

# Monitoring Well Installation and Data Summary Report Lower Yakima Valley Yakima County, Washington

March 2013

Prepared by: U.S. Environmental Protection Agency, Region 10 1200 Sixth Avenue Seattle, Washington 98101

## Monitoring Well Installation and Data Summary Report Lower Yakima Valley Yakima County, Washington

March 2013

U.S. Environmental Protection Agency, Region 10 1200 Sixth Avenue Seattle, Washington 98101

## TABLE OF CONTENTS

| 1. | Introduction                              | 1 |
|----|-------------------------------------------|---|
| 2. | Investigation Objectives                  | 1 |
| 3. | Environmental Setting                     | 1 |
| 4. | Summary of Field Activities               | 2 |
| А  | Drilling and Monitoring Well Installation | 2 |
| В  | Groundwater Elevations and Flow Direction | 4 |
| С  | Sample Collection and Analysis            | 4 |
| 5. | Analytical Results                        | 5 |
| 6. | Quality Assurance and Quality Control     | 7 |
| 7. | Summary and Conclusions                   | 7 |
| 8. | References                                | 8 |

## List of Tables

| Table 1 – Monitoring Well Locations and Elevations                              |
|---------------------------------------------------------------------------------|
| Table 2 - Monitoring Well Water Level Elevations                                |
| Table 3 – Analytical Methods, Sample Containers, Holding Times and Preservation |
| Table 4 – Analytical Results                                                    |
| Table 5 – Field Quality Control Sample Laboratory Analytical Results            |

## **List of Figures**

- Figure 1 Vicinity Map
- Figure 2 Dairy Cluster Well Locations
- Figure 3 Haak Dairy Well Locations
- Figure 4 Dairy Cluster Groundwater Elevations, Flow Direction and Nitrate Concentrations
- Figure 5 Haak Dairy Groundwater Elevations, Flow Direction and Nitrate Concentrations

## Appendices

- Appendix A Well Logs
- Appendix B Groundwater Sampling Logs
- Appendix C Sample Alteration Forms
- Appendix D Data Validation Memoranda

## **1. INTRODUCTION**

In February and April 2010, EPA conducted a study to identify potential sources of nitrate contamination in groundwater and residential drinking water wells in the Lower Yakima Valley in central Washington State. The study was in response to community concerns about the high nitrate levels in residential drinking water wells and the potential disproportionate impacts on low income and minority rural populations in the area. U.S. Environmental Protection Agency (EPA) released a report on this study in September 2012, entitled "Relation Between Nitrate in Water Wells and Potential Sources in the Lower Yakima Valley" (EPA 2012a).

In the 2010 study, EPA collected samples from existing residential drinking water and dairy supply wells. Information on well depths and screened intervals were known for about one-third of the wells that were sampled. Designation of upgradient and downgradient wells was based on regional groundwater flow data from the United States Geological Survey (USGS 2009).

As a follow-up to the 2010 study, EPA installed and sampled ten groundwater monitoring wells in the vicinity of the Yakima Valley dairies that were included in the 2010 study. These dairies consist of a group of adjacent dairies, including the George DeRuyter & Son Dairy, D and A Dairy, Cow Palace, Liberty Dairy and Bosma Dairy, referred to collectively as the Dairy Cluster, and the Haak Dairy. The primary sources of nitrogen at these dairies include application fields, manure lagoons, manure piles, silage, and cow pens. This report presents a summary of monitoring well installation, groundwater sampling and analytical results for this most recent field investigation which was conducted in December 2012 and January 2013.

## 2. INVESTIGATION OBJECTIVES

The objectives of the December 2012 and January 2013 monitoring well installation and sampling were to:

- Confirm the direction of groundwater flow in the shallow drinking water aquifer in the vicinity of the dairies;
- Complement the understanding of the nitrate concentrations in the drinking water aquifer upgradient and downgradient of the dairies with monitoring wells of documented construction; and
- Determine if there is a shallow, perched aquifer above the drinking water aquifer in the vicinity of the dairies.

## 3. ENVIRONMENTAL SETTING

The Yakima Basin (Figure 1) is bounded by basalt ridgelines to the north and south, and the Cascade Mountains to the west. The Yakima Basin is a watershed of great diversity in climate,

vegetation, and land use. More than 30 percent of the Yakima Basin is forested, about 30 percent is shrub-steppe rangeland, and about 28 percent is in agricultural production (USGS 2009). The Yakima River flows from its headwaters near the crest of the Cascade Mountains to its mouth where it joins the Columbia River, 160 miles to the east. Precipitation is less than nine inches annually and irrigation plays a key role in the viability of agriculture. A series of high mountain reservoirs captures snowmelt, which is released through the Yakima River into a complex set of irrigation diversions and canals throughout the basin.

The hydrological setting in the vicinity of the monitoring wells consists of fine- and coarsegrained sediments overlying a sequence of three major basalt flows. The structural setting is created by bounding ridges such as the Rattlesnake Mountains, Ahtanum Ridge, Toppenish Ridge, and Horse Heaven Hills. The uppermost basalts of the Saddle Mountain Unit of the Columbia River Basalt Group are typically exposed in these upland ridges. This unit averages more than 500 feet thick. The underlying Wanapum Unit averages 600 feet thick. These units are separated by the Mabton Interbed, with an average thickness of 70 feet.

There are two main aquifer types underlying the area. They include a surficial unconfined to semi-confined alluvial aquifer and an extensive basalt aquifer of great thickness underlying the sedimentary deposits. The basalt aquifer is believed to be semi-isolated from the surficial aquifer and stream systems. Groundwater flow within the surficial aquifer generally follows topography, with natural recharge occurring within the headlands and on the sides of the valley and discharge occurring to the Yakima River. Flow within the uppermost portions of the underlying basaltic aquifer also generally follows this pattern. A detailed description of the hydrogeology of the Yakima River Basin Aquifer System is presented in the USGS publication "Hydrogeologic Framework of the Yakima River Basin Aquifer System, Washington" (USGS 2009).

### 4. SUMMARY OF FIELD ACTIVITIES

Monitoring well drilling, installation, surveying, sampling procedures and analytical methods are described in the Lower Yakima Valley Dairy Investigation Quality Assurance Project Plan (QAPP) (EPA 2012b) and summarized below.

### A. Drilling and Monitoring Well Installation

The investigation described in the QAPP included drilling approximately thirteen boreholes and installing monitoring wells in the alluvial drinking water aquifer and in the perched aquifer if encountered at those locations. The QAPP indicated that more or fewer wells would be drilled depending on access, field conditions and drilling progress within the field investigation schedule. Of the thirteen potential well locations identified in the QAPP, EPA installed ten monitoring wells. One upgradient and six downgradient wells were installed near the Dairy Cluster and one upgradient and two downgradient wells were installed near the Haak Dairy (Figures 2 and 3). No

perched aquifer was encountered during drilling; therefore, only one well was completed at each location.

Boreholes were advanced using an air-rotary casing hammer drill rig until groundwater was encountered. Monitoring wells were constructed using 2-inch diameter schedule 40 polyvinyl chloride (PVC) casing. The majority of wells were screened with one 20-foot section of 2 inch 0.0100 continuous slot PVC screen. Wells HK-11 and HK-12 were screened with 10-foot instead of 20-foot long screens to attempt to reduce the turbidity in these wells. The monitoring wells were completed to ground surface with a schedule 40 PVC riser. Wells were developed according to the procedures identified in Appendix A of the QAPP. Drill cuttings were spread on the ground surface adjacent to each monitoring well. Well development water was discharged to the Zillah Wastewater Treatment Plant after receipt and review of development water sample results.

Soils encountered during drilling were primarily sand mixed with small amounts of gravels of different sizes, silts or clay. No low-permeability layers that would inhibit infiltration through the alluvium were encountered during drilling. In monitoring well DC-01, basalt was encountered at approximately 155 feet below ground surface. This well was completed at the alluvium/basalt interface. Boring logs are included in Appendix A.

Monitor well locations and top of casing elevations were surveyed by a Washington licensed professional land surveyor. This information is summarized in Table 1.

| Well No. | Northing   | Easting     | Top of Casing Elevation<br>(feet aMSL) |
|----------|------------|-------------|----------------------------------------|
| DC-01    | 396035.927 | 1731673.203 | 1199.56                                |
| DC-03    | 384172.901 | 1729718.927 | 911.09                                 |
| DC-04    | 382789.225 | 1733514.588 | 877.82                                 |
| DC-05    | 382770.202 | 1736263.732 | 912.51                                 |
| DC-07    | 385390.146 | 1730842.184 | 889.91                                 |
| DC-09    | 390744.768 | 1736012.372 | 1049.10                                |
| DC-14    | 390726.492 | 1731319.001 | 1037.13                                |
| HK-10    | 382948.949 | 1766885.828 | 1053.99                                |
| HK-11    | 380157.444 | 1766995.687 | 978.47                                 |
| HK-12    | 380186.496 | 1768204.215 | 998.65                                 |

 Table 1 - Monitoring Well Locations and Elevations

#### <u>Datum</u>

Horizontal – NAD 83 (2011) SPC WA S Vertical – NAVD 88

#### **Abbreviations**

DC – Dairy Cluster HK – Haak Dairy aMSL – above mean sea level

### **B.** Groundwater Elevations and Flow Direction

EPA measured water level elevations in the new monitoring wells prior to sampling to determine the groundwater flow direction. Water level elevations are summarized in Table 2 and the groundwater gradients near the Dairy Cluster and the Haak Dairy are illustrated in Figures 4 and 5, respectively.

|             | Well Co    | ordinates   | Top of                             | Depth to        | Water Level              | Date of<br>Measurement |  |
|-------------|------------|-------------|------------------------------------|-----------------|--------------------------|------------------------|--|
| Well<br>No. | Northing   | Easting     | Casing<br>Elevation<br>(feet aMSL) | Water<br>(feet) | Elevation<br>(feet aMSL) |                        |  |
| DC-01       | 396035.927 | 1731673.203 | 1199.56                            | 150.50          | 1049.06                  | 1/4/2013               |  |
| DC-03       | 384172.901 | 1729718.927 | 911.09                             | 72.40           | 838.69                   | 1/2/2013               |  |
| DC-04       | 382789.225 | 1733514.588 | 877.82                             | 32.68           | 845.14                   | 1/3/2013               |  |
| DC-05       | 382770.202 | 1736263.732 | 912.51                             | 68.31           | 844.20                   | 1/4/2013               |  |
| DC-07       | 385390.146 | 1730842.184 | 889.91                             | 44.11           | 845.80                   | 1/3/2013               |  |
| DC-09       | 390744.768 | 1736012.372 | 1049.10                            | 144.13          | 904.97                   | 1/3/2013               |  |
| DC-14       | 390726.492 | 1731319.001 | 1037.13                            | 130.61          | 906.52                   | 1/3/2013               |  |
| HK-10       | 382948.949 | 1766885.828 | 1053.99                            | 48.66           | 1005.33                  | 1/4/2013               |  |
| HK-11       | 380157.444 | 1766995.687 | 978.47                             | 12.55           | 965.92                   | 1/4/2013               |  |
| HK-12       | 380186.496 | 1768204.215 | 998.65                             | 25.70           | 972.95                   | 1/3/2013               |  |

Table 2 - Monitoring Well Water Level Elevations

#### <u>Datum</u>

Horizontal – NAD 83 (2011) SPC WA S Vertical – NAVD 88

#### **Abbreviations**

DC – Dairy Cluster HK – Haak Dairy aMSL – above mean sea level

### C. Sample Collection and Analysis

Monitoring well sampling was conducted from January 2 through January 4, 2013. Samples were collected from each of the new wells using the low flow sampling technique described in the standard operating procedure (SOP) included in the QAPP (EPA 2012b). Low flow sampling included monitoring water quality parameters (i.e., dissolved oxygen, turbidity, pH and temperature) prior to sample collection (Appendix B).

Samples from each well were field screened for nitrate and ammonia using Hach test strips. A sample was collected from each new well and submitted to TestAmerica Laboratories, Inc. located in Denver, Colorado for nitrate analysis using EPA Method 300.0. TestAmerica is a National Environmental Laboratory Accreditation Program certified drinking water laboratory for nitrate analysis. If the Hach test strip indicated ammonia could be present, an additional sample was collected and analyzed for ammonia by EPA's Manchester Environmental Laboratory using EPA

Method 350.1. In addition, the following field quality control (QC) samples were collected: two trip blanks, two equipment blanks, two field blanks, and two field duplicates were collected. The field QC samples were analyzed for nitrate in accordance with EPA Method 300.0 by TestAmerica Laboratories, Inc. or ammonia in accordance with EPA Method 350.1, as appropriate.

