down		0.040	0.040	0.002	0.040	0.00	0.042	0.004	0.00	0.027	0.020
PM.	90th percentile	NS	1	47	47	41	46	50	50	42	40	40	40
• •••10	weighted annual mean	Down	1	26.8	26.7	25.3	25.2	28	27.6	25.6	23.7	23.7	23.7
KALAMAZOO-	BATTLE CREEK. MI		-										
PM ₁₀	90th percentile	NS	1	58	56	42	39	44	50	33	38	47	44
10	weighted annual mean	Down	1	28.1	29.3	27.1	24	25.9	26	22	22.6	26.7	22.5
KANSAS CITY	, MO-KS												
CO	2nd max 8-hour	NS	3	4.433	4	3.9	4.167	4.333	3.333	3.2	3.233	3.7	3.733
Pb	max quarterly mean	NS	5	0.03	0.027	0.023	0.02	0.017	0.018	0.028	0.1	0.1	0.1
NO ₂	arithmetic mean	NS	3	0.011	0.01	0.01	0.009	0.01	0.01	0.012	0.01	0.012	0.012
O ₃	4th max 8-hour	up	6	0.073	0.079	0.075	0.074	0.079	0.09	0.08	0.086	0.087	0.081
	2nd daily max 1-hour	up	6	0.097	0.1	0.094	0.097	0.097	0.119	0.101	0.107	0.117	0.106
PM ₁₀	90th percentile	NS	7	51	51.286	47.143	48.143	46.714	43.714	56.429	39.714	44.143	50
	weighted annual mean	NS	7	31.343	31.614	30.186	30.186	29.886	24.429	33	26.143	27.114	28.657
SO ₂	arithmetic mean	NS	5	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.003	0.003
	2nd max 24-hour	NS	5	0.022	0.017	0.016	0.02	0.025	0.018	0.024	0.013	0.01	0.011
KENOSHA, WI													
O_3	4th max 8-hour	NS	2	0.084	0.108	0.085	0.085	0.088	0.103	0.084	0.087	0.09	0.097
	2nd daily max 1-nour	NS	2	0.106	0.135	0.112	0.114	0.119	0.119	0.13	0.111	0.121	0.121
KNOXVILLE, I	N Ond may 9 hour	Dawn	4	E 4	4 5	4 5	4.6	10	4.4	2.2	4.0	2.0	2.0
0	Ath max 8 hour	Down	5	0.002	4.5	4.5	4.0	4.3	4.1	0.001	4.0	0 104	3.0 0.1
O_3	2nd daily max 1 hour	up	5	0.092	0.003	0.001	0.09	0.000	0.094	0.091	0.093	0.104	0.1
DM	20th perceptile	Down	2	52.5	52.25	46 75	19 375	49 75	19 75	49 75	0.113	11 25	40.75
r wi ₁₀	woighted annual mean	Down	0	31 063	34 225	30.45	30 15	31 725	31 1 99	30 513	26 / 28	26 075	26 025
SO	arithmetic mean	NS	3	0.006	0.006	0.006	0.006	0.006	0.007	0.006	0.006	0.005	0.005
002	2nd max 24-hour	NS	3	0.000	0.000	0.000	0.000	0.000	0.007	0.000	0.000	0.000	0.000
I AKE CHARLE	FS I A	NO	0	0.00	0.004	0.004	0.007	0.004	0.004	0.007	0.000	0.020	0.000
0.	4th max 8-hour	NS	1	0 085	0 087	0 073	0 077	0 075	0 084	0 077	0 085	0.09	0 073
03	2nd daily max 1-hour	NS	1	0.000	0 121	0 105	0 103	0.095	0 113	0.092	0.000	0 123	0.085
LAKELAND-W	INTER HAVEN. FL			••••									
0,	4th max 8-hour	NS	2	0.072	0.072	0.072	0.082	0.072	0.073	0.07	0.078	0.087	0.078
- 5	2nd daily max 1-hour	NS	2	0.095	0.095	0.095	0.103	0.088	0.089	0.089	0.101	0.104	0.097
SO ₂	arithmetic mean	NS	2	0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.005	0.006	0.005
2	2nd max 24-hour	NS	2	0.018	0.015	0.015	0.019	0.016	0.013	0.019	0.016	0.022	0.016
LANCASTER,	PA												
CO	2nd max 8-hour	NS	1	3.4	2.6	2.6	3	3.8	2.4	2.6	3.3	1.9	2.1
Pb	max quarterly mean	NS	1	0.058	0.043	0.038	0.038	0.042	0.04	0.041	0.041	0.04	0.04
NO ₂	arithmetic mean	NS	1	0.017	0.018	0.015	0.015	0.019	0.016	0.017	0.016	0.015	0.015
O3 _	4th max 8-hour	NS	1	0.087	0.099	0.086	0.095	0.093	0.102	0.085	0.102	0.101	0.102
	2nd daily max 1-hour	NS	1	0.101	0.119	0.106	0.118	0.111	0.124	0.101	0.133	0.119	0.127
PM ₁₀	90th percentile	NS	1	52	45	41	54	61	55	46	50	50	50
	weighted annual mean	up	1	30.6	29.6	27	30.6	37.5	33.1	30.9	33.6	33.6	33.6
SO ₂	arithmetic mean	NS	1	0.006	0.006	0.006	0.007	0.006	0.006	0.005	0.007	0.006	0.005
	2nd max 24-hour	NS	1	0.028	0.023	0.023	0.026	0.03	0.018	0.021	0.023	0.02	0.021

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998 1999
LANSING-EAST	LANSING, MI											
O ₃	4th max 8-hour	NS	2	0.08	0.083	0.08	0.079	0.079	0.082	0.076	0.078	0.08 0.088
	2nd daily max 1-hour	NS	2	0.095	0.11	0.091	0.096	0.093	0.096	0.087	0.088	0.1 0.1
LAS CRUCES, I	2nd max 8-bour	Down	1	63	65	10	87	5	11	13	18	12 38
Ph	max quarterly mean	Down	2	0.0	0.147	0 126	0 117	0 054	0.086	0 071	0 075	0.075 0.075
03	4th max 8-hour	NS	3	0.07	0.071	0.07	0.073	0.074	0.074	0.075	0.067	0.072 0.074
Ū	2nd daily max 1-hour	NS	3	0.098	0.096	0.099	0.107	0.104	0.105	0.104	0.09	0.1 0.092
PM ₁₀	90th percentile	NS	3	60	52	56.667	47	55	55.333	50.333 4	43.333	42 57.667
80	weighted annual mean	NS	3	35.233	31.167	31.467	29.767	32.6	34.267	33.3	26.8	26.767 34.833
302	2nd max 24-hour	Down	2	0.011	0.01	0.009	0.000	0.004	0.004	0.004	0.003	0.003 0.001
LAS VEGAS, N	V-AZ	20111	-	0.000	0.000	0.002	0.000	0.020	0.02.	0.00	0.0.1	0.012 0.000
CO	2nd max 8-hour	Down	1	7.7	6.9	6.1	7.2	6.9	6.4	6.6	5.5	6.2 5.6
O ₃	4th max 8-hour	NS	3	0.073	0.065	0.076	0.075	0.077	0.073	0.08	0.074	0.077 0.073
DM	2nd daily max 1-nour	Down	3	0.101	0.09	0.093	0.096	0.091	0.088	0.094	0.088	0.087 0.086
	weighted annual mean	NS	1	69	58.8	48.3	43.1	47.4	467	52 5	597	524 451
LAWRENCE, M	A-NH		·	00	00.0	10.0	10.1		10.1	02.0	00.1	02.1 10.1
O ₃	4th max 8-hour	NS	1	0.073	0.086	0.074	0.076	0.082	0.069	0.079	0.078	0.076 0.068
514	2nd daily max 1-hour	NS	1	0.091	0.119	0.086	0.1	0.101	0.081	0.092	0.097	0.096 0.09
PM ₁₀	90th percentile	NS	1	32	10.2	32	36	32	12.4	22	25	28 28
SO.	arithmetic mean	Down	2	0.02	0.007	0.008	0.008	0.006	0.006	0.005	0.005	0.006 0.005
002	2nd max 24-hour	Down	2	0.029	0.026	0.027	0.026	0.027	0.025	0.019	0.02	0.021 0.021
LAWTON, OK												
PM ₁₀	90th percentile	NS	1	51	43	41	35	43	44	44	48	48 48
I EWISTON-ALL	RIIRN ME	NS	1	29.9	27.1	25.5	27	21.1	25.3	27.8	20.2	20.2 20.2
PM ₁₀	90th percentile	Down	1	41	50	43	49	35	37	31	35	31 31
10	weighted annual mean	Down	1	24.7	28.5	24	24.3	20.2	19.8	20	20.6	18.2 18.6
SO ₂	arithmetic mean	Down	1	0.007	0.006	0.005	0.007	0.006	0.004	0.004	0.004	0.004 0.004
	2nd max 24-hour	Down	1	0.027	0.023	0.02	0.025	0.025	0.02	0.018	0.017	0.019 0.016
CO	2nd max 8-hour	NS	1	37	49	3.8	65	42	3	31	52	52 52
NO ₂	arithmetic mean	Down	1	0.017	0.016	0.016	0.017	0.016	0.017	0.014	0.014	0.011 0.013
O ₃ -	4th max 8-hour	NS	3	0.078	0.074	0.065	0.079	0.088	0.085	0.079	0.079	0.087 0.087
5.4	2nd daily max 1-hour	_up	3	0.097	0.088	0.08	0.099	0.104	0.103	0.088	0.096	0.105 0.107
PM ₁₀	90th percentile	Down	3	48.333	46.333	40	42	45.667	40.333	39 3	37.333	39.333 40
SO.	arithmetic mean	NS	3 1	29.4	29.133	24.9	24.033	27.933	24.7	24.033 /	22.433	23.333 23.033
002	2nd max 24-hour	NS	1	0.02	0.025	0.03	0.026	0.037	0.016	0.02	0.016	0.023 0.02
LIMA, OH												
O ₃	4th max 8-hour	NS	1	0.084	0.09	0.082	0.09	0.089	0.092	0.092	0.083	0.089 0.093
50	2nd daily max 1-nour	NS	1	0.096	0.102	0.1	0.099	0.102	0.106	0.11	0.091	0.102 0.107
002	2nd max 24-hour	Down	1	0.026	0.021	0.02	0.003	0.036	0.005	0.005	0.005	0.017 0.013
LINCOLN, NE												
CO	2nd max 8-hour	NS	2	6.15	7.4	4.45	4.25	3.95	4.85	3.35	5	4.25 4.1
03	4th max 8-hour	NS	1	0.057	0.06	0.067	0.049	0.062	0.06	0.054	0.054	0.058 0.053
PM.	90th percentile	NS	2	0.007 49	52.5	0.074 42	38	45.5	44.5	0.00	38.5	40 40
10	weighted annual mean	NS	2	28.65	29.85	25.2	26.05	27.8	24.75	28.15	24.25	26.1 26.1
LITTLE ROCK-	NORTH LITTLE ROCK, AR											
NO ₂	arithmetic mean	NS	1	0.009	0.009	0.012	0.009	0.011	0.011	0.011	0.01	0.011 0.011
O_3	4th max 8-hour 2nd daily max 1-hour	NS NS	2	0.08	0.078	0.076	0.076	0.076	0.086	0.077	0.077	0.078 0.083
PM ₁₀	90th percentile	NS	4	48.75	42.5	47.25	44.25	46.5	50	40.5	42.25	42.25 42.25
10	weighted annual mean	Down	4	28.5	25.1	27.9	26.925	27.225	29.225	26.2	24.525	24.525 24.525
SO ₂	arithmetic mean	Down	1	0.003	0.003	0.005	0.006	0.003	0.002	0.002	0.002	0.002 0.002
	2nd max 24-hour	Down	1	0.014	0.012	0.012	0.017	0.009	0.008	0.009	0.006	0.006 0.005
	4th max 8-hour	up	1	0.088	0.081	0 079	0.093	0.081	0 102	0.082	0 091	0 104 0 105
•3	2nd daily max 1-hour	ŇŠ	1	0.13	0.11	0.101	0.114	0.104	0.145	0.106	0.124	0.129 0.134
LOS ANGELES	-LONG BEACH, CA											
CO	2nd max 8-hour	Down	13	8.962	8.8	7.815	6.808	8.015	7.469	6.846	6.562	6.069 5.8
	max quarterly mean	Down	б 13	0.093	0.102	0.079	0.064	0.061	0.049	0.046	0.052	0.038 0.061
Ω_{c}	4th max 8-hour	Down	13	0.041	0.041	0.030	0.030	0.039	0.030	0.035	0.033	0.033 0.035
\cup_3	2nd daily max 1-hour	Down	14	0.185	0.123	0.2	0.174	0.169	0.152	0.142	0.124	0.147 0.111
PM ₁₀	90th percentile	Down	9	78	79.556	64.111	65.333	59.111	63.556	60.667 \$	56.556	54.778 60.333
-	weighted annual mean	Down	9	48.667	52.522	41.078	40.467	39.144	39.156	37.967	38.556	33.411 39.1
SO_2	arithmetic mean	Down	4	0.003	0.003	0.004	0.003	0.003	0.003	0.003	0.003	0.003 0.003
	2110 1110A 24-11UUI	GNI	4	0.012	0.013	0.013	0.011	0.008	0.000	0.000	0.007	0.009 0.01

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
LOUISVILLE, K	Y-IN												
CO	2nd max 8-hour	Down	4	5.85	5.85	5.15	5.35	5.875	4.4	3.9	4.95	4.375	3.925
NO_2	arithmetic mean	NS	1	0.012	0.012	0.012	0.013	0.014	0.012	0.013	0.013	0.012	0.014
03 ⁻	4th max 8-hour	up	5	0.079	0.086	0.071	0.091	0.092	0.09	0.087	0.089	0.096	0.094
<u> </u>	2nd daily max 1-hour	NS	5	0.107	0.108	0.091	0.123	0.116	0.116	0.109	0.12	0.121	0.112
PM ₁₀	90th percentile	Down	6	54.667	49.833	47.5	50.833	47 -	46.167	43.667	48.167	41.833	42.5
	weighted annual mean	Down	6	32.767	32.25	30.3	29.117	30.283	28.65	26.483	28.717	26.333	25
SO ₂	arithmetic mean	Down	4	0.01	0.01	0.009	0.01	0.01	0.008	0.007	0.007	0.007	0.008
	2nd max 24-hour	Down	4	0.041	0.037	0.034	0.035	0.04	0.028	0.031	0.031	0.033	0.026
LOWELL, MA-N	NH	_											
CO	2nd max 8-hour	Down	1	7.3	5.8	5.9	5.1	6.5	7.8	4.5	3.6	3.4	4.2
LUBBOCK, IX	0011										07	07	07
PM ₁₀	90th percentile	Down	1	36	39	34	30	33	34	34	27	27	27
	weighted annual mean	Down	1	23.8	25.3	22.1	19.9	23	20.8	21.7	16.6	16.6	16.6
LYNCHBURG, V		NO	4	40		20		22	40	20	07	22	22
PINI ₁₀	90th percentile	NS Deur	1	43	41 07 F	39	25 5	33	49	30	37	33	200
	weighted annual mean	Down	I	24.3	27.5	23.5	25.5	23.2	23.0	22.5	23	20.0	20.0
	Ath max 8 hour	NS	1	0 070	0 070	0 070	0.066	0.071	0.08	0 070	0 070	0.076	0.085
O_3	2nd daily max 1 hour	NS	1	0.079	0.079	0.079	0.000	0.071	0.00	0.079	0.079	0.070	0.000
DM	00th percentile	NS	2	37	38	35	36.5	32.5	/12	30.5	33.5	36.5	37
1 10110	weighted annual mean	NS	2	22 95	23 75	22	20.15	21.3	22 15	20.05	20 15	23 35	20 55
MANCHESTER	NH	NO	2	22.00	20.70	~~~	20.10	21.0	22.10	20.00	20.10	20.00	20.00
PM.,	90th percentile	Down	2	33.5	37.5	31	36.5	33.5	26	28	28.5	26.5	27
1 10110	weighted annual mean	Down	2	19 55	19.9	18 2	17 95	15 25	14 25	16	18 55	15 05	15 6
MANSFIELD. O	H	20111	-	10100									
PM ₁₀	90th percentile	NS	1	42	40	39	44	49	42	40	39	41	39
10	weighted annual mean	Down	1	27.1	26.7	26.4	27.7	29.2	24.7	24.3	23.3	23.8	22.6
MEDFORD-ASH	HLAND, OR												
CO	2nd max 8-hour	Down	1	8.2	8.1	6.4	6.9	6.2	5.3	6.4	5.7	5.2	5.7
O ₃	4th max 8-hour	NS	1	0.081	0.081	0.081	0.066	0.068	0.071	0.075	0.063	0.085	0.065
	2nd daily max 1-hour	NS	1	0.112	0.112	0.112	0.082	0.087	0.091	0.101	0.074	0.117	0.077
PM ₁₀	90th percentile	Down	4	66.75	62.25	51.75	52.5	46.75	36	35	36.25	32.5	46.75
	weighted annual mean	Down	4	35.35	34.35	30.675	29.725	27.95	21.75	20.975	22.775	20.925	23.575
MELBOURNE-	TITUSVILLE-PALM BAY, FL												
O_3	4th max 8-hour	NS	2	0.074	0.068	0.075	0.073	0.073	0.066	0.068	0.073	0.081	0.074
	2nd daily max 1-hour	NS	2	0.084	0.085	0.084	0.087	0.088	0.08	0.087	0.086	0.092	0.087
PM ₁₀	90th percentile	NS	2	29.5	29.5	29.5	27	23.5	23	25	27.5	32	27
	weighted annual mean	NS	2	16.55	16.55	16.55	17.65	16.5	15.15	16.85	17.6	18.2	17.6
MEMPHIS, IN-	AR-MS	Davia	-	7 40	C 4 4	7.00	7.04	7 00	F 00	F 00	4.00	4.00	4 00
		DOWI	5	1.40	0.14	1.00	1.04	1.20	0.646	0.20	4.90	4.00	4.00
	arithmetic mean	113	4	0.022	0.700	0.026	0.026	0.027	0.040	0.024	0.090	0.933	0.249
	Ath may 8-hour	up	1	0.023	0.024	0.020	0.020	0.027	0.027	0.024	0.020	0.029	0.023
O_3	2nd daily may 1-bour	up	4	0.000	0.000	0.00	0.004	0.000	0.095	0.094	0.007	0.095	0.097
PM	90th percentile	Down	2	50	45	43.5	49	43	44 5	40	43.5	40.5	40
1 10110	weighted annual mean	Down	2	30.6	26 95	28.4	28.5	26 65	27 45	27 45	26	24 65	24 35
SO.	arithmetic mean	Down	1	0 009	0 008	0 009	0 007	0 005	0.005	0.004	0 004	0 004	0 004
002	2nd max 24-hour	Down	1	0.027	0.024	0.03	0.031	0.025	0.019	0.012	0.012	0.012	0.012
MERCED. CA													
NO ₂	arithmetic mean	Down	1	0.015	0.015	0.015	0.015	0.013	0.012	0.012	0.013	0.011	0.012
03 [°]	4th max 8-hour	NS	1	0.102	0.102	0.102	0.096	0.097	0.107	0.102	0.074	0.112	0.105
<u> </u>	2nd daily max 1-hour	NS	1	0.12	0.12	0.12	0.12	0.119	0.13	0.124	0.09	0.14	0.125
MIAMI, FL													
CO	2nd max 8-hour	Down	2	5.95	7.2	6.2	5.25	4.4	4.9	4.45	3.8	3.1	3.95
NO ₂	arithmetic mean	NS	2	0.011	0.011	0.011	0.012	0.01	0.011	0.011	0.012	0.011	0.012
O_3	4th max 8-hour	NS	4	0.067	0.06	0.071	0.075	0.07	0.07	0.069	0.072	0.08	0.074
514	2nd daily max 1-hour	NS	4	0.098	0.091	0.095	0.101	0.093	0.094	0.092	0.098	0.099	0.101
PM ₁₀	90th percentile	Down	4	38	38	39.5	36.25	34.75	33.75	38.25	30.25	35.25	31.75
	weighted annual mean	Down	4	27	25.725	25.95	26.85	25.075	25.05	25.7	23	25.75	23.1
SO_2	arithmetic mean	NS	1	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.001
	2nd max 24-hour	NS	1	0.003	0.003	0.005	0.004	0.004	0.004	0.005	0.004	0.004	0.003
WIDDLESEX-S	UNIERSEI-HUNIERDON, NJ	Dever	4		4.0		0.7	4.0	F 0			~	
	Zitu max 8-nour	Down	1	5.4	4.2	3.9	3.7	4.3	5.3	3.3	3.8	3	3.2
PD O	Ath max 9 hour	NS NC	1	0.302	1.148	1.215	0.333	0.123	0.007	0.001	0.079	0.00	0.102
O_3	401 Max 0-MOUI	NS NC	1	0.11	0.109	0.094	0.102	0.094	0.102	0.089	0.103	0.090	0.109
50	arithmetic mean		1	0.130	0.122	0.119	0.110	0.112	0.115	0.100	0.12	0.110	0.133
002	2nd max 24-hour	Down	1	0.032	0.025	0.026	0.000	0.000	0.018	0.000	0.000	0.018	0.016
		2000		0.002	0.020	0.020	0.010	0.020	5.510	0.02-	0.010	0.010	0.010

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
MILWAUKEE-W	AUKESHA. WI												
CO	2nd max 8-hour	Down	5	4.48	3.72	3.24	4.04	4.5	3.04	1.9	1.98	2.08	1.94
Pb	max guarterly mean	Down	1	0.081	0.055	0.047	0.035	0.032	0.048	0.032	0.03	0.03	0.03
NO ₂	arithmetic mean	Down	1	0.019	0.018	0.018	0.017	0.017	0.017	0.017	0.016	0.016	0.016
O3 -	4th max 8-hour	NS	8	0.084	0.094	0.078	0.076	0.081	0.096	0.083	0.083	0.082	0.091
Ū.	2nd daily max 1-hour	NS	8	0.113	0.136	0.096	0.097	0.117	0.114	0.105	0.117	0.109	0.111
PM ₁₀	90th percentile	Down	4	57.25	48.75	41	44.5	42.25	49	37.5	38.25	41.25	40.5
	weighted annual mean	Down	4	33.2	29.3	25.775	26.1	27.525	26.55	25 2	24.275	26.85	24.05
SO ₂	arithmetic mean	NS	1	0.006	0.005	0.004	0.003	0.004	0.004	0.004	0.004	0.004	0.004
	2nd max 24-hour	NS	1	0.04	0.029	0.023	0.018	0.032	0.025	0.028	0.028	0.022	0.024
MINNEAPOLIS	-ST. PAUL, MN-WI	_											
CO	2nd max 8-hour	Down	3	6.533	1.167	5.867	5.233	6.4	5.967	5.133	4.5	4.933	4.033
PD	max quarterly mean	Down	4	0.588	0.246	0.197	0.093	0.052	0.181	0.092	0.072	0.05	0.127
NO ₂	arithmetic mean	NS	1	0.017	0.016	0.016	0.018	0.019	0.017	0.019	0.017	0.018	0.016
O_3	4th max 8-hour	NS NC	4	0.068	0.07	0.074	0.058	0.07	0.076	0.068	0.073	0.071	0.073
DM	20th perceptile	INS NS	4	13 120	12 286	27 286	0.074	25 286	0.101	25 857 1	0.000	20 420	20 4 20
r IVI ₁₀	weighted appual mean	NS NS	7	43.429	42.200	27 242	22 057	21 820	22 886	20.007	04.200	29.429 22 813	29.429 24 257
50	arithmetic mean	Down	6	0.004	0.005	0 004	0.003	0.003	0.003	0.003	0.003	0.002	0.002
002	2nd max 24-hour	Down	6	0.00-	0.000	0.004	0.000	0.000	0.005	0.000	0.005	0.002	0.002
		Down	0	0.020	0.021	0.020	0.02	0.017	0.010	0.010	0.010	0.010	0.014
0.	4th max 8-hour	NS	2	0.081	0 054	0 075	0 071	0 071	0 077	0 077	0 076	0 088	0.082
03	2nd daily max 1-hour	NS	2	0 105	0.075	0.098	0.09	0.088	0 108	0 102	0 107	0 107	0 107
PM ₄₀	90th percentile	Down	4	49.5	48.5	51.25	51.25	51	42.75	39.75	44.5	46.75	38
10	weighted annual mean	Down	4	30.65	31.85	33.7	32.4	31.4	28.8	24.6	26.35	29.975	24.5
SO ₂	arithmetic mean	NS	1	0.008	0.009	0.01	0.01	0.011	0.009	0.009	0.008	0.009	0.008
2	2nd max 24-hour	NS	1	0.038	0.05	0.054	0.066	0.052	0.053	0.07	0.049	0.073	0.041
MODESTO, CA													
CO	2nd max 8-hour	Down	2	7.3	6.75	5	4.65	5.1	4.2	4.3	3.7	4.3	4.85
Pb	max quarterly mean	Down	1	0.036	0.036	0.019	0.018	0.019	0.012	0.01	0.011	0.011	0.011
NO ₂	arithmetic mean	Down	2	0.023	0.023	0.021	0.02	0.02	0.019	0.019	0.019	0.019	0.02
O_3	4th max 8-hour	NS	2	0.096	0.091	0.089	0.093	0.09	0.099	0.096	0.086	0.103	0.089
	2nd daily max 1-hour	NS	2	0.115	0.11	0.11	0.12	0.112	0.125	0.124	0.11	0.14	0.109
PM ₁₀	90th percentile	Down	2	85	101	68.5	72	54	68	40.5	47.5	37.5	37.5
	weighted annual mean	Down	2	43.85	48.4	39.45	40.15	37	34.3	28.35	29.6	22.55	22.55
MONMOUTH-O	CEAN, NJ	David	0	- -	E 45	4.05	5 0	4.0	0.75		0.05	2	~ ~
00	2nd max 8-nour	Down	2	5.7	5.45	4.05	5.3	4.9	3.75	4.4	3.05	3	3.3
O_3	4 III IIIax o-nour	INS NC	2	0.090	0.101	0.09	0.099	0.092	0.115	0.095	0.104	0.099	0.1
		113	2	0.134	0.14	0.155	0.129	0.117	0.140	0.121	0.141	0.132	0.127
	Ath max 8-bour	NS	1	0.078	0.067	0.076	0.085	0.078	0 088	0.076	0.07	0 001	0.077
03	2nd daily max 1-hour	NS	1	0.070	0.007	0.095	0.000	0.070	0.000	0.070	0.087	0.001	0.096
PM	90th percentile	NS	1	41	44	39	34	36	43	37	40	39	38
10	weighted annual mean	NS	1	26.9	25.8	24.2	22.8	25	26.1	22.5	23.9	27.8	23.9
MYRTLE BEAC	H. SC		-										
Pb	max guarterly mean	NS	1	0.013	0.013	0.011	0.007	0.005	0.007	0.003	0.006	0.01	0.009
NASHUA, NH													
CO	2nd max 8-hour	Down	2	7.05	6.85	6.8	5.15	7.45	6.75	7.7	4.65	4.45	4.4
NO ₂	arithmetic mean	NS	1	0.016	0.016	0.015	0.016	0.015	0.014	0.019	0.016	0.015	0.015
O ₃	4th max 8-hour	NS	2	0.08	0.089	0.084	0.085	0.081	0.083	0.083	0.088	0.073	0.076
	2nd daily max 1-hour	NS	2	0.096	0.103	0.098	0.113	0.099	0.102	0.101	0.109	0.089	0.089
PM ₁₀	90th percentile	Down	3	32	34	29	27.667	31	25	28.667	29	27.333	26.333
	weighted annual mean	Down	3	17.7	19.067	16.867	16.033	14.133	13.467	15.733	7.267	15.667	15.533
SO_2	arithmetic mean	NS	3	0.007	0.005	0.006	0.006	0.006	0.005	0.005	0.006	0.005	0.005
	2nd max 24-nour	Down	3	0.036	0.024	0.025	0.022	0.028	0.023	0.021	0.025	0.019	0.019
NASHVILLE, II	N Ond may 9 hour	Down	2	E 022	F	E E 2 2	6.4	E 400	4 0 0 0	2 967	4 700	4 267	4 4 9 9
Dh	2110 IIIdx 0-11001	Down	5	1 257	1 064	0.000	0.4	0.400	4.000	0.574	4.733	4.307	4.433
FD NO	arithmetic mean	NS	1	0.012	0.01	0.909	0.007	0.933	0.014	0.074	0.033	0.74	0.002
	Ath max 8 hour	110	6	0.012	0.01	0.014	0.012	0.02	0.014	0.012	0.012	0.011	0.019
O_3	2nd daily max 1-bour	up	6	0.009	0.00	0.075	0.079	0.000	0.000	0.007	0.09	0.091	0.095
РM	90th percentile	Down	6	56 833	51 667	17 833	47 167	51	50	13 167	16 667	1/ 833	1/
1 10110	weighted annual mean	Down	6	36 367	34 75	30.55	30.95	30 217	30 733	28 383 2	28 183	28 067	27 217
SO.	arithmetic mean	Down	ž	0.013	0.012	0 008	0.01	0.007	0.005	0.006	0.006	0.005	0.004
002	2nd max 24-hour	NS	2	0.08	0.078	0.028	0.063	0.041	0.025	0.049	0.059	0.035	0.029
NASSAU-SUFF	OLK, NY		-	5.00									
CO	2nd max 8-hour	Down	1	7.2	6.6	5.6	5.6	5.4	5	4.9	4.7	4	4.5
NO ₂	arithmetic mean	Down	1	0.028	0.029	0.026	0.026	0.028	0.025	0.026	0.025	0.022	0.024
03	4th max 8-hour	NS	2	0.1	0.1	0.09	0.097	0.09	0.109	0.089	0.102	0.093	0.099
3	2nd daily max 1-hour	NS	2	0.132	0.147	0.123	0.13	0.121	0.141	0.118	0.133	0.126	0.13
PM ₁₀	90th percentile	Down	2	53.5	53.5	38	41.5	38.5	32.5	28.5	33.5	30	28
.0	weighted annual mean	Down	2	26.85	26.85	22.25	23.05	22.65	19.1	18.05	20.25	18.4	17.3
SO ₂	arithmetic mean	Down	2	0.009	0.009	0.008	0.008	0.007	0.005	0.007	0.006	0.006	0.007
	2nd max 24-hour	Down	2	0.045	0.039	0.039	0.033	0.037	0.03	0.028	0.029	0.028	0.032