Analytical methods, sample containers, holding times and sample preservation requirements are summarized in Table 3.

|         | •                          | -                                     |                       |                 |                                                            |
|---------|----------------------------|---------------------------------------|-----------------------|-----------------|------------------------------------------------------------|
| Analyte | Analytical<br>Method       | Reporting<br>Limit or Range<br>(mg/L) | Container<br>Type     | Holding<br>time | Preservation                                               |
| Nitrate | EPA 300.0                  | 0.9                                   | 500ml<br>polyethylene | 48 hours        | < 6 deg. C                                                 |
| Ammonia | EPA 350.1                  | 0.5                                   | 500ml<br>polyethylene | 28 Days         | H <sub>2</sub> SO <sub>4</sub> to<br>pH < 2,<br>< 6 deg. C |
| Ammonia | Hach Ammonia<br>Test Strip | 0-6.0                                 | N/A                   | N/A             | N/A                                                        |
| Nitrate | Hach Nitrate<br>Test Strip | 0-50                                  | N/A                   | N/A             | N/A                                                        |

 Table 3

 Analytical Methods, Sample Containers, Holding Times and Preservation

## 5. ANALYTICAL RESULTS

The field test strip and analytical sample results are presented in Table 4. The Hach nitrate field test strips are a colorimetric test that measures nitrate concentrations in increments of 0, 1, 2, 5, 10, 20, and 50. The Hach ammonia field test strips indicated that ammonia could be present in three wells; however the laboratory did not detect ammonia in any of the samples. A summary of the results for the field QC samples is presented in Table 5. Groundwater nitrate concentrations for the Dairy Cluster and the Haak Dairy wells are shown on Figures 4 and 5, respectively.

| Well  | EPA       |               | Hach 7            | Test Strip        | Laborato               | ory Results       |
|-------|-----------|---------------|-------------------|-------------------|------------------------|-------------------|
| No.   | Sample ID | Well Location | Nitrate<br>(mg/L) | Ammonia<br>(mg/L) | Nitrate as N<br>(mg/L) | Ammonia<br>(mg/L) |
| DC-01 | 12534005  | Upgradient    | 5-10              | 0                 | 9.8                    | Not Analyzed      |
| DC-03 | 12534000  | Downgradient  | 20-50             | 0.25              | 190                    | 0.10 U            |
| DC-04 | 12534003  | Downgradient  | 20                | 0                 | 26                     | Not Analyzed      |
| DC-05 | 12534009  | Downgradient  | 20                | 0                 | 32                     | Not Analyzed      |
| DC-07 | 12534002  | Downgradient  | <1                | 0                 | 2.8                    | Not Analyzed      |
| DC-09 | 12534004  | Downgradient  | 5                 | 0.25-0.5          | 6.0                    | 0.10 U            |
| DC-14 | 12534001  | Downgradient  | 20                | 0                 | 26                     | Not Analyzed      |
| HK-10 | 12534006  | Upgradient    | 0                 | 0                 | 0.94                   | Not Analyzed      |
| HK-11 | 12534007  | Downgradient  | 30                | 0                 | 31                     | Not Analyzed      |
| HK-12 | 12534008  | Downgradient  | 20                | 0.25              | 47                     | 0.10 U            |

# Table 4Analytical Sample Results

#### **Abbreviations**

DC - Dairy Cluster

HK - Haak Dairy

mg/L - milligrams per Liter

U -The material was analyzed for but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

| Table 5                                                    |
|------------------------------------------------------------|
| Field Quality Control Sample Laboratory Analytical Results |

| Sample ID | OCTivne  |                                    | Nitrate as N<br>(mg/L) | Ammonia<br>(mg/L) |
|-----------|----------|------------------------------------|------------------------|-------------------|
| TB01WT    | 12534012 | Trip Blank                         | 0.5 U                  | Not Analyzed      |
| TB02WT    | 12534013 | Trip Blank                         | 0.5 U                  | Not Analyzed      |
| EB01WT    | 12534020 | Equipment Blank                    | 0.043 J                | 0.10 U            |
| EB02WT    | 12534021 | Equipment Blank                    | 0.5 U                  | Not Analyzed      |
| FB01WT    | 12534024 | Field Blank                        | 0.5 U                  | 0.10 U            |
| FB02WT    | 12534025 | Field Blank                        | 0.5 U                  | Not Analyzed      |
| FD01WT    | 12534016 | Field Duplicate of Sample 12534002 | 2.7                    | Not Analyzed      |
| FD02WT    | 12534017 | Field Duplicate of Sample 12534004 | 6.0                    | 0.10 U            |

#### **Abbreviations**

mg/L - milligrams per Liter

J - The associated value is an estimated quantity.

U -The material was analyzed for but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

## 6. QUALITY ASSURANCE AND QUALITY CONTROL

This investigation was implemented following the procedures described in the approved QAPP (EPA 2012b). There were six documented deviations from the approved QAPP based on conditions encountered in the field. An explanation of these deviations and the completed and signed sample alteration forms are included in Appendix C.

A stage 4 data validation was performed by the EPA Region 10 Quality Assurance team for all the data generated by the TestAmerica laboratory. The ammonia analyses conducted at the EPA Manchester Environmental Laboratory were reviewed and verified in accordance with the Laboratory Quality Manual and method SOPs. The quality assurance memoranda for the nitrate and ammonia analyses are included in Appendix D. All of the chemical analyses met project data quality goals and criteria and are useable for all purposes.

## 7. SUMMARY AND CONCLUSIONS

The groundwater flow direction in the vicinity of the dairies based on the water level measurements in the new wells is towards the Yakima River which is consistent with the regional groundwater flow direction developed by the USGS and presented in EPA's September 2012 report. No shallow, perched aquifer was encountered during drilling.

At the Dairy Cluster, the nitrate concentration in the upgradient well was 9.8 mg/L which is elevated above the range of naturally occurring nitrate concentrations (generally below 1.1 mg/L), but below EPA's drinking water standard<sup>1</sup> for nitrate of 10 milligrams per liter (mg/L) or parts per million (ppm). This indicates that there are potential anthropogenic sources of nitrate upgradient of this well. The nitrate concentrations in the wells downgradient of the Dairy Cluster ranged from 2.8 mg/L to 190 mg/L, with four of six downgradient monitoring wells exceeding EPA's drinking water standard.

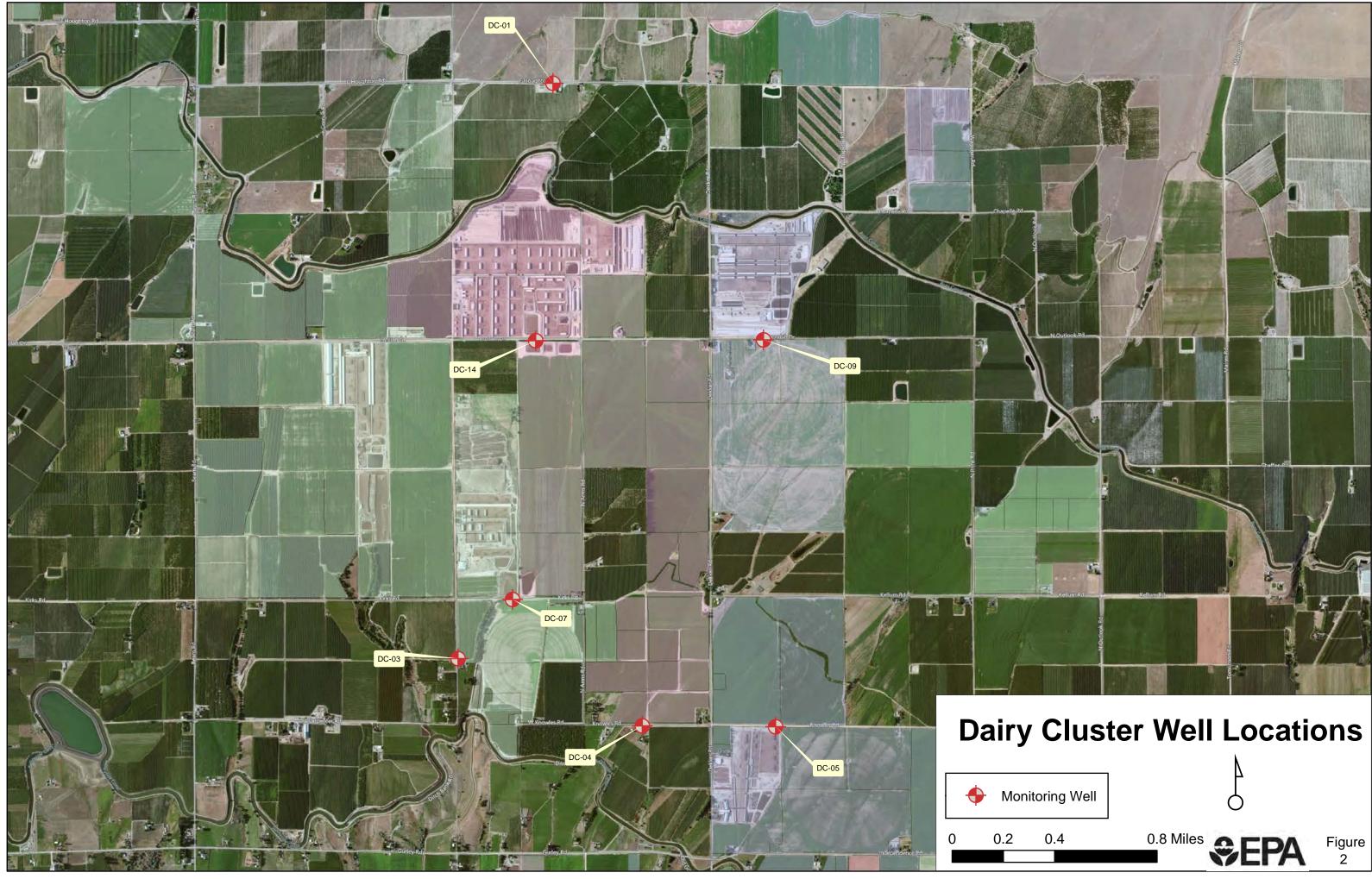
At the Haak Dairy, the nitrate concentration in the upgradient well was 0.94 mg/L and the concentrations in the two downgradient wells were 31 mg/L and 47 mg/L.

The conclusions in the September 2012 report indicated that the dairies in the study are a likely source<sup>2</sup> of nitrate contamination in residential drinking water wells downgradient of the dairies. The new data demonstrate that the dairies are a source of nitrate contamination to the groundwater beneath and downgradient of these dairies, thereby reinforcing the conclusions in the September 2012 report.

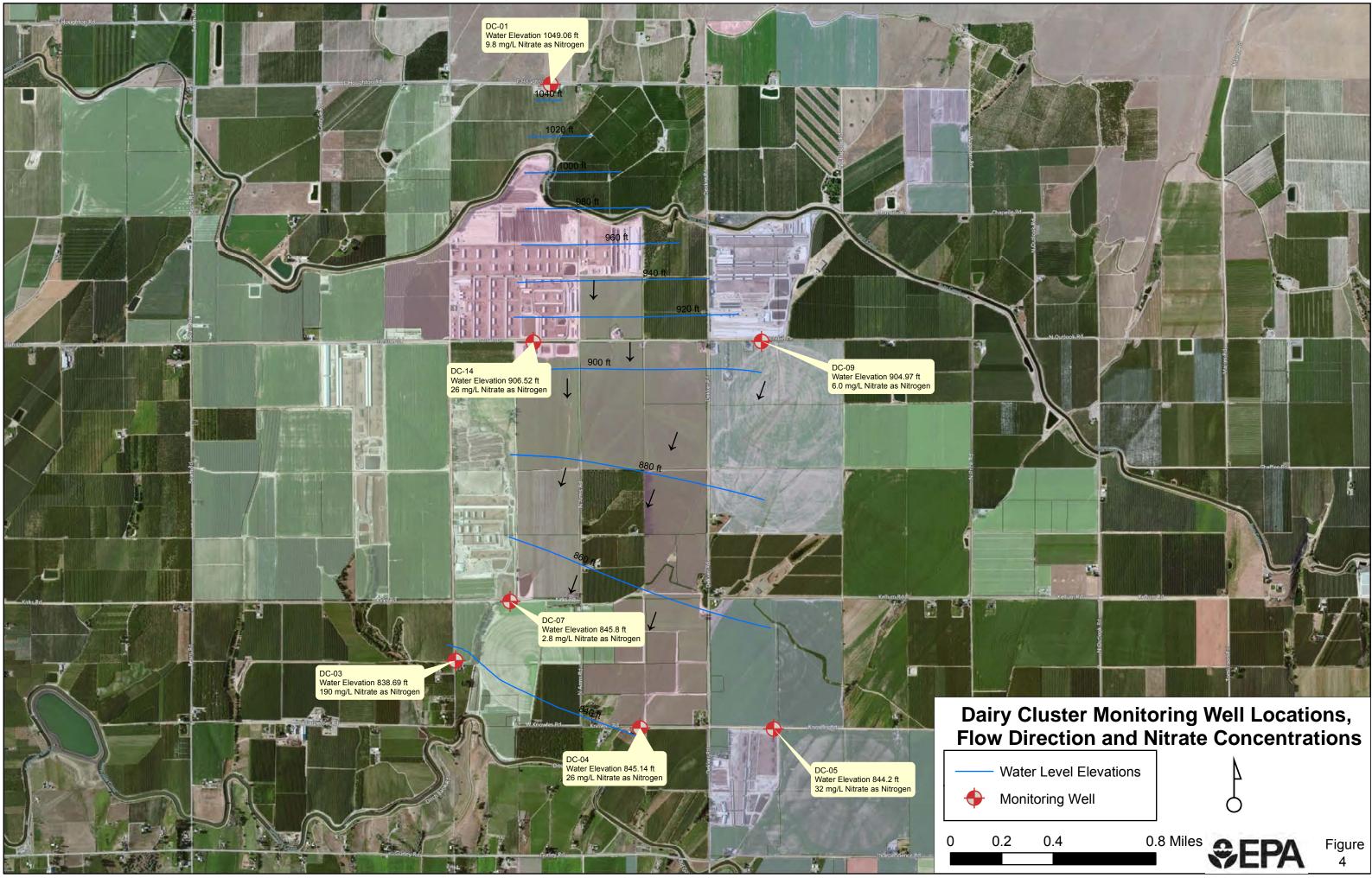
<sup>&</sup>lt;sup>1</sup> EPA's drinking water standard for nitrate is also referred to as the Maximum Contaminant Level (MCL).

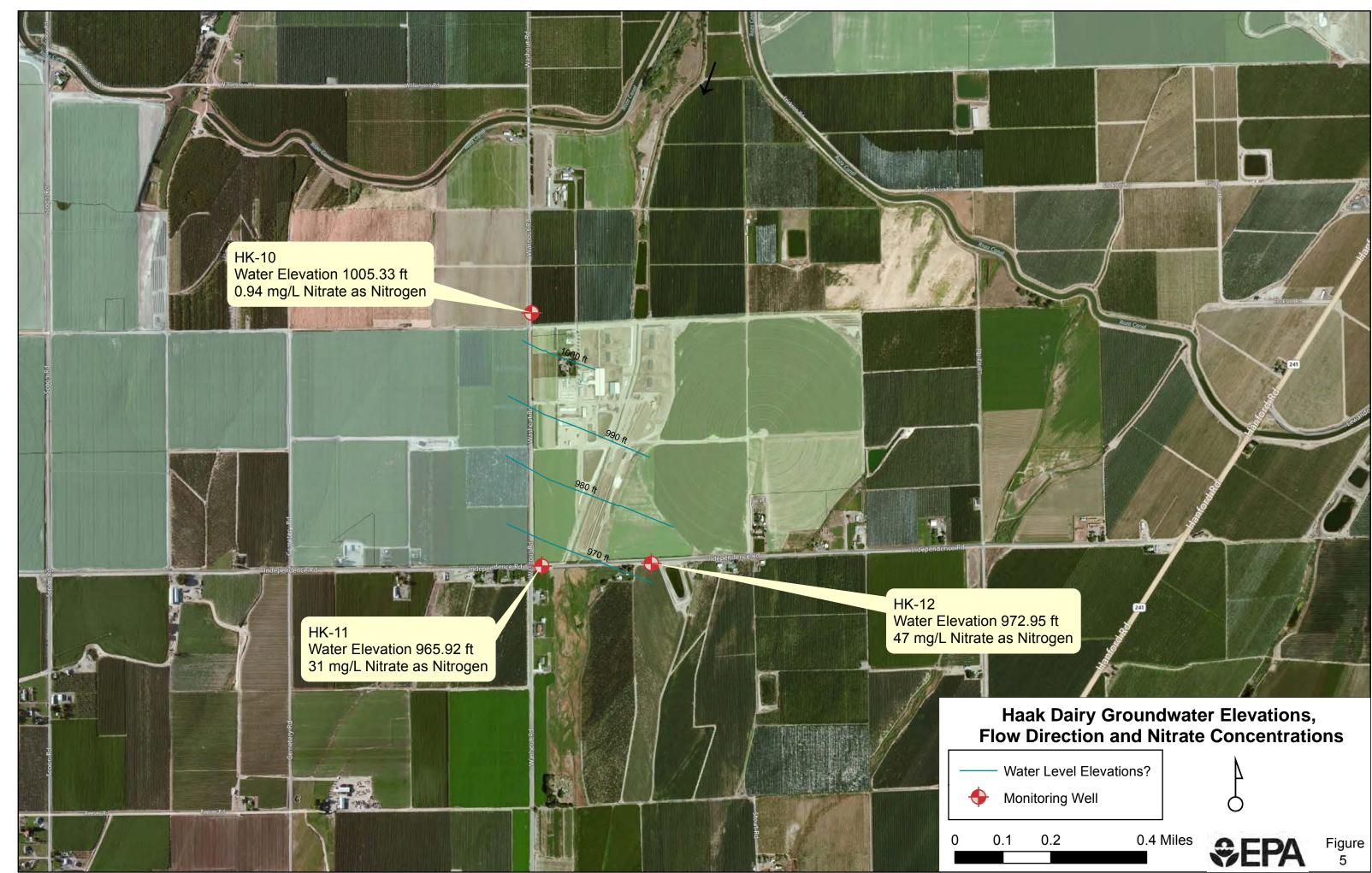
<sup>&</sup>lt;sup>2</sup> The primary sources of nitrogen at the dairies include application fields, manure lagoons, manure piles, silage and cow pens.


## 8. **REFERENCES**

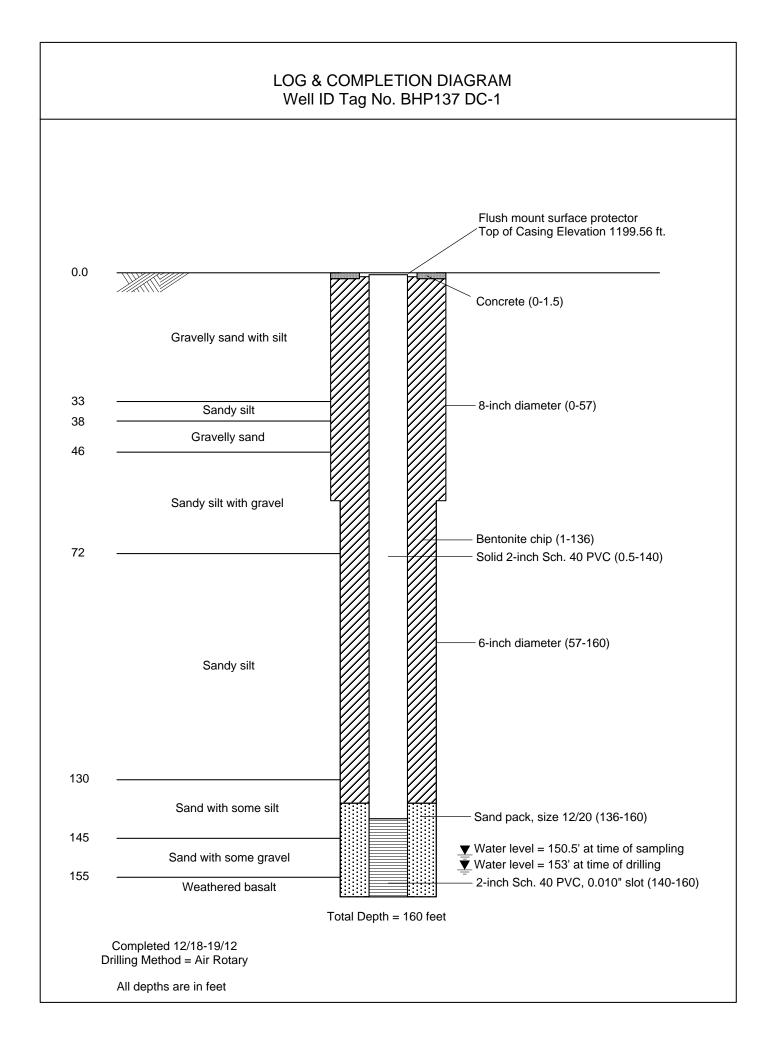

EPA. 2012a. Relation Between Nitrate in Water Wells and Potential Sources in the Lower Yakima Valley, Washington. EPA-910-R-12-003. September 2012.

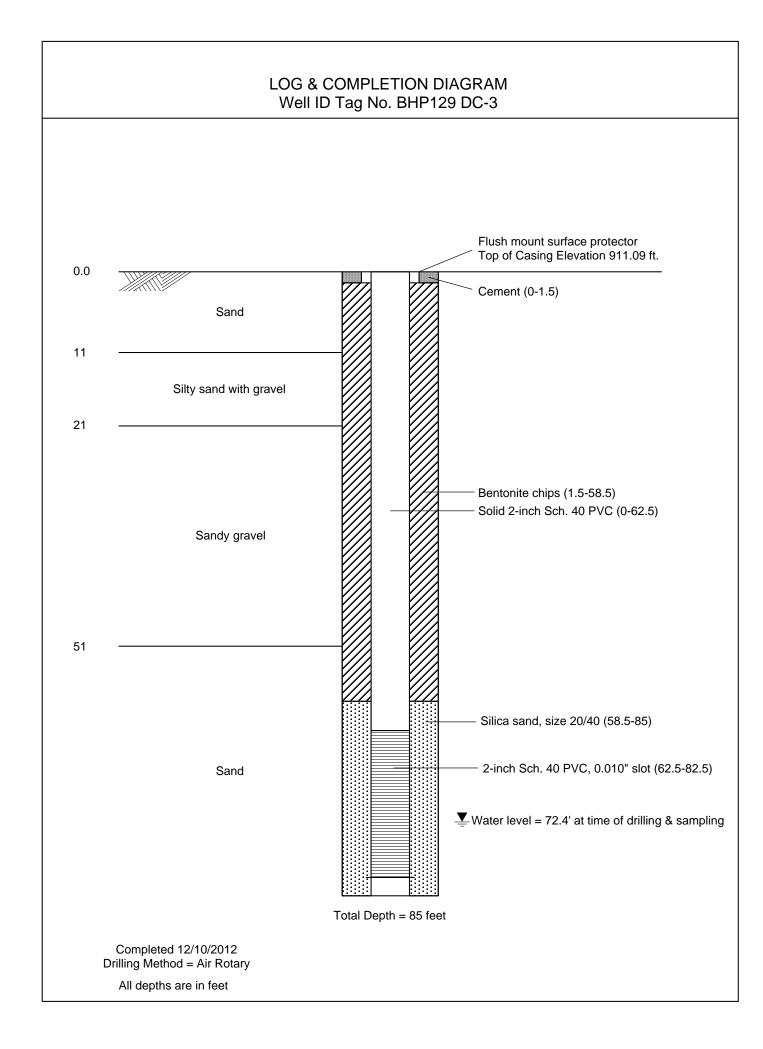

EPA. 2012b. Quality Assurance Project Plan. Lower Yakima Valley Dairy Investigation Yakima County, Washington. December 2012.

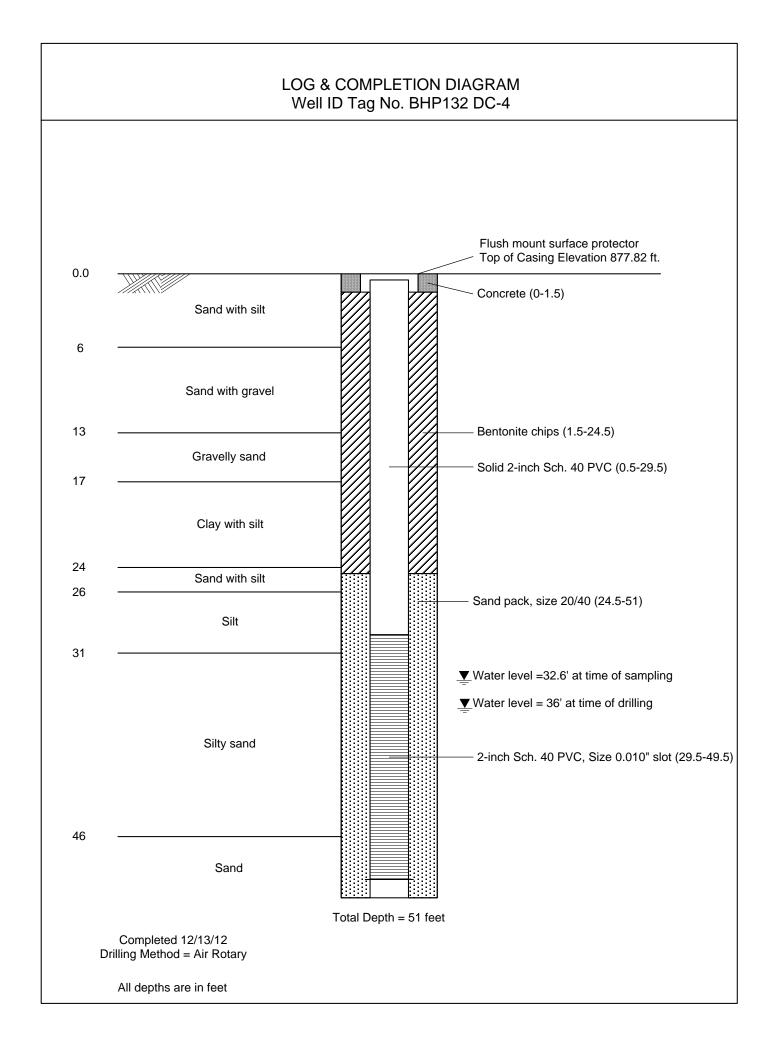

USGS. 2009. Hydrogeologic Framework of the Yakima River Basin Aquifer System, Washington. U.S. Geological Survey. Scientific Investigations Report 2009-5152.