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
	D. MA												
0,	4th max 8-hour	NS	1	0.099	0.101	0.087	0.073	0.077	0.107	0.092	0.092	0.083	0.098
- 3	2nd daily max 1-hour	NS	1	0.126	0.132	0.109	0.088	0.096	0.138	0.118	0.123	0.101	0.125
PM	90th percentile	NS	1	34	35	29	24	37	21	27	29	25	25
10	weighted annual mean	Down	1	23	204	174	16.8	191	14.3	16 1	17.8	16	16
NEW HAVEN-M		Boun		20	20.1		10.0	10.1	11.0	10.1		10	10
NO.	arithmetic mean	NS	1	0.027	0.028	0.025	0 027	0.03	0.025	0.026	0 024	0 027	0.026
	Ath max 8-hour	NS	2	0.027	0.020	0.020	0.027	0.00	0.020	0.020	0.024	0.027	0.020
03	2nd daily max 1-bour	NS	2	0.120	0.110	0.004	0.034	0.000	0.100	0.000	0.033	0.000	0.030
DM	20th percentile	Down	6	18 833	57 667	16	51 167	51 833	40.5	36 167	35 667	36 167	37
r IVI ₁₀	weighted appual mean	Down	6	40.000	33 493	26 733	28 583	20.067	23 617	22 217	22 567	22 117	22 8
50	arithmetic mean	Down	2	0.033	0.01	20.733	20.000	29.007	0.006	0.006	0.005	0.005	0.006
30 ₂	and max 24 hour	Down	2	0.01	0.01	0.009	0.000	0.000	0.000	0.000	0.005	0.005	0.000
		Down	2	0.045	0.055	0.042	0.030	0.049	0.031	0.027	0.020	0.020	0.020
		NO	4	0.405	0 407	0 000	0 000	0 000	0 4 0 4	0.005	0 4 0 4	0 000	0.000
O_3	4th max 8-hour	NS	1	0.105	0.107	0.088	0.099	0.093	0.101	0.095	0.104	0.083	0.096
DM	2nd daily max 1-hour	NS	1	0.158	0.135	0.12	0.126	0.118	0.14	0.121	0.15	0.116	0.127
PINI ₁₀	90th percentile	Down	2	34.5	40	32	30.5	38.5	28.5	30.5	28.5	27.5	25
	weighted annual mean	Down	2	20.65	23.55	19.75	18.25	22.1	17.2	18.8	18.3	17.35	16.1
SO_2	arithmetic mean	Down	1	0.008	0.007	0.006	0.006	0.005	0.005	0.005	0.004	0.004	0.004
	2nd max 24-hour	Down	1	0.029	0.027	0.025	0.019	0.029	0.017	0.016	0.022	0.018	0.018
NEW ORLEANS	S, LA	_											
CO	2nd max 8-hour	Down	2	4.85	4.15	5.35	5.1	4.6	3.55	3.95	3.25	3.15	3.2
Pb	max quarterly mean	NS	1	0.049	0.049	0.049	0.073	0.12	0.411	0.093	0.053	0.114	0.077
NO ₂	arithmetic mean	NS	2	0.016	0.015	0.017	0.016	0.015	0.016	0.015	0.014	0.016	0.017
O_3	4th max 8-hour	up	6	0.079	0.072	0.077	0.079	0.082	0.083	0.08	0.078	0.081	0.085
	2nd daily max 1-hour	NS	6	0.104	0.1	0.101	0.104	0.11	0.11	0.103	0.1	0.108	0.105
PM_{10}	90th percentile	Down	1	44	48	39	42	40	37	31	36	36	36
	weighted annual mean	NS	1	27.2	26.3	26.6	24.7	25.3	24.3	22.3	25.2	25.2	25.2
SO ₂	arithmetic mean	NS	1	0.003	0.005	0.005	0.006	0.008	0.007	0.006	0.005	0.004	0.005
2	2nd max 24-hour	NS	1	0.013	0.028	0.019	0.025	0.027	0.022	0.035	0.017	0.026	0.023
NEW YORK, NY	(
CO	2nd max 8-hour	Down	5	7.1	6.7	6.1	5.26	5.94	6.52	4.56	3.64	3.72	4.12
Pb	max quarterly mean	NS	1	0.164	0.124	0.106	0.163	0.14	0.124	0.156	0.155	0.137	0.095
NO	arithmetic mean	Down	2	0.043	0.043	0.037	0.04	0.042	0.039	0.039	0.038	0.038	0.037
0.	4th max 8-hour	NS	5	0.098	0 105	0.078	0.087	0.092	0.096	0.088	0 103	0.09	0 101
03	2nd daily max 1-hour	NS	5	0.000	0.100	0.116	0 115	0.002	0.000	0.000	0.100	0 116	0.134
PM	90th percentile	NS	12	51 917	46 167	40.5	41	46 583	40 583	30 583	40.833	41 417	40 417
10	weighted annual mean	Down	12	30.6	20 225	26.25	25/33	27 025	25 325	26 133	25 033	25 125	23.85
80	arithmetic mean	Down	7	0.014	0.014	0.013	0.012	0.013	0.020	20.100 /	0.000	0 000	0.000
50_{2}	2nd max 24 hour	Down	7	0.014	0.014	0.013	0.012	0.013	0.01	0.01	0.003	0.000	0.003
	2110 1118X 24-11001	Down	'	0.054	0.040	0.051	0.059	0.004	0.050	0.04	0.055	0.05	0.052
NEWARK, NJ	and may 9 hour	Down	2	7 1	0 222	E 622	1 022	7 667	6 022	E 067	16	2 667	4 967
	2110 IIIdX 0-11001	DOWII	3	0.020	0.000	0.000	4.933	1.007	0.033	0.007	4.0	0.007	4.007
		INS NG	4	0.029	0.020	0.03	0.020	0.03	0.020	0.029	0.020	0.029	0.029
O_3	4th max 8-hour	NS	2	0.096	0.105	0.085	0.092	0.09	0.105	0.087	0.097	0.092	0.1
DM	2nd daily max 1-hour	NS	2	0.127	0.125	0.105	0.115	0.114	0.12	0.115	0.11	0.116	0.121
PM ₁₀	90th percentile	NS	3	55	52.333	44	52	57.333	46	48.667	48.667	44.667	47.333
	weighted annual mean	NS	3	30.633	29.9	28.733	30.133	34.567	27.833	31.4	30.933	27.8	29.6
SO ₂	arithmetic mean	Down	4	0.01	0.01	0.009	0.007	0.008	0.006	0.006	0.006	0.006	0.006
	2nd max 24-hour	Down	4	0.04	0.035	0.04	0.025	0.033	0.025	0.027	0.023	0.021	0.021
NEWBURGH, N	IY-PA	_											
Pb	max quarterly mean	Down	2	1.01	0.655	0.577	0.344	0.081	0.079	0.059	0.198	0.1	0.198
NORFOLK-VIR	GINIA BEACH-NEWPORT N	EWS,VA-N											
CO	2nd max 8-hour	NS	3	4.533	5.133	4.333	4.967	5.367	4.267	4.3	4.033	4.633	3.767
NO ₂	arithmetic mean	NS	1	0.019	0.02	0.02	0.021	0.019	0.018	0.018	0.019	0.019	0.017
O3	4th max 8-hour	NS	3	0.085	0.083	0.086	0.094	0.081	0.083	0.077	0.092	0.088	0.094
-	2nd daily max 1-hour	NS	3	0.104	0.103	0.125	0.119	0.101	0.105	0.094	0.111	0.103	0.125
PM ₁₀	90th percentile	NS	2	37.5	43	36	41	30.5	34	33	35.5	36	33.5
10	weighted annual mean	NS	2	24.5	25.15	21.6	23.45	19.8	19.7	20.8	21.6	21.85	20.45
SO ₂	arithmetic mean	Down	2	0.007	0.007	0.006	0.007	0.007	0.006	0.006	0.006	0.006	0.006
2	2nd max 24-hour	Down	2	0.025	0.022	0.024	0.026	0.024	0.022	0.022	0.025	0.02	0.018
OAKLAND. CA							=				2		
CO	2nd max 8-hour	Down	5	4.92	4.98	4.14	3.54	3.72	2,82	2.96	3	2.98	3.2
Ph	max quarterly mean	Down	2	0 073	0 061	0 022	0 024	0 017	0.028	0.012	0 008	0.008	0 008
NO.	arithmetic mean	Down	2	0 021	0.001	0.022	0 02	0 02	0 010	0.012	0.017	0.018	0.010
0.	4th max 8-hour	NS	7	0.062	0.065	0.067	0.060	0.065	0.082	0.073	0.06	0.060	0.073
O_3	2nd daily may 1 hour	NO	7	0.002	0.000	0.007	0.009	0.000	0.002	0.073	0.00	0.009	0.075
DM	20th perceptile	Down	1	59 667	64 667	11 222	0.100	0.099	36 667	34 667	22 667	28 667	32 667
r IVI ₁₀	sour percentile	Down	3	20.00/	04.00/	96 767	22 722	220	21 167	34.007	02.00/	20.00/	02.007
80	weighteu annual mean	Down	3	32.201	34.1	20./0/	23.133	23.87	21.10/	21.90/	21.733	19.033	21.207
50 ₂	anumetic mean	NS	3	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
	∠nu max ∠4-nour	NS	3	0.011	0.01	0.009	0.01	0.007	0.007	0.007	0.008	0.009	0.013

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	7 1998	3 1999
OKLAHOMA CI	TY. OK												
CO	2nd max 8-hour	Down	2	4.5	3.9	4.3	5.15	4.25	3.8	3.95	4	3.35	3.35
Pb	max guarterly mean	Down	1	0.036	0.039	0.029	0.017	0.013	0.017	0.008	0.001	0.001	0.001
NO ₂	arithmetic mean	NS	3	0.012	0.011	0.011	0.011	0.012	0.012	0.012	0.013	0.012	0.012
O3 -	4th max 8-hour	up	4	0.075	0.078	0.073	0.071	0.078	0.085	0.078	0.08	0.086	0.081
-	2nd daily max 1-hour	NS	4	0.098	0.099	0.093	0.092	0.093	0.11	0.094	0.098	0.107	0.092
PM ₁₀	90th percentile	NS	4	36	34.5	34	34.25	33.75	37.5	39	38.5	38.5	38.5
	weighted annual mean	NS	4	21.525	22.2	21.65	20.875	21.05 2	21.425	24.225	21.85	21.85	21.85
OLYMPIA, WA		_											
PM ₁₀	90th percentile	Down	1	44	43	42	49	30	35	30	36	22	25
	weighted annual mean	Down	1	23.0	25	23.8	23.8	17.4	17.2	15.0	16.4	14.2	14.4
	and may 8 hour	NC	2	E 1 E	E 0	5.0	F 2	2.05	55	1 05	1 2	5.2	5 75
CO Ph	2110 IIIdX 0-11001	NO	2	0.15	0.752	1 3 2 0	1 20	1 694	1 032	4.00	4.2	0.046	0 101
	Ath max 8 hour	NG	3	0.041	0.752	0.063	0.05	0.06	0.063	0.056	0.040	0.040	0.101
O_3	2nd daily max 1-bour	NS	3	0.00	0.004	0.003	0.05	0.00	0.003	0.050	0.002	0.004	0.072
PM	90th percentile	NS	7	63 286	58 571	62 429	47 857	51 857	51 857	49 143	51 571	60 4 29	71
1 10110	weighted annual mean	NS	7	37 157	36 357	35 529	31	32 957	29 586	32.7	32 714	34 486	39 029
ORANGE COUL	NTY. CA		•	01.101	00.001	00.020	01	02.001	20.000	02.7	02.7 1 1	01.100	00.020
CO	2nd max 8-hour	Down	4	8.275	6.95	7.475	5.8	7.325	5.725	5.75	4.775	5	4.65
NO ₂	arithmetic mean	Down	3	0.039	0.038	0.034	0.032	0.034	0.033	0.029	0.028	0.029	0.029
03	4th max 8-hour	Down	4	0.106	0.099	0.105	0.094	0.097	0.084	0.082	0.073	0.084	0.069
5	2nd daily max 1-hour	Down	4	0.173	0.18	0.17	0.15	0.155	0.12	0.12	0.108	0.138	0.111
PM ₁₀	90th percentile	NS	2	75	67.5	53	57	53.5	68	46.5	50	52	69
	weighted annual mean	NS	2	45.45	41.25	37.2	36.3	35.6	40.55	32.65	37	33.3	40.5
SO ₂	arithmetic mean	NS	1	0.002	0.002	0.002	0.002	0.002	0.003	0.001	0.001	0.002	0.002
	2nd max 24-hour	Down	1	0.008	0.007	0.008	0.006	0.005	0.005	0.004	0.006	0.005	0.005
ORLANDO, FL		_											
CO	2nd max 8-hour	Down	2	4.45	3.55	3.85	3.8	3.6	3.3	3.25	3.55	2.95	2.75
NO ₂	arithmetic mean	NS	1	0.012	0.012	0.011	0.012	0.011	0.01	0.013	0.013	0.011	0.012
O_3	4th max 8-hour	NS	3	0.081	0.07	0.081	0.081	0.079	0.075	0.074	0.078	0.087	0.081
DM	2nd daily max 1-nour	NS NC	3	0.112	0.093	0.1	0.098	0.098	0.097	0.097	20.0	0.106	0.1
PIN ₁₀	90th percentile	NO	5	30.Z	24 56	34.0	21.60	29.4	20 14	21.0	21 04	22.00	ა∠.4 ეე ეე
80	arithmetic mean	NO	1	24.0	24.50	22.0	21.00	21.00	20.14	21.30	21.04	22.90	0.002
302	2nd max 24-hour	NS	1	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
OWENSBORO.	KY	NO	1	0.011	0.007	0.007	0.011	0.012	0.000	0.000	0.000	0.007	0.007
NO ₂	arithmetic mean	NS	1	0.011	0.011	0.012	0.012	0.012	0.013	0.011	0.012	0.013	0.011
0,2	4th max 8-hour	NS	1	0.086	0.075	0.075	0.081	0.092	0.088	0.086	0.087	0.086	0.09
- 3	2nd daily max 1-hour	NS	1	0.11	0.09	0.085	0.106	0.107	0.109	0.107	0.108	0.11	0.102
PM ₁₀	90th percentile	NS	3	45.333	44.667	45	44.667	44.667	48.333	41.333	42	43.333	43
10	weighted annual mean	Down	3	29.033	29.233	26.7	25.1	28.7	27	24.167	24.267	24.633	24.3
SO_2	arithmetic mean	Down	1	0.009	0.009	0.009	0.009	0.009	0.007	0.007	0.007	0.007	0.006
	2nd max 24-hour	Down	1	0.038	0.044	0.053	0.05	0.035	0.028	0.02	0.027	0.023	0.024
PARKERSBUR	G-MARIETTA, WV-OH												
Pb	max quarterly mean	NS	1	0.019	0.015	0.024	0.017	0.014	0.019	0.023	0.011	0.011	0.011
O_3	4th max 8-hour	NS	2	0.084	0.102	0.08	0.092	0.095	0.097	0.088	0.085	0.093	0.096
DM	2nd daily max 1-nour	NS	2	0.113	0.12	0.150	0.114	0.113	0.117	0.107	0.106	0.113	0.121
PIN ₁₀	90th percentile		1	40	40	40	20.0	27.2	40	24	23	22 4	20 5
80	arithmetic mean	DOWI	1	27.2	0.014	27.2	29.2	27.3	20.0	22.7	23.1	23.1	20.5
302	2nd may 21-bour	NS	1	0.014	0.014	0.014	0.014	0.017	0.01	0.01	0.01	0.013	0.013
PENSACOLA P		NO		0.004	0.00	0.000	0.000	0.004	0.041	0.040	0.002	0.000	0.000
0,	- 4th max 8-hour	NS	2	0.088	0.075	0.087	0.08	0.085	0.083	0.079	0.085	0.095	0.084
- 3	2nd daily max 1-hour	NS	2	0.112	0.103	0.104	0.102	0.108	0.117	0.098	0.11	0.121	0.102
SO ₂	arithmetic mean	Down	2	0.008	0.007	0.008	0.006	0.005	0.003	0.004	0.004	0.004	0.004
2	2nd max 24-hour	Down	2	0.074	0.063	0.063	0.047	0.045	0.023	0.024	0.031	0.023	0.024
PEORIA-PEKIN	I, IL												
CO	2nd max 8-hour	Down	1	7.4	6.3	7.2	7.3	5.7	5.6	4.6	4.7	5.8	4.6
Pb	max quarterly mean	Down	1	0.035	0.021	0.024	0.032	0.019	0.026	0.024	0.019	0.017	0.017
O ₃	4th max 8-hour	NS	2	0.071	0.079	0.075	0.064	0.075	0.082	0.081	0.072	0.076	0.082
	2nd daily max 1-hour	NS	2	0.084	0.096	0.09	0.079	0.089	0.094	0.089	0.086	0.085	0.098
PM ₁₀	90th percentile	Down	2	45	42.5	44.5	36.5	40.5	40	33.5	40	40.5	39.5
	weighted annual mean	NS	2	27.45	26.35	28.25	21.55	23.3	21.55	22.35	26.45	25.9	24.65
SO ₂	arithmetic mean	NS	2	0.007	0.008	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.006
	2nd max 24-hour	Down	2	0.055	0.065	0.043	0.039	0.05	0.084	0.045	0.042	0.041	0.036

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	3 1994 	1995	5 1996	6 1997	7 1998	B 1999
PHILADELPHIA	A. PA-NJ												
CO	2nd max 8-hour	Down	9	4 933	4 578	4 7 2 2	4 689	5 222	4 089	4 189	3 322	31	3 4 2 2
Ph	max quarterly mean	NS	10	0.535	0.354	0.563	0.856	0.537	0.694	0.921	0 769	0 273	0.475
NO.	arithmetic mean	NS	7	0.025	0.025	0.025	0.025	0.026	0.025	0.026	0.025	0.025	0.023
	4th max 8-hour	NS	8	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
O_3	2nd daily max 1-bour	NS	8	0.100	0.105	0.03	0.033	0.031	0.100	0.033	0.105	0.037	0.101
РM	90th percentile	Down	7	5/ 1/3	56 714	0.113	50 1/3	55 71/	51 286	16 857	50 571	15 120	12 / 20
1 10 10	weighted annual mean	Down	7	31 286	33.0	28 629	29 543	32 714	29 914	29 471	29 471	27 329	24 557
50	arithmetic mean	Down	13	0.01	0.00	0.023	0.008	0 000	0.007	0.007	0.007	0.006	0.006
002	2nd max 24-bour	Down	13	0.01	0.003	0.000	0.000	0.003	0.007	0.007	0.007	0.000	0.000
	Δ Δ7	DOWIT	15	0.059	0.054	0.034	0.031	0.04	0.020	0.020	0.027	0.024	0.025
	2nd max 8 hour	Down	Q	6 65	6 225	6 463	5 088	6 263	6 15	5 65	51	53	5 113
Ph	max quarterly mean	Down	2	0.00	0.225	0.400	0.054	0.203	0.15	0.00	0.023	0.023	0.023
PD O	Ath max 8 hour	NS	2	0.000	0.103	0.000	0.004	0.047	0.039	0.044	0.023	0.023	0.023
O_3	2nd daily may 1 hour	NG	0	0.079	0.074	0.001	0.001	0.00	0.007	0.000	0.00	0.001	0.001
DM	20th perceptile	NG	0	0.109	66 275	62 125	60.075	0.111	64 075	61 275	60 075	62 062	70 975
r ivi ₁₀	weighted appuel mean	NG	0	42.025	42.05	40.4	41 120	40 212	41 075	11 200	46 075	27 704	10.013
80	arithmatic mean	NO	0	42.920	43.05	40.4	41.130	40.213	41.275	41.200	40.075	0.004	44.213
302	and may 24 hour	NO	1	0.003	0.005	0.004	0.003	0.003	0.002	0.003	0.004	0.004	0.003
	2nu max 24-nour	IN S	I	0.011	0.015	0.01	0.009	0.009	0.006	0.017	0.009	0.011	0.012
PINE BLUFF, A			4	20	20	20	20	20	50	20			44
PIVI ₁₀	90th percentile	up	1	39	30	38	39	39	00	39	41	41	41
DITTODUDOU	weighted annual mean	up	1	20.9	19.1	21.9	23.4	24.7	26.4	23.3	24.5	24.5	24.5
PITTSBURGH,	PA		-		4.00		0 70	4.00	0.00	0.00	0.50	0 50	~ 4
00	2nd max 8-nour	Down	5	5.56	4.26	4.8	3.76	4.26	3.82	3.26	2.52	2.56	2.4
PD	max quarterly mean	Down	4	0.088	0.087	0.067	0.066	0.084	0.061	0.042	0.049	0.044	0.046
NO ₂	arithmetic mean	Down	5	0.023	0.023	0.022	0.022	0.023	0.021	0.021	0.02	0.022	0.021
O ₃	4th max 8-hour	NS	8	0.081	0.092	0.074	0.088	0.093	0.099	0.089	0.093	0.097	0.092
	2nd daily max 1-hour	_up	8	0.1	0.11	0.091	0.11	0.114	0.123	0.105	0.117	0.114	0.121
PM ₁₀	90th percentile	Down	19	60.842	59.211	54.605	54.368	62.263	54.579	48.947	51.105	48.368	48.632
	weighted annual mean	Down	19	20.174	20.132	18.121	17.489	19.495	17.105	16.521	16.737	16.174	16.174
SO_2	arithmetic mean	Down	16	0.016	0.015	0.015	0.015	0.015	0.011	0.011	0.011	0.011	0.01
	2nd max 24-hour	Down	16	0.071	0.058	0.072	0.061	0.073	0.044	0.043	0.046	0.042	0.037
PITTSFIELD, M	Α												
O3	4th max 8-hour	Down	1	0.092	0.092	0.087	0.083	0.074	0.072	0.081	0.078	0.071	0.075
	2nd daily max 1-hour	NS	1	0.105	0.103	0.109	0.112	0.085	0.086	0.108	0.087	0.078	0.092
POCATELLO, II	D												
PM ₁₀	90th percentile	Down	4	54	61	61.5	54.75	49.25	40.5	44.25	37.25	35.75	41
	weighted annual mean	Down	4	32.825	34.15	41.675	36.975	29.45	23.85	25.125	23.125	22.4	23.9
PONCE, PR													
PM_{10}	90th percentile	NS	1	47	47	49	53	38	33	35	47	51	51
10	weighted annual mean	NS	1	29.7	29.7	29.4	29.9	26.8	24.1	24.3	28.7	27.5	27.5
PORTLAND, M	E												
0,	4th max 8-hour	NS	1	0.092	0.109	0.097	0.089	0.088	0.096	0.083	0.103	0.089	0.076
5	2nd daily max 1-hour	NS	1	0.125	0.141	0.118	0.112	0.122	0.116	0.1	0.13	0.12	0.105
PM ₄₀	90th percentile	NS	2	39	43.5	38	44	42.5	50	36	42.5	38.5	32.5
10	weighted annual mean	NS	2	25 05	26 15	23 45	25.2	23.8	27.5	23 75	26.05	22 55	20.65
SO ₂	arithmetic mean	Down	1	0.01	0.009	0.008	0.009	0.008	0.006	0.005	0.005	0.005	0.005
	2nd max 24-hour	NS	1	0.034	0.032	0.029	0.032	0.043	0.022	0.021	0.023	0.025	0.025
PORTLAND-VA	NCOUVER, OR-WA		-										
CO	2nd max 8-hour	Down	2	8.45	9.1	6.95	6.3	7	5.65	6.05	5.35	5.05	6.1
0.	4th max 8-hour	NS	4	0.082	0.064	0 073	0.058	0.064	0.066	0.085	0.056	0.069	0.057
03	2nd daily max 1-hour	NS	4	0.116	0.095	0.097	0.087	0.087	0.000	0.115	0.081	0.000	0.079
PM	90th percentile	Down	Ġ	42	43 333	30 167	42 5	36 833	31 333	33	31 833	30.5	31 833
1 10110	weighted annual mean	Down	ĕ	25 1	25 633	22 683	24 85	22 75	19 583	20 067	21 367	18 833	18 617
PORTSMOUTH	-ROCHESTER NH-ME	Down	0	20.1	20.000	22.000	24.00	22.70	10.000	20.007	21.007	10.000	10.017
NO	arithmetic mean	Down	1	0.015	0.015	0.013	0.014	0.013	0.012	0.013	0.013	0 012	0.01
	Ath max 8-hour	NS	2	0.013	0.013	0.013	0.014	0.013	0.012	0.013	0.013	0.012	0.01
O_3	2nd daily max 1 hour	NG	2	0.001	0.101	0.007	0.003	0.032	0.032	0.000	0.030	0.000	0.007
DM	2110 Udily Max 1-1100	Down	2	0.111	25 5	21 5	20.5	0.113	0.124	26 5	0.129	255	0.117
F 1VI ₁₀	weighted appual mean	Down	4	10.0	10 45	100	29.0	11 0	14.0	20.0	29 17 0⊑	20.0 1F 0F	15 75
80	arithmetic mean	Down	4	19.0	0 007	0.00	0.2	0.000	0.004	0.004	0.004	0.004	0.004
302	anumeuc mean and may 24 hour	Down	1	0.007	0.007	0.000	0.000	0.000	0.004	0.004	0.004	0.004	0.004
		Down	I	0.025	0.021	0.027	0.019	0.022	0.017	0.015	0.018	0.016	0.019
PROVIDENCE-	FALL RIVER-WARWICK, RI-MA	Davie	4			~ ~		~ -	-			4 7	~ ~
	∠nu max 8-nour	Down	1	7.3	1.4	6.3	5.4	b./	0 000	4.4	5.6	4./	3.9
	Ath may 9 hour	NS NC	1	0.024	0.025	0.023	0.022	0.022	0.022	0.025	0.025	0.025	0.024
0 ₃	4th max 8-hour	NS	2	0.095	0.104	0.083	0.086	0.087	0.098	0.074	0.092	0.086	0.088
	2nd daily max 1-hour	NS	2	0.131	0.138	0.114	0.109	0.118	0.127	0.1	0.112	0.109	0.116
PM ₁₀	90th percentile	Down	3	44.333	48	40	43	49	37.667	40.667	38.333	36.333	36.333
	weighted annual mean	Down	3	29.167	29.833	24.433	26.433	28.867	23.867	26.7	25.467	22.933	23.767
SO ₂	arithmetic mean	Down	3	0.01	0.01	0.009	0.008	0.008	0.005	0.006	0.006	0.006	0.005
	2nd max 24-hour	Down	3	0.037	0.036	0.042	0.033	0.033	0.023	0.028	0.029	0.027	0.026

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	3 1999
PROVO-OREM.	ит												
NO ₂	arithmetic mean	NS	1	0.019	0.019	0.019	0.026	0.024	0.023	0.024	0.023	0.024	0.024
03 ²	4th max 8-hour	NS	1	0.07	0.067	0.071	0.068	0.069	0.068	0.078	0.07	0.083	0.073
5	2nd daily max 1-hour	NS	1	0.093	0.084	0.089	0.084	0.084	0.083	0.097	0.08	0.102	0.096
PM ₁₀	90th percentile	Down	3	54.667	90.667	68.333	70.667	55.667 4	49.333	57.333	50 4	46.667	51.667
	weighted annual mean	Down	3	32.2	42.433	37	38.233	33.7	29	33.7 2	29.967	27.467	29.7
PUEBLO, CO		_											
PM_{10}	90th percentile	Down	1	43	46	46	38	45	45	42	41	33	33
	weighted annual mean	Down	1	26.3	29.7	26.3	26.1	29.6	26.2	25.8	26.8	21.7	21.7
RACINE, WI		D						4.0		0		•	0.7
00	2nd max 8-hour	Down	1	5.5	5.7	4.9	4.1	4.3	4.3	3	3.1	3	2.7
O_3	4th max 8-hour	NS NC	1	0.080	0.099	0.08	0.08	0.088	0.096	0.083	0.098	0.084	0.093
		INS	I	0.11	0.135	0.102	0.105	0.114	0.115	0.129	0.117	0.124	0.114
	2nd max 8-bour	Down	2	7 15	72	6 4 5	6 25	63	6	55	6 75	53	5.05
0.	4th max 8-hour	NS	1	0.093	0.085	0.40	0.20	0.0	0.081	0.082	0.75	0.0	0 108
O_3	2nd daily max 1-hour	NS	1	0.033	0.000	0.002	0.033	0.000	0.001	0.002	0.037	0.033	0.100
PM.		NS	2	44 5	40.5	35.5	30	31	33 5	30	30	40	36.5
1 10110	weighted annual mean	NS	2	28.6	25 55	24	24 75	21.8	23.3	25.1	24.6	24.4	22 15
RAPID CITY SE)		2	20.0	20.00	27	24.70	21.0	20.0	20.1	24.0	27.7	22.10
PM.	90th percentile	Down	3	50 667	52 333	47 667	45	55 333 4	15 333	42 667 9	51 667	42 333	38
1 10110	weighted annual mean	NS	3	30.367	31 233	28.8	26 233	32 733	26 667	27 1	29.8	26.7	23 833
READING PA	Weighted annual mean	110	Ū	00.001	01.200	20.0	20.200	02.1001	20.001		20.0	20.7	20.000
CO	2nd max 8-hour	Down	1	64	46	46	3.8	54	39	34	3	3	3
Ph	max quarterly mean	Down	12	0.59	0.64	0.558	0.47	0 485	0.343	0.327	0.368	0 4 1 2	0 48
NÔ	arithmetic mean	NS	1	0 022	0.022	0.02	0 021	0.023	0.021	0.022	0.021	0.021	0.021
Ω_{2}	4th max 8-hour	NS	2	0.092	0 104	0.086	0.088	0.084	0.093	0.086	0.092	0.091	0 101
03	2nd daily max 1-hour	NS	2	0 111	0 121	0.099	0 108	0 104	0 112	0 105	0 115	0 105	0 126
SO	arithmetic mean	NS	2	0.01	0.01	0.009	0.009	0.011	0.009	0.009	0.009	0.009	0.009
2	2nd max 24-hour	Down	2	0.035	0.034	0.033	0.033	0.04	0.033	0.036	0.03	0.024	0.026
REDDING. CA			_										
0,	4th max 8-hour	NS	1	0.078	0.066	0.069	0.064	0.078	0.074	0.073	0.067	0.078	0.084
5	2nd daily max 1-hour	NS	1	0.092	0.077	0.08	0.072	0.09	0.089	0.083	0.079	0.089	0.108
PM ₁₀	90th percentile	Down	1	42	56	45	37	39	34	32	30	30	35
10	weighted annual mean	Down	1	25	28.7	24.6	20.1	24.4	19.6	18.7	16.9	17.6	20
RENO, NV	Ū.												
CO	2nd max 8-hour	NS	5	7.02	7.48	5.86	4.98	5.96	4.38	5.16	5.02	4.72	5.34
O ₃	4th max 8-hour	NS	4	0.074	0.07	0.07	0.062	0.07	0.07	0.072	0.065	0.072	0.071
	2nd daily max 1-hour	NS	4	0.107	0.09	0.084	0.085	0.086	0.082	0.09	0.077	0.087	0.087
PM ₁₀	90th percentile	Down	6	92	72.833	63.5	71.333	65.333 \$	51.667	51.5 5	52.167	53.5	53.667
	weighted annual mean	Down	6	43.75	35.833	36.3	40.25	36.3 3	31.567	29.35 3	31.733 3	30.717	34.517
RICHMOND-PE	TERSBURG, VA												
CO	2nd max 8-hour	NS	2	4.4	3.65	2.5	3.9	3.4	2.55	2.85	3.2	2.8	2.9
NO_2	arithmetic mean	Down	1	0.023	0.024	0.023	0.024	0.024	0.022	0.022	0.021	0.021	0.021
O ₃	4th max 8-hour	NS	4	0.083	0.085	0.086	0.098	0.085	0.09	0.083	0.097	0.095	0.097
	2nd daily max 1-hour	NS	4	0.109	0.109	0.115	0.124	0.11	0.115	0.103	0.12	0.12	0.126
PM ₁₀	90th percentile	NS	3	39.667	45	35.667	42.667	33 (38.333	37	37 :	37.333	33.667
	weighted annual mean	Down	3	24.867	26.233	22	23.267	20.5	23.2	23.733 2	22.433	21.867	20.267
SO ₂	arithmetic mean	NS	2	0.006	0.006	0.005	0.007	0.006	0.005	0.006	0.005	0.005	0.005
	2nd max 24-hour	NS	2	0.027	0.024	0.022	0.028	0.023	0.02	0.025	0.021	0.022	0.021
RIVERSIDE-SA	N BERNARDINO, CA	D	0	4 000	F 007	4 0 4 7	~ ~	0 000	0 75	0.000	~ 4	0 4 0 7	0.05
CO	2nd max 8-nour	Down	6	4.683	5.667	4.017	3.9	3.833	3.75	3.233	3.4	3.167	2.85
PD	max quarterly mean	NS David	4	0.051	0.056	0.033	0.038	0.037	0.04	0.038	0.04	0.039	0.047
	Ath men 0 have	Down	8	0.028	0.029	0.027	0.028	0.028	0.028	0.026	0.024	0.023	0.025
O_3	4th max 8-hour	Down	15	0.145	0.148	0.141	0.134	0.135	0.120	0.122	0.102	0.124	0.101
	200 daily max 1-hour	Down	15	0.214	0.207	70 501	72,000	0.100	0.1//	0.100	0.147	0.100	0.120
PIVI ₁₀	90th percentile	Down	11	90.010	03.121 F2.010	10.591	12.909	42 101	10.010	40 245		00.909	42 472
80	arithmetic meen	DOWII	1	0,000	0.002	44.0	43.040	42.1914	+2.002	40.245	0.001	0.001	43.473
302	and may 24 hour	ING NG	4	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.001	0.002	0.002
ROANOKE VA	2110 1118X 24-11001	NO NO	4	0.007	0.000	0.009	0.007	0.004	0.005	0.004	0.004	0.007	0.007
	arithmetic mean	NS	1	0.013	0.014	0.013	0.014	0.013	0.013	0.013	0.013	0.014	0.012
	Ath max 8 hour	113	1	0.015	0.014	0.013	0.014	0.013	0.013	0.013	0.013	0.014	0.012
\cup_3	2nd daily may 1 hour	NC	1	0.073	0.077	0.072	0.004	0.004	0.079	0.073	0.004	0.099	0.009
DM	200 uaily max 1-1000		2	0.000	0.1 50 F	0.009 17 F	0.103	0.102	0.093 EA	0.004 50	51 6	0.120 AQ F	18 5
10110	weighted annual mean	Down	2	36 15	32 5	31 65	34 85	35 55	34 35	33.05	29.85	20.0	20.0
SO.	arithmetic mean	NQ	<u>-</u> 1	0 00/	0 004	0 004	0 004	0.001	0 003	0.003	0 003	0 003	0 003
50_2	2nd max 24-bour	Down	1	0.004	0.004	0.004	0.004	0.004	0.003	0.003	0.003	0.003	0.003
		DOWI	I I	0.010	0.019	0.010	0.010	0.011	0.01	0.014	0.010	0.009	0.01
PM.	90th percentile	Down	1	48	37	37	31	33	32	34	31	31	31
10	weighted annual mean	NS	1	27 7	227	21 2	20.4	20.8	20 2	194	20	21.2	21.2
	gittee annual mean			21.1		- 1.2	20.7	20.0	20.2	10.4	20	-1.2	- 1.4

Metropolita	n Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	' 1998	3 1999
ROCHESTER	R, NY												
CO	2nd max 8-hour	NS	2	3.45	3.25	3.5	3.15	4.5	3.15	3.7	1.9	2.7	2.5
O ₃	4th max 8-hour	NS	2	0.087	0.098	0.076	0.078	0.079	0.093	0.069	0.085	0.081	0.089
	2nd daily max 1-hour	NS	2	0.108	0.111	0.09	0.094	0.094	0.107	0.085	0.099	0.096	0.099
PM_{10}	90th percentile	NS	2	37.5	48.5	37.5	39.5	33	37	35	33	36	36
00	weighted annual mean	Down	2	21.3	25.85	22.4	22.8	20.05	20.8	21.45	19.9	19.8	19.8
50 ₂	antinmetic mean	DOWN	2	0.012	0.011	0.011	0.01	0.011	0.01	0.009	0.008	0.009	0.006
ROCKEORD	2110 111ax 24-11001 II	113	2	0.04	0.043	0.039	0.041	0.045	0.030	0.033	0.036	0.055	0.03
CO	2nd max 8-hour	Down	1	65	51	46	43	4	45	32	37	36	38
Pb	max guarterly mean	NS	1	0.085	0.044	0.059	0.034	0.039	0.027	0.049	0.029	0.043	0.043
O ₃	4th max 8-hour	NS	2	0.068	0.077	0.082	0.067	0.079	0.085	0.078	0.072	0.072	0.08
0	2nd daily max 1-hour	NS	2	0.085	0.091	0.093	0.077	0.102	0.101	0.089	0.082	0.084	0.09
PM ₁₀	90th percentile	NS	1	45	35	31	26	36	39	29	42	39	39
	weighted annual mean	NS	1	25.2	22.2	21.4	16.3	18.8	18.9	17.6	25.6	24.1	24.1
SACRAMENT	ro, ca		-	7 700	7.0	F 400			4 500	4 074	0.000	0.057	0 000
CO	2nd max 8-nour	Down	/	7.780	7.2	5.486	5.657	5.4/1	4.586	4.271	3.929	3.957	3.986
	arithmetic mean	Down	2	0.105	0.04	0.022	0.049	0.019	0.021	0.014	0.012	0.009	0.009
0.	4th max 8-hour	NS	8	0.093	0.095	0.010	0.010	0.010	0.017	0.094	0.010	0.010	0.091
03	2nd daily max 1-hour	NS	8	0.13	0.128	0.124	0.116	0.113	0.128	0.116	0.101	0.126	0.117
PM_{10}	90th percentile	Down	3	54.333	54.333	42	38	37.667	47	33.667	31.333	31.333	45
	weighted annual mean	Down	3	31.233	31.233	27.633	22.667	23.8	22.9	20	20.167	18.8	23.967
SO ₂	arithmetic mean	NS	2	0.004	0.002	0.002	0.001	0.001	0.002	0.002	0.002	0.002	0.003
	2nd max 24-hour	NS	2	0.011	0.011	0.01	0.004	0.005	0.005	0.004	0.005	0.01	0.008
SI. JOSEPH,	, MO	Davin	4	74	70	70	50	~~~	07	50	F7	47	47
PIVI ₁₀	90th percentile	Down	1	40.2	19	38.6	21 F	20 Z	333	5Z	5/ 31 /	25.8	25.8
ST LOUIS M		Down	I	40.2	44	30.0	31.5	33.7	33.5	32.4	31.4	20.0	20.0
CO	2nd max 8-hour	Down	8	4 25	4 313	3 45	3 538	3 763	3 313	3 425	3 238	34	2 513
Pb	max quarterly mean	Down	13	0.76	0.68	0.697	0.573	0.66	0.677	0.671	0.535	0.433	0.482
NO ₂	arithmetic mean	NS	9	0.018	0.018	0.019	0.018	0.019	0.019	0.019	0.018	0.019	0.02
O3 _	4th max 8-hour	NS	16	0.081	0.086	0.08	0.074	0.09	0.09	0.084	0.083	0.085	0.089
	2nd daily max 1-hour	NS	16	0.108	0.108	0.1	0.108	0.117	0.116	0.108	0.108	0.112	0.115
PM ₁₀	90th percentile	NS	15	54.467	48.2	50.533	46.333	49.533	51.467	42.533	44.8	48.6	43.733
80	weighted annual mean	Down	15	32.96	31.807	32.047	28.187	31.12	30.773	27.327	27.553	30.033	27.007
50 ₂	2nd max 24-bour	Down	16	0.011	0.01	0.009	0.009	0.009	0.000	0.000	0.007	0.000	0.000
SALINAS CA		DOWIN	10	0.042	0.041	0.000	0.04	0.04	0.007	0.000	0.004	0.004	0.023
CO	2nd max 8-hour	Down	1	2.5	2.1	2.3	2.1	2	1.7	2.4	1.7	1.9	1.6
NO ₂	arithmetic mean	Down	1	0.012	0.012	0.012	0.012	0.012	0.011	0.011	0.01	0.01	0.01
O3 _	4th max 8-hour	NS	4	0.062	0.062	0.061	0.065	0.057	0.057	0.063	0.056	0.056	0.059
-	2nd daily max 1-hour	Down	4	0.08	0.078	0.075	0.083	0.08	0.071	0.079	0.071	0.07	0.071
PM_{10}	90th percentile	NS	2	40	37	33.5	33	29	37.75	35	32	30.5	34.5
	weighted annual mean	NS	2	23.45	23.9	21.45	19.7	18.15	19	19	20.85	17.35	21.3
SALILAKE	and max 9 hour	Down	1	60	7 5	6 5	6.4	5.0	4 5	6.2	5 4	4.0	5
Ph	max quarterly mean	NS	2	0.0	0.079	0.5	0.4	0 049	0.051	0.2	0.07	0.063	0.057
NO ₂	arithmetic mean	NS	2	0.019	0.02	0.02	0.024	0.023	0.022	0.023	0.022	0.022	0.023
0,	4th max 8-hour	NS	2	0.08	0.079	0.074	0.079	0.081	0.083	0.085	0.077	0.094	0.08
5	2nd daily max 1-hour	NS	2	0.113	0.108	0.097	0.104	0.109	0.115	0.114	0.102	0.122	0.107
PM ₁₀	90th percentile	Down	6	56.333	89	73.667	68.333	52.5	49.333	61	49	45.667	54.667
	weighted annual mean	Down	6	33.267	41.183	35.85	36.717	32.033	28.867	33.167	28.95	26.717	30.117
SO ₂	arithmetic mean	Down	3	0.009	0.01	0.009	0.007	0.004	0.003	0.003	0.003	0.003	0.003
		Down	3	0.039	0.051	0.046	0.043	0.013	0.013	0.014	0.008	0.008	0.008
	2nd max 8-bour	Down	1	52	52	52	5	33	43	45	44	46	42
0.	4th max 8-hour	NS	2	0.084	0.08	0 072	0.081	0.088	0.092	0.081	0.083	0.082	0.083
03	2nd daily max 1-hour	NS	2	0.1	0.105	0.096	0.11	0.105	0.117	0.118	0.102	0.1	0.101
PM ₁₀	90th percentile	Down	1	47	42	46	38	39	35	28	32	32	32
	weighted annual mean	Down	1	28.3	29.1	28.6	22.7	23.4	22	19.7	20.7	20.7	20.7
SAN DIEGO,	CA	-	~		-			4 = 0.0	4.040	4.000	0.000	0	0 - 10
	2nd max 8-hour	Down	8	5.588	5.25	4.95	4.413	4.738	4.213	4.288	3.838	3.525	3.713
	arithmetic mean	Down	3 7	0.094	0.044	0.03	0.033	0.010	0.025	0.019	0.019	0.013	0.013
Ω_2	4th max 8-hour	Down	a a	0.025	0.025	0.024	0.02	0.021	0.021	0.019	0.019	0.010	0.021
\smile_3	2nd daily max 1-hour	Down	9	0 154	0.147	0.139	0.132	0.109	0.116	0.104	0.112	0.106	0.097
PM ₄₀	90th percentile	Down	3	54.333	54	44	46	42	46	38	38	36	40.667
10	weighted annual mean	Down	3	34.233	37.133	31.5	30.033	30.667	32.167	27.7	26.8	22.867	28
SO ₂	arithmetic mean	NS	3	0.004	0.003	0.004	0.002	0.003	0.003	0.004	0.003	0.003	0.003
-	2nd max 24-hour	NS	3	0.015	0.017	0.017	0.009	0.013	0.012	0.015	0.012	0.011	0.012

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
SAN FRANCIS	CO. CA												
CO	2nd max 8-hour	Down	4	5.7	6.15	4.825	4.6	4.25	3.65	3.9	3.35	3.5	3.625
Pb	max quarterly mean	Down	1	0.044	0.04	0.02	0.026	0.019	0.027	0.014	0.02	0.013	0.013
NO_2	arithmetic mean	Down	1	0.021	0.024	0.022	0.024	0.022	0.021	0.022	0.02	0.02	0.021
O ₃	4th max 8-hour	NS	3	0.044	0.046	0.045	0.048	0.049	0.061	0.055	0.048	0.045	0.052
	2nd daily max 1-hour	NS	3	0.06	0.063	0.063	0.083	0.072	0.094	0.082	0.074	0.063	0.082
PM ₁₀	90th percentile	Down	1	59	66	56	39	47	34	32	33	34	36
	weighted annual mean	Down	1	28.3	32.1	28.5	26.5	24.8	21	21.1	23.9	22.4	24.5
SO ₂	arithmetic mean	NS	1	0.002	0.002	0.003	0.002	0.001	0.002	0.002	0.002	0.002	0.002
SAN JOSE, CA	2nd max 24-nour	NS	1	0.01	0.013	0.012	0.01	0.005	0.005	0.007	0.006	0.006	0.006
CO	2nd max 8-hour	Down	2	10.75	10.15	7.25	6.4	7.35	5.6	5.65	5.35	6.05	6
Pb	max quarterly mean	Down	2	0.075	0.037	0.029	0.023	0.017	0.016	0.013	0.011	0.013	0.013
O ₃	4th max 8-hour	NS	4	0.071	0.073	0.07	0.073	0.067	0.083	0.081	0.062	0.073	0.072
	2nd daily max 1-hour	NS	4	0.105	0.11	0.108	0.105	0.096	0.118	0.109	0.084	0.111	0.11
PM_{10}	90th percentile	Down	4	72	63.75	54.75	45.5	46.75	38.5	30.75	31.75	33	36.5
SAN IIIAN-BAY		Down	4	35.75	33.775	29.7	25.825	26.275	21.5	20.75	22.475	20.95	22.625
CO	2nd max 8-hour	Down	2	53	5 25	53	4 4 5	48	4 85	3 95	39	3 75	35
PM ₄₀	90th percentile	NS	7	59.286	47.143	44.429	54.429	45.429	36.714	39.286	50.286	47.429	50.143
10	weighted annual mean	NS	7	33.429	29.157	27.714	31.443	28.886	25.071	26.486	30.4	28.043	28.729
SO ₂	arithmetic mean	Down	2	0.007	0.01	0.009	0.008	0.008	0.006	0.005	0.004	0.003	0.004
	2nd max 24-hour	Down	2	0.056	0.062	0.069	0.038	0.048	0.039	0.021	0.017	0.013	0.018
SAN LUIS OBIS	SPO-ATASCADERO-PASO	ROBLES,C				•	0.4			~ ~	• •	0	~ ~
CO	2nd max 8-hour	Down	1	3.9	3.3	3	3.1	3.1	2.4	2.3	2.3	2	2.9
NO ₂	Ath max 8 hour	Down	3	0.013	0.013	0.012	0.012	0.012	0.011	0.011	0.011	0.01	0.011
O_3	2nd daily max 1-hour	NS	5	0.009	0.000	0.005	0.004	0.004	0.004	0.009	0.002	0.007	0.005
PM.	90th percentile	Down	3	38	39 667	32	41 667	33	35 667	31 667	30 333	23.333	27 333
1 10 10	weighted annual mean	Down	3 3	23,133	24.367	21.233	22.4	21.167	21.2	18.333	19.967	15.433	17.333
SO ₂	arithmetic mean	NS	1	0.002	0.001	0.001	0.001	0.002	0.002	0.002	0.001	0.001	0.001
2	2nd max 24-hour	NS	1	0.006	0.005	0.004	0.004	0.005	0.004	0.004	0.004	0.004	0.004
SANTA BARBA	RA-SANTA MARIA-LOMPO	C, CA											
CO	2nd max 8-hour	Down	4	2.35	2.325	2.25	2.15	2.5	2.1	1.85	1.625	1.675	1.675
Pb	max quarterly mean	Down	1	0.032	0.027	0.012	0.015	0.01	0.009	0.007	0.008	0.008	0.008
NO ₂	arithmetic mean	Down	15	0.007	0.007	0.007	0.006	0.007	0.006	0.006	0.006	0.006	0.006
O_3	2nd daily max 1-hour	Down	16	0.079	0.074	0.079	0.070	0.073	0.074	0.079	0.009	0.004	0.004
PM.	90th percentile	NS	10	35.3	35.7	32.3	37.8	35.6	33.1	33.1	34.7	33.3	32.6
1 10 10	weighted annual mean	NS	10	23.17	22.17	21.5	22.58	22.96	21.71	20.96	22.5	21.12	21.59
SO ₂	arithmetic mean	NS	11	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
-	2nd max 24-hour	Down	11	0.003	0.003	0.003	0.004	0.003	0.004	0.003	0.002	0.002	0.002
SANTA CRUZ-V	VATSONVILLE, CA												
CO	2nd max 8-hour	Down	1	1	1	1	1	1.2	0.8	0.7	0.7	0.8	0.7
NO ₂	arithmetic mean	Down	1	0.008	0.01	0.007	0.006	0.006	0.005	0.005	0.004	0.004	0.005
O_3	4th max 8-nour	NS	1	0.06	0.055	0.061	0.061	0.053	0.051	0.049	0.051	0.049	0.06
80	arithmetic mean	NO NG	1	0.07	0.07	0.07	0.07	0.000	0.00	0.009	0.003	0.055	0.072
302	2nd max 24-hour	NS	1	0.001	0.001	0.001	0.001	0.002	0.001	0.002	0.001	0.001	0.001
SANTA FE, NM	2.10.110.2.1.100.		·	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.002
CO	2nd max 8-hour	Down	1	3.5	3.9	3.7	3.4	2.7	2.3	2.2	2.1	2	1.7
PM ₁₀	90th percentile	Down	2	23.5	21.5	23	22.5	21	18.5	21	19.5	20	18.5
	weighted annual mean	Down	2	16.6	14.35	16.15	14.85	13.75	12.75	13.95	13.55	13.6	12.85
SANTA RUSA,	2nd max 8-bour	Down	1	13	3.8	35	3.8	3.2	24	3	31	з	33
NO.	arithmetic mean	NS	1	0.015	0.015	0.016	0.016	0.015	0 0 1 5	0 0 1 4	0.013	0.015	0.014
0,	4th max 8-hour	au	2	0.056	0.059	0.057	0.061	0.06	0.065	0.062	0.064	0.063	0.072
- 5	2nd daily max 1-hour	up	2	0.075	0.08	0.075	0.085	0.085	0.089	0.08	0.089	0.084	0.096
PM ₁₀	90th percentile	Down	3	37.333	46	33	33.667	28.333	28.667	26.667	23	23.333	28.667
	weighted annual mean	Down	3	20.067	23.433	18.4	19.133	17.9	15.7	15.667	14.933	13.967	17.2
SARASOTA-BR	ADENTON, FL						<u> </u>						
00	2nd max 8-hour	NS	1	6.2	6.9	5.6	6.5	5.3	5.9	5.1	5.3	5.6	5.6
O_3	4th max 8-nour	NS	3	0.077	0.074	0.077	0.075	0.079	0.077	0.073	0.077	0.084	0.085
DM	2nd daily max 1-hour	NS Down	4	42 667	12 222	0.092	0.097	0.095	0.095	0.092	0.101	0.119	0.114
F 1VI ₁₀	weighted annual mean	Down	3	42.007 27 967	+2.000 25.1	26 533	26 533	22 867	21 367	20.007	20 533	20 967	2007
SO	arithmetic mean	Down	1	0 002	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002
002	2nd max 24-hour	NS	1	0.016	0.035	0.021	0.018	0.017	0.01	0.018	0.009	0.019	0.019
SAVANNAH, GA	A	-											
SO ₂	arithmetic mean	NS	1	0.002	0.002	0.002	0.003	0.003	0.004	0.004	0.003	0.003	0.003
	2nd max 24-hour	NS	1	0.008	0.009	0.008	0.011	0.015	0.013	0.019	0.013	0.01	0.01