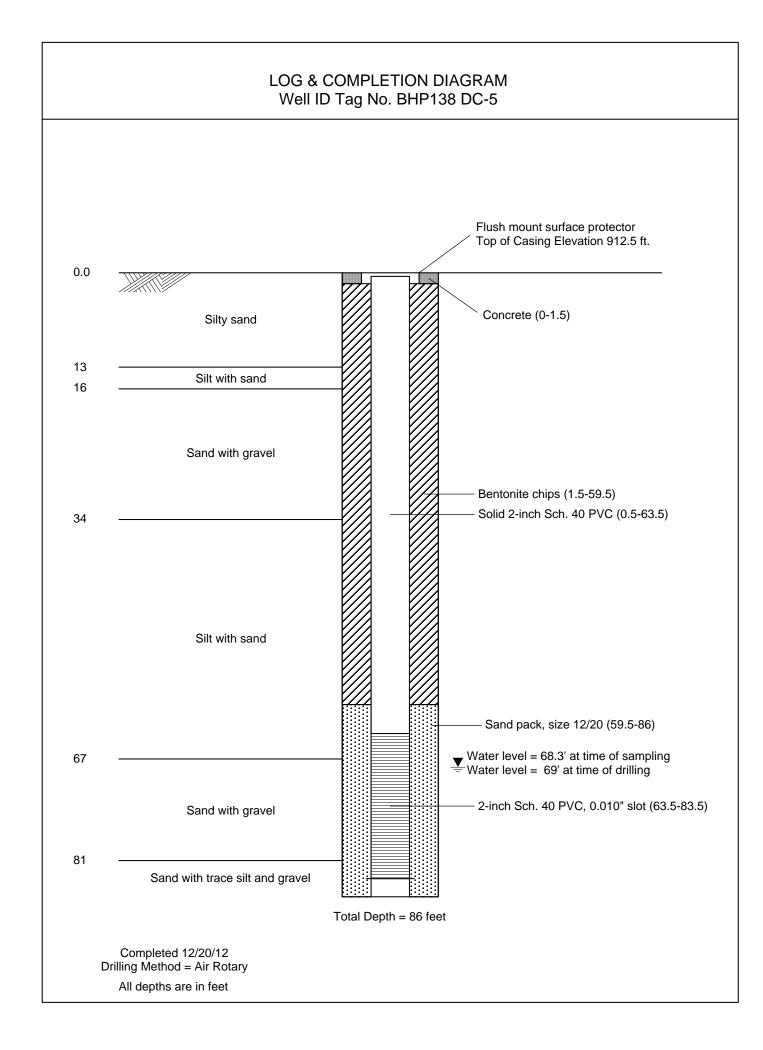

Figures

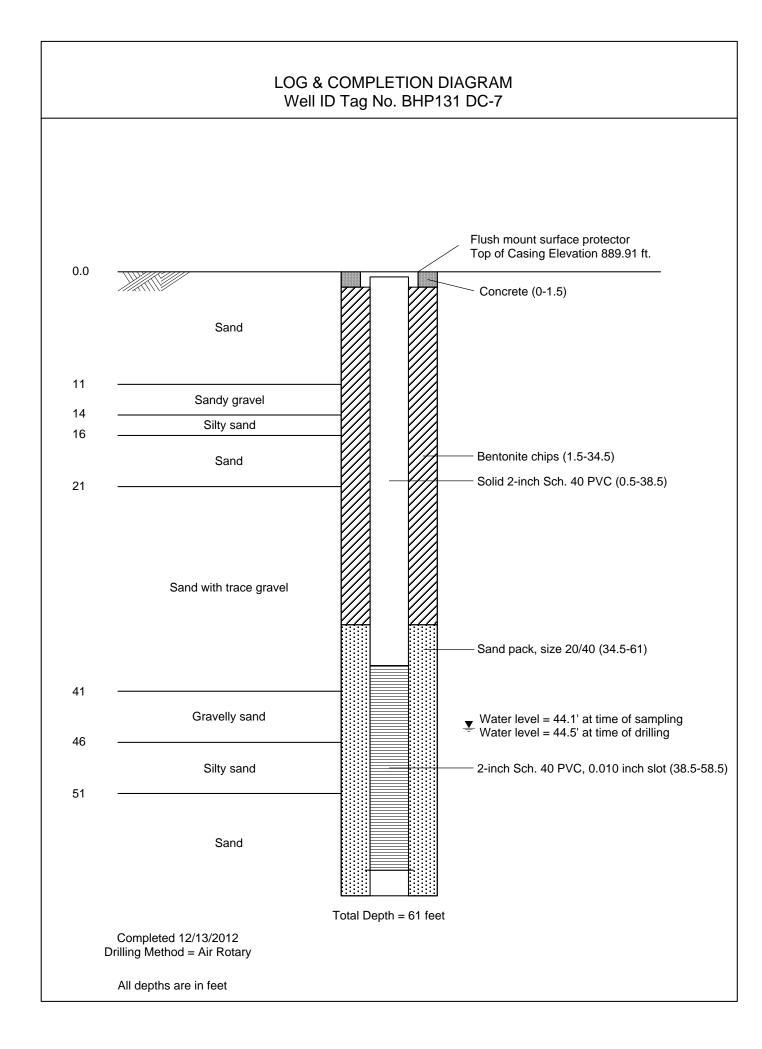




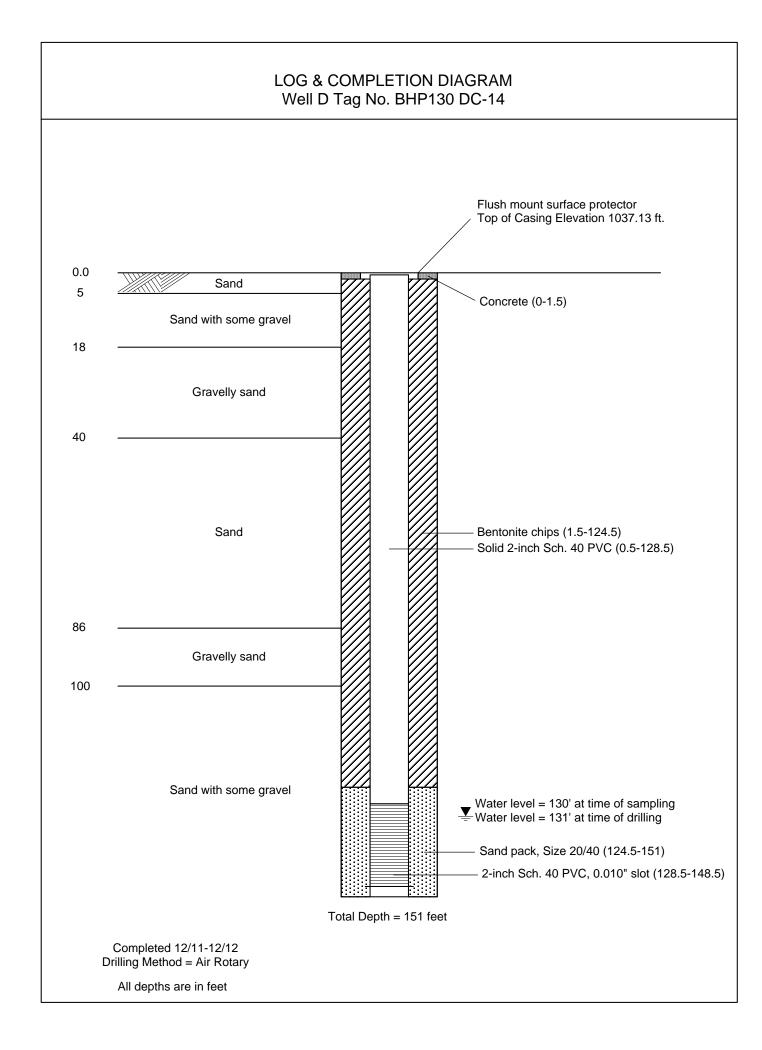



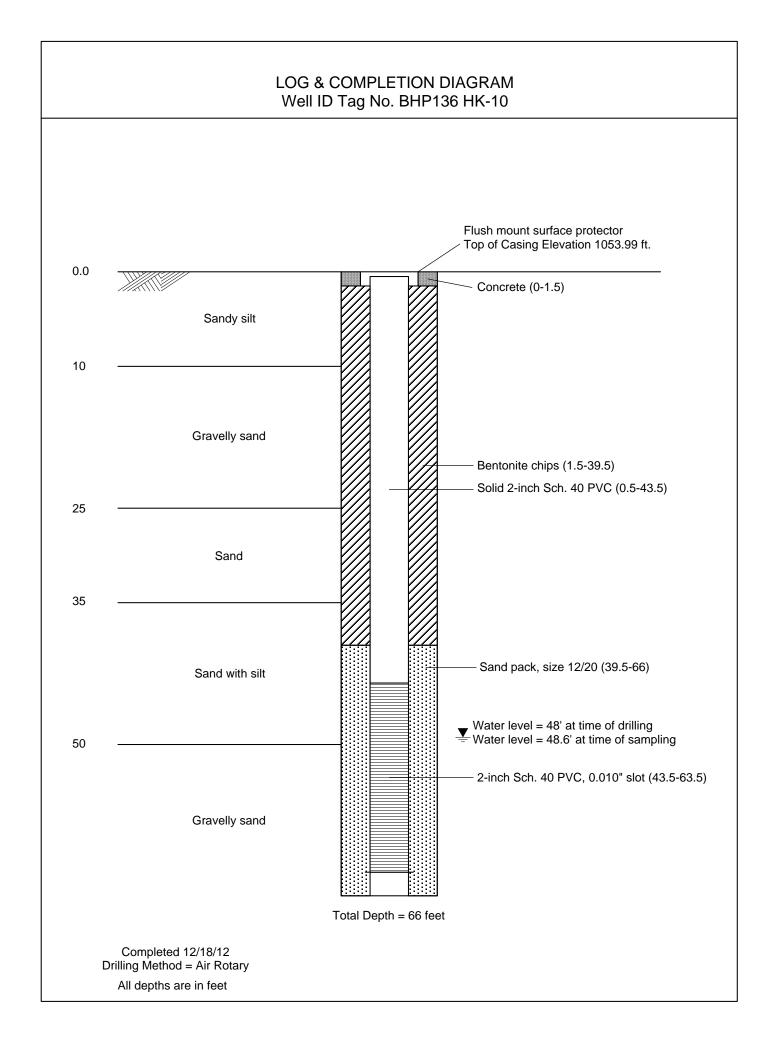



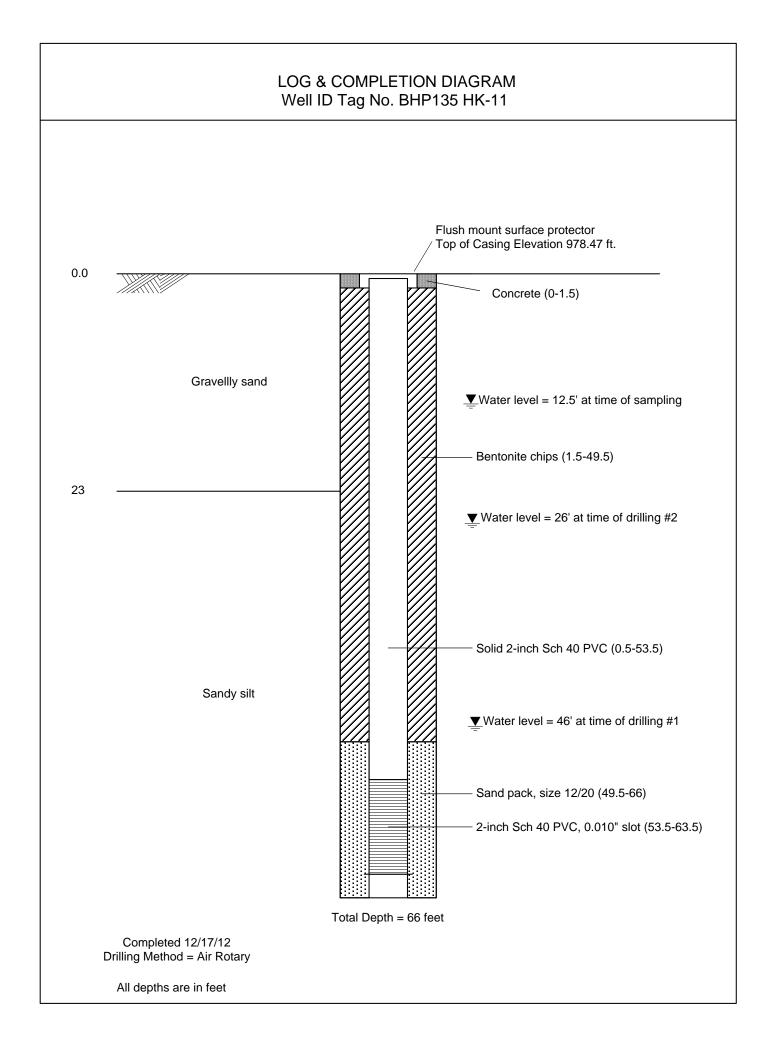



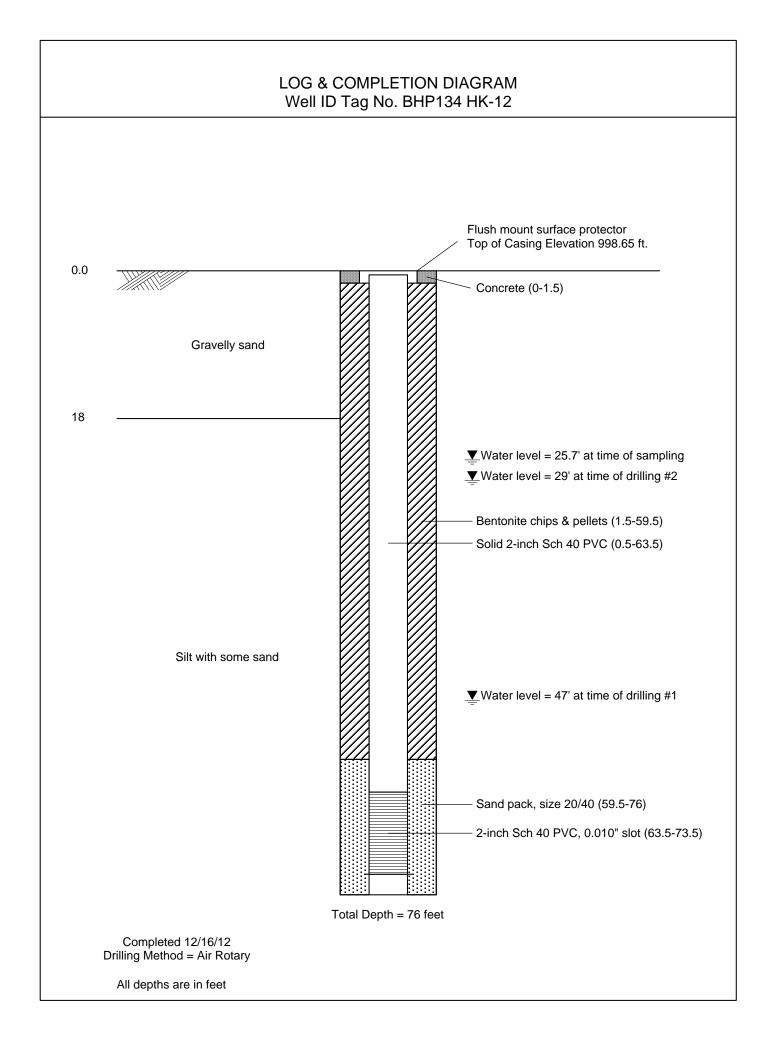


Appendix A Well Logs
















Appendix B Groundwater Sampling Logs

Page 1 OF 18

|                                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gr                                          | ound Wate                 | r Samplin                        |                               |                    | •                                           |                                                                                                  |
|------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------|----------------------------------|-------------------------------|--------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------|
| Site Nam<br>Well Dep                     |                                      | 01<br> C1): 159.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                          | Well #:<br>Screen Ir      | <b>nterval</b> (Ft):             |                               | ate: \/식           | 2013                                        |                                                                                                  |
| Well Dia.                                | .: 2"                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                           | Casing N                  | laterial: P                      | vc s                          | ampling De         | evice:                                      |                                                                                                  |
|                                          | -                                    | t from TOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             | NO                        | Sat NO                           | rtno3                         | 1                  |                                             | 14:08<br>conf.tat<br>styresults                                                                  |
| Measurii                                 | ng Point:                            | rom surve<br>N. sideof e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y work<br>asing                             |                           |                                  |                               | 50                 | Initial                                     | NOLO                                                                                             |
| Water le                                 | vel (pumpi                           | ng)(Ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             | Pump rat                  | te(Liter/min                     | ): Noz=                       | ø ppm              | Test Strip                                  | NU 52 27.5 PP                                                                                    |
|                                          | g Personn                            | el:<br>3. R\CAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OND                                         |                           | •                                | N03 =<br>NH≤ <                | ~7.5ppm            | (125 (13:25                                 | $NO_2 \circ \emptyset$<br>$NU_3 \circ 27.5$ pp<br>$NH_3 = \emptyset$<br>$5 \circ est. between 9$ |
| Other inf                                | fo: (such as                         | s sample nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mbers, wea                                  | ather condit              | ions and fi                      | eld notes)                    |                    | +7.<br>A lave                               | 5-cst. between:                                                                                  |
| اصاده                                    |                                      | IN LOP C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ala nor                                     | riave a                   | IOCK P                           | mscri i                       |                    |                                             | Sampling.                                                                                        |
| We                                       | ted pumpin                           | in Raydes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /minc~                                      | 13:00(                    | ollecting                        | piclim. so                    | inple at           |                                             | lace dobr                                                                                        |
| WC<br>Sta                                | and pumpin                           | y Reycles<br>1 r y4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /min@~<br>/r= Water                         | 13:00. •0<br>Quality In   | dicator Pa                       | piclim. Si<br>rameters        | minisc 11          | ase water                                   | Sect boswan:<br>Sampling.<br>And tybing<br>lace dopsy                                            |
| WC<br>Sław<br>Time                       | Pumping                              | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DO 🖌                                        | ORP                       | dicator Pa                       | Turb.                         | pH                 | Temp.                                       | Volume                                                                                           |
|                                          |                                      | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | . •                       | 1                                |                               | -                  | · .                                         |                                                                                                  |
|                                          | Pumping<br>rates                     | Water<br>level<br>(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DO 🖌<br>(mg/L)                              | ORP                       | 1                                | Turb.                         | -                  | Temp.                                       | Volume<br>pumped                                                                                 |
| Time                                     | Pumping<br>rates<br>. (L/Min)        | Water<br>level<br>(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DO 🖌<br>(mg/L)                              | ORP                       | 1                                | Turb.                         | -                  | Temp.                                       | Volume<br>pumped                                                                                 |
| Time                                     | Pumping<br>rates<br>(L/Min)<br>0.290 | Water<br>level<br>(ft)<br>150151.2<br>151.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DO ¥<br>(mg/L)<br>\$                        | ORP                       | 1                                | Turb.                         | -                  | Temp.                                       | Volume<br>pumped                                                                                 |
| Time<br>13:14<br>13:21                   | Pumping<br>rates<br>(L/Min)<br>0.290 | Water<br>level<br>(ft)<br>150151.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DO ¥<br>(mg/L)<br>\$                        | ORP<br>(mv)               | SEC <sup>3</sup>                 | Turb.<br>(NTU)                | рН                 | Temp.<br>(C <sup>o</sup> )                  | Volume<br>pumped                                                                                 |
| Time<br>13:14<br>13:21<br>13:32          | Pumping<br>rates<br>(L/Min)<br>0.290 | Water<br>level<br>(ft)<br>150151.2<br>151.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DO ¥<br>(mg/L)<br>\$<br>5<br>[e.43          | ORP<br>(mv)<br>137        | SEC3                             | Turb.<br>(NTU)<br>[09         | рН<br>7. <b>78</b> | Тетр.<br>(С <sup>9</sup> )<br><b>9.50</b>   | Volume<br>pumped                                                                                 |
| Time<br>13:14<br>13:21<br>13:32<br>13:37 | Pumping<br>rates<br>(L/Min)<br>0.290 | Water<br>level<br>(ft)<br>1501512<br>151.4<br>151.6 a<br>150.6 a | DO ¥<br>(mg/L)<br>\$<br>5<br>[e.43<br>[e.08 | ORP<br>(mv)<br>137<br>133 | SEC3<br>D. <i>.</i> 968<br>D.990 | Turb.<br>(NTU)<br>109<br>82.7 | PH<br>7.78<br>7.75 | Temp.<br>(C <sup>9</sup> )<br>9.50<br>10.15 | Volume<br>pumped                                                                                 |

Type of Samples collected: 13:21 Sample rollected for NO3/auran 13:31 Started MEAS WHONDA Waited to meas WO mon. ducto minimal H20 - us sure if for WQ parameters

| 1 casing volume was: 14:05 second sample NO3 collected-FOR ANALYSISS                                                                                        | Stabilizatio      | n Criteria                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------|
| Total volume purged prior to sample collection:<br><sup>1</sup> BTOC-Below Top of Casing 14:15 field blank NO3 (ollected)<br><sup>2</sup> TOC-Top of Casing | D.O.<br>Turb.     | +/- 0.3 mg/l<br>+/- 10%             |
| * DO membrane has an air bubble, likely wacunat                                                                                                             | S.C.<br>ORP<br>pH | +/- 3%<br>+/- 10 mV<br>+/- 0.1 unit |

The Other team (ENE) mentioned DC-05 did not have a security cap lock either