SCRUD Witch 29 Abra 6 hour Down 2 4.5 4.15 3.7 2.9 3.85 2.8 3.05 2.5 2.5 3.85 2.8 3.05 2.5 2.5 3.85 3.05 2.5 2.5 3.85 3.05	Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
CO. 2nd max 8-hour Down 2 4.5 4.15 3.75 2.9 3.55 2.8 3.8	SCRANTON-W	VILKES-BARRE—HAZLETON. PA												
NO., O., O., M., M., M., M., M., M., M., M., M., M.,	CO	2nd max 8-hour	Down	2	4.5	4.15	3.75	2.9	3.55	2.8	3.8	3.05	2.5	2.15
On 4th mask shour NS 4 0.081 0.088 0.081 <th0< td=""><td>NO₂</td><td>arithmetic mean</td><td>Down</td><td>2</td><td>0.018</td><td>0.017</td><td>0.016</td><td>0.018</td><td>0.018</td><td>0.016</td><td>0.018</td><td>0.016</td><td>0.015</td><td>0.015</td></th0<>	NO ₂	arithmetic mean	Down	2	0.018	0.017	0.016	0.018	0.018	0.016	0.018	0.016	0.015	0.015
2nd daily max 1-hour NS 4 0.100 0.111 0.028 0.110 0.018 0.103	03 ⁻	4th max 8-hour	NS	4	0.091	0.098	0.081	0.088	0.081	0.088	0.081	0.087	0.087	0.092
PM, Oth purcentile Down 3 46 46 667 45.07 45 73.67 39 30 30 30 44 314 <t< td=""><td></td><td>2nd daily max 1-hour</td><td>NS</td><td>4</td><td>0.106</td><td>0.118</td><td>0.095</td><td>0.11</td><td>0.098</td><td>0.105</td><td>0.103</td><td>0.101</td><td>0.103</td><td>0.109</td></t<>		2nd daily max 1-hour	NS	4	0.106	0.118	0.095	0.11	0.098	0.105	0.103	0.101	0.103	0.109
weighted annual mean NS 3 2.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.67 28.33 26.64 27.7 25.7 <t< td=""><td>PM₁₀</td><td>90th percentile</td><td>Down</td><td>3</td><td>46</td><td>48.667</td><td>40.667</td><td>45.667</td><td>49</td><td>45</td><td>37.667</td><td>39</td><td>39</td><td>39</td></t<>	PM ₁₀	90th percentile	Down	3	46	48.667	40.667	45.667	49	45	37.667	39	39	39
SO, antimetormean secture Down Line 2 0.01 0.088 0.038 0.028 0.008 0.0		weighted annual mean	NS	3	25.367	28.933	25.067	26.233	28.433	25.467	23.533	25.7	25.7	25.7
Sert TLE Set Line Set (2) Chan Set (2) <thc< td=""><td>SO₂</td><td>arithmetic mean</td><td>Down</td><td>2</td><td>0.01</td><td>0.009</td><td>0.008</td><td>0.007</td><td>0.007</td><td>0.005</td><td>0.006</td><td>0.007</td><td>0.006</td><td>0.006</td></thc<>	SO ₂	arithmetic mean	Down	2	0.01	0.009	0.008	0.007	0.007	0.005	0.006	0.007	0.006	0.006
BLAILL-BELLEVUE-VVER I, IVAX Down 6 7.617 7.7 7.783 6.783 5.65 6.333 5.6 4.66 4.717 Pb mxxupatefyrmean NS 1 0.641 0.676 0.068 0.677 0.018 0.065 0.671 0.065 0.674 0.065 0.674 0.065 0.671 0.065 0.674 0.075 0.068 0.062 0.071 0.050 0.060 0.065 0.071 0.050 0.071 0.050 0.061 0.060		2nd max 24-hour	Down	2	0.049	0.039	0.033	0.026	0.035	0.036	0.028	0.029	0.024	0.022
Db and mats-hour Defin c1 and mats-hour NS 2 0.08	SEATTLE-BELL		Davia	0	7 0 4 7		7 700	F 700	F 000		F 000	- - -	4.05	4 747
PD Inst. gain 4 by mean NS 1 Chea 0.07 Lobe 0.004		2nd max 8-nour	Down	6	7.617	1.1	1.783	5.783	5.683	5.55	5.333	5.6	4.65	4./1/
Given and product index of the second sec	PD	Ath max 9 hour	NS NS	1	0.041	0.001	0.4	0.300	0.007	0.013	0.000	0.074	2.033	0.040
PM ₁₀ Soft parcentile Down 6 48.75 49.75 49.27 50.25 23.75 23.25 23.75 23.25 23.75 23.25 23.75 23.25 23.75 23.25 23.75 23.25 23.75 23.25 23.5 23.5	O_3	2nd daily max 1-hour	NS	2	0.000	0.074	0.078	0.000	0.004	0.007	0.002	0.005	0.071	0.00
Image weighted annual mean Down 28	DM.	20th percentile	Down	2	18 75	10 75	17 875	50 125	38.25	0.093	0.100	36 75	31 625	30
So, antimetic mean new Down 2 D008 D008 </td <td>1 10110</td> <td>weighted annual mean</td> <td>Down</td> <td>8</td> <td>28.55</td> <td>29.3</td> <td>28 838</td> <td>27 613</td> <td>22 513</td> <td>21 725</td> <td>20 288</td> <td>22 025</td> <td>18 675</td> <td>18 888</td>	1 10110	weighted annual mean	Down	8	28.55	29.3	28 838	27 613	22 513	21 725	20 288	22 025	18 675	18 888
2nd mas 22+hour Down 2 0.023 0.023 0.023 0.023 0.024 0.024 0.047 0.017 0.011 0.013 0.015 Ph max quarterly mean Down 1 0.087 0.087 0.087 0.084 0.049 0.067 0.044 0.049 0.067 0.044 0.049 0.067 0.044 0.049 0.067 0.044 0.049 0.067 0.044 0.049 0.067 0.044 0.049 0.067 0.044 0.049 0.067 0.044 0.049 0.067 0.044 0.049 0.067 0.044 0.049 0.067 0.044 0.049 0.047 0.017 0.011 0.010 0.09 0.048 0.080 0.000	SO.	arithmetic mean	Down	2	0.008	0 008	0.008	0.008	0.006	0.005	0.004	0.004	0.005	0.005
SHARON, PA Pb max quartery mean Down 1 0.087 0.037 0.047 0.054 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.041 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.012 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.023 0.031 0.011 0.013 0.011 0.015 0.011 0.015 0.011 0.015 0.011 0.015 0.011 0.015 0.011 0.015 0.011 0.015 0.011 0.015 0.011 0.015 0.011 0.015 0.011	002	2nd max 24-hour	Down	2	0.023	0.023	0.02	0.02	0.022	0.017	0.017	0.011	0.013	0.015
Pb max quarterly mean Down 1 0.87 0.087 0.073 0.047 0.047 0.042 0.041 0.03 0.011 0.018 0.081 0.017 0.032 0.029 0.037 0.037 0.044 0.049 0.049 0.049 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041	SHARON, PA													
On 4th mask 8-hour NS 1 0.087 0.083 0.088 0.081 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.011 0.111 0.012 0.022 0.222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 223 233 336 43 236 43 237 218 236 217 218 225 225 225 225 225 225 225 225 225 225 225 225	Pb	max quarterly mean	Down	1	0.087	0.087	0.073	0.047	0.054	0.049	0.067	0.044	0.042	0.042
2nd daily max 1-hour NS 1 0.103 0.117 0.110 0.111 0.113 0.014 0.032	O ₃	4th max 8-hour	NS	1	0.087	0.093	0.088	0.083	0.09	0.095	0.09	0.092	0.106	0.091
PM ₀ 90th percentile Down 1 52 59 42 47 51 49 37 42 <td></td> <td>2nd daily max 1-hour</td> <td>NS</td> <td>1</td> <td>0.103</td> <td>0.107</td> <td>0.1</td> <td>0.105</td> <td>0.111</td> <td>0.113</td> <td>0.103</td> <td>0.111</td> <td>0.121</td> <td>0.108</td>		2nd daily max 1-hour	NS	1	0.103	0.107	0.1	0.105	0.111	0.113	0.103	0.111	0.121	0.108
weighted annual mean NS 1 299 38 281 293 27.9 282.2 2	PM ₁₀	90th percentile	Down	1	52	59	42	47	51	49	37	42	42	42
SD2 animetic mean Down 1 0.01 0.003 0.003 0.004 0.003 0.002 0.004 0.007 <th< td=""><td>00</td><td>weighted annual mean</td><td>NS</td><td>1</td><td>29.9</td><td>36</td><td>26.6</td><td>28.1</td><td>29.8</td><td>27.7</td><td>29</td><td>28.2</td><td>28.2</td><td>28.2</td></th<>	00	weighted annual mean	NS	1	29.9	36	26.6	28.1	29.8	27.7	29	28.2	28.2	28.2
SHEEVEPORT INS 1 0.032	SO_2	arithmetic mean	Down	1	0.01	0.009	0.008	0.008	0.008	0.008	0.007	0.007	0.007	0.007
Bink ter on Fatistic Val., LA NS 2 0.081			N5	I	0.030	0.032	0.03	0.029	0.047	0.032	0.029	0.032	0.029	0.039
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ath max 8 hour	NS	2	0 088	0.091	0 083	0 088	0.08	0.081	0.070	0 084	0 080	0.001
PM _{np} South percentile NS 1 233 48 36 57 75 75 72 75 72 73 </td <td>O_3</td> <td>2nd daily max 1-hour</td> <td>NS</td> <td>2</td> <td>0.000</td> <td>0.001</td> <td>0.003</td> <td>0.000</td> <td>0.00</td> <td>0.001</td> <td>0.079</td> <td>0.004</td> <td>0.009</td> <td>0.091</td>	O_3	2nd daily max 1-hour	NS	2	0.000	0.001	0.003	0.000	0.00	0.001	0.079	0.004	0.009	0.091
weighted annual mean NS 1 23.3 24.4 23.8 21.8 25.6 23.7 21.9 22.5 23.0 24.5 30.0 30.00 0.004 0.007 0.01 0.006 SIOUX F7LLANE NS 1 4.6 51 4.5 30.5 31.5 35.5	PM	90th percentile	NS	1	33	48	36	37	36	43	29	35	35	35
SD2 aritimetic mean NS 1 0.002 0.004 <t< td=""><td>10</td><td>weighted annual mean</td><td>NS</td><td>1</td><td>23.3</td><td>28.4</td><td>23.8</td><td>21.8</td><td>23.6</td><td>23.7</td><td>21.9</td><td>22.5</td><td>22.5</td><td>22.5</td></t<>	10	weighted annual mean	NS	1	23.3	28.4	23.8	21.8	23.6	23.7	21.9	22.5	22.5	22.5
2nd max 24-hour NS 1 0.006 0.009 0.013 0.011 0.008 0.004 0.007 0.01 0.008 PM ₁₀ 90th percentile NS 1 24.7 27.7 25.4 22.6 23.3 26.4 32.5 28.3 28.3 28.5 35.5 SIOUX CTY, LIANE 90th percentile NS 2 21.2 22.6 23.3 26.4 32.5 28.3 28.5 35.5 SOUTH BEND, IN 0 22.7 21.6 0.086 0.094 0.09 0.099 0.109 0.089 0.011 0.115 0.10 0.115 0.115 0.10 0.08 0.076 0.086 0.094 0.09 0.99 0.99 0.115 0.115 0.108 0.081 0.071 0.115 0.105 0.080 0.086 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085	SO ₂	arithmetic mean	NS	1	0.002	0.002	0.004	0.004	0.002	0.001	0.002	0.002	0.002	0.002
SIOUX CITY, IA-NE PMto 90th percentile NS 1 267,7 27,9 25,4 20,5 21,5 22,3 22,4 22,5 23,3 26,4 32,5 22,8 23,3 25,5 22,5 23,3 26,4 32,5 27,5 38,5 39,5 31,5 35,5 35,5 35,5 35,5 21,6 2	-	2nd max 24-hour	NS	1	0.006	0.009	0.013	0.011	0.008	0.004	0.004	0.007	0.01	0.006
PM ₁₀ 90th percentile weighted annual mean NS 1 27.7 27.9 25.4 22.5 23.3 26.4 25.7 23.2 26.4 25.7 23.2 26.4 25.7 23.2 26.4 25.7 23.3 26.4 25.7 23.3 26.4 25.7 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 24.8 23.7 21.6 23.5 24.8 23.5 24.8 23.5 24.9 23.5 24.9 23.5 24.9 23.5 24.7 21.6 23.5 24.8 23.5 24.7 21.6 23.5 24.7 21.6 23.5 24.7 21.6 23.5 24.7 21.6 23.5 24.7 21.6 23.5 24.7 21.6 23.5 23.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	SIOUX CITY, IA	-NE												
weighted annual mean NS 1 27.7 27.9 25.4 22.5 23.3 26.4 32.5 28.3 28.2 27.9 PM ₁₀ 90th percentile NS 2 41.5 39.5 39.5 31.5 35.5 31.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.5 34.5 35.5 34.5 35.5 34.5 35.5 34.5 35.5 34.5 35.5 34.5<	PM ₁₀	90th percentile	NS	1	46	51	45	40	38	55	72	54	45	48
SIOUX FALLS, SD PM ₁₀ 90th percentile NS 2 41.5 39.5 39.5 27.5 38.5 39.5 21.5 22.7 21.65 20.55 21.2 21.6 21.6 O3 4th max 8-hour NS 2 23.2 22.6 22.8 17 22.7 21.65 20.55 21.2 21.6 21.6 O3 4th max 8-hour NS 3 0.082 0.086 0.081 0.076 0.086 0.099 0.110 0.10 0.110 0.115 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.068		weighted annual mean	NS	1	27.7	27.9	25.4	22.5	23.3	26.4	32.5	28.3	28	27.9
PM ₁₀ 90th percentile NS 2 41.5 39.5 39.5 27.5 38.5 39.5 27.5 38.5 39.5 27.5 38.5 39.5 27.5 38.5 39.5 27.5 38.5 39.5 27.5 28.6 27.2 21.6 22.7 21.6 20.55 21.2 21.6 21.6 22.7 21.6 20.55 21.2 21.6 21.6 22.7 21.6 20.55 21.2 21.6 21.6 20.55 21.5 21.6 21.5 49 38.36 39.4 23.5 39.5 27.5 27.1 21.1 70.1 11.15 10.08 PMto 90th percentile Down 2 30.8 29.65 23.05 23.75 27.1 21.1 72.0 17.7 20.01 17.7 20.01 17.7 20.1 17.2 20.65 23.03 23.1 34.125 32.13 34.15 30.5 35.7 37.5 37.5 37.5 37.5 37.5	SIOUX FALLS,	SD												
Weighted annual mean NS 2 22.6 22.6 22.6 22.7 21.6 20.55 21.2 21.6 21.6 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.5 21.6 21.7 21.1 21.1 21.6 21.6 21.7 21.1 21.7 21.1 21.7 21.1 21.6 21.6 21.6 21.7 21.7 21.1 21.6 21.6 21.6 21.7 21.1 21.7 20.1 21.7 20.1 21.7 20.1 21.7 20.1 21.7 20.1 21.7 20.1 21.7 20.1 21.7 20.1	PM ₁₀	90th percentile	NS	2	41.5	39.5	39.5	27.5	38.5	39.5	31.5	35	35	35.5
Stort BERN, IN Os 2nd daily max 1-hour NS up 3 3 0.082 0.086 0.086 0.081 0.076 0.086 0.094 0.099 0.090 0.11 0.094 0.099 0.012 0.11 0.107 0.11 0.115 0.112 0.086 0.017 0.016 0.017 0.112 0.107 0.111 0.115 0.108 PMI ₁₀ 90th percentile Down 2 32.5 49 38 36 49 23.45 23.5 23.75 27.1 21.7 20.1 17.2 20.65 20.35 SPOKANE, WA CO 2nd max 8-hour up 1 0.057 0.061 0.066 0.067 0.068		weighted annual mean	NS	2	23.2	22.6	22.8	17	22.7	21.65	20.55	21.2	21.6	21.6
O3 Think offour NS S 0.007 0.007 0.000 0.009 0.009 0.001 0.009 0.001 0.011 0.101 0.011 0.101 0.011 0.101 0.011 0.101 0.011 0.101 0.011 0.102 0.011 0.102 0.011 0.102 0.011 0.102 0.011 0.102 0.011 0.102 0.011 0.102 0.011 0.102 0.011 0.102 0.011 0.102 0.011 0.102 0.011 0.102 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.	SUUIN BEND,	Ath max 8 hour	NC	3	0 082	0 086	0.081	0.076	0.086	0.004	0.00	0 080	0.001	0 088
PM ₁₀ 90th percentile Down 2 52.5 49 38 39 412 51.1	O_3	2nd daily max 1-hour		3	0.002	0.000	0.001	0.070	0.000	0.094	0.09	0.009	0.091	0.000
Section Down 2 30.8 29.65 23.05 23.75 27.1 21.7 20.1 17.2 20.65 20.3 SPOKANE, WA CO 2nd max 8-hour up 1 0.057 0.061 0.063 0.066 0.065 0.066 0.066 0.079 0.083 0.082 0.079 0.083 0.082 0.079 0.083 0.082 0.079 0.083 0.082 0.085 0.08 0.085 0.08 0.085 0.08 0.085 0.08 0.079 0.083 0.079 0.083 0.079 0.083 0.079 0.083 0.079 0.083 0.079 0.083 0.072 0.44 4.3 4.5 3.9 3.1 3.2 3 2.1 1.9 2.4 CO 2nd max 8-hour Down 1 4.4 4.3 4.5 3.9 3.1 3.2 3 2.1 1.9 2.4 CO 2nd max 8-hour Down 1 0.081 0.081	PM.	90th percentile	Down	2	52.5	49	38	36	39	42	34.5	29.5	36.5	.102
SPOKANE, WA Down 3 9.1 9.333 8.133 8 6.4 6.933 6.833 5.133 4.567 Co 2nd max 8-hour up 1 0.57 0.061 0.063 0.060 0.085 0.085 0.086 0.070 0.083 0.183 6.833 5.133 4.567 PMt0 90th percentile Down 4 6.25 58.5 57 60.75 52 4.4 4.35 2.4.55 2.4.52 2.4.52 2.3.7 SPRINGFIELD, IL CO 2nd max 8-hour Down 1 4.4 4.3 4.5 3.9 3.1 3.2 3 2.1 1.9 2.4 CO 2nd max 8-hour Down 1 0.44 4.3 4.5 3.9 3.1 3.2 3 2.1 1.9 2.4 CO 2nd max 8-hour Down 1 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081	1 10110	weighted annual mean	Down	2	30.8	29 65	23 05	23 75	27 1	217	20.1	17.2	20.65	203
CO 2nd max 8-hour Down 3 9.1 9.33 8.133 8 6.4 6.933 6.833 5.133 </td <td>SPOKANE, WA</td> <td></td>	SPOKANE, WA													
O3 4th max 8-hour up 1 0.057 0.061 0.063 0.066 0.065 0.067 0.068 0.07 0.065 PM10 90th percentile Down 4 62.5 58.5 57 60.75 52 44 43.5 41.75 43.4 41.75 SPRINGFIELD, IL CO 2nd max 8-hour Down 1 4.4 4.3 4.5 3.9 3.1 3.2 3 2.1 1.9 2.4 O3 4th max 8-hour Down 1 4.4 4.3 4.5 3.9 3.1 3.2 3 2.1 1.9 2.4 O3 4th max 8-hour Down 1 0.081 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.008 0.009 0.011 0.1 0.098 0.081 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.006 0.007 0.006 0.007	CO	2nd max 8-hour	Down	3	9.1	9.333	8.133	8	6.4	6.933	6.833	5.133	5.133	4.567
2nd daily max 1-hour NS 1 0.071 0.077 0.085 0.085 0.081 0.079 0.083 0.082 0.079 0.083 0.082 0.079 0.083 0.082 0.079 0.083 0.082 0.079 0.083 0.085 0.085 0.085 0.085 0.085 0.083 0.085 0.083 0.085 0.083 0.079 0.083 0.079 0.083 0.079 0.083 0.079 0.083 0.079 0.083 0.073 0.44 43.5 43.75 33.1 34.125 32.15 30.375 24.45 24.65 24.45 24.525 23.7 CO 2nd max 8-hour Down 1 0.081 0.081 0.081 0.081 0.081 0.080 0.079 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.008 0.008 0.004	O ₃	4th max 8-hour	up	1	0.057	0.061	0.063	0.06	0.068	0.065	0.067	0.068	0.07	0.065
PM ₁₀ 90th percentile weighted annual mean Down 4 62.5 58.5 7 60.75 52 44 43.5 40.75 43 41.75 SPRINGFIELD, IL CO 2nd max 8-hour Down 1 4.4 4.3 4.5 3.9 3.1 3.2 3 21.1 1.9 2.4 G3 4th max 8-hour Down 1 0.081 <th< td=""><td></td><td>2nd daily max 1-hour</td><td>NS</td><td>1</td><td>0.071</td><td>0.077</td><td>0.083</td><td>0.069</td><td>0.085</td><td>0.08</td><td>0.079</td><td>0.083</td><td>0.082</td><td>0.073</td></th<>		2nd daily max 1-hour	NS	1	0.071	0.077	0.083	0.069	0.085	0.08	0.079	0.083	0.082	0.073
weighted annual mean Down 4 37.125 33.1 34.125 32.15 30.375 24.45 26.65 24.45 24.52 23.7 SPRINGFIELD, IL CO 2nd daily max 8-hour Down 1 4.4 4.3 4.5 3.9 3.1 3.2 3 2.1 1.9 2.4 O ₃ 4th max 8-hour Down 1 0.081 0.083 0.077 0.081 0.081 0.08 0.079 0.071 0.078 0.075 SO2 arithmetic mean NS 1 0.007 0.008 0.006 0.007 0.011 0.011 0.011 0.011 0.012	PM ₁₀	90th percentile	Down	4	62.5	58.5	57	60.75	52	44	43.5	40.75	43	41.75
SPRINGFIELD, IL CO 2nd max 8-hour Down 1 4.4 4.3 4.5 3.9 3.1 3.2 3 2.1 1.9 2.4 O3 4th max 8-hour Down 1 0.081 0.083 0.077 0.081 0.081 0.08 0.079 0.071 0.078 0.075 2nd daily max 1-hour NS 1 0.098 0.102 0.091 0.106 0.106 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 SO2 arithmetic mean NS 1 0.054 0.048 0.043 0.04 0.05 0.062 0.061 0.070 0.007 0.006 CO 2nd max 8-hour Up 1 0.08 0.008 0.01 0.011 0.013 0.012 0.011 0.014 0.014 0.012 0.013 O3 4th max 8-hour Up 2 0.058 0.058 0.059 0.079 0.084 0.086 <t< td=""><td></td><td>weighted annual mean</td><td>Down</td><td>4</td><td>37.125</td><td>33.1</td><td>34.125</td><td>32.15</td><td>30.375</td><td>24.45</td><td>26.65</td><td>24.45</td><td>24.525</td><td>23.7</td></t<>		weighted annual mean	Down	4	37.125	33.1	34.125	32.15	30.375	24.45	26.65	24.45	24.525	23.7
CO 2nd max 8-hour Down 1 4.4 4.3 4.5 3.9 3.1 3.2 3 2.1 1.9 2.4 O3 4th max 8-hour Down 1 0.081 0.011 0.101 0.013 0.011	SPRINGFIELD,	IL Andreas Alberta	D					~ ~			•		10	~ 4
C3 411 max 5-hour NS 1 0.081 0.083 0.091 0.081 0.081 0.085 0.091 0.081 0.085 0.091 0.081 0.085 0.091 0.081 0.085 0.091 0.081 0.085 0.093 0.099 0.091 0.016 0.101 0.1 0.1 0.985 0.085 0.093 0.099 0.061 0.085 0.095 0.093 0.099 0.091 0.064 0.044 0.044 0.043 0.041 0.04	00	2nd max 8-nour	Down	1	4.4	4.3	4.5	3.9	3.1	3.2	0 0 70	2.1	1.9	2.4
SO2 arithmetic mean NS 1 0.0530 0.102 0.006 0.007 0.003 0.043 0.041 0.012 0.013 0.012 0.011 0.013 0.012 0.011 0.011 0.012 0.013 0.012 0.011 0.012 0.013 0.021 0.014 0.021 0.013 0.021 0.014 0.026 0.021 0.014 0.026 <	O_3	2nd daily max 1 hour	DOWI	1	0.001	0.003	0.077	0.001	0.001	0.00	0.079	0.071	0.070	0.075
SO2 antimited mean NS 1 0.054 0.004 0.005 0.005 0.006 0.006 0.005 0.006 0.005 <th< td=""><td>50</td><td>arithmetic mean</td><td>NS</td><td>1</td><td>0.090</td><td>0.102</td><td>0.091</td><td>0.100</td><td>0.101</td><td>0.0</td><td>0.090</td><td>0.000</td><td>0.095</td><td>0.099</td></th<>	50	arithmetic mean	NS	1	0.090	0.102	0.091	0.100	0.101	0.0	0.090	0.000	0.095	0.099
SPRINGFIELD, MO CO 2nd max 8-hour Down 1 7.2 6.9 6.2 5.3 5.9 4.1 3.3 4.6 4 3.1 NO2 arithmetic mean up 1 0.008 0.008 0.011 0.013 0.012 0.011 0.011 0.011 0.012 0.011 0.012 0.011 0.012 0.013 0.012 0.011 0.011 0.012 0.013 0.012 0.011 0.011 0.012 0.013 0.012 0.011 0.012 0.013 0.012 0.014 0.014 0.012 0.013 O3 4th max 8-hour up 2 0.058 0.063 0.058 0.069 0.072 0.079 0.074 0.066 0.071 0.078 2nd daily max 1-hour up 2 0.075 0.073 0.085 0.075 0.093 0.098 0.086 0.086 0.099 0.994 PM10 90th percentile NS 3 21.61 18.233 18.933 17.4 17.4 16.633 17.9 15.7 17.967 17.967 </td <td>002</td> <td>2nd max 24-hour</td> <td>NS</td> <td>1</td> <td>0.007</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.007</td> <td>0.000</td>	002	2nd max 24-hour	NS	1	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.000
CO 2nd max 8-hour Down 1 7.2 6.9 6.2 5.3 5.9 4.1 3.3 4.6 4 3.1 NO2 arithmetic mean up 1 0.008 0.008 0.011 0.013 0.012 0.011 0.011 0.011 0.011 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.013 0.012 0.011 0.012 0.011 0.012 0.013 0.012 0.011 0.012 0.013 0.012 0.011 0.012 0.013 0.012 0.011 0.012 0.011 0.012 0.013 0.012 0.014 0.066 0.033 0.052 0.075 0.033 0.058 0.057 0.033 0.024 0.024 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.024	SPRINGFIELD.	MO	NO		0.004	0.040	0.040	0.04	0.00	0.002	0.001	0.040	0.001	0.000
NO2 arithmetic mean up 1 0.008 0.01 0.011 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.013 O3 4th max 8-hour up 2 0.058 0.063 0.058 0.069 0.072 0.079 0.074 0.066 0.094 PM10 90th percentile NS 3 36333 27.333 30 29.667 28 27.667 26 24 30.667 30.333 SO2 arithmetic mean NS 2 0.067 0.033 0.044 0.006 0.003 0.005 0.002 0.004 0.004 SO2 arithmetic mean NS 2 0.057 0.033 0.044 0.067 0.021 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021	CO	2nd max 8-hour	Down	1	7.2	6.9	6.2	5.3	5.9	4.1	3.3	4.6	4	3.1
O3 4th max 8-hour up 2 0.058 0.063 0.058 0.069 0.072 0.074 0.066 0.071 0.078 2nd daily max 1-hour up 2 0.075 0.073 0.085 0.072 0.079 0.074 0.066 0.071 0.078 PM10 90th percentile NS 3 36.333 27.333 30 29.667 28 27.667 26 24 30.67 30.33 SO2 arithmetic mean NS 2 0.067 0.033 0.004 0.006 0.008 0.003 0.004 0.006 0.008 0.003 0.004 0.004 0.022 0.004 0.004 2nd max 24-hour NS 2 0.057 0.033 0.034 0.04 0.027 0.014 0.022 0.021 0.021 0.044 0.022 0.021 0.021 0.044 0.022 0.021 0.021 0.044 0.022 0.021 0.021 0.044 0.022 0.021	NO ₂	arithmetic mean	up	1	0.008	0.008	0.01	0.011	0.013	0.012	0.011	0.011	0.012	0.013
2nd daily max 1-hour up 2 0.075 0.075 0.093 0.098 0.086 0.08 0.09 0.094 PM ₁₀ 90th percentile NS 3 36.333 27.333 30 29.667 28 27.667 26 24 30.677 17.967 SO2 arithmetic mean NS 2 0.067 0.033 0.044 0.006 0.008 0.008 0.020 0.004 0.004 2nd max 24-hour NS 2 0.067 0.033 0.044 0.006 0.008 0.008 0.004 0.005 0.002 0.004 0.004 SPRINGFIELD, MA NS 2 6.7 6.3 7.1 6.1 7.5 7.9 7.1 5.1 4.1 4.8 NO2 arithmetic mean Down 2 0.18 0.017 0.016 0.019 0.015 0.016 0.013 0.014 O3 4th max 8-hour NS 4 0.093 0.097	O3 _	4th max 8-hour	up	2	0.058	0.063	0.058	0.069	0.072	0.079	0.074	0.066	0.071	0.078
PM ₁₀ 90th percentile NS 3 36.333 27.333 30 29.667 28 27.667 26 24 30.667 30.333 weighted annual mean NS 3 21.6 18.233 18.933 17.4 17.4 16.633 17.9 15.7 17.967 17.967 SO2 arithmetic mean NS 2 0.006 0.003 0.006 0.003 0.0057 0.021 0.004 0.005 0.002 0.004 0.005 SO2 arithmetic mean NS 2 0.057 0.033 0.034 0.04 0.067 0.021 0.044 0.022 0.021 0.021 SPRINGFIELD, MA CO 2nd max 8-hour NS 2 6.7 6.3 7.1 6.1 7.5 7.9 7.1 5.1 4.1 4.8 NO2 arithmetic mean Down 2 0.018 0.017 0.016 0.015 0.013 0.014 O3 4th max 8-hour NS 4 0.121		2nd daily max 1-hour	up	2	0.075	0.073	0.085	0.075	0.093	0.098	0.086	0.08	0.09	0.094
weighted annual mean NS 3 21.6 18.233 17.4 17.4 16.633 17.9 15.7 17.967	PM ₁₀	90th percentile	NS	3	36.333	27.333	30	29.667	28 :	27.667	26	24	30.667	30.333
SO2 arithmetic mean NS 2 0.006 0.003 0.004 0.008 0.003 0.002 0.004 0.004 SPRINGFIELD, MA CO 2nd max 8-hour NS 2 0.67 6.3 7.1 6.1 7.5 7.9 7.1 5.1 4.1 4.8 NO2 arithmetic mean Down 2 0.67 0.037 0.016 0.016 0.019 0.015 0.016 0.015 0.016 0.017 0.016 0.019 0.015 0.016 0.017 0.016 0.019 0.015 0.016 0.017 0.016 0.019 0.015 0.016 0.017 0.018 0.017 0.016 0.019 0.015 0.016 0.017 0.018 0.019 0.094 0.087 0.087 2nd daily max 1-hour NS 4 0.121 0.126 0.117 0.125 0.124 0.104 0.122 0.109 0.108 PM10 90th percentile NS 5 39.2		weighted annual mean	NS	3	21.6	18.233	18.933	17.4	17.4	16.633	17.9	15.7	17.967	17.967
SPRINGFIELD, MA NS 2 0.057 0.033 0.034 0.047 0.021 0.022 0.021	SO_2	arithmetic mean	NS	2	0.006	0.003	0.004	0.006	0.008	0.003	0.005	0.002	0.004	0.004
OC 2nd max 8-hour NS 2 6.7 6.3 7.1 6.1 7.5 7.9 7.1 5.1 4.1 4.8 NO2 arithmetic mean Down 2 0.018 0.017 0.016 0.019 0.015 0.016 0.015 0.016 0.015 0.016 0.017 0.016 0.019 0.015 0.016 0.015 0.016 0.017 0.016 0.019 0.015 0.016 0.015 0.018 0.017 0.016 0.019 0.015 0.016 0.017 0.016 0.019 0.015 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.019 0.015 0.016 0.017 0.018 0.019 0.015 0.014 0.027 0.023 0.092 0.083 0.094 0.087 0.087 2nd daily max 1-hour NS 5 39.2 42.2 34.4 39.6 40.4 36.2 35.4 34.2 38.8 38.4 M10			115	2	0.057	0.033	0.034	0.04	0.067	0.021	0.044	0.022	0.021	0.021
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SPRINGFIELD,	2nd max 8-bour	NIC	2	67	6.2	7 1	6 1	7 5	70	7 1	51	1 1	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NO	arithmetic mean	Down	2	0.7	0.3	0.016	0.1	0.10	1.9	0.016	0.015	4.1	4.0 0.014
2nd daily max 1-hour NS 4 0.121 0.126 0.117 0.129 0.122 0.104 0.122 0.104 0.121 0.108 PM ₁₀ 90th percentile NS 5 39.2 42.2 34.4 39.6 40.4 36.2 35.4 34.2 38.8 38.4 weighted annual mean NS 5 23.06 23.4 21.5 22.2 24.44 20.7 22.22 22.08 21.28 23.4 SO ₂ arithmetic mean Down 3 0.008 0.007 0.006 0.005 0.002 0.021 0.02 0.02 0.021 0.02 0.02 0.021 0.02 0.02 0.021 0.02 0.02 0.02 0.02 0.02 0.02 0.021	Ω_{2}^{2}	4th max 8-hour	NS	4	0.013	0.017	0.010	0.095	0.019	0.092	0.010	0.094	0.013	0.087
PM ₁₀ 90th percentile NS 5 39.2 42.2 34.4 39.6 40.4 36.2 35.4 34.2 38.8 38.4 SO2 arithmetic mean NS 5 23.06 23.4 21.5 22.2 24.44 20.7 22.22 22.08 21.28 23.4 SO2 arithmetic mean Down 3 0.008 0.007 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.002 0.024 0.021 0.02 0.02	\smile_3	2nd daily max 1-hour	NS	4	0.121	0.126	0.117	0.129	0.125	0.124	0.104	0.122	0.109	0.108
weighted annual mean NS 5 23.06 23.4 21.5 22.2 24.44 20.7 22.22 22.08 21.28 23.4 SO2 arithmetic mean Down 3 0.008 0.008 0.007 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.002 0.024 0.021 0.02 0.02	PM ₄₀	90th percentile	NS	5	39.2	42.2	34.4	39.6	40.4	36.2	35.4	34.2	38.8	38.4
SO2 arithmetic mean Down 3 0.008 0.008 0.007 0.006 0.005	10	weighted annual mean	NS	5	23.06	23.4	21.5	22.2	24.44	20.7	22.22	22.08	21.28	23.4
2nd max 24-hour Down 3 0.033 0.031 0.023 0.048 0.023 0.024 0.021 0.02 0.02	SO ₂	arithmetic mean	Down	3	0.008	0.008	0.007	0.006	0.006	0.005	0.005	0.005	0.005	0.005
		2nd max 24-hour	Down	3	0.033	0.031	0.034	0.023	0.048	0.023	0.024	0.021	0.02	0.02

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
STAMFORD-NO	DRWALK. CT												
CO	2nd max 8-hour	Down	1	6.3	6	5.5	5.2	6.2	5.4	4.1	5.1	3.8	3.8
0 ₂	4th max 8-hour	NS	1	0.108	0.11	0.082	0.101	0.107	0.102	0.093	0.101	0.089	0.107
- 3	2nd daily max 1-hour	NS	1	0.144	0.147	0.111	0.145	0.155	0.136	0.121	0.142	0.113	0.143
PM ₁₀	90th percentile	NS	3	48.667	51	36.667	35	50	41.333	39.333	39.333	35.333	36.667
10	weighted annual mean	NS	3	30.1	32	24.067	23.3	28.133	24.733	24.5	25.733	23.833	24.2
SO ₂	arithmetic mean	Down	1	0.005	0.006	0.005	0.005	0.006	0.004	0.005	0.004	0.004	0.004
	2nd max 24-hour	NS	1	0.024	0.025	0.022	0.02	0.028	0.023	0.019	0.025	0.025	0.025
STEUBENVILL	E-WEIRTON, OH-WV	_											
CO	2nd max 8-hour	Down	3	11.467	9.267	6.933	7.233	8.667	5.867	5	4.8	6.7	3.033
Pb	max quarterly mean	Down	2	0.065	0.083	0.148	0.067	0.082	0.055	0.05	0.029	0.029	0.029
NO ₂	arithmetic mean	NS	1	0.02	0.021	0.019	0.017	0.02	0.02	0.02	0.017	0.017	0.017
03	4th max 8-hour	NS	2	0.075	0.091	0.076	0.081	0.083	0.094	0.08	0.081	0.083	0.085
DM	2nd daily max 1-nour	NS	2	0.092	0.114	0.089	0.101	0.103	0.112	0.097	0.093	0.094	0.098
PIVI ₁₀	90th percentile	Down	9	07.778	09.550	03.889	02.111	05.007	00.550	55.ZZZ 4	48.007	10 222	49
80	arithmetic mean	Down	9	24.344	20.0	23.022	22.110	23.133	22.750	21.133	10.3	0.011	19.133
302	2nd max 24 hour	NS	7	0.024	0.022	0.010	0.019	0.017	0.011	0.011	0.011	0.011	0.011
STOCKTON-LC		NO	'	0.005	0.00	0.070	0.000	0.000	0.047	0.0+0	0.001	0.047	0.00
CO	2nd max 8-hour	Down	2	10.85	9.65	5 85	5.8	6 95	48	6	3 65	5 25	5 25
Ph	max quarterly mean	Down	1	0.042	0.039	0.00	0.026	0.00	0.015	0.023	0.014	0.014	0.014
NO ₂	arithmetic mean	NS	1	0.026	0.025	0.024	0.024	0.024	0.022	0.023	0.022	0.023	0.024
0,	4th max 8-hour	NS	2	0.086	0.087	0.085	0.083	0.086	0.087	0.079	0.073	0.085	0.083
03	2nd daily max 1-hour	NS	2	0.115	0.11	0.11	0.11	0.12	0.125	0.101	0.094	0.108	0.12
PM ₁₀	90th percentile	Down	2	75.5	93.5	60	74.5	59	51	37.5	45.5	54.5	59.5
10	weighted annual mean	Down	2	45.25	48.6	39.35	36.35	35	31.25	26.05	28.7	28.05	31.7
SYRACUSE, N	Ϋ́												
CO	2nd max 8-hour	Down	1	6.8	8.4	7.5	5.6	6.5	3.3	3.9	4	3	3.1
O3	4th max 8-hour	NS	2	0.092	0.092	0.083	0.083	0.077	0.086	0.073	0.077	0.082	0.084
	2nd daily max 1-hour	Down	2	0.103	0.103	0.096	0.097	0.095	0.1	0.085	0.096	0.093	0.092
PM_{10}	90th percentile	NS	2	48.5	50.5	46.5	41	40.5	35.5	32	38	42	42
	weighted annual mean	NS	2	28.05	29.25	27.25	24.05	22.05	21	22.05	21.65	24.15	24.15
SO ₂	arithmetic mean	NS	2	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.002
	2nd max 24-hour	NS	2	0.014	0.014	0.012	0.018	0.02	0.016	0.014	0.017	0.01	0.014
	and may a have	NC	4	0	07	0.0	E 0	6	6.2	6.2	6.0	FO	6.6
0	Ath max 9 hour		1	0 097	0.7	0.9	0.069	0 072	0.3	0.3	0.0	0.00	0.0
O_3	2nd daily may 1 hour	NS	1	0.007	0.077	0.001	0.000	0.073	0.074	0.077	0.000	0.000	0.005
РM	00th percentile	Down	1	55 75	52 25	54.5	50 75	30.75	38.5	40.25	0.005	32 75	32 75
1 10110	weighted annual mean	Down	4	30 575	31 025	32.6	28 025	23 125	22.7	21 95	23 35	18 65	19.7
SO.	arithmetic mean	Down	2	0.008	0.008	0 009	0.009	0.007	0 006	0 006	0.006	0.006	0 005
002	2nd max 24-hour	Down	2	0.026	0.023	0.03	0.025	0.021	0.02	0.024	0.023	0.019	0.019
TAMPA-ST. PE	TERSBURG-CLEARWATER, FL												
CO	2nd max 8-hour	Down	6	3.817	2.85	2.867	2.583	2.2	2.75	2.533	2.4	2.467	2.5
Pb	max quarterly mean	Down	3	0.763	0.756	0.45	0.23	0.296	0.254	0.246	0.214	0.175	0.343
NO_2	arithmetic mean	NS	2	0.013	0.012	0.011	0.011	0.01	0.011	0.011	0.011	0.011	0.013
O3 _	4th max 8-hour	up	7	0.08	0.07	0.074	0.071	0.075	0.074	0.074	0.08	0.089	0.084
	2nd daily max 1-hour	NS	7	0.106	0.097	0.094	0.091	0.093	0.096	0.098	0.099	0.111	0.108
PM_{10}	90th percentile	NS	5	40.2	41.4	41.6	39	39	38	40.4	42.6	40.4	42.6
	weighted annual mean	NS	5	27.26	27.74	26.72	27.52	25.96	25.28	26.86	27.44	27.4	26.46
SO ₂	arithmetic mean	NS	8	0.006	0.005	0.005	0.005	0.005	0.004	0.005	0.005	0.005	0.005
	2nd max 24-hour	Down	8	0.03	0.029	0.027	0.029	0.031	0.025	0.024	0.026	0.027	0.023
	, IN	NO	4	0.007	0 000	0 000	0.074	0.004	0.005	0 000	0 000	0.004	0 000
O_3	4th max 8-hour	NS NC	1	0.087	0.088	0.069	0.074	0.094	0.085	0.098	0.083	0.084	0.082
DM	200 daily max 1-hour	Down	5	0.105	0.1	12 1	0.000	40.2	10.099	0.112	0.090	0.099	0.093
FIVI ₁₀	woighted annual mean	Down	5	32.82	20.59	26.09	25 / 9	40.Z	26.86	22.24	22 12	22.26	30.2
50	arithmetic mean	NS	2	0.011	29.00	0.007	0 000	20.14	0.007	0 000	0.006	0.007	0.008
002	2nd max 24-hour	Down	2	0.011	0.011	0.007	0.003	0.01	0.007	0.003	0.000	0.007	0.000
TEXARKANA .	TX-TEXARKANA AR	Down	2	0.000	0.007	0.000	0.000	0.000	0.020	0.000	0.020	0.027	0.025
PM	90th percentile	NS	1	36	39	37	35	36	45	39	34	34	34
1 10110	weighted annual mean	NS	1	24.3	22.4	23.3	21.9	22.9	25.7	23.4	22.4	22.4	22.4
TOLEDO, OH	noightea annadh níodh		•			20.0				_0			
03	4th max 8-hour	NS	3	0.085	0.086	0.079	0.083	0.088	0.088	0.09	0.083	0.083	0.083
5	2nd daily max 1-hour	NS	3	0.1	0.108	0.091	0.108	0.109	0.107	0.108	0.099	0.1	0.109
SO ₂	arithmetic mean	NS	2	0.006	0.006	0.006	0.007	0.007	0.004	0.004	0.004	0.004	0.007
-	2nd max 24-hour	NS	2	0.033	0.022	0.029	0.028	0.047	0.025	0.032	0.019	0.019	0.035
TOPEKA, KS													
Pb	max quarterly mean	Down	3	0.012	0.011	0.009	0.009	0.008	0.009	0.009	0.008	0.008	0.008
PM_{10}	90th percentile	NS	1	58	39	47	40	46	54	41	44	44	44
	weighted annual mean	NS	1	32.5	25.5	28.3	27.1	29.2	34.1	27.1	28	28	28

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
TRENTON, NJ													
O ₃	4th max 8-hour	NS	1	0.105	0.122	0.11	0.102	0.103	0.107	0.09	0.106	0.095	0.113
	2nd daily max 1-hour	Down	1	0.142	0.153	0.151	0.135	0.14	0.132	0.121	0.126	0.113	0.149
PM_{10}	90th percentile	Down	1	51	21 1	43	43	52	38	40	40	35	36
TUSCON AZ	weighted annual mean	Down	1	29.2	31.1	25.0	20.0	29.1	23.9	20.7	21	23.9	20.6
CO	2nd max 8-hour	Down	4	4.55	4.5	4.725	4.638	4.575	4.375	4.075	3.7	3.325	3.1
NO ₂	arithmetic mean	NS	1	0.019	0.018	0.016	0.018	0.019	0.019	0.018	0.018	0.017	0.018
O ₃	4th max 8-hour	NS	5	0.073	0.072	0.07	0.075	0.073	0.077	0.073	0.071	0.071	0.069
DM	2nd daily max 1-hour	NS	5	0.093	0.084	0.087	0.09	0.088	0.094	0.086	0.085	0.088	0.084
F IVI ₁₀	weighted annual mean	NS	10	32 55	25.91	24 05	22.0	22 12	26 22	25 35	25 79	25 88	49.3 31.3
SO ₂	arithmetic mean	NS	1	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.002	0.002	0.002
2	2nd max 24-hour	Down	1	0.007	0.007	0.006	0.005	0.004	0.004	0.004	0.004	0.004	0.005
TULSA, OK		20	0	4 7		- 4	0.05	0.05	0.05	5.05	5 05		
CO	2nd max 8-hour	NS	2	4.7	4.6	5.1	3.85	3.85	3.35	5.25	5.65	3.9	3.3
NO.	arithmetic mean	NS	2	0.108	0.214	0.102	0.203	0.098	0.091	0.114	0.015	0.015	0.015
0,	4th max 8-hour	NS	3	0.09	0.086	0.077	0.075	0.086	0.095	0.086	0.08	0.089	0.088
5	2nd daily max 1-hour	NS	3	0.116	0.111	0.095	0.108	0.111	0.119	0.11	0.106	0.11	0.112
PM ₁₀	90th percentile	NS	5	42	41.4	38.6	40	42	44.2	40	37.8	37.8	37.8
80	weighted annual mean	NS	5	23.9	25.02	23.52	25.9	25.58	26.24	26.22	24.18	24.18	24.18
50 ₂	2nd max 24-hour	NS	1	0.012	0.01	0.011	0.006	0.004	0.006	0.006	0.008	0.01	0.000
TUSCALOOSA	AL	NO		0.000	0.047	0.000	0.020	0.020	0.004	0.042	0.020	0.004	0.001
PM ₁₀	90th percentile	NS	1	61	47	38	43	41	48	41	41	44	51
	weighted annual mean	NS	1	31.8	27.5	26	26	25.9	27.4	26.2	25.2	28.3	28.1
UTICA-ROME, I	NY Athena an Ochann	NO	0	0.00	0 000	0.070	0.007	0.070	0.077	0.000	0.070	0.070	0.070
O_3	2nd daily max 1-hour	NS	2	0.06	0.062	0.076	0.067	0.072	0.077	0.003	0.073	0.073	0.076
PM ₄₀	90th percentile	Down	2	35	35	32	30	28.5	26	27.5	26	29.5	29.5
10	weighted annual mean	NS	2	20.65	20.65	18.9	16.3	16.25	15.05	15.95	15.1	16.6	16.35
SO ₂	arithmetic mean	NS	1	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.001	0.001
	2nd max 24-hour	NS	1	0.006	0.006	0.006	0.012	0.012	800.0	0.009	0.006	0.005	0.007
	2nd max 8-bour	Down	2	6 85	6.6	5 55	5 55	52	42	4 15	44	42	4 15
0,	4th max 8-hour	NS	3	0.067	0.067	0.065	0.071	0.068	0.079	0.074	0.06	0.071	0.078
- 5	2nd daily max 1-hour	NS	3	0.093	0.103	0.093	0.1	0.096	0.108	0.104	0.082	0.106	0.108
PM ₁₀	90th percentile	Down	1	53	69	48	36	32	32	25	22	33	40
	weighted annual mean	Down	1	26.6	40.6	24.4	22.5	21.2	19	17.3	16.1	17.2	19.6
CO	2nd max 8-hour	Down	2	3 25	3.05	23	2 4 5	2 75	3 15	2 35	2 35	2 25	19
Pb	max quarterly mean	Down	1	0.02	0.032	0.014	0.01	0.01	0.01	0.008	0.008	0.006	0.006
NO ₂	arithmetic mean	Down	4	0.016	0.015	0.014	0.014	0.014	0.014	0.013	0.012	0.011	0.013
O ₃	4th max 8-hour	Down	6	0.098	0.104	0.099	0.089	0.095	0.095	0.099	0.085	0.087	0.079
	2nd daily max 1-hour	Down	6	0.128	0.136	0.128	0.123	0.126	0.126	0.127	0.11	0.116	0.099
PINI ₁₀	youn percentile	Down	5	55.8 34.44	55.0 35.0	48.0	40.8 27.36	40.0	48.0	43.8	48.2	40.0 23.24	47.0
VICTORIA, TX	weighted annual mean	Down	5	54.44	55.5	51.2	27.50	30.02	20.12	21.52	50.22	20.24	23.20
O ₃ ,	4th max 8-hour	NS	1	0.058	0.086	0.078	0.081	0.075	0.087	0.071	0.078	0.073	0.086
	2nd daily max 1-hour	NS	1	0.099	0.099	0.099	0.098	0.094	0.104	0.087	0.092	0.093	0.102
	Ath max 8 hour	NC	1	0.11	0 107	0 007	0 102	0.096	0.001	0.096	0 104	0 000	0.006
O_3	2nd daily max 1-hour	NS	1	0.11	0.107	0.067	0.103	0.060	0.091	0.060	0.104	0.096	0.096
SO ₂	arithmetic mean	Down	1	0.007	0.007	0.006	0.006	0.005	0.004	0.005	0.004	0.004	0.003
2	2nd max 24-hour	Down	1	0.024	0.023	0.021	0.019	0.032	0.016	0.016	0.018	0.012	0.012
VISALIA-TULA	RE-PORTERVILLE, CA	-		_									
	2nd max 8-hour	Down	1	0 0 2 1	5.3	4.3	3.5	4	4.2	3.9	3.5	3.6	3.9
Ω_2	4th max 8-hour	NS	2	0.021	0.022	0.02	0.023	0.023	0.023	0.018	0.019	0.017	0.021
03	2nd daily max 1-hour	NS	2	0.116	0.116	0.125	0.138	0.137	0.118	0.131	0.114	0.13	0.116
PM ₁₀	90th percentile	Down	2	128.5	106.5	82.5	89.5	62.5	72	70	63	63.5	82.5
	weighted annual mean	Down	2	68.5	61	50.75	48.7	42.1	44.3	40.25	40.4	38.3	45.8
WASHINGTON,	2nd max 8 hour	Down	0	A 7	10	1 000	1 675	A 4E	1 160	3 705	3 700	2 1 1 2	2.0
Ph	Ziiu illax o-liour max quarterly mean	Down	0 5	4.7 0.040	4.0 0.032	4.088	4.0/5	4.15	4.103	3.725 0.013	3.788 0.01	0.013	3.3 0.013
NO ₂	arithmetic mean	Down	7	0.049	0.024	0.024	0.024	0.023	0.021	0.021	0.021	0.022	0.021
03 ²	4th max 8-hour	NS	13	0.089	0.097	0.086	0.096	0.088	0.095	0.083	0.091	0.099	0.096
	2nd daily max 1-hour	NS	13	0.114	0.122	0.107	0.12	0.116	0.12	0.106	0.116	0.119	0.118
PM ₁₀	90th percentile	Down	14	40.857	40.214	36.286	37.214	38.786	36.214	33.5	33.071	35.5	34.286
SO	weignieu annuai mean	Down	14	∠5.45 0.007	∠5.55 0.007	∠3.000 0.002	∠∠.35 0.002	21.2302	≤1.707 0.006	20.336	20.207	20.893	20.014 0.007
002	2nd max 24-hour	NS	5	0.026	0.026	0.029	0.026	0.029	0.019	0.031	0.022	0.007	0.02
			-				=-	==					