|       |                             | r                      |              | ····        |                  |                |                 | Page 2                     | OF 18                   | Ļ     |
|-------|-----------------------------|------------------------|--------------|-------------|------------------|----------------|-----------------|----------------------------|-------------------------|-------|
| Time  | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН              | Temp.<br>(C <sup>o</sup> ) | Volume<br>pumped<br>(L) |       |
| 13:52 | 0.140                       | 151.83                 | 4.92         | 135         | 1.01             | 25.8           | 7.77            | 11.52                      |                         |       |
| 13:55 | 1                           | 151.78                 | 5.44         | 132         | 1.00             | 27.6           | 7.81            | 11.22                      | 13:59                   |       |
| 13:58 |                             | 151.63                 | न.न।         | 132         | 0.991            | 24.2           | 7.80            | 10.71                      | non. diga               | WQ    |
| 14:05 | \$                          |                        | Collecte     | d sample    | e as a           | e cantion      | 82 141<br>13:14 | <b>0</b> 5                 | +re conneo<br>when fin  | Strad |
| 14:11 | 0.150                       | 151.78                 | 5.04         | 136         | 0.992            | 24.0           | 7.78            | 10.70                      | ~46                     |       |
| 14:14 | ľ                           | 151.89                 | 5.39         | 133         | 1.01             | 16.2           | 7.79            | 11.03                      |                         |       |
| 14:17 | J                           | 151.91                 | 5.90         | 133         | 1.01             | 8.42           | 7.76            | 11.27                      |                         |       |
| Time  | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН              | Temp.<br>(Cº)              | Volume<br>pumped<br>(L) |       |
| 14:20 | 0.150                       | 151.85                 | 4.96         | 132         | 1-01             | 6.45           | 7.77            | 11.10                      |                         |       |
|       |                             |                        | ned to       | co-llect.   | Sample           | + lust-fi      | av-me           | chanical                   | Issue.                  |       |
|       |                             |                        | will use     | 14:05       | sample           | fir ana        | lysis (sa       | memech.                    | usave prev              | D     |
|       |                             |                        |              |             |                  |                | Ľ               |                            |                         |       |
|       |                             |                        |              |             |                  |                |                 |                            |                         |       |
|       |                             |                        |              |             |                  |                |                 |                            |                         |       |
|       |                             |                        |              |             |                  |                |                 | <u></u>                    |                         |       |

| Time | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН | Temp.<br>(C <sup>o</sup> ) | Volume<br>pumped<br>(L) |
|------|-----------------------------|------------------------|--------------|-------------|------------------|----------------|----|----------------------------|-------------------------|
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             | • *              |                |    |                            |                         |

#### Ground Water Sampling Log

Site Name: 1/uhum Nutruk Well Depth( Ft-BTOC'): 84.36 Well #: DC - 3 Screen Interval(Ft): Date: 1/2/13

PAGE 3 OF 18

Pylof2

Casing Material: PVC Sampling Device: God feed

Pump placement(Ft from TOC<sup>2</sup>):

Water level (pumping)(Ft):

Measuring Point: IC - NWTh

Well Dia.: 2"

Water level (static)(Ft): 72.40' BTOIC - North Pump rate(Liter/min): ~, 3 Lpm

Sampling Personnel: B. Cicolas, J. Fetters, M. Wirda

Other info: (such as sample numbers, weather conditions and field notes) 1355 - Begin pluge 1520 collect sample in 2-soomh polys, one with 1000

TD = 84.36

| Time | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | Turb.<br>(NTU) | SEC <sup>3</sup><br>( <del>Slom)</del><br>MS/CM | рН   | Temp.<br>(C⁰) | Volume<br>pumped<br>(L) |
|------|-----------------------------|------------------------|--------------|-------------|----------------|-------------------------------------------------|------|---------------|-------------------------|
| 1401 | 455ec set 1<br>155ec dete   | 72.38                  | 11.23        | 132         | 509            | 2.58                                            | 6.91 | 10.7          | D.1                     |
| 1407 | 15541cf.1<br>1554 John      | 72.41                  | 10.89        | 135         | 404            | 2.78                                            | 6.96 | 10.48         | 1.25.                   |
| 1413 |                             | 72.41                  | 9.61         | 146         | 90.7           | 2.77                                            | 7.12 | 9,23          | 2                       |
| 1418 | 11                          | 72.41                  | 8.93         | 150         | 60.5           | 2-74                                            | 7-08 | 9.96          | ч                       |
| 1423 |                             | 72.40                  | 8-25         | 157         | 50.3           | 2.80                                            | 7.03 | 10.01         | 6                       |
| 1428 | 11                          | 772.39                 | 8.3D         | 159         | 39.7           | 2.82                                            | 7.06 | 9.78          | 7                       |
| 1434 | Įt                          | 72.40                  | 8-24         | 162         | 33.9           | 2.85                                            | 7.11 | 939           | 8                       |

Type of Samples collected:

1 casing volume was:

Total volume purged prior to sample collection:

<sup>1</sup>BTOC-Below Top of Casing <sup>2</sup>TOC-Top of Casing <sup>3</sup>Specific Electrical Conductance

Continued -

**Stabilization Criteria** 

| D.O. +/- 0.3  | mg/l |
|---------------|------|
| Turb. +/- 10% | 5    |
| S.C. +/- 3%   |      |
| ORP +/- 10 m  | ηΛ   |
| pH +/- 0.1 u  | Jnit |

PAGE 4 OF 18

| Site Name:<br>Well Depth( Ft-BTOC <sup>1</sup> ): | Ground Water Sampling Log<br>Well #: DC-3<br>Screen Interval(Ft): | Py 2 07 2<br>Date: |
|---------------------------------------------------|-------------------------------------------------------------------|--------------------|
| Well Dia.:                                        | Casing Material:                                                  | Sampling Device:   |
| Pump placement(Ft from TOC <sup>2</sup> ):        |                                                                   |                    |
| Measuring Point:                                  | Water level (static)(Ft):                                         |                    |
| Water level (pumping)(Ft):                        | Pump rate(Liter/min):                                             |                    |
| Sampling Personnel:                               |                                                                   |                    |
|                                                   |                                                                   |                    |

Other info: (such as sample numbers, weather conditions and field notes) (dlact DC-03 at 1520 in 2-500 ml polys (one -1 H2504) for Amenin and notific

| Time  | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | Turb.<br>(NTU) | SEC <sup>3</sup><br>(S/cm) | рН   | Temp.<br>(C⁰) | Volume<br>pumped<br>(L) |
|-------|-----------------------------|------------------------|--------------|-------------|----------------|----------------------------|------|---------------|-------------------------|
| 1445  | 16/9052                     | 72.41                  | 8.61         | 169         | 23.6           | 2.92                       | 7.13 | 8.76          | 13                      |
| 1457- | L                           | HZ.40                  | 8.76         | 17-8        | 12.9           | 3.11                       | 7.07 | 8.31          | 17                      |
| 504   | /(                          | 72.40                  | 8.22         | 18(         | 10.5           | 3.08                       | 7.06 | 8.65          | 19                      |
| 508   | 11                          | 72.39                  | 8.97         | 179         | 9,78           | 3,12                       | 7.12 | B.05          | 21                      |
| 1512  | ų                           | 72.42                  | 9.32         | 181         | 6-37           | 3.10                       | 7.13 | 7.94          | 23                      |
| 1516  | 1[                          | 7.2.42                 | 9-0          | 184         | 7-18           | 3.11                       | 7.08 | 7.84          | 24                      |
| 1520  | 11                          | 72.43                  | 8.75         | 186         | 5.76           | 3.11                       | 7.08 | 7.75          | 25                      |

Water Quality Indicator Parameters

Type of Samples collected:

Amman test strip = 0.25 PPM 1 casing volume was: Nitmk test STIP 20-50 ppm

4.