Metropolitan	Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
WATERBURY, (СТ												
PM ₄₀	90th percentile	Down	2	56.5	48.5	43.5	44.5	43	40	46.5	37.5	32.5	32
10	weighted annual mean	Down	2	34	29.7	23.15	23.55	26.15	24.1	25.95	23.65	22	19.7
SO ₂	arithmetic mean	Down	1	0.01	0.009	0.007	0.006	0.007	0.005	0.005	0.005	0.006	0.005
-	2nd max 24-hour	Down	1	0.042	0.038	0.029	0.021	0.03	0.019	0.022	0.02	0.021	0.02
WATERLOO-CI	EDAR FALLS, IA												
PM_{10}	90th percentile	Down	1	57	57	63	48	45	52	48	47	47	44
	weighted annual mean	Down	1	34.7	34.7	34.3	31.2	28.7	35.5	31.8	31.3	29.9	24.1
WAUSAU, WI	Ath may 9 hour	NC	4	0.001	0.001	0.001	0.00	0.064	0.075	0.07	0.060	0 077	0.004
O_3	4 III III ax o-nour	NO NC	1	0.001	0.001	0.001	0.00	0.004	0.075	0.07	0.069	0.077	0.004
SO.	arithmetic mean	Down	1	0.000	0.000	0.000	0.001	0.077	0.000	0.079	0.00	0.090	0.095
002	2nd max 24-hour	NS	1	0.004	0.004	0.004	0.004	0.004	0.000	0.005	0.002	0.000	0.003
WEST PALM B	EACH-BOCA RATON. FL	110	•	0.00	0.00	0.021	0.000	0.021	0.022	0.010	0.010	0.001	0.01
CO	2nd max 8-hour	NS	1	2.7	3.1	3.7	3.1	2.8	2.8	2.5	3.6	2.5	2.8
NO ₂	arithmetic mean	NS	1	0.014	0.012	0.011	0.013	0.012	0.012	0.012	0.012	0.012	0.013
O3 -	4th max 8-hour	NS	2	0.066	0.062	0.048	0.077	0.071	0.064	0.064	0.064	0.077	0.061
	2nd daily max 1-hour	NS	2	0.092	0.081	0.067	0.117	0.084	0.082	0.088	0.082	0.096	0.08
PM ₁₀	90th percentile	NS	2	27	27.5	30	29	24.5	24.5	27.5	29	31	29
	weighted annual mean	NS	2	18.95	18.45	19.9	18.85	18.1	17.6	18.45	19.8	20.35	19.6
SO ₂	arithmetic mean	Down	1	0.002	0.002	0.003	0.004	0.003	0.002	0.002	0.002	0.001	0.002
	2nd max 24-hour	NS	1	0.007	0.012	0.01	0.028	0.016	0.019	0.014	0.013	0.004	0.013
WHEELING, W	V-OH	Dawa	4	7 4	FC	FC	4.4	4.6	F	25	2.4	2 5	2
0	Ath max 8 hour	DOWIN	1	0.08	0.0	0.075	4.1	4.0	0 0 80	0.027	0.082	0.087	0 088
03	2nd daily max 1-bour	NS	1	0.00	0.009	0.075	0.077	0.078	0.009	0.007	0.002	0.007	0.000
PM	90th percentile	Down	2	50	52.5	51 5	51	0.095	45.5	42	40.5	46	46.5
1 10110	weighted annual mean	Down	2	29.5	30 65	30.4	29 35	277	28 25	27 6	23 75	24.9	25 65
SO ₂	arithmetic mean	Down	3	0.02	0.02	0.018	0.018	0.015	0.01	0.011	0.01	0.011	0.01
2	2nd max 24-hour	Down	3	0.064	0.074	0.077	0.075	0.065	0.055	0.058	0.043	0.045	0.042
WICHITA, KS													
CO	2nd max 8-hour	Down	3	5.933	5.917	5.633	5	4.933	5.233	5.8	4.8	4.833	4.167
Pb	max quarterly mean	Down	5	0.017	0.02	0.012	0.014	0.008	0.01	0.011	0.009	0.009	0.009
O ₃	4th max 8-hour	NS	2	0.079	0.076	0.067	0.06	0.07	0.073	0.071	0.079	0.081	0.078
D 14	2nd daily max 1-hour	NS	2	0.095	0.09	0.078	0.075	0.085	0.095	0.093	0.093	0.096	0.093
PIM ₁₀	90th percentile	NS	4	48.75	21 25	52.5	55.5	49.75	50.75	42.5	40	40.5	49.25
		Down	4	21.1	31.35	32.25	31.425	20.4	27.1	24.00	22.45	24.2	25.7
	4th max 8-hour	NS	1	0 071	0.081	0.073	0 075	0.069	0.073	0.07	0.076	0 073	0 075
\mathbf{O}_3	2nd daily max 1-hour	NS	1	0.088	0.001	0.092	0.088	0.000	0.091	0.082	0.086	0.097	0.070
PM ₄₀	90th percentile	NS	1	50	60	36	47	52	49	36	40	40	40
10	weighted annual mean	NS	1	26	30.7	23.8	23.9	27.8	27.6	25.1	25.6	25.6	25.6
SO ₂	arithmetic mean	NS	1	0.006	0.007	0.007	0.006	0.006	0.006	0.006	0.008	0.005	0.005
-	2nd max 24-hour	NS	1	0.025	0.025	0.029	0.025	0.042	0.027	0.028	0.028	0.021	0.021
WILMINGTON-	NEWARK, DE-MD												
CO	2nd max 8-hour	NS	1	5.4	4	4.1	3.8	4.3	4.6	3.6	4.5	3.1	3.1
NO ₂	arithmetic mean	NS	1	0.017	0.017	0.017	0.019	0.019	0.017	0.019	0.018	0.016	0.018
O_3	4th max 8-nour	NS	3	0.098	0.1	0.094	0.101	0.094	0.112	0.088	0.104	0.095	0.102
DM	2nd daily max 1-nour	NS Down	3	0.123	0.121	0.118	42 5	0.119	0.142	0.111	0.130	0.122	20 5
r wi ₁₀	weighted annual mean	Down	2	30.05	27.65	24 45	42.0 24.8	20 /5	27.8	41.5 25.4	42.0	40.5	22.05
SO.	arithmetic mean	Down	23	0 014	0.013	0 014	0.013	0.012	0.011	0.01	0.008	0 008	0.007
002	2nd max 24-hour	Down	3	0.053	0.010	0.014	0.047	0.048	0.057	0.045	0.000	0.032	0.035
WORCESTER.	MA-CT	20111	Ū.	0.000	0.0.0	0.001	0.011	0.0.0	0.001	0.0.0	0.011	0.002	0.000
CO	2nd max 8-hour	Down	1	6	7.2	8	6.1	5.9	4.2	5.3	3.4	3.5	3.3
NO_2	arithmetic mean	Down	1	0.022	0.023	0.024	0.028	0.025	0.021	0.019	0.019	0.019	0.02
O ₃	4th max 8-hour	NS	1	0.097	0.097	0.097	0.092	0.097	0.096	0.074	0.092	0.097	0.093
	2nd daily max 1-hour	Down	1	0.125	0.125	0.125	0.155	0.125	0.118	0.091	0.106	0.124	0.113
PM_{10}	90th percentile	Down	2	41	37.667	34.333	37	36	31.5	33.5	31.5	32.5	36
	weighted annual mean	NS	2	22.95	21.267	19.583	19.5	19.9	19.45	20.25	19.55	19.2	20.5
SO_2	arithmetic mean	Down	1	0.008	0.009	0.007	0.007	0.008	0.006	0.005	0.004	0.005	0.004
	∠nu max ∠4-nour	Down	Т	0.034	0.029	0.033	0.025	0.024	0.023	0.021	0.021	0.017	0.013
DM	90th percentile	Down	2	61 F	80 F	50 F	63	51 E	15 F	59 F	50	12 F	38 5
F 1VI ₁₀	weighted annual mean	Down	2	33.1	40 15	32 45	34 85	29.1	23 55	30 375	31.6	42.0 25.75	22.4
YOLO, CA	giitea aimaarmean	Down	-	50.1	10.10	02.40	01.00	20.1	20.00	30.010	01.0	20.70	
0,	4th max 8-hour	NS	1	0.082	0.073	0.085	0.076	0.076	0.083	0.087	0.068	0.087	0.088
- 0	2nd daily max 1-hour	NS	1	0.1	0.105	0.11	0.09	0.097	0.108	0.113	0.092	0.109	0.115
PM ₁₀	90th percentile	Down	1	81	81	63	62	46	61	40	37	42	65
	weighted annual mean	Down	1	46.4	46.4	34.7	29.2	29.8	30.1	24.3	24.6	21.7	30.6

Metropolitar	n Statistical Area	Trend	#Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
YORK. PA													
CÓ	2nd max 8-hour	Down	1	4.4	3.7	3.6	3.3	3.9	2.7	2.8	3.4	2.4	2.4
Pb	max guarterly mean	NS	1	0.051	0.051	0.046	0.044	0.042	0.04	0.065	0.044	0.049	0.049
NO ₂	arithmetic mean	Down	1	0.022	0.021	0.02	0.022	0.024	0.021	0.021	0.019	0.019	0.019
03	4th max 8-hour	NS	1	0.097	0.1	0.079	0.09	0.082	0.086	0.081	0.094	0.095	0.094
0	2nd daily max 1-hour	NS	1	0.121	0.114	0.101	0.112	0.115	0.097	0.098	0.109	0.112	0.121
PM ₁₀	90th percentile	NS	1	56	60	44	52	51	56	46	49	49	49
10	weighted annual mean	NS	1	29.7	32.2	27	30.5	31.7	29.7	28.4	31.2	31.2	31.2
SO_2	arithmetic mean	NS	1	0.007	0.008	0.007	0.008	0.009	0.006	0.007	0.009	0.008	0.007
-	2nd max 24-hour	NS	1	0.023	0.02	0.034	0.032	0.041	0.02	0.022	0.026	0.023	0.019
YOUNGSTOW	/N-WARREN, OH												
O ₃	4th max 8-hour	NS	3	0.09	0.096	0.092	0.085	0.083	0.096	0.09	0.089	0.099	0.094
	2nd daily max 1-hour	NS	3	0.105	0.111	0.106	0.106	0.096	0.11	0.104	0.105	0.115	0.108
PM ₁₀	90th percentile	Down	9	53	54.889	48.556	49.333	49 -	48.222	39.333 4	42.778	46.667	44
	weighted annual mean	Down	9	31.267	33.022	28.544	27.389	29.033	28.089	26.011	25.389	27.267	25.867
SO ₂	arithmetic mean	Down	2	0.016	0.016	0.013	0.011	0.011	0.01	0.009	0.008	0.008	0.008
	2nd max 24-hour	Down	2	0.053	0.048	0.056	0.064	0.051	0.038	0.044	0.037	0.03	0.034
YUBA CITY, C	Α												
CO	2nd max 8-hour	Down	1	5.8	5.8	5.8	5	5.6	4.1	4.1	3.9	3.9	4.2
NO ₂	arithmetic mean	Down	1	0.017	0.017	0.017	0.018	0.016	0.014	0.012	0.014	0.013	0.014
O_3	4th max 8-hour	NS	2	0.076	0.079	0.088	0.081	0.082	0.087	0.086	0.073	0.087	0.084
	2nd daily max 1-hour	NS	2	0.1	0.1	0.11	0.11	0.099	0.107	0.105	0.093	0.103	0.105
PM_{10}	90th percentile	NS	1	60	73	57	59	51	68	50	48	44	68
	weighted annual mean	Down	1	38.5	38.5	34.3	30.4	34.1	32.5	29.2	28.6	23.1	38.4

СО = Highest second maximum non-overlapping 8-hour concentration (Applicable NAAQS is 9 ppm)

Pb = Highest quarterly maximum concentration (Applicable NAAQS is 1.5 μg/m3)

NO₂ = Highest arithmetic mean concentration (Applicable NAAQS is 0.053 ppm)

Highest second daily maximum 1-hour concentration (Applicable NAAQS is 0.12 ppm) Highest fourth daily maximum 8-hour concentration (Applicable NAAQS is 0.08 ppm)

 $O_{3}^{(1-hr)} = O_{3}^{(1-hr)} = O_{3}^{(8-hr)} = PM_{10}^{(8-hr)} = SO_{2}^{(8-hr)} = O_{3}^{(8-hr)} = O$

Highest second maximum 24-hour concentration (Applicable NAAQS is 150 µg/m3) Highest second maximum 24-hour concentration (Applicable NAAQS is 0.14 ppm)

= Units are parts per million ppm

µg/m³ = Units are micrograms per cubic meter

Table A-17. Number of Days with AQI Values Greater Than 100 at Trend Sites, 1990–1999,and All Sites in 1999

Metropolitan Statistical Area	# of Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	Total # of Sites	AQI > 100 1999
AKRON, OH	5	9	30	8	10	8	12	11	6	14	20	6	20
ALBANY-SCHENECTADY-TROY, NY	10	4	9	5	5	6	3	4	3	2	6	10	6
ALBUQUERQUE, NM	21	8	5	0	0	1	0	0	0	0	1	21	2
ALLENTOWN-BETHLEHEM-EASTON, PA	5	10	14	3	6	3	9	6	13	18	20	9	23
ATLANTA, GA	10	42	23	20	36	15	35	25	31	50	61	18	69
AUSTIN-SAN MARCOS, TX	1	4	3	1	2	4	10	0	0	5	8	3	19
BAKERSFIELD, CA	8	99	113	100	97	98	105	109	55	76	88	14	94
BALTIMORE, MD	17	29	50	23	48	41	36	28	30	51	40	20	40
BATON ROUGE, LA	7	28	11	5	6	7	15	7	8	14	17	10	26
BERGEN-PASSAIC, NJ	7	8	11	2	3	5	11	3	5	0	0	7	0
BIRMINGHAM, AL	14	28	5	12	10	6	32	15	8	23	27	14	27
BOSTON, MA-NH	24	7	13	9	6	10	8	2	8	7	5	24	9
BUFFALO-NIAGARA FALLS, NY	20	7	9	3	1	4	6	3	1	13	8	20	8
CHARLESTON-NORTH CHARLESTON, SC	9	1	2	0	2	2	1	3	3	3	5	9	5
CHARLOTTE-GASTONIA-ROCK HILL, NC-SC	12	31	12	11	23	9	13	18	26	48	34	24	42
CHICAGO, IL	45	4	22	4	3	8	21	6	9	7	12	51	12
CINCINNATI, OH-KY-IN	19	12	19	1	6	16	19	10	11	14	12	23	27
CLEVELAND-LORAIN-ELYRIA, OH	27	10	23	11	13	23	24	18	11	20	18	40	23
COLUMBUS, OH	9	4	17	5	7	10	15	16	8	19	20	12	25
DALLAS, TX	9	24	2	12	14	27	36	12	20	28	23	9	35
DAYTON-SPRINGFIELD, OH	10	13	12	2	11	14	11	18	9	19	19	13	20
DENVER, CO	22	9	6	11	3	1	2	0	0	5	1	28	5
DETROIT, MI	29	11	28	8	5	11	14	13	12	17	15	29	15
EL PASO, TX	19	19	7	10	7	11	8	7	4	6	6	24	7
FORT LAUDERDALE, FL	15	1	0	2	4	1	1	1	0	1	1	18	1
FORT WORTH-ARLINGTON, TX	5	16	20	7	9	31	28	14	14	17	19	5	19
FRESNO, CA	12	62	83	69	59	55	61	70	75	67	81	15	83
GARY, IN	15	2	8	5	0	6	17	11	12	9	10	18	12
GRAND RAPIDS-MUSKEGON-HOLLAND, MI	8	10	26	6	3	12	17	7	8	13	20	9	21
GREENSBORO-WINSTON-SALEM-HIGH POINT, NC	9	12	5	2	20	7	6	6	13	25	20	15	29
GREENVILLE-SPARTANBURG-ANDERSON, S	SC 5	2	3	5	9	5	8	7	10	28	19	7	19
HARRISBURG-LEBANON-CARLISLE, PA	6	10	21	1	15	12	13	3	9	22	17	6	17
HARTFORD, CT	15	13	23	15	14	18	14	5	16	10	18	15	18
HONOLULU, HI	10	0	0	0	0	0	0	0	0	0	0	14	0
HOUSTON, TX	23	51	36	32	28	38	66	26	47	38	50	23	54
INDIANAPOLIS, IN	27	9	12	7	9	22	19	13	12	19	21	32	26
JACKSONVILLE, FL	14	3	0	2	3	2	1	1	4	10	3	14	3
JERSEY CITY, NJ	7	15	26	11	19	17	18	5	9	7	17	7	17
KANSAS CITY, MO-KS	21	2	11	1	4	10	22	10	18	15	5	21	5
KNOXVILLE. TN	15	23	10	7	25	16	24	20	36	54	59	18	62
LAS VEGAS, NV-AZ	5	4	0	1	2	2	0	2	0	0	0	26	7
LITTLE ROCK-NORTH LITTLE ROCK, AR	7	1	3	0	2	2	7	1	1	2	6	7	6
LOS ANGELES-LONG BEACH. CA	38	173	168	175	134	139	113	94	60	56	27	38	27
LOUISVILLE. KY-IN	20	10	15	2	23	27	22	11	14	27	40	26	44
MEMPHIS. TN-AR-MS	12	24	9	14	15	10	21	19	17	27	36	14	36
MIAMI, FL	12	1	1	3	6	.0	2	.0		 8	5	12	5
MIDDLESEX-SOMERSET-HUNTERDON N.I		24	24	8	13	9	- 16	8	18	21	23	5	26
MILWAUKEE-WAUKESHA, WI	18	8	24	3	4	9	14	5	4	10	13	22	18

Table A-17. Number of Days with AQI Values Greater Than 100 at Trend Sites, 1990–1999, and All Sites in 1999 (continued)

Metropolitan Statistical Area	# of Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	Total # of Sites	AQI > 100 1999
MINNEAPOLIS-ST. PAUL, MN-WI	20	4	2	1	0	2	5	0	0	1	0	36	0
MONMOUTH-OCEAN, NJ	4	21	20	11	24	13	20	17	21	31	27	4	27
NASHVILLE, TN	16	29	12	6	18	21	26	22	20	30	33	21	45
NASSAU-SUFFOLK, NY	7	20	25	7	17	15	10	8	12	11	18	7	18
NEW HAVEN-MERIDEN, CT	9	17	29	10	17	14	14	8	19	10	16	9	16
NEW ORLEANS, LA	10	6	2	5	6	8	20	8	7	7	18	10	18
NEW YORK, NY	29	36	49	10	19	21	19	15	23	17	24	30	27
NEWARK, NJ	12	23	35	10	13	13	20	12	13	23	21	12	21
NORFOLK-VIRGINIA BEACH-NEWPORT NEWS, VA-NC	: 10	8	7	8	19	6	6	4	17	15	16	12	16
OAKLAND, CA	18	4	4	3	4	3	12	11	0	11	5	29	6
OKLAHOMA CITY, OK	10	4	4	2	2	5	13	2	4	7	6	10	6
OMAHA, NE-IA	9	1	0	0	1	1	1	1	0	5	5	12	5
ORANGE COUNTY. CA	11	45	35	35	25	15	9	9	3	6	1	12	1
ORLANDO, FL	11	4	1	4	4	3	1	1	4	11	4	13	4
PHILADELPHIA, PA-NJ	36	39	49	24	51	26	30	22	32	37	32	44	32
PHOENIX-MESA, AZ	25	12	11	13	16	10	22	17	12	17	12	51	37
PITTSBURGH, PA	42	19	21	9	13	19	25	11	21	39	23	42	26
PONCE. PR	1	0	0	0	0	0	0	0	0	0	0	1	0
PORTLAND-VANCOUVER. OR-WA	15	11	9	6	0	2	2	6	0	3	2	15	2
PROVIDENCE-FALL RIVER-WARWICK. RI-M	A 9	13	20	5	7	7	11	4	10	4	7	12	13
RALEIGH-DURHAM-CHAPEL HILL, NC	5	15	5	0	11	2	1	1	13	21	26	17	29
RICHMOND-PETERSBURG, VA	11	6	18	8	30	13	19	5	21	28	25	11	25
RIVERSIDE-SAN BERNARDINO, CA	36	159	154	174	168	149	124	119	105	95	93	47	97
ROCHESTER. NY	8	5	16	2	0	1	6	0	6	4	9	8	9
SACRAMENTO, CA	20	61	46	51	20	36	41	42	15	27	38	33	48
ST. LOUIS. MO-IL	55	23	32	15	9	32	34	20	15	23	29	55	29
SALT LAKE CITY-OGDEN, UT	13	5	20	9	5	12	4	8	1	12	2	24	5
SAN ANTONIO. TX	4	4	3	1	3	4	18	3	3	6	9	4	9
SAN DIEGO. CA	23	96	67	66	58	46	48	31	14	33	16	27	17
SAN FRANCISCO. CA	9	0	0	0	0	0	2	0	0	0	0	11	0
SAN JOSE, CA	8	7	11	3	4	2	10	7	0	5	2	9	4
SAN JUAN-BAYAMON, PR	11	0	0	0	0	0	0	1	2	1	1	21	3
SCRANTON-WILKES-BARRE-HAZLETON, P	A 11	9	17	3	10	7	12	4	11	7	12	11	12
SEATTLE-BELLEVUE-EVERETT, WA	17	9	4	3	0	3	0	6	1	3	1	24	1
SPRINGFIELD. MA	13	13	15	12	13	12	9	5	10	7	10	13	10
SYRACUSE. NY	7	1	12	2	4	1	5	0	2	3	4	7	4
TACOMA, WA	8	5	1	2	0	2	0	1	0	4	0	9	0
TAMPA-ST. PETERSBURG-CLEARWATER, FL	_ 26	6	1	2	1	3	2	3	4	11	9	40	9
TOLEDO, OH	5	3	6	2	7	9	9	11	4	5	4	6	9
TUSCON, AZ	20	1	0	1	1	0	3	0	1	0	2	21	2
TULSA, OK	11	16	12	1	4	12	21	14	7	9	14	11	14
VENTURA, CA	12	70	87	54	43	63	66	62	45	29	22	15	23
WASHINGTON, DC-MD-VA-WV	40	25	48	14	52	20	29	18	29	47	39	42	39
WEST PALM BEACH-BOCA RATON. FL	6	0	0	0	3	0	0	0	0	2	1	7	1
WILMINGTON-NEWARK. DE-MD	9	9	12	12	29	24	27	13	21	24	21	10	21
YOUNGSTOWN-WARREN, OH	14	3	14	10	10	5	12	8	10	22	12	15	13

Table A-18. (Ozone only) Number of Days with AQI Values Greater Than 100 at Trend Sites, 1990–1999,
and All Sites in 1999

Metropolitan Statistical Area	# of Trend Sites	19 90	19 89	1990	199 3	1992	1995	19 96	1993	1998	1999	Total # of Sites	AQI > 100 1999
AKRON, OH	2	9	30	8	10	8	12	11	6	14	20	2	20
ALBANY-SCHENECTADY-TROY, NY	3	4	9	5	5	6	3	4	3	2	6	3	6
ALBUQUERQUE, NM	7	2	0	0	0	1	0	0	0	0	1	9	2
ALLENTOWN-BETHLEHEM-EASTON, PA	2	10	14	3	6	3	9	6	13	18	20	3	23
ATLANTA, GA	3	42	23	20	36	15	35	25	31	50	61	7	69
AUSTIN-SAN MARCOS, TX	1	4	3	1	2	4	10	0	0	5	8	2	19
BAKERSFIELD, CA	5	95	107	100	97	98	104	109	55	75	87	6	92
BALTIMORE, MD	7	28	50	23	48	40	36	28	30	51	40	8	40
BATON ROUGE, LA	3	28	11	5	5	7	15	7	8	14	17	7	26
BERGEN-PASSAIC, NJ	1	8	11	2	3	5	11	3	5	0	0	1	0
BIRMINGHAM. AL	6	28	5	12	10	6	32	15	8	23	27	6	27
BOSTON MA-NH	4	7	13		6	10	8	2	8	7	5	4	9
BUEFALO-NIAGARA FALLS NY	2	7	9	3	1	4	6	-	1	13	8	2	8
CHARLESTON-NORTH CHARLESTON SC	3	1	1	0	2	2	1	3	3	3	5	3	5
CHARLOTTE-GASTONIA-ROCK HILL NC-SC	3	29	12	11	23	9	13	18	26	48	34	7	42
CHICAGO II	, 0 17	3	22	4	20	7	21	6	9	7	12	22	12
	6	12	10	1	6	16	10	10	11	14	12	7	27
	6	10	23	10	12	22	21	17	11	19	17	9	22
	3	4	17	5	7	10	15	16	8	10	20	5	25
	3	24	2	12	14	27	36	10	20	28	20	5	25
	3	13	12	2	11	1/	11	12	20	10	10	5	20
DENVER CO	5	13	12	2	0	14	0	10	9	19	19	9 9	20
DETROIT MI	0	11	20	4	5	11	12	12	12	17	14	0	14
	0	6	20	2	2	7	7	12	12	6	14	0	14
	4	1	0	3	3	1	1	2	0	1	1	4	1
FORT LAUDERDALE, FL	ა ი	16	20	2	4	21	1	14	14	17	10	2	10
FORT WORTH-ARLINGTON, TA	2	50	20	، دە	9	51	20	70	14	67	19	2	19
	5	50	01	69	59	55	17	70	75	67	81 10	1	83
	2	2	8	5	0	0	17	-	11	9	10	4	12
GRAND RAPIDS-MUSKEGON-HOLLAND, MI	4	10	26	6	3	12	17	(8	13	20	4	21
GREENSBURU-WINSTON-SALEM-HIGH POINT, NO	, 2	12	5	2	20	/	6	6	13	25	20	6	29
GREENVILLE-SPARTANBURG-ANDERSON,	SC 4	2	3	5	9	5	8	/	10	28	19	4	19
HARRISBURG-LEBANON-CARLISLE, PA	3	10	21	1	15	12	13	3	9	22	17	3	17
HARTFORD, CI	3	13	21	14	14	18	13	5	16	10	18	3	18
HONOLULU, HI	1	0	0	0	0	0	0	0	0	0	0	1	0
HOUSTON, IX	9	51	36	32	28	38	66	26	47	38	50	11	54
INDIANAPOLIS, IN	6	9	11	6	9	22	19	13	12	19	21	9	26
JACKSONVILLE, FL	2	3	0	2	3	2	1	1	4	10	3	2	3
JERSEY CITY, NJ	1	15	25	9	19	12	16	5	9	7	17	1	17
KANSAS CITY, MO-KS	6	2	11	1	3	10	22	9	18	15	5	6	5
KNOXVILLE, TN	5	23	10	7	25	16	24	20	36	54	59	7	62
LAS VEGAS, NV-AZ	3	2	0	1	2	2	0	2	0	0	0	4	0
LITTLE ROCK-NORTH LITTLE ROCK, AR	2	1	3	0	2	2	7	1	1	2	6	2	6
LOS ANGELES-LONG BEACH, CA	14	130	126	140	112	117	97	74	45	46	19	14	19
LOUISVILLE, KY-IN	5	10	15	2	22	27	22	11	14	27	40	7	44
MEMPHIS, TN-AR-MS	4	22	9	13	13	10	21	18	17	27	36	4	36
MIAMI, FL	4	1	1	3	6	1	2	1	3	8	5	4	5
MIDDLESEX-SOMERSET-HUNTERDON, NJ	1	24	24	8	13	9	16	8	18	21	23	2	26
MILWAUKEE-WAUKESHA, WI	8	8	24	3	4	9	14	5	4	10	12	9	17

Table A-18. (Ozone only) Number of Days with AQI Values Greater Than 100 at Trend Sites, 1990–1999, and All Sites in 1999 (continued)

Metropolitan Statistical Area	# of Trend Sites	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	Total # of Sites	AQI > 100 1999
MINNEAPOLIS-ST. PAUL, MN-WI	4	1	0	1	0	0	3	0	0	1	0	5	0
MONMOUTH-OCEAN, NJ	2	21	20	11	24	13	20	17	21	31	27	2	27
NASHVILLE, TN	6	29	12	6	18	21	26	22	20	30	33	8	45
NASSAU-SUFFOLK, NY	2	20	25	7	17	15	10	8	12	11	18	2	18
NEW HAVEN-MERIDEN, CT	2	15	28	10	13	13	14	8	19	10	16	2	16
NEW ORLEANS, LA	6	6	2	5	6	8	20	8	7	7	18	6	18
NEW YORK, NY	5	33	47	10	19	21	18	15	23	17	24	8	27
NEWARK, NJ	2	22	32	10	13	12	20	12	13	23	21	2	21
NORFOLK-VIRGINIA BEACH-NEWPORT NEWS, VA-NC	3	8	7	8	19	6	6	4	17	15	16	3	16
OAKLAND, CA	7	4	3	3	4	3	12	11	0	11	5	9	6
OKLAHOMA CITY, OK	4	4	4	2	2	5	13	2	4	7	6	4	6
OMAHA, NE-IA	3	1	0	0	0	0	0	0	0	0	2	3	2
ORANGE COUNTY, CA	4	38	35	35	25	15	8	9	3	6	1	4	1
ORLANDO, FL	3	4	1	4	4	3	1	1	4	11	4	4	4
PHILADELPHIA. PA-NJ	8	39	49	24	51	25	30	22	32	37	32	10	32
PHOENIX-MESA, AZ	8	7	7	11	16	7	19	17	10	17	12	18	27
PITTSBURGH, PA	8	11	20	8	13	19	24	11	20	39	23	12	26
PONCE, PR	0	0	0	0	0	0	0	0	0	0	0	0	0
PORTLAND-VANCOUVER, OR-WA	4	8	3	6	0	1	2	6	0	3	0	4	0
PROVIDENCE-FALL RIVER-WARWICK, RI-MA	A 2	13	20	5	7	7	11	4	10	4	7	3	13
RALEIGH-DURHAM-CHAPEL HILL, NC	1	15	5	0	11	2	1	1	13	21	26	8	29
RICHMOND-PETERSBURG, VA	4	6	18	8	30	13	19	5	21	28	25	4	25
RIVERSIDE-SAN BERNARDINO, CA	15	153	152	172	167	148	119	116	102	94	93	18	97
ROCHESTER, NY	2	5	16	2	0	1	6	0	6	4	9	2	9
SACRAMENTO, CA	8	42	36	50	20	36	41	42	15	27	38	13	48
ST. LOUIS, MO-IL	16	23	32	15	9	31	34	20	14	23	29	16	29
SALT LAKE CITY-OGDEN, UT	2	5	3	0	2	4	4	6	1	12	2	7	5
SAN ANTONIO, TX	2	4	3	1	3	4	18	3	3	6	9	2	9
SAN DIEGO, CA	9	96	67	66	58	46	48	31	14	33	16	10	17
SAN FRANCISCO, CA	3	0	0	0	0	0	2	0	0	0	0	3	0
SAN JOSE, CA	4	4	5	3	4	2	10	7	0	5	2	6	4
SAN JUAN-BAYAMON, PR	0	0	0	0	0	0	0	0	0	0	0	1	0
SCRANTON-WILKES-BARRE-HAZLETON, P	A 4	9	17	3	10	7	12	4	11	7	12	4	12
SEATTLE-BELLEVUE-EVERETT, WA	2	7	3	3	0	3	0	6	1	3	1	3	1
SPRINGFIELD, MA	4	13	15	12	13	12	9	4	10	7	10	4	10
SYRACUSE, NY	2	0	12	2	4	1	5	0	2	3	4	2	4
TACOMA, WA	1	4	0	2	0	2	0	1	0	4	0	2	0
TAMPA-ST. PETERSBURG-CLEARWATER, FI	_ 7	6	1	2	1	3	2	3	4	11	9	7	9
TOLEDO, OH	3	3	6	2	7	9	9	11	4	5	4	3	9
TUSCON, AZ	5	1	0	1	1	0	3	0	1	0	1	6	1
TULSA, OK	3	16	12	1	4	12	21	14	7	9	14	3	14
VENTURA, CA	6	70	87	54	43	63	66	62	44	29	22	7	23
WASHINGTON, DC-MD-VA-WV	13	25	48	14	52	20	29	18	29	47	39	17	39
WEST PALM BEACH-BOCA RATON, FL	2	0	0	0	3	0	0	0	0	2	1	2	1
WILMINGTON-NEWARK, DE-MD	3	9	12	12	29	24	27	13	21	24	21	4	21
YOUNGSTOWN-WARREN, OH	3	3	14	10	10	5	12	8	10	22	12	3	12

				P	ollutan	t(c)				F	Popula	tion (x 10)00) (c	n
Sta	ite	Area Name(b)	O ₃	со	SO ₂	PM ₁₀	Pb	NO ₂	O ₃	со	SO ²	PM ₁₀	Pb	All
1		Anchorogo		1		1				222		170		222
ו ר		Foirbooko	·	1	•	I	•	•		222		170	·	222
2			·	1	•		•	•		30		10	·	10
3		Juneau		•	•	I				•	•	12	•	12
4	AL AZ	Aio	I		1			•	/51	•			•	/51
5	AZ AZ	Aju Bullhood City	·	•	I	1	•	•		•	0	5	·	5
0 7	AZ AZ	Buinead City	·		1	1		•		•	12	2 12	•	5 12
/ 0	AZ AZ	Douglas Miami Llaudan	•	•	1	1				•	13	13	•	13
0	AZ AZ	Maranai Maranai	•	•	2	I				•	О	3	•	3
9	AZ	Nevela	•	•	1		•	•	•	•	8		•	8
10	AZ	Nogales	•	•	•	1	•	•	•	•	•	19	•	19
11	AZ	Paul Spur	•	•	•	1	•	•	•	•	•	1	·	1
12	AZ	Payson			·	1	•	•			•	8	·	8
13	AZ	Phoenix	1	1	·	1	•	•	2,092	2,006	•	2,122	·	2,122
14	AZ	Rillito	·	•	÷	1	•	•	•	•		0	·	0
15	AZ	San Manuel	·	•	1	·	•	•		•	5		•	5
16	AZ	Yuma	·	•	·	1	•	•		•	•	54	•	54
17	CA	Imperial Valley	•	•	•	1	•	•	•	•	•	92	·	92
18	CA	Los Angeles-South Coast Air Basin	1	1	·	1	•	•	13,000	13,000	•	13,000	·	13,000
19	CA	Mono Basin (in Mono Co.)	·	•	·	1	•	•		•	•	0	·	0
20	CA	Owens Valley	·	•	•	1	•	•		•	•	18	•	18
21	CA	Sacramento Metro	1	•	•	1	•	•	1,639	•		1,041	•	1,639
22	CA	San Diego	1	•	•	•	•	•	2,498	•	•	•	·	2,498
23	CA	San Francisco-Oakland-San Jose	1	•	•	•	•	•	5,815	•	•	•	·	5,815
24	CA	San Joaquin Valley	1	•	•	1	•	•	2,742	•	•	2,742	•	2,742
25	CA	Santa Barbara-Santa Maria-Lompoc	1		•	•	•	•	370	•		•		370
26	CA	Searles Valley	•		·	1		•		•	•	30		30
27	CA	Southeast Desert Modified AQMA	1			2			384			349		384
28	CA	Ventura Co.	1						669					669
29	СО	Aspen				1					•	5		5
30	CO	Denver-Boulder		1	•	1				1,800		1,836		1,836
31	CO	Fort Collins		1						106		•		106
32	CO	Lamar				1						8		8
33	CO	Pagosa Springs				1						1		1
34	CO	Steamboat Springs				1						6		6
35	СО	Telluride				1						1		1
36	СТ	Greater Connecticut	1			1			2,470			126		2,470
37	DC-MD-VA	Washington	1						3,923					3,923
38	GA	Atlanta	1						2,653					2,653
39	GU	Piti Power Plant			1						0			0
40	GU	Tanguisson Power Plant			1						0			0
41	ID	Bonner Co.(Sandpoint)				1						26		26
42	ID	Fort Hall I.R.				1						1		1
43	ID	Portneuf Valley				1						74		74
44	ID	Shoshone Co.				2						13		13
45	IL-IN	Chicago-Gary-Lake County	1		1	3			7.887		475	625		7.887
46	KY	Boyd Co. (Ashland)		-	1	-			,		51			51
47	KY-IN	Louisville	1	-		-			834	•		•		834
48	LA	Baton Rouge	1	•	-	•	•	•	559	•	•	•	·	559
49	MA	Springfield (W. Mass)	1			•	•		812	•	•	•	•	812
50	MD	Baltimore	1			•	•		2 348	•	•	•	•	2 348
51	MD	Kent and Queen Anne Cos	1	•	•	•	•	•	52		•		•	2,040 52
01				•	•	•	•	•	52	•	•	•	•	52

Table A-19. Condensed Nonattainment Areas List(a)

Table A-19.	Condensed	Nonattainment Areas	List(a)	(continued)
-------------	-----------	---------------------	---------	-------------

				P	ollutan	t(c)					Populat	ion (x 1	000) (d	d)
	State	Area Name(b)	O ₃	со	SO2	PM ₁₀	Pb	NO2	O ₃	со	SO2	PM ₁₀	Pb	All
52	MN	Minneanolis-St Paul				1						272		272
52	MN	Olmstad Co. (Pachastar)	•	•	1	1	•	•	· ·	•	71	212	•	71
55		Dent	·	•	I	•	1	•	· ·	-	71	•	ว	2
54 55	MO	Deni	•	•			1		· ·	•	·		3	3
55		Elberty-Arcadia		•	•	•	1	•	2 200	•	•	•	2	2 200
50		St. LOUIS	I	•			1		2,390	•	·	22	2	2,390
57			•	•	٠	1	•	•	· ·	•	•	33	•	33
58			•	•	٠	1	•	•	· ·	•	•	3	•	3
59		Kalispeli	•	•	٠	1	•	•	· ·	•	•	12	•	12
60			·	•		1	·	•	· ·	•		1		1
61	MI	Lewis & Clark (E. Helena)	·	•	1	•	1	•	· ·	-	2		2	2
62	MI	Libby	·	•	·	1	•	•	· ·		•	3	·	3
63	MT	Missoula	·	1	•	1	•	•	· ·	43	·	43	•	43
64	MT	Polson	·	•	•	1	•	•	· ·	•	•	3	•	3
65	MT	Ronan	·	•	·	1	•	•	· ·	•	•	2	•	2
66	MT	Thompson Falls	·	•	•	1	•	•	· ·	•	·	1	·	1
67	MT	Whitefish	·			1			· ·		•	3	•	3
68	MT	Yellowstone Co. (Laurel)	•	•	1	•	•	•	· ·	•	5	•	•	5
69	NE	Douglas Co. (Omaha)	•	•			1				•		1	1
70	NM	Anthony	•	·		1	•				•	2	•	2
71	NM	Grant Co.			1						28		-	28
72	NM	Sunland Park	1						8		•			8
73	NV	Central Steptoe Valley		•	1		•	•		•	2		•	2
74	NV	Las Vegas		1		1				258		741		741
75	NV	Reno		1		1				134		254	-	254
76	NY-NJ-CT	New York-N. New Jersey-Long Island	1	1		1			17,943	12,338		1,488	-	17,943
77	ОН	Cleveland-Akron-Lorain			1	1					1,412	1,412		1,412
78	ОН	Jefferson Co. (Steubenville)				1						4		4
79	ОН	Lucas Co. (Toledo)			1						462		-	462
80	OR	Grants Pass		1		1				17		17	-	17
81	OR	Klamath Falls		1		1				18		18		18
82	OR	LaGrande				1						12		12
83	OR	Lakeview				1						3		3
84	OR	Medford		1		1				62		63		63
85	OR	Oakridge				1						3		3
86	OR	Springfield-Eugene		_		1						157		157
87	PA	l ancaster	1	-	-		-	-	423	-			-	423
88	PA	Pittsburgh-Beaver Valley	1	•	2	1	•	-	2 468	-	446	75	·	2 468
89	PA	Warren Co	•	•	2	•	•	-	2,100	-	22		•	22
90		DPhiladelphia-Wilmington-Trenton	1	•	-		•	•	6.010	•		·	•	6 0 1 0
Q1		Allentown-Bethlehem		•	1	•	•	•	0,010	•	01	•	•	0,010
02		Allentown-Detilienen	•	•		1	•	•	· ·	•	51	95	•	95
92		Shalby Co. (Momphie)	•	•	·	1	1	·	· ·	•	·	00		00
93		Becument Port Arthur		•	•	•	I	•	261	-	•	•	020	020
94		Delles Fort Worth	1	•	•	•	•	•	2 561	-	•	•	•	2 561
95			1		•		•	•	3,501		·			3,501
90		El Paso	1	I	•	I	•	•	0 704	54	·	515	-	0 704
97		nouston-Galveston-Brazoria	1	•	-	•	•	-	3,731		•		•	3,731
98		Ogaen	·	1	•	1			· ·	63	-	63	•	63
99		Salt Lake City	·	•	1	1	•		· ·	-	725	725	•	725
100	UT	Iooele Co.	•	•	1	·	•	•	·	•	26		•	26
101	UT	Utah Co. (Provo)	·	1	•	1	-		·	85	•	263	•	263
102	WA	Olympia-Tumwater-Lacey				1			.			63		63

				Р	ollutan	t(c)					Popula	tion (x 1	000) (d	I)
	State	Area Name(b)	O ₃	со	SO2	PM ₁₀	Pb	NO ₂	O ₃	со	SO	PM ₁₀	Pb	AI
103	WA	Seattle-Tacoma				3		•				730		730
104	WA	Spokane		1		1				279	-	177		279
105	WA	Wallula				1						47		47
106	WA	Yakima				1						54		54
107	WI	Manitowoc Co.	1						80					80
108	WI	Marathon Co. (Wausau)			1						115			115
109	WI	Milwaukee-Racine	1						1,735					1,735
110	WI	Oneida Co. (Rhinelander)			1						31			31
111	WV	Follansbee				1						3		3
112	WV	New Manchester Gr. (in Hancock Co)			1						10			10
113	WV	WierButler-Clay (in Hancock Co)			1	1					25	22	-	25
114	WY	Sheridan	•		•	1	•			•	•	13		13
			31	17	28	76	6	0	90.800	30.515	4.034	29.792	836 1	00.593

Table A-19. Condensed Nonattainment Areas List(a) (continued)

Notes:

- (a) This is a simplified listing of Classified Nonattainment areas. Unclassified and Section 185a nonattainment areas are not included. In certain cases, footnotes are used to clarify the areas involved. For example, the lead nonattainment area listed within the Dallas-Fort Worth ozone nonattainment area is in Frisco, Texas, which is not in Dallas county, but is within the designated boundaries of the ozone nonattainment area. Readers interested in more detailed information should use the official *Federal Register* citation (40 CFR 81).
- (b) Names of nonattainment areas are listed alphabetically within each state. The largest city determines which state is listed first in the case of multiple-city nonattainment areas. When a larger nonattainment area, such as ozone, contains 1 or more smaller nonattainment areas, such as PM₁₀ or lead, the common name for the larger nonattainment area is used. Note that several smaller nonattainment areas may be inside one larger nonattainment area, as is the case in Figure A-1. For the purpose of this table, these are considered one nonattainment area and are listed on one line. Occasionally, two nonattainment areas may only partially overlap, as in Figure A-2. These are counted as two distinct nonattainment areas and are listed on separate lines.
- (c) The number of nonattainment areas for each of the criteria pollutants is listed.
- (d) Population figures were obtained from 1990 census data. For nonattainment areas defined as only partial counties, population figures for just the nonattainment area were used when these were available. Otherwise, whole county population figures were used. When a larger nonattainment area encompasses a smaller one, double-counting the population in the "All" column is avoided by only counting the population of the larger nonattainment area.
- (e) Lead nonattainment area is a portion of Franklin township, Marion county, Indiana.
- (f) Sulfur dioxide nonattainment area is a portion of Boyd county.
- (g) Lead nonattainment area is Herculaneum, Missouri in Jefferson county.
- (h) Lead nonattainment area is a portion of Lewis and Clark county, Montana.
- (i) Ozone nonattainment area is a portion of Dona Ana county, New Mexico.
- (j) Lead nonattainment area is a portion of Shelby county, Tennessee.
- (k) Lead nonattainment area is Frisco, Texas, in Collin county.

Figure A-1. (Multiple NA areas within a larger NA area) Two SO_2 areas inside the Pittsburgh–Beaver Valley ozone NA. Counted as one NA area.

Figure A-2. (Overlapping NA areas) Searles Valley PM_{10} NA partially overlaps the San Joaquin Valley ozone NA. Counted as two NA areas.

National Park	Trend	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Acadia NP	NS	0.089	0.095	0.080	0.080	0.075	0.092	0.073	0.077	0.088	0.092
Big Bend NP	UP	4 nd	7 0.057	1 0.061	3 0.063	0 0.069	5 0.065	2 0.073	1 0.063	4 0.070	5 0.064
Brigantine	NS	0.109	0 0.111 34	0.094	0 0.093 13	0.083	0 0.100 10	0 0.095 13	0 0.106 18	0 0.091 22	0.095
Cape Cod NS	NS	0.097	0.111 16	0.096	0.088 4	2 0.088 4	0.105 9	0.096	0.100	0.084	0.101
Cape Romain	UP	nd nd	0.060	0.072 0	0.069	0.067 0	0.075 1	0.071 1	0.082	0.076	0.080
Chiricahua NM	NS	0.069	0.071 0	0.065 0	0.068 0	0.071 0	0.059 0	0.072	0.065 0	0.067 0	0.072
Congaree Swamp	UP	nd nd	0.059 0	0.067 0	0.063 0	0.064 0	0.076 1	0.074 0	0.065 0	0.081 0	0.080 0
Cowpens NB	UP	0.074	0.078 1	0.086 4	0.082 3	0.083 2	0.084 3	0.080 2	0.091 6	0.096 15	0.094 7
Denali NP	UP	0.048 0	0.049	0.050 0	0.048 0	0.049	0.053 0	0.053	0.051 0	0.054	0.054 0
Everglades NP	NS	0.060 0	0.060 0	0.061 0	0.064 0	0.064 0	0.058 0	0.063 0	0.066 0	0.072 0	0.067 0
Glacier NP	NS	0.050 0	0.051 0	0.051 0	0.044 0	0.055 0	nd nd	0.057 0	0.04 0	0.053 0	0.048 0
Grand Canyon NP	NS	0.072 0	0.073 0	0.074 0	0.066 0	0.073 0	nd nd	0.073 0	0.072 0	0.072 0	0.076 0
Great Smoky Mtn	UP	0.092 5	0.079 2	0.088 5	0.088 4	0.093 10	0.099 11	0.088 8	0.098 19	0.110 35	0.106 25
Great Smoky Mtn	UP	0.087 4	0.082 1	0.075 0	0.089 7	0.088 6	0.093 12	0.092 12	0.095 20	0.106 34	0.101 26
assen Volcanic	NS	0.078 1	0.066 0	0.069 0	0.064 0	0.078 1	0.074 0	0.073 1	0.067 0	0.078 1	0.084 2
Mammoth Cave NP	NS	0.083 2	0.078 0	0.073 0	0.072 0	0.075 1	0.088 5	0.082 2	0.078 3	0.092 12	0.098 13
Olympic NP	NS	0.046 0	0.043 0	0.046 0	0.042 0	0.042 0	0.049 0	0.046 0	0.045 0	0.041 0	0.043 0
Pinnacles NM	NS	0.083 3	0.084 3	0.084 3	0.060 0	0.078 0	0.083 3	0.094 9	0.076 1	0.088 5	0.082 0
Rocky Mountain	UP	0.057 0	0.076 0	0.071 0	0.071 1	0.076 0	0.076 0	0.072 0	0.070 0	0.080 1	0.074 1
Saguaro NM	NS	0.075 0	0.073 0	0.074 1	0.082 1	0.080 0	0.083 2	0.076 0	0.079 0	0.077 0	0.069 1
Sequoia/Kings C	NS	0.096 27	0.097 34	0.102 50	0.106 48	0.106 58	0.095 18	0.105 50	0.097 26	0.094 27	0.097 23
Shenandoah NP	UP	0.086 4	0.083 3	0.077 1	0.083 2	0.083 2	0.087 7	0.081 1	0.089 6	0.107 22	0.093 15
Theodore Roosevelt	NS	0.062 0	0.060 0	0.057 0	0.055 0	0.057 0	0.058 0	0.059 0	0.071 0	0.056 0	0.058 0
Yosemite NP	NS	0.094 19	0.080 1	0.084 3	0.078 0	0.077 0	0.084 2	0.081 1	nd nd	nd nd	nd nd
Yellowstone	NS	0.054 0	0.057 0	0.063 0	0.053 0	0.061 0	0.060 0	0.061 0	0.061 0	0.066 0	0.077 0

Table A-20. Trend in 8-hr ozone concentrations (ppm) exceedances at National Park and National Monument sites, 1990–1999

Notes:

1. The trends statistic is the annual fourth highest daily maximum 8-hour ozone concentration (ppm). The number of exceedances of the level of the 8-hour ozone NAAQS is shown below the concentration value.

2. "nd" indicates no data available for that year.

3. "inc" indicates less than 90 days of monitoring data available for that year.

4. "NS" indicates no statistically significant trend (at the 0.05 level).

5. "UP" indicates a statistically significant upward trend in ozone concentrations.

Table A-21. Onroad and Nonroad Emissions of 21 Mobile Source Air Toxics, 1996

	Onroad		Nonroad		Mobile Sources	
Compound	Tons	Percent of Total National Emissions	Tons	Percent of Total National Emissions	Tons	Percent of Total National Emissions
1,3-Butadiene*	23,500	42%	9,900	18%	33,400	60%
Acetaldehyde*	28,700	29%	40,800	41%	69,500	70%
Acrolein*	5,000	16%	7,400	23%	12,400	39%
Arsenic Compounds*	0.25	0.06%	2.01	0.51%	2.26	0.57%
Benzene*	168,200	48%	98,700	28%	266,900	76%
Chromium Compounds*	14	1.2%	35	3%	49	4.2%
Dioxins/Furans* 1	NA	NA	NA	NA	NA	NA
Ethylbenzene	80,800	47%	62,200	37%	143,000	84%
Formaldehyde*	83,000	24%	86,400	25%	169,400	49%
Lead Compounds*	19	0.8%	546	21.8%	565	22.6%
Manganese Compounds*	5.8	0.2%	35.5	1.3%	41.3	1.5%
Mercury Compounds*	0.2	0.1%	6.6	4.1%	6.8	4.2%
MTBE	65,100	47%	53,900	39%	119,000	86%
n-Hexane	63,300	26%	43,600	18%	106,600	44%
Naphthalene ²	NA	NA	NA	NA	NA	NA
Nickel Compounds*	10.7	0.9%	92.8	7.6%	103.5	8.5%
POM (as sum of 7 PAH)*	42.0	4%	19.3	2%	61.3	6%
Styrene	16,300	33%	3,500	7%	19,800	40%
Toluene	549,900	51%	252,200	23%	802,100	74%
Xylene	311,000	43%	258,400	36%	569,400	79%
Diesel Particulate Matter	182,000	34%	341,000	65%	523,000	99%

*On the urban HAPs list for the Integrated Urban Air Toxics Strategy

¹Dioxin/Furans emission estimates are still under review

²Naphthalene emission estimates are currently included in POM. This will be corrected in the 1999 NTI.

Methodology

http://www.epa.gov/oar/aqtrnd99/appendb.pdf

AIRS Methodology

The ambient air quality data presented in Chapters 2 and 3 of this report are based on data retrieved from AIRS on July 20, 2000. These are direct measurements of pollutant concentrations at monitoring stations operated by state and local governments throughout the nation. The monitoring stations are generally located in larger urban areas. EPA and other federal agencies also operate some air quality monitoring sites on a temporary basis as a part of air pollution research studies. The national monitoring network conforms to uniform criteria for monitor siting, instrumentation, and quality assurance.^{1,2}

Emission estimation methods used for historical years prior to 1985 are considered "top-down approaches," e.g., pollutant emissions were estimated by using national average emission characterization techniques (for NO_x, VOC, CO, Pb, and PM₁₀). Emission estimates for the years 1985–present represent an evolution in methods for significant categories resulting in a "bottom-up approach" including data submitted directly by state/local agencies (for all criteria pollutants, PM_{2.5} and NH₃).

In 1999, 4,184 monitoring sites reported air quality data for one or more of the six NAAQS pollutants to AIRS, as seen in Table B-1. The geographic locations of these monitoring sites are displayed in Figures B-1 to B-6. The sites are identified as National Air Monitoring Stations

 Table B-1.
 Number of Ambient Monitors

 Reporting Data to AIRS
 Image: Comparison of Ambient Monitors

Pollutant	# of Sites Reporting Data to AIRS in 1999	# of Trend Sites 1990–1999
со	531	388
Pb	265	175
NO ₂	424	230
O ₃	1,086	703
PM ₁₀	1,214	954
SO ₂	637	480
Total	4,184	2,930

(NAMS), State and Local Air Monitoring Stations (SLAMS), or "other." NAMS were established to ensure a long-term national network for urban area-oriented ambient monitoring and to provide a systematic, consistent data base for air quality comparisons and trends analysis. SLAMS allow state or local governments to develop networks tailored for their immediate monitoring needs. "Other" monitors may be Special Purpose Monitors, industrial monitors, tribal monitors, etc.