Total volume purged prior to sample collection:

<sup>1</sup>BTOC-Below Top of Casing <sup>2</sup>TOC-Top of Casing <sup>3</sup>Specific Electrical Conductance **Stabilization Criteria** 

| D.O.  | +/- 0.3 mg/l |
|-------|--------------|
| Turb. | +/- 10%      |
| S.C.  | +/- 3%       |
| ORP   | +/- 10 mV    |
| рН    | +/- 0.1 unit |
|       |              |

PAGE 5 OF 18

Paye 10fl

#### Ground Water Sampling Log

Well #: 12-4 Screen Interval(Ft):

Site Name: Yakimi N Hak Well Depth( Ft-BTOC'): 49.9'

Well Dia.: 7

Pump placement(Ft from TOC<sup>2</sup>):

Measuring Point: IL-With

Water level (pumping)(Ft):

Casing Material: PVC

Sampling Device: Gestern Budder Aug

BTOL -NATH

Date: 1/3/13

TD 49.4 BTOC-N Water level (static)(Ft): 32.68

Pump rate(Liter/min): ~ .25 LPm

Sampling Personnel: B. Licko, M. wirde

Other info: (such as sample numbers, weather conditions and field notes) 0923 Bg Purger

Supple collector ut 1020 in 1-500 mL poly unpreserved. Water Quality Indicator Parameters

| Time                 | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | Turb.<br>(NTU) | SEC3<br>(Storm)<br>MS/CM | рН   | Temp.<br>(C⁰) | Volume<br>pumped<br>(L) |
|----------------------|-----------------------------|------------------------|--------------|-------------|----------------|--------------------------|------|---------------|-------------------------|
| 932                  | 250 ml/min                  | 32.70                  | 12.15        | 169         | 142            | 1.12                     | 7.00 | 10.41         |                         |
| D940                 | (                           | 32.80                  | 10.38        | 173         | 49.0           | 1.03                     | 6.96 | lo. 98        | 2                       |
| 0946                 | K                           | 32.76                  | 10.21        | 171         | 23.4           | 1.02                     | 6.90 | 10.93         | 3.5                     |
| 0952                 | ti                          | 32.80                  | 10.28        | 170         | 16-1           | 1.02                     | 6.94 | 10.92         | 5                       |
| (000                 | il                          | 32-79                  | 10.10        | 171         | 14.6           | 1.01                     | 6.91 | 11.05         | 7                       |
| 1040                 | LV                          | 32.81                  | 9.98         | 173         | 11.2           | 1.01                     | 6.94 | 10.96         | 9.5                     |
| 1014                 | . 11                        | 32.80                  | 10.0         | 174         | 10.0           | 1.01                     | 6.93 | 10.95         | (0.5                    |
| lo i ß<br>Type of Sa | i(<br>amples coll           | 32. 81<br>ected:       | 9.85         | 175         | 9.114          | 1-01                     | 6-91 | 10.95         | 11-5                    |

1 casing volume was:

to sample collection:

Total volume purged prior

<sup>1</sup>BTOC-Below Top of Casing

Mote: While d'3055 cmbhy the water Quality Stad Meter after the Sample was collected. I vertice 0. Turb. that rubber cups were left on the pH and S.C. ORP

**Stabilization Criteria** 

ORP

рН

+/- 0.3 mg/l +/- 10% +/- 3% +/- 10 mV +/- 0.1 unit

BTOC-Below Top of Casing UO Senses dury the proje and these two TOC-Top of Casing "Specific Electrical Conductance Awameters were not ready correctly. Ammonia Less Strip: 0.0 ppm Nitruk test strip: 20 ppm

38

pq lof l

#### **Ground Water Sampling Log**

| Site Name: Yakima Nutruk<br>Well Depth( Ft-BTOC'): 85-56 | Well #: り <b>C-5</b><br>Screen Interval(Ft): | Date: 1-4-13     |                 |
|----------------------------------------------------------|----------------------------------------------|------------------|-----------------|
| Well Dia.: 2'                                            | Casing Material: PUC                         | Sampling Device: | brookech bleddo |
| Pump placement(Ft from TOC <sup>2</sup> ):               |                                              |                  | ( an p          |
| Measuring Point: IC - Mark                               | Water level (static)(Ft): 69                 | -31              |                 |

Water level (pumping)(Ft):

Pump rate(Liter/min): ~ 0-25 LPM

Sampling Personnel: B. Weder M. worder

Other info: (such as sample numbers, weather conditions and field notes)

Water Quality Indicator Parameters

| Time  | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | Turb.<br>(NTU) | SEC <sup>3</sup><br>- <del>(8/0111)</del><br>MS/CM | рН   | Temp.<br>(C <sup>o</sup> ) | Volume<br>pumped<br>(L) |
|-------|-----------------------------|------------------------|--------------|-------------|----------------|----------------------------------------------------|------|----------------------------|-------------------------|
| 1326  | .251pm                      | 68.31                  | 8.32         | 194         | 773            | 130                                                | 7.48 | 8.97                       | 4                       |
| 1345  | 11                          | 68.31                  | 5.41         | 224         | 322            | 1.31                                               | 1.02 | 12.45                      | 7                       |
| 1353  | "                           | ĸ                      | 5.61         | 227<br>+63  | 163            | 1.31                                               | 6.94 | 12.81                      | И                       |
| 1401  |                             | ધ                      | 5.51         | 34.1        | 51.1           | 1.30                                               | 6.92 | 12.70                      | 13                      |
| 1409  | 11                          | 11                     | 5.61         | 232         | 23.4           | 1.31                                               | 6.99 | 12.74                      | 15                      |
| 14113 | 17                          | 11                     | 5.47         | 236         | 7.91           | 1.31                                               | 6.97 | 12.69                      | 16                      |
| 1416  | 11                          |                        |              |             |                |                                                    |      |                            | 17                      |

.

Type of Samples collected:

1 casing volume was:

Total volume purged prior to sample collection:

۰.

<sup>1</sup>BTOC-Below Top of Casing TOC-Top of Casing <sup>3</sup>Specific Electrical Conductance Stabilization Criteria

| D.O.  | +/- 0.3 mg/l |
|-------|--------------|
| Turb. | +/- 10%      |
| S.C.  | +/- 3%       |
| ORP   | +/- 10 mV    |
| рН    | +/- 0.1 unit |

PAGE 7 OF 18

Ground Water Sampling Log

Date: 01/03/2013 Site Name: DC-07 Well #: Well Depth( Ft-BTOC'): 61.3 Screen Interval(Ft): Sampling Device: HORIBA Well Dia .: 21 Casing Material: A94852 (EPA BC#) Pump placement(Ft from TOC2): 56.3 21/3/13 Measuring Point: N. Side of Casing Water level (static)(Ft): 44-F1-+" 44.11 ft Water level (pumping)(Ft): ૫૫.૫4 Pump rate(Liter/min): 0.380 Other info: (such as sample numbers, weather conditions and field notes) NO3 test strip: I 0 began pumping, air leak Fixed + vestarted pumping 0 9:40 Sample crilection time: 10:48 am Field duplicate: 10:49 am SEC<sup>3</sup> Volume Water DO ORP Turb. pH Temp. Time Pumping  $(C^0)$ (mg/L) (NTU) pumped rates level (mv) (L) (ft) (L/Min)

|       |       |       |        |     |       |           |      |       | to an and the board of the second |
|-------|-------|-------|--------|-----|-------|-----------|------|-------|-----------------------------------|
| 9:40  | 0.380 | 44.14 |        |     |       |           |      |       | 0.380                             |
| 9:51  | 1     | 44.14 | 6.72   | 149 | 0.710 | 639       | 5.65 | 12.45 |                                   |
| 10.00 |       | 44.14 | 4.02   | 156 | 0.775 | 255       | 5.68 | 13.15 | 9.0                               |
| 0:10  |       | 44.14 | 5.71   | 144 | 0.777 |           | 5.92 | 13.25 |                                   |
| 10:12 |       | 44.14 | 5.97   | 137 | 0.767 | 77 57/3/3 | 6.08 | 13.13 | 11.0                              |
| 10:20 |       | 44.14 | 5.73   | 129 | 0.750 | 47.3      | 4.25 | 13.30 | 13.0                              |
| 10:24 | +     | 44.14 | n 5.53 | 128 | 0.753 | 27.9      | 6.33 | 13.30 |                                   |
|       |       |       | 13 13  |     |       |           |      |       |                                   |

Type of Samples collected:

NO3 field sample and field duplicade Field BL (transfer) 1 casing volume was: Total volume purged prior to sample collection: 1BTOC-Below Top of Casing 2TOC-Top of Casing 3Specific Electrical Conductance

#### Stabilization Criteria

| D.O.  | +/- 0.3 mg/l                         |
|-------|--------------------------------------|
| Turb. | +/- 0.3 mg/l<br>+/- 10% (or 210 NTU) |
| S.C.  | +/- 3%                               |
| ORP   | +/- 10 mV                            |
| pH    | +/- 0.1 unit                         |

| DC-0  | 17 1                 | 32         | 013 CONT               | -            |             |                  |                | PAC  | SE 8 (                     | F 18                    |
|-------|----------------------|------------|------------------------|--------------|-------------|------------------|----------------|------|----------------------------|-------------------------|
| Time  | Pump<br>rate<br>(L/M | oing<br>es | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН   | Temp.<br>(C <sup>o</sup> ) | Volume<br>pumped<br>(L) |
| 10:27 | 0.39                 | 30         | 44.14                  | 5.59         | 25          | 6.752            | 20.9           | 6.42 | 13.26                      |                         |
| 10:30 |                      |            | 44.14                  | 5.20         | 125         | 0.748            | 17.1           | 6.42 | 13.36                      |                         |
| 10:34 |                      |            | 44.14                  | 5.31         | 125         | 0.743            | 14.5           | 6.46 | 13.25                      | 15.0                    |
| 10:37 |                      |            | 44.14                  | 5.19         | 123         | 0.741            | 11.3           | 6.50 | 13.36                      |                         |
| 10:40 |                      |            | 44.14                  | 5.29         | 124         | 0.739            | 11.1           | 6.50 | 13.37                      |                         |
| 10:43 |                      |            | 44.14                  | 5.25         | 124         | 0.737            | 9.88           | 6.51 | 13.34                      | I <del>7</del> .0       |
|       |                      |            |                        |              |             |                  |                |      |                            |                         |
| Time  | Pump<br>rate<br>(L/M | es         | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН   | Temp.<br>(C⁰)              | Volume<br>pumped<br>(L) |
|       |                      |            |                        |              |             | -                |                |      |                            |                         |
|       |                      |            |                        |              |             |                  |                |      |                            |                         |
|       |                      |            |                        |              |             |                  |                |      |                            |                         |
|       |                      |            |                        |              |             |                  |                |      |                            |                         |
|       |                      |            |                        |              |             |                  |                |      |                            |                         |
|       |                      |            |                        |              |             |                  |                |      |                            |                         |

| Time | Pumping<br>rates<br>(L/Min) | . Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН | Temp.<br>(C⁰) | Volume<br>pumped<br>(L) |
|------|-----------------------------|--------------------------|--------------|-------------|------------------|----------------|----|---------------|-------------------------|
|      |                             |                          |              |             |                  |                | 1  |               |                         |
|      |                             |                          |              |             |                  |                |    |               |                         |
|      |                             |                          |              |             |                  |                |    |               |                         |
|      |                             |                          |              |             |                  |                |    |               |                         |
|      |                             |                          |              |             |                  |                |    |               |                         |
|      |                             |                          |              |             |                  |                |    |               |                         |
|      |                             |                          |              |             |                  |                |    |               |                         |

### Ground Water Sampling Log

Date: 1/3/12 Site Name: 1/4/Linn Nitmle Well Depth( Ft-BTOC'): Well #: D(-4)Screen Interval(Ft): Sampling Device: Gestein Bleddo Well Dia.: 2 Casing Material: PV/ Pump placement(Ft from TOC<sup>2</sup>): Water level (static)(Ft): 144.13 BTOC - murk Measuring Point: DL-work

Water level (pumping)(Ft):

Pump rate(Liter/min): ~. 25 Lpm

Sampling Personnel: B. Cucilio M. word

Other info: (such as sample numbers, weather conditions and field notes) Begin purge at 1145 Nitrule test stop: 5 ppn (1315 collect Sumple)

Ammune fost Stip = . 25- .50 ppm Water Quality Indicator Parameters

| Time | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | Turb.<br>(NTU) | SEC <sup>3</sup><br>(S/cm) | рН   | Temp.<br>(C <sup>0</sup> ) | Volume<br>pumped<br>(L) |
|------|-----------------------------|------------------------|--------------|-------------|----------------|----------------------------|------|----------------------------|-------------------------|
| 1214 | ~ 250 ML                    | 44.10                  | 10.05        | 141         | High           | -431                       | 6.91 | 9.48                       | 2                       |
| 1224 | 25L<br>1.25L                | 144.15                 | 12-27        | 135         | 589            | 0.432                      | 7.55 | 10.16                      | Ч                       |
| 1232 | μ                           | 144.19                 | 6.32         | 135         | 149            | 0-428                      | 7:70 | 10-6                       | 6                       |
| 1240 | 11                          | 144.18                 | 7.71         | 154         | 50.9           | .428                       | 7.56 | 10.76                      | B                       |
| 1248 | 51                          | 144.19                 | 7.80         | 160         | 29.3           | ,425                       | 7.56 | 11.01                      | 10                      |
| 1256 | n                           | 14419                  | 7.94         | 165         | 23.5           | . 421                      | 7.58 | 10.95                      | 12                      |
| 1304 | 11                          | 144.23                 | 7.93         | 167         | 19.1           | -419                       | 7.67 | 10.96                      | 14                      |

Type of Samples collected: 1315 collect priming, Field Dup, Mis/msD for Am

1 casing volume was:

Total volume purged prior to sample collection:

<sup>1</sup>BTOC-Below Top of Casing <sup>2</sup>TOC-Top of Casing <sup>3</sup>Specific Electrical Conductance Stabilization Criteria

Continued.

| D.O.  | +/- 0.3 mg/l |
|-------|--------------|
| Turb. | +/- 10%      |
| S.C.  | +/- 3%       |
| ORP   | +/- 10 mV    |
| pН    | +/- 0.1 unit |

|      | DC-                         | 9 Da                   | 207          | 2           | 13               | 113            |      | PAGE                       | 100F                    | 18 |
|------|-----------------------------|------------------------|--------------|-------------|------------------|----------------|------|----------------------------|-------------------------|----|
| Time | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН   | Temp.<br>(C <sup>o</sup> ) | Volume<br>pumped<br>(L) |    |
| 1308 | ,251PM                      | 144.21                 | 7.96         | 171         |                  | 18.3           | 7.60 | 10.90                      | 15                      |    |
| 1312 | 11                          | 144.20                 | 241 7.97     | -169        | ,419             | 17.4           | 7.66 | 10.84                      | 16                      |    |
|      |                             |                        |              |             |                  |                |      |                            |                         |    |
|      |                             |                        |              |             |                  |                |      |                            |                         |    |
|      |                             |                        | >            | $\langle$   |                  |                |      |                            |                         |    |
|      |                             |                        |              |             |                  |                |      |                            |                         |    |
| /    |                             |                        |              |             |                  |                |      |                            |                         |    |
| Time | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рH   | Temp.<br>(C⁰)              | Volume<br>pumped<br>(L) |    |
|      |                             |                        |              |             |                  |                |      |                            |                         |    |
|      |                             |                        |              |             |                  |                |      |                            |                         |    |
|      |                             |                        |              |             |                  |                |      |                            |                         |    |
|      |                             |                        |              |             |                  |                |      |                            |                         |    |
|      |                             |                        |              |             |                  |                |      |                            |                         |    |
|      |                             |                        |              |             |                  |                |      |                            |                         |    |
|      |                             |                        |              |             |                  |                |      |                            |                         |    |
|      | · · · · ·                   | 1                      | 1            |             |                  | 1              |      |                            |                         | ר  |

| Time | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН | Temp.<br>(C <sup>0</sup> ) | Volume<br>pumped<br>(L) |
|------|-----------------------------|------------------------|--------------|-------------|------------------|----------------|----|----------------------------|-------------------------|
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  | •              |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |

PAGE 11 OF 18

#### Ground Water Sampling Log

| Site Name: DC - ।५<br>Well Depth( Ft-BTOC¹): ।५०.५ | Weil #: DC-\낵<br>Screen Interval(Ft): | Date: 01/03/201 3               |
|----------------------------------------------------|---------------------------------------|---------------------------------|
| Well Dia.: 2"                                      | Casing Material: PVC                  | Sampling Device: Hokiba A948 >2 |
| Pump placement(Ft from TOC <sup>2</sup> ):         |                                       |                                 |

Measuring Point: N.Side of casing (filed w/ sharple morie) Water level (pumping)(Ft): 130.67

Water level (static)(Ft): Pump rate(Liter/min):

130.61 + 12:30 (pump issues) - frozen 130.65 + 14:23 [replacement pump] before pumping weil]

+/- 0.1 unit

рН

Sampling Personnel: B. KICHMOND JURAWPORD

Other info: (such as sample numbers, weather conditions and field notes) ISSUES W/CINTROLLER - N - FROZEN, REPLACED BY ENE FIELD TEAM NHMgen tank running low (15:10) COLP WEATHER 27 F

15:37 NO3 sample collected Wa Totstups: 20ppm No3 / Oppm NH3/0 NO2

Water Quality Indicator Parameters

|            |                             | PPIN - 0 1             | <u> </u>     | INUX ICSV   |                  |                |      |               |                                      |                 |
|------------|-----------------------------|------------------------|--------------|-------------|------------------|----------------|------|---------------|--------------------------------------|-----------------|
| Time       | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН   | Temp.<br>(C⁰) | ToTAL<br>Volume<br>pumped<br>(L) @15 | те              |
| *<br>14:25 | 0.350                       |                        |              |             |                  |                |      |               |                                      |                 |
| 14:29      | 4                           | 130.67                 | 3.99         | 144         | 1.83             | 865            | 6.80 | 11.93         |                                      |                 |
| ાનઃના      |                             | 130.67                 | 2.64         | 125         | 1.85             | 407            | 4.91 | 12.83         |                                      |                 |
| W:20       | $\downarrow$                | 130.67                 | 2.22         | 121         | 1.84             | 296            | 6.93 | 12.87         |                                      |                 |
| 15:00      | -                           | 130.67                 | 1.79         | 118         | 1.84             | 213            | 6.95 | 12.86         | LOST FION<br>REESTABLI<br>PUMP RAT   | SHED<br>Shed    |
| 15:10      | 0.200                       | 130.67                 | 1.62         | 129         | 1.77-            | 158            | 6.79 | <i>n.41</i>   |                                      | 15:00<br>SAMPLE |
| 1520       | .१००                        | 130.62                 | 1.61         | 118         | 1.82.<br>16ta    | 164            | 6.96 | 12.14         |                                      |                 |

Type of Samples collected: #1/3/13 NO3 tield Sample, Equip. BLANK NO3+NH3 \* Previous Hartin data loged was while trouble shooting a frace control box for the pump. ENE team provided replacement. Sample pumping started C14:25. Stabilization Criteria Total volume purged prior to sample collection: +/- 0.3 mg/l D.O. <sup>1</sup>BTOC-Below Top of Casing Turb. +/- 10% <sup>2</sup>TOC-Top of Casing +/- 3% S.C. <sup>3</sup>Specific Electrical Conductance +/- 10 mV ORP

-, ?

| DC-I  | 4 CONTI                     | NLIFD                  | 01/03/2013   |             |                  |                |      | PAGE 1        | 2 OF 18                 |
|-------|-----------------------------|------------------------|--------------|-------------|------------------|----------------|------|---------------|-------------------------|
| Time  | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН   | Temp.<br>(C⁰) | Volume<br>pumped<br>(L) |
| 15:23 | 0.200                       | 130.62                 | 1.56         | 119         | 1.82             | 132            | 6.95 | 12.24         |                         |
| 15:24 |                             | 130.62                 | 1.57         | 118         | 1.82             | 123            | 6.94 | 12.13         |                         |
| 15:29 |                             | 130.61                 | 1.49         | 118         | 1.82             | 2]             | 6.96 | 12.14         |                         |
| 15:32 | $\leftarrow$                | 130.62                 | 1.41         | 118         | 1.81             | 115            | 6.96 | , 12.08       |                         |
|       |                             |                        |              |             |                  |                |      |               |                         |
| Time  | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН   | Temp.<br>(C⁰) | Volume<br>pumped<br>(L) |
|       |                             |                        |              |             |                  |                |      |               |                         |
|       |                             |                        |              |             |                  |                |      |               |                         |
|       |                             |                        |              |             |                  |                |      |               |                         |
|       |                             |                        |              |             |                  |                |      |               |                         |
| Time  | Pumping                     | Water                  | DO           | ORP         | SEC <sup>3</sup> | Turb.          | рН   | Temp.         | Volume                  |

| Time | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН | Temp.<br>(C <sup>o</sup> ) | Volume<br>pumped<br>(L) |
|------|-----------------------------|------------------------|--------------|-------------|------------------|----------------|----|----------------------------|-------------------------|
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |
|      |                             |                        |              |             |                  |                |    |                            |                         |

PAGE 13 OF 18

### Ground Water Sampling Log

Well #: HK-10 Site Name: Well Depth( Ft-BTOC1): 65-10 Screen Interval(Ft): Well Dia.: ຼ\_" Casing Material: PVL Pump placement(Ft from TOC<sup>2</sup>): Water level (static)(Ft): 48.66 Measuring Point: A IL - Work

Water level (pumping)(Ft):

Date: 1/4/12

Sampling Device: Gestern bludder Pump

Pump rate(Liter/min): ~.25 LP~

Sampling Personnel: B.C.C.C. M. Wurden

Other info: (such as sample numbers, weather conditions and field notes) 0832 Beyn purge Ammania Test strip! Oppon 1135 collect Simple in 1-500 ml pily, unpermit Nitrule test strip : oppm

| Time | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | Turb.<br>(NTU) | SEC3<br>(Storn)<br>MS/cm | рН   | Temp.<br>(C <sup>0</sup> ) | Volume<br>pumped<br>(L) |
|------|-----------------------------|------------------------|--------------|-------------|----------------|--------------------------|------|----------------------------|-------------------------|
| 0900 | .251Pm                      | 48.67                  | 5-70         | 97          | hyh            | 0.706                    | 7.55 | 8.7                        | ,25                     |
| 0915 | 1ı                          | 48.66                  | 2.57         | 111         | 873            | ·748                     | 7-29 | 10.38                      | 4                       |
| 1015 | 11                          | 48.65                  | 2.83         | 116         | 368            | •757                     | 7.0  | 7.30                       | 5                       |
| 1037 | 11                          | 48.69                  | 3.82         | 130         | 127            | .746                     | 7.25 | 10.75                      | 19                      |
| 1047 | )]                          | 48.68                  | 3.11         | 132         | 84.3           | .802                     | 7.23 | 11.02                      | 12.5                    |
| 1052 | <u>)</u> )                  | 48.69                  | 3.94         | 136         | 73.4           | .799                     | 7.28 | 10.95                      | 14                      |
| 1100 | 11                          | 48.66                  | 3.77         | 141         | 55.7           | . 804                    | 7.30 | 10.98                      | 16                      |

Water Quality Indicator Parameters

Type of Samples collected:

1 casing volume was:

Total volume purged prior to sample collection:

<sup>1</sup>BTOC-Below Top of Casing <sup>2</sup>TOC-Top of Casing <sup>3</sup>Specific Electrical Conductance

15 10

Cartinued -

**Stabilization Criteria** 

| D.O.  | +/- 0.3 mg/l |
|-------|--------------|
| Turb. | +/- 10%      |
| S.C.  | +/- 3%       |
| ORP   | +/- 10 mV    |
| рН    | +/- 0.1 unit |

| Pumping                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |                                                       | PAGEHOF                                               |
|-----------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| rates<br>(L/Min)            | Water<br>level<br>(ft) | DO<br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ORP<br>(mv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SEC <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Turb.<br>(NTU)                                        | рН                                                    | 20F Z<br>Temp.<br>(C <sup>0</sup> )                   | Volume<br>pumped<br>(L)                               |
| 251pm                       | 48.66                  | 4.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2157.403<br>BL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67.8                                                  | 7.32                                                  | 10.96                                                 | 18                                                    |
| 11                          | 1(                     | 2.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-5,802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37.7                                                  | 7-33                                                  | 10.74                                                 | 20                                                    |
| 11                          | 48.66                  | 3.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.5                                                  | 7.30                                                  | 10-70                                                 | 22                                                    |
| 11                          | 48.66                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.1                                                  | 7.26                                                  | 10-74                                                 | 23                                                    |
| II                          | 48.66                  | 2.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.7                                                  | 7.25                                                  | 10.97                                                 | 24                                                    |
|                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |                                                       |                                                       |
|                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |                                                       |                                                       |
| Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ORP<br>(mv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SEC <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Turb.<br>(NTU)                                        | рН                                                    | Temp.<br>(C <sup>0</sup> )                            | Volume<br>pumped<br>(L)                               |
|                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |                                                       |                                                       |
|                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |                                                       |                                                       |
|                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |                                                       |                                                       |
|                             |                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |                                                       |                                                       |
|                             | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       | ~                                                     |                                                       |
|                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                                                       |                                                       |                                                       |
|                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |                                                       |                                                       |
|                             | Pumping rates          | 251PM       48.66         11       11         11       14         11       18.66         11       48.66         11       48.66         11       48.66         11       48.66         11       48.66         11       48.66         11       48.66         11       48.66         11       48.66         11       48.66         11       48.66         11       48.66         11       48.66         11       48.66         11       48.66         12       48.66         13       48.66         14       48.66         15       48.66         16       48.66         17       48.66         18       48.66         19       48.66         10       48.66         11       48.66         12       48.66         13       48.66         14       48.66         15       48.66         16       48.66         17       48.66 <tr< td=""><td>251PM       48.66       4.18         11       11       2.82         11       48.66       3.18         11       48.66       2.97         11       48.66       2.97         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       1.93         11       48.66       1.93         12       1       1.93         13       1       1.93         14       1       1.93         15       1       1.93         16       1       1.93         17</td><td>25 IPM       <math>48.66</math> <math>4.16</math> <math>150</math> <math>11</math> <math>11</math> <math>2.82</math> <math>153</math> <math>11</math> <math>48.66</math> <math>3.16</math> <math>157</math> <math>11</math> <math>48.66</math> <math>2.97</math> <math>165</math> <math>11</math> <math>48.66</math> <math>2.97</math> <math>165</math> <math>11</math> <math>48.66</math> <math>2.93</math> <math>168</math> <math>11</math> <math>19.66</math> <math>100</math> <math>0RP</math> <math>100</math> <math>0RP</math> <math>(mv)</math> <math>(mv)</math> <math>11</math> <math>100</math> <math>1000</math> <math>100</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td></tr<> | 251PM       48.66       4.18         11       11       2.82         11       48.66       3.18         11       48.66       2.97         11       48.66       2.97         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       2.93         11       48.66       1.93         11       48.66       1.93         12       1       1.93         13       1       1.93         14       1       1.93         15       1       1.93         16       1       1.93         17 | 25 IPM $48.66$ $4.16$ $150$ $11$ $11$ $2.82$ $153$ $11$ $48.66$ $3.16$ $157$ $11$ $48.66$ $2.97$ $165$ $11$ $48.66$ $2.97$ $165$ $11$ $48.66$ $2.93$ $168$ $11$ $48.66$ $2.93$ $168$ $11$ $48.66$ $2.93$ $168$ $11$ $48.66$ $2.93$ $168$ $11$ $48.66$ $2.93$ $168$ $11$ $48.66$ $2.93$ $168$ $11$ $48.66$ $2.93$ $168$ $11$ $48.66$ $2.93$ $168$ $11$ $48.66$ $2.93$ $168$ $11$ $19.66$ $100$ $0RP$ $100$ $0RP$ $(mv)$ $(mv)$ $11$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $1000$ $100$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

| Time       | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН | Temp.<br>(C <sup>0</sup> ) | Volume<br>pumped<br>(L) |
|------------|-----------------------------|------------------------|--------------|-------------|------------------|----------------|----|----------------------------|-------------------------|
|            |                             |                        |              |             |                  |                |    |                            |                         |
|            |                             |                        |              |             |                  |                |    |                            |                         |
|            |                             |                        |              |             |                  |                |    |                            |                         |
|            |                             |                        |              |             |                  |                |    |                            |                         |
| <i>,</i> , | -                           |                        |              |             |                  |                |    |                            |                         |