Air quality monitoring sites are selected as national trends sites if

they have complete data for at least eight of the 10 years between 1990 and 1999. The annual data completeness criteria are specific to each pollutant and measurement methodology. Table B-1 displays the number of sites meeting the 10-year trend completeness criteria. Because of the annual turnover of monitoring sites, the use of a moving 10-year window maximizes the number of sites available for trends and yields a data base that is consistent with the current monitoring network.

The air quality data are divided into two major groupings: daily (24-hour) measurements and continuous (1-hour) measurements. The daily measurements are obtained from monitoring instruments that produce one measurement per 24-hour period and typically operate on a systematic sampling schedule of once every six days, or 61 samples per year. Such instruments are used to measure PM₁₀ and lead. More frequent sampling of PM₁₀ (every other day or every day) also is common. Only PM₁₀ weighted (for each quarter to account for seasonality) annual arithmetic means that meet the AIRS annual summary criteria are selected as valid means for trends purposes.³ Beginning in 1998, some sites began reporting PM₁₀ data based on local conditions, instead of

Figure B-1. Carbon monoxide monitoring network, 1999.

Figure B-2. Lead monitoring network, 1999.

Figure B-3. Nitrogen dioxide monitoring network, 1999.

Figure B-4. Ozone monitoring network, 1999.

Figure B-5. PM₁₀ monitoring network, 1999.

Figure B-6. Sulfur dioxide monitoring network, 1999.

standard, or "reference," conditions. For these sites, PM_{10} statistics were converted from local conditions to standard conditions to ensure all PM_{10} data in this report are consistent and reflect standard conditions.⁴ Only lead sites with at least six samples per quarter in three of the four calendar quarters qualify as trends sites. Monthly composite lead data are used if at least two monthly samples are available for at least three of the four calendar quarters.

Monitoring instruments that operate continuously produce a measurement every hour for a possible total of 8,760 hourly measurements in a year. For hourly data, only annual averages based on at least 4,380 hourly observations are considered as trends statistics. The SO₂ standard-related daily statistics require at least 183 daily values to be included in the analysis. Ozone sites meet the annual trends data completeness requirement if they have at least 50 percent of the daily data available for the ozone season, which varies by state, but typically runs from May through September.⁵

Air Quality Trend Statistics

The air quality statistics presented in this report relate to the pollutantspecific NAAQS and comply with the recommendations of the Intra-Agency Task Force on Air Quality Indicators.⁶ A composite average of each trend statistic is used in the graphical presentations throughout this report. All sites were weighted equally in calculating the composite average trend statistic. Missing annual summary statistics for the second through ninth years for a site are estimated by linear interpolation from the surrounding years. Missing end points are replaced with the nearest valid year of data. The resulting data sets are statistically balanced, allowing simple statistical procedures and graphics to be easily applied. This procedure is conservative since endpoint rates of change are dampened by the interpolated estimates.

Emissions Estimates Methodology

Trends are presented for annual nationwide emissions of CO, lead, NO_x, VOC, PM₁₀, and SO₂. These trends are estimates of the amount and kinds of pollution being emitted by automobiles, factories, and other sources based upon best available engineering calculations. Because of recent changes in the methodology used to obtain these emissions estimates the estimates have been recomputed for each year. Thus, comparisons of the estimates for a given year in this report to the same year in previous reports may not be appropriate.

The emissions estimates presented in this report reflect several major changes in methodologies that were instituted mainly in 1996. First, statederived emissions estimates were included primarily for nonutility point and area sources. Also, 1985-1994 NO_x emission rates derived from test data from the Acid Rain Division, U.S. EPA, were utilized. The MOBILE5b model was run instead of MOBILE5a for the years 1995 through 1999. For 1985-1999, the Office of Transportation and Air Quality, U.S. EPA, provided new estimates from the beta version of the nonroad model for most nonroad diesel and gasoline equipment categories. Finally, additional improvements were made to the particulate matter fugitive dust categories.

In addition to the changes in methodology affecting most source categories and pollutants, other changes were made to the emissions for specific pollutants, source categories, and/or individual sources. Activity data and correction parameters for agricultural crops and paved roads were included. A change in methodology occurred starting in 1996 for calculating PM₁₀ emissions from unpaved roads and in 1999 for calculating emissions from construction. This has led to lower PM₁₀ emissions than would have been predicted using the previous methods. The development of new emission estimation methodologies have added emissions for open burning of residential vard waste and land-clearing debris burning. Starting in 1999, these estimates contributed to a significant increase in industrial category emissions for CO, PM₁₀ and PM_{2.5} between 1998 and 1999. State-supplied MOBILE model inputs for 1990, 1995, and 1996 were used, as well as statesupplied VMT data for 1990. In addition, there were VMT methodology changes starting in 1995 that affected the allocation of state or metropolitan area VMT to counties. Rule effectiveness from pre-1990 chemical and allied product emissions was removed. Lead content of unleaded and leaded gasoline for the onroad and nonroad engine lead emission estimates was revised, and Alaska and Hawaii nonutility point and area source emissions from several sources were added. Also, this report incorporates data from CEMs collected between 1994 and 1999 for NO_x and SO₂ emissions at major electric utilities.

All of these changes are part of a broad effort to update and improve emissions estimates. Additional emissions estimates and a more detailed description of the estimation methodology are available from EPA's Emission Factor and Inventory Group.

IMPROVE Methodology

Data collected from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network is summarized in Chapters 2 (PM_{2.5} section) and 6 of this report. The completeness criteria and averaging method used to summarize the IM-PROVE data are slightly different from those used for the criteria pollutants. (Data handling guidance is currently being developed for the IMPROVE network. Future summaries will be based on this guidance.) The source data sets were obtained from Dr. James Sisler of Colorado State University.

The annual average statistics in these files were used to assess trends in this report. The IMPROVE data are not reported in terms of a calendar year. The IMPROVE year runs from March to February of the following year. It follows that the four seasons are: March to May (spring), June to August (summer), September to November (autumn), and December to the following February (winter). The network samplers monitor on Wednesdays and Saturdays throughout the year, yielding 104 samples per year and 26 samples per season. To be included in this analysis, sites were required to have data at least 50 percent of the scheduled samples (13 days) for every calendar quarter.

IMPROVE monitoring sites are selected as trends sites if they have complete data for at least eight of the

10 years between 1990 and 1999 or (six of eight years for those who began monitoring in 1992). A year is valid only if there are at least 13 samples (50 percent complete) per season for both measured and reconstructed $PM_{2.5}$. The same linear interpolation applied to the criteria pollutants is applied here. The IM-PROVE sites meeting the data completeness criteria are shown in Figure B-7.

Lassen Volcanic

Sequoia

San Gorgonio

Lone Peak

• Tonto

Chiricahua

De D

Great Basin

Yosemite Bryce Canyon Mount Zirkel

Bandelie

Canvonlands

Petrified Forest

Mesa Verde Weminuche

Rocky Mountain

Great Sand Dunes

Guadalupe Mnths

Big Bend

Point Reves

Pinnacles

For consistency, the same sites are used in both the $PM_{2.5}$ section and the Visibility chapter. The exceptions are Washington D.C. and South Lake Tahoe, which are not included in the visibility trends analysis because they are urban sites.

Air Toxics Methodology

Database

The 1990–1999 ambient air quality data presented in Chapter 5 of this

report are based on air toxics data retrieved from AIRS in July, 2000, data retrieved from the IMPROVE network <**ftp:**//

Brigantine

Shenandoah

Cape Romain

Jefferson

Great Smoky Mntn

Okefenokee

Dolly Sods

Chassahowitza

Mammoth Cave

Complete for Both Complete for Trends Only Complete for 1999 Only

Sipsey

Upper Buffalo

alta vista.cira.colostate.edu/DATA/ IMPROVE/> in June, 2000, and data voluntarily submitted to EPA by state and local monitoring agencies and received by June 30, 2000. For more details about the database, see Rosenbaum et al, 1999.7 All statistical summaries are based on annual average concentrations. Measurements for hazardous air pollutants (HAPs) are frequently reported as non-detectable concentrations. To calculate annual average concentrations, one-half of the actual or plausible detection limit is used to substitute values for nondetects (or if the reported value is zero). The plausible detection limit, used for cases where the MDL is missing, is the lowest of the measured concentrations and MDLs for the given monitor and HAP.

Separate summaries are presented for sites in an MSA/PMSA, excluding the (primarily rural) sites from the IMPROVE network, and for other sites. Areas (one or more counties) are either assigned to a MSA, to a CMSA (consolidated MSA) consisting of two or more PMSAs (primary MSAs), or are just assigned to a county. Each non-IMPROVE site in an MSA or CMSA was assigned either to its MSA or PMSA. Some analyses allocated MSA/PMSAs to states. If the MSA/ PMSA crosses state boundaries, the state containing the largest portion of that MSA/PMSA was used.

Completeness

All calculations are based on the average of calculated or measured 24-hour values. For each HAP, a series of completeness rules are applied sequentially starting with using the raw hourly data to determine daily completeness. Multiple records for the same HAP, monitoring site, day, and time period are averaged together. A day is complete if the total number of hours monitored for that day is 18 or more (i.e., 75 percent of 24 hours). For example, 18 hourly averages, three 6-hour averages, or three 8-hour averages will satisfy the daily completeness criteria. Once daily completeness is satisfied, quarterly completeness is determined. Calendar quarters are 1. (Late winter) January-March, 2. (Early summer) April-June, 3. (Late summer) July-September, 4. (Early winter) October-December. A calendar quarter is complete if it has 75 percent or more complete days out of the expected number of daily samples for that quarter, and if there are at least five complete days in the quarter. To determine the expected number of daily samples, the most frequently occurring sampling interval (days from one sample to the next sample) was used; in cases of ties, the minimum sampling interval was applied. A calendar year is complete if both the summer and winter six month seasons have at least one complete quarter, i.e., if a) quarter 1 or quarter 4 or both quarters 1 and 4 are complete, and b) quarter 2 or quarter 3 or both quarters 2 and 3 are complete.

In some cases, co-located samples for the same HAP and location were collected. For AIRS data, co-located monitors are identified by having the same 9-digit AIRS ID number but a different POC number. The higher POC numbers are generally used for quality assurance monitoring data that are not as complete as the primary sampling data. Therefore, if multiple AIRS monitors at the same location meet the above completeness requirements, then only the data from the monitor with the lowest POC number was used for these analyses. For data not reported to AIRS, co-located monitors can have very different monitor identifiers. If multiple monitors at the same latitude and longitude location for a given sampling program and HAP meet the completeness requirements, then only the data from the monitor with the highest monitoring frequency was used for these analyses. In case of tied highest monitoring frequencies, the monitor with the most daily average records (from complete quarters in the trend period) was used.

National Analyses

Based on the available years of monitoring data across the nation, the national analyses were restricted to the six-year period 1994–1999. A site was included for a particular HAP if, and only if, there were four or more complete years for that period.

California Analyses

A similar, but longer term trend analysis was performed on metropolitan sites located only in California using 1990–1999 data. A site was included for a given HAP if there was at least one period of five years or longer such that a) at least 75 percent of those years are complete, and b) the period ends in 1997 or later. Only the data from the most recent of the longest such periods was used.

Trend Analysis

Annual averages for years with four complete quarters were computed by averaging the four quarterly averages. If a year had one or more missing or incomplete quarters, then those missing or incomplete quarterly averages were filled in (if possible) using the General Linear Model (GLM) fillin methodology described below and the annual average was computed by first averaging the quarterly averages (actual or filled-in) for a season and then averaging across the two seasons.⁸ Filled-in quarterly averages were used for incomplete quarters even if there was some data for that quarter. Data from incomplete quarters was not used in the analyses. Sometimes, the filled in quarterly average can be negative and occasionally this leads to a negative annual average. To deal with this case, negative or zero filled-in quarterly averages were used to compute the annual average (this avoids biasing the results), but any resulting negative annual averages were reset to zero. In the summary analyses, averages across multiple sites were computed as trimmed means rather than

simple arithmetic means in order to reduce the influence of the most extreme monitor averages on the trend line. If there were nine sites or less, then no trimming was performed, so the trimmed mean is the arithmetic mean of all the site averages. If there were between 10 and 40 sites, inclusive, the trimmed mean is the arithmetic mean of all the site averages except for the highest and lowest averages. If there were 41 sites or more, the trimmed mean is the arithmetic mean of all the site averages except for the highest 2.5 percent and the lowest 2.5 percent of the averages. The reported numbers of sites and percentiles are based on all sites meeting the completeness criteria, i.e., including the sites that were excluded for the trimmed mean calculation.

The overall slope (trend) was estimated non-parametrically as the median of the ratios of the difference in the annual average to the difference in calendar year, for all pairs of calendar years. The significance level of the trend was computed using the associated non-parametric Theil test, based on the number of pairs of years where the annual averages increased. The p-values are calculated for a twosided test for whether or not the annual averages have a trend (which may be increasing or decreasing). The trend is reported as "Significant Up Trend" or "Significant Down Trend" if the corresponding one-sided test is significant at the five percent significance level; otherwise the result is reported as "Non-significant Up Trend," "no trend," or "Non-significant Down Trend."

For the tables summarizing the annual average trends by monitor, the GLM fill-in method was not used. Instead, those monitor annual averages were computed by averaging all complete daily averages for each complete quarter, then averaging the complete quarterly averages for each season, and then, finally, averaging over the two seasons. All other analyses used the filled-in quarterly averages as described above.

GLM Fill-in Methodology

The general linear model (GLM) fillin methodology and software used to fill in missing quarterly averages was based on the report by Cohen and Pollack (1990),9 which can be consulted for more details. The method was modified to apply to the sequence of quarterly averages (24 values for the six year 1994–1999 period) instead of five annual means. The method was also modified to use a fitted statistical model with six year effects and four quarterly adjustments, instead of having 24 independent year/quarter effects. In other words, the fitted model assumes that the seasonal (quarterly) variation is the same for every site and year. Initially, each site is allocated to a region, which for these analyses was the MSA/PMSA for sites within an MSA or PMSA, or else was the county. Suppose that for each of the four quarters there is at least one site in the region with complete data for that quarter in at least one year. Suppose also that for each of the six years there is at least one site in the region with complete data for at least one quarter in that year. If these two conditions apply, then the missing quarterly averages for all sites in that region are computed by fitting a general linear model such that the expected value for a given site and quarter q is the sum of the site average, a yearly adjustment term, and a quarterly adjustment term. The yearly adjustment term is the fixed effect of the y'th year, $1 \le y \le 6$, assumed to be the same value for all sites in the region. The quarterly adjustment term is the fixed effect of the q'th quarter, $1 \le q \le 4$, assumed to be the same value for all sites in the region and all years. If a region does not meet these two conditions, then the region is expanded to become a larger, augmented region with some site data for every quarter, and some site data for every year, and the GLM approach is applied to the augmented region. Candidates for the augmented region are selected by finding the nearest site(s) in the same state that have complete data for the missing quarter(s) and year(s). The selected augmented region is the region giving the lowest mean square error for the GLM model.

Although the GLM methodology filled in most missing quarters, there were some states, HAPs and years that had no complete quarters for any site in the state, and in those cases the missing quarters were not filled in by the GLM approach (which restricts the augmented regions to sites in the same state). For the national analyses of distributions across sites in different states, the missing site-years were then filled in using the same EPA extrapolation and interpolation method used elsewhere in the Trends report: If the site annual average for 1994 was missing, it was filled in with the 1995 annual average; if the 1995 annual average was also missing, then the 1994 and 1995 annual averages were filled in with the 1996 annual average. If the site annual average for 1999 was missing, it was filled in with the 1998 annual average; if the 1998 annual average was also missing, then the 1999 and 1998 annual averages were filled in with

the 1997 annual average. Otherwise, any missing annual averages were filled in using simple linear interpolation from the two surrounding annual averages.

References

1. Clean Air Act Amendments of 1990, U.S. Code, volume 42, section 7403 (c)(2), 1990.

2. Ambient Air Quality Surveillance, 44 CFR 27558, May 10, 1979.

3. Aerometric Information Retrieval System (AIRS), Volume 2, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, October, 1993. 4. Falke, S. and Husar, R. (1998) Correction of Particulate Matter Concentrations to Reference Temperature and Pressure Conditions, Paper Number 98-A920, Air & Waste Management Association Annual Meeting, San Diego, CA, June 1998.

5. Ambient Air Quality Surveillance, 51 FR 9597, March 19, 1986.

6. U.S. Environmental Protection Agency Intra-Agency Task Force Report on Air Quality Indicators, EPA-450/4-81-015, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, February 1981.

7. Rosenbaum, A. S., Stiefer, M. P., and Iwamiya, R. K. November, 1999. *Air Toxics Data Archive and AIRS Combined Dataset: Contents Summary Report.* SYSAPP-99/26d. Systems Applications International, San Rafael, CA.

8. In all cases analyzed, four nonmissing quarterly means were available after applying the GLM method, so that the resulting annual mean is the arithmetic mean of the four quarterly averages.

9. Cohen, J.P. and A. K. Pollack. 1990. General Linear Models Approach to Estimating National Air Quality Trends Assuming Different Regional Trends. SYSAPP-90/102. Systems Applications International, San Rafael, CA. United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711

Air

♣EPA

Errata for:

National Air Quality and Emissions Trends Report, 1999

Revised January 14, 2002

Page ii:	Change date in "Data Source: U.S. EPA AIRS Data Base 1/30/01" to "7/12/00."
Page 21, Figure 2-13:	Add new legend to map.
Page 44, Figure 2-41:	Figure re-plotted using the major categories within the Miscellaneous category (instead of "Miscellaneous").
Page 52, Figure 2-51:	Replaced with new map.
Page 59, Figure 2-60:	Figure re-plotted using the major categories within Miscellaneous (instead of Miscellaneous).
Page 237	Notes added on "Data Sources for Figure 2-55."
About the Cover

The map on the cover depicts nationwide annual mean $PM_{2.5}$ concentrations from the Federal Reference Method (FRM) monitoring network, as well as information on data completeness. Annual mean concentrations are generally above the level of the 1997 standard of 15 µg/m³ in much of the eastern United States and throughout California. Annual mean concentrations above 20 µg/m³ are seen in several major metropolitan areas including Pittsburgh, Cleveland, Atlanta, Chicago, and St. Louis and Los Angeles The western Great Plains and mountain regions show notably low annual mean concentrations, most below 10 µg/m³.

Data Source: U.S. EPA AIRS Data Base 7/12/00.

Disclaimer

This report has been reviewed and approved for publication by the U.S. Environmental Protection Agency's Office of Air Quality Planning and Standards. Mention of trade names or commercial products are not intended to constitute endorsement or recommendation for use.

Acknowledgments

The Trends Team would like to acknowledge the members of EPA's Office of Research and Development, Office of Atmospheric Programs, Office of Radiation and Indoor Air and Office of Transportation and Air Quality for peer reviewing this report prior to publication; Support for the statistical analyses of air toxics trends provided under EPA contract 68D70066; Colorado State University for providing summary data from the IMPROVE monitoring network; Support for desktop publishing and Web site development provided under EPA contract 68W99004; and the Trends Workgroup in EPA's Office of Air Quality Planning and Standards for providing comments throughout report development.

Figure 2-13. Pb maximum quarterly concentration in the vicinity of Pb point sources, 1999.

Figure 2-14. Highest Pb maximum quarterly mean by county, 1999.

ried sources, shown in Figures 2-39 and 2-40. These include fuel combustion, industrial processes, and transportation. Of these, the fuel combustion category saw the largest decrease over the 10-year period (14 percent), with most of the decline attributable to a decrease in emissions from electric utility coal and oil combustion. Emissions from the industrial processes category decreased 3 percent, and emissions from the transportation category decreased 10 percent. The recent upward movement between 1998 and 1999 for industrial processing is attributed to new sources of emissions for open burning (of residential yard wastes and land clearing debris) that had not been characterized previously.

The second group of direct PM₁₀ emissions is a combination of miscellaneous and natural sources including agriculture and forestry, wildfires and managed burning, and fugitive dust from paved and unpaved roads. It should be noted that fugitive dust emissions from geogenic wind erosion have been removed from the emissions inventory for all years, since the annual emission estimates based on past methods for this category are not believed to be representative. As Figure 2-41 shows, these miscellaneous and natural sources actually account for a large percentage of the total direct PM₁₀ emissions nationwide, although they can be difficult to quantify compared to the traditionally inventoried sources. The trend of emissions in the miscellaneous/natural group may be more uncertain from one year to the next or over several years because these emissions tend to fluctuate a great deal from year to year. It should be noted that a change in methodology occurred between 1995 and 1996 in

Figure 2-41. Total PM₁₀ emissions by source category, 1999.

calculating PM_{10} emissions from unpaved roads. This has led to lower PM_{10} emissions from 1996 through 1999 than would have been predicted using the older methodology.

Table A-6 lists PM_{10} emissions estimates for the traditionally inventoried sources for 1990–1999. Miscellaneous and natural source PM_{10} emissions estimates are provided in Table A-7.

Figure 2-42 shows the emission density for PM_{10} in each U.S. county. PM_{10} emission density is the highest in the eastern half of the United States, in large metropolitan areas, areas with a high concentration of agriculture such as the San Joaquin Valley in California and along the Pacific coast. This closely follows patterns in population density. One exception is that open biomass burning is an important source category that is more prevalent in forested areas and in some agricultural areas. Fugitive dust is an important component in arid and agricultural areas.

PM₁₀ Regional Air Quality Trends

Figure 2-43 is a map of regional trends for the PM₁₀ annual mean from 1990–1999. All 10 EPA regions show decreasing trends over the 10-year period, with declines ranging from 5-33 percent. The largest decreases are generally seen in the western part of the United States. This is significant since PM₁₀ concentrations are typically higher in the West. In the western states, programs such as those with residential wood stoves and agricultural practices have helped reduce emissions of PM₁₀. In the eastern United States, the Clean Air Act's Acid Rain Program has contributed to the decrease in PM₁₀ emissions. The program has reduced

Figure 2-51. Annual mean PM_{2.5} concentrations in 1999.

cent). Table 2-5 shows the difference in percent contribution of each species for the eastern versus western regions of the United States. Figure 2-52. $\mbox{PM}_{2.5}$ concentrations, 1992–1999 at eastern IMPROVE sites meeting trends criteria.

Table 2-5. Percent Contribution to $PM_{2.5}$ by Component, 1999

	East (10 sites)	West (26 sites)
Sulfate	56	33
Elemental Carbon	5	6
Organic Carbon	27	36
Nitrate	5	8
Crustal Material	7	17

Note: Measured PM2.5 represents the direct mass measurement from the filter. The sum of the component concentrations do not equal this value because they do not account for all measured mass.

 $\rm PM_{10-2.5}$ concentrations. Though the Southeast data is relatively incomplete, preliminary estimates suggest relatively low $\rm PM_{10-2.5}$ levels throughout that region.

Figure 2-61. National ammonia emissions by principal source categories, 1999.

the 1997 annual average. Otherwise, any missing annual averages were filled in using simple linear interpolation from the two surrounding annual averages.

Notes on Data Sources for Figure 2-55

Composition and concentration data for all non urban locations were obtained from the Interagency Monitoring of Protected Visual Environments (IMPROVE). Washington, D.C. and Seattle data were also obtained from IMPROVE [Reference: IMPROVE, Cooperative Center for Research in the Atmosphere, Colorado State University, Ft. Collins, CO, May 2000]. and the Rochester data are based on a study conducted for NESCAUM. [Reference: Salmon, Lynn and Glen R. Cass, October, 1997, Progress Report to NESCAUM: Determination of Fine Particle Contraction and Chemical Composition in the Northeastern United States, 1995, California Institute of Technology, Pasadena, CA 91125.] The South Coast information is adapted from data collected in the South Coast area since 1982. [Reference: Christoforou, C.S., Lynn G. Salmon, Michael P. Hannigan, Paul A. Soloman and Glen R. Cass, Trends in Fine Particle Concentration and Chemical Composition. Journal of Air and Waste Management Association, Pittsburgh, PA. January 2000.] The Phoenix data is from a report by ENSR, "Plots and Tables to Characterize Particulate Matter in Phoenix, Arizona," prepared for the Arizona Department of Environmental Quality, ENSR Document 0493-018-8, November 1999. The San Joaquin data are from Desert Research Institute [Reference: PM₁₀ and PM_{2.5} Variations in Time and Space, Desert Research

Institute, Reno, NV, October 1995.]. Knoxville data was provided by the Tennessee Valley Authority. [Reference: (a) Tanner, R. (Tennessee Valley Authority) Personal Communication with T.G. Pace, January, 1998.] The El Paso and Dallas data were reported as a part of the Texas PM₂₅ Sampling and Analysis Study, Desert Research Institute, December, 1998. The Denver data was collected under the Northern Front Range Air Quality Study (NFRAQS). [Reference: NFRAQS Final Report, Desert Research Institute, Reno NV, June 1998. Note that this compositional data is the average of winter and summer sampling seasons; thus, no annual average is reported. The New Haven data was provided to Scott Mathias in a personal communication from John Graham, Connecticut Department of Environmental Protection, Bureau of Air Management August 16, 2000.

Non urban data are based on averages of several monitoring locations in the region. Urban data are mainly based on only one location in each area and may not represent the entire urban area. The exceptions to this are the South Coast and San Joaquin Valley areas of California where multiple locations are averaged together. In the South Coast basin, Rubidoux recorded the highest average PM₂₅ and nitrate concentrations. Additional information on the composition of PM2.5 within these areas of California is discussed further in Christoforou (above) and DRI [Reference: PM₁₀ and PM_{2.5} Variations in Time and Space, Desert Research Institute, Reno, NV, October 1995.]

References

1. Clean Air Act Amendments of 1990, U.S. Code, volume 42, section 7403 (c)(2), 1990.

2. Ambient Air Quality Surveillance, 44 CFR 27558, May 10, 1979.

3. Aerometric Information Retrieval System (AIRS), Volume 2, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, October, 1993.

4. Falke, S. and Husar, R. (1998) Correction of Particulate Matter Concentrations to Reference Temperature and Pressure Conditions, Paper Number 98-A920, Air & Waste Management Association Annual Meeting, San Diego, CA, June 1998.

5. Ambient Air Quality Surveillance, 51 FR 9597, March 19, 1986.

6. U.S. Environmental Protection Agency Intra-Agency Task Force Report on Air Quality Indicators, EPA-450/4-81-015, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, February 1981.

7. Rosenbaum, A. S., Stiefer, M. P., and Iwamiya, R. K. November, 1999. *Air Toxics Data Archive and AIRS Combined Dataset: Contents Summary Report.* SYSAPP-99/26d. Systems Applications International, San Rafael, CA.

8. In all cases analyzed, four nonmissing quarterly means were available after applying the GLM method, so that the resulting annual mean is the arithmetic mean of the four quarterly averages.

9. Cohen, J.P. and A. K. Pollack. 1990. General Linear Models Approach to Estimating National Air Quality Trends Assuming Different Regional Trends. SYSAPP-90/102. Systems Applications International, San Rafael, CA.