PAGE 15 OF 18

|                      |                                |                                      | Gi                            | round Wate            | er Sampling                             | l Foð               |            |                |                                                                  |      |
|----------------------|--------------------------------|--------------------------------------|-------------------------------|-----------------------|-----------------------------------------|---------------------|------------|----------------|------------------------------------------------------------------|------|
| Site Nan<br>Well Dep | ne: HK-11<br>oth( Ft-BTC       | 1<br>1C1): <b>165.2</b>              | 2.8                           | Well #:<br>Screen Ir  | n <b>terval</b> (Ft):                   | <b>I</b>            | Date:01/04 | 1/2012         |                                                                  |      |
| Well Dia             | : 2"                           |                                      |                               | Casing <b>N</b>       | laterial: P                             | vc                  | Sampling D | evice: Hov     | iba                                                              |      |
| Pump pl              | :<br><b>acement</b> (F         | t from TOC                           | <b>;</b> 2):                  |                       | •                                       | •                   |            | •              |                                                                  |      |
| Measurii<br>Water le | ng Point: F<br>l<br>vel (pumpi | vom suvv<br>N.side of c<br>ng)(Ft):1 | eg mark<br>bsing<br>11/10me > | Water lev<br>Pump rat | <b>/el (static)</b> (i<br>te(Liter/min) | Ft): 12.5<br>: 0.20 | 5'<br>0 ØM | m NH s         | Test Str<br>Test Str<br>Result<br>Nog test<br>result<br>er lovel | 10   |
| Samplin              | g Personn                      | el: <b>(</b>                         | 4 (bolow)                     | •                     | · · ·                                   |                     | lippin     | $1 NO_2$       | Result                                                           | 5'2- |
| B.<br>Other inf      | RILHMIN[                       |                                      | AWFORD                        | •<br>ather condit     | ions and fic                            | ld notes)           | ~ 50 m     |                | vesult:                                                          | =N0- |
| Press                | we unde                        | well ca                              | sing cap                      | released              | when re                                 | MACA                | Mantor     | ed wat<br>Dan. | er love                                                          | NOZ  |
| P 101                |                                |                                      | Wate                          | r Quality In          | dicator Par                             | ameters             |            | ,              | • • • • •<br>• • • • • • • • • • • • • • •                       |      |
| Time                 | Pumping .                      | · Water                              | DO                            | ORP                   | SEC <sup>3</sup>                        | Turb.               | pH         | Temp.          | Volume                                                           |      |
|                      | rates<br>(L/Min)               | level<br>(ft)                        | • (mg/L)<br>• •               | (mv)                  |                                         | (NTU)               |            | (C°)           | pumped<br>(L)                                                    |      |
| 10:00                | 0.200                          | 13.45                                |                               |                       |                                         |                     |            |                |                                                                  |      |
| 14.10                |                                |                                      | 1                             |                       |                                         |                     |            | Ī              |                                                                  |      |

| 10:10<br>13.64 1.57 90 1.99 432 7.28<br>10:24 13.84 1.59 35 1.96 354 7.24 | 11.91 |   |
|---------------------------------------------------------------------------|-------|---|
| 10:24 13.84 150 05 196 254 7.24                                           |       |   |
|                                                                           | 11.91 |   |
| 10:32 V 13.98 5.54* 83 1.99 310 7.31                                      | 11.74 |   |
| 10:35 0.200 13.98 0.00 82 1.93 322 7.21                                   | 11.70 | • |
| 10:38 0.200 14.03 0.00 82 1.91 286 7.22                                   | 11.64 |   |
| 10:42 1 14.03 0.00 81 1.91 274 7.22                                       | 11.75 |   |

Type of Samples collected: \* Water is off gassing-bubbles present, shook flow through cell t it dupped, likely Q & DO prov. NO3 Sample collected 1/4/13 @ 11:41 am & Stabilization Criteria

| Total volume purged prior to sample collection: | D.O.  | +/- 0.3 mg/i |
|-------------------------------------------------|-------|--------------|
| <sup>1</sup> BTOC-Below Top of Casing           | Turb. | +/- 10%      |
| <sup>2</sup> TOC-Top of Casing                  | S.C.  | +/- 3%       |
| <sup>3</sup> Specific Electrical Conductance    | ORP   | +/- 10 mV    |
|                                                 | рH    | +/- 0.1 unit |

| <u> HK-1/</u> | r y                                                                                                                            | 4/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 CONT                                                         | , sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2F 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| īme           | ra                                                                                                                             | tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water<br>level<br>(ft)                                          | DO<br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ORP<br>(mv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SEC <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Turb.<br>(NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Temp.<br>(C <sup>o</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume<br>pumped<br>(L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| :45           | 0.2                                                                                                                            | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.07                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| :48           |                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| :50           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.08                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| :53           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.10                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| :56           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| :59           |                                                                                                                                | <u>↓</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.12                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | *(                                                                                                                             | teau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ndaw fir                                                        | ne sedim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ent fron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n the ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ll of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nba-tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Biddy u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bas bounce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| īme           | Pun<br>ra                                                                                                                      | nping<br>tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water<br>level<br>(ft)                                          | DO<br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ORP<br>(mv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SEC <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Turb.<br>(NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Temp.<br>(C <sup>0</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume<br>pumped<br>(L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| :04           | 0.2                                                                                                                            | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.12                                                           | 1.67*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| :07           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.17                                                           | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -13           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 19            | J                                                                                                                              | ,<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2             | 0.:                                                                                                                            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.21                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| īme           | ra                                                                                                                             | tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water<br>level<br>(ft)                                          | DO<br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ORP<br>(mv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SEC <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Turb.<br>(NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Temp.<br>(Cº)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volume<br>pumped<br>(L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 25            | b. 2                                                                                                                           | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 28            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 31            |                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ঙা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| :34           | 0.3                                                                                                                            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.25                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | St                                                              | able.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Samo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e colle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | etal C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11:41a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nos on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | me<br>:45<br>:48<br>:50<br>:53<br>:59<br>me<br>:59<br>me<br>:59<br>:59<br>:59<br>:59<br>:59<br>:59<br>:59<br>:59<br>:59<br>:59 | ime       Pun $ra         (L)1 ra         (L)1 ra         ra         (L)1 ra         ra  $ | Pumping<br>rates<br>(L/Min)         *45       0.200         *46 | Pumping rates (L/Min)       Water level (evel (ft)) $345$ $0.200$ $14.07$ $346$ $0.200$ $14.07$ $346$ $0.200$ $14.07$ $350$ $14.08$ $353$ $533$ $14.19$ $356$ $14.12$ $356$ $14.12$ $356$ $14.12$ $356$ $14.12$ $359$ $V$ $367$ $14.12$ $367$ $14.17$ $10$ $14.17$ $10$ $14.17$ $10$ $14.17$ $10$ $14.17$ $10$ $14.17$ $10$ $14.17$ $10$ $14.17$ $10$ $14.17$ $10$ $14.17$ $10$ $14.17$ $10$ $14.17$ $10$ $14.21$ $31$ $5200$ $14.21$ $14.21$ $31$ $40.200$ $31$ $40.200$ $31$ $40.200$ | Ime       Pumping<br>rates<br>(L/Min)       Water<br>level<br>(ft)       DO<br>(mg/L) $345$ 0.200       14.67       0.00 $346$ •       0.00 $353$ 14.10       0.00 $553$ 14.10       0.00 $553$ 14.10       0.00 $554$ 0.00       0.00 $557$ 14.12       0.00 $559$ 14.12       0.00 $579$ 14.12       0.00 $579$ 14.12       0.00 $579$ 14.12       1.97* $0.00$ 14.12       1.97* $0.10$ 0.200       14.12       1.97* $0.7$ 14.17       1.55       0.00 $10$ 0.200       14.12       0.00 $13$ 0.10       0.00 $14$ 0.200       14.21       0.00 $14$ 0.200       14.21       0.00 $14$ 0.200       14.21       0.00 $14$ 0.200       0.00       0.00 $14$ 0.200       0.00       0.00 $25$ | Imme       Pumping<br>rates<br>(L/Min)       Water<br>level<br>(ft)       DO<br>(mg/L)       ORP<br>(my) $eqs$ 0.200       14.07       0.00       80 $eqs$ 0.00       81 $eqs$ 0.00       81 $eqs$ 0.00       80 $eqs$ 0.00       81 $eqs$ 0.00       81 $eqs$ 0.00       81 $eqs$ 0.00       81 $eqs$ 0.00       80 $eqs$ 0.00       81 $eqs$ 0.00       80 $eqs$ 14.12       1.67*       12 $eqs$ 14.17       1.55       89         10       0.200       14.12       1.67*       12 $eqs$ 0.00       83       24       0.200       14.21 $eqs$ 0.00       85       33       34       0.200 | me         Pumping<br>rates<br>(L/Min)         Water<br>level<br>(ff)         DO<br>(mg/L)         ORP<br>(mv)         SEC3           145         0.200         14.07         0.00         80         1.90           146         •         0.00         80         1.90           147         •         0.00         80         1.90           148         •         0.00         80         1.90           149         •         0.00         80         1.90           146         •         0.00         80         1.90           153         14.10         0.00         81         1.90           156         0.00         81         1.87           157         V         14.12         0.00         81         1.97           159         V         14.12         0.00         80         1.97           159         V         14.12         1.97         1.97         1.97           10         0.200         14.12         1.97         1.91         1.92         1.92           10         0.200         14.12         1.97         1.92         1.94         1.94           10         0.00         83 | Image         Pumping<br>rates         Water<br>level         DO<br>(mg/L)         ORP<br>(mw)         SEC <sup>3</sup> Turb.<br>(NTU)           245         0.200         14.67         0.00         80         1.90         247           246         •         0.00         80         1.90         330           250         14.08         0.00         80         1.91         208           253         14.19         0.00         81         1.90         188           256         0.00         81         1.91         208           257         14.19         0.00         81         1.91         208           256         0.00         81         1.89         165           257         14.12         0.00         81         1.89         165           258         0.00         81         1.89         165         164           259         V         14.12         1.67         170         170         170           250         0.100         181         1.91         167         171         171         171           267         14.17         1.55         89         1.94         78.2         194         1.9 | me       Pumping<br>rates<br>(L/Min)       Water<br>(R)       DO<br>(mg/L)       ORP<br>(my)       SEC <sup>3</sup> Turb.<br>(NTU)       pH         145       0.200       14.67       0.00       80       1.90       247       7.22         146       •       0.00       80       1.90       330       7.22         146       •       0.00       80       1.91       208       7.21         153       14.19       0.00       81       1.90       188       7.20         153       14.19       0.00       81       1.90       188       7.20         154       0.00       81       1.90       188       7.20         155       0.00       81       1.91       208       7.21         154       0.00       80       1.89       1.45       7.20         155       0.00       81       1.97       1.95       7.21         17       14.12       0.00       80       1.83       246       7.21         17       111       1.55       89       1.91       111       1.55         10       0.200       14.17       1.55       89       1.91       1.91 <td< td=""><td>Pumping         Vater         DO         ORP         SEC3         Turb.         PH         Temp.           145         0.200         14.67         0.00         80         1.90         247         7.22         11.72           146         •         0.00         80         1.90         247         7.22         11.72           146         •         0.00         80         1.91         208         7.21         11.81           146         •         0.00         80         1.91         208         7.21         11.85           53         14.19         0.00         81         1.90         188         7.20         11.07           156         0.00         80         1.91         208         7.21         11.85           53         14.19         0.00         80         1.87         246         7.21         11.67           156         0.00         80         1.87         246         7.21         11.73           157         V         14.12         6.00         80         1.87         246         7.21         11.73           164         1.90         0.200         14.12         1.97</td></td<> | Pumping         Vater         DO         ORP         SEC3         Turb.         PH         Temp.           145         0.200         14.67         0.00         80         1.90         247         7.22         11.72           146         •         0.00         80         1.90         247         7.22         11.72           146         •         0.00         80         1.91         208         7.21         11.81           146         •         0.00         80         1.91         208         7.21         11.85           53         14.19         0.00         81         1.90         188         7.20         11.07           156         0.00         80         1.91         208         7.21         11.85           53         14.19         0.00         80         1.87         246         7.21         11.67           156         0.00         80         1.87         246         7.21         11.73           157         V         14.12         6.00         80         1.87         246         7.21         11.73           164         1.90         0.200         14.12         1.97 |

## Ground Water Sampling Log

| Site Name: 1/4 Finn Nitrak   | Well #: HK-12        | Da |
|------------------------------|----------------------|----|
| Well Depth( FI-BTOC'): 7-5-6 | Screen Interval(Ft): |    |

**ate:** 1/3/13

t

Well Dia.: 2

Casing Material: DVL

Sampling Device: acotect Bludder pun

Pump placement(Ft from TOC<sup>2</sup>):

Measuring Point: LC - murt Water level (static)(Ft): 25.7

Pump rate(Liter/min): ~.3LPM Water level (pumping)(Ft):

Sampling Personnel: B. Licit, M. worder

Other info: (such as sample numbers, weather conditions and field notes) 1537, Begin Purger

Ammonia test strip: 0.25 Nutrule test stop; ~24

| 0 | ppm | Water | Quality | Indicator | Parameters |
|---|-----|-------|---------|-----------|------------|
|---|-----|-------|---------|-----------|------------|

| Time | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | Turb.<br>(NTU) | SEC <sup>3</sup><br>( <del>O</del> /CM)<br>M5/CM | pН     | Temp.<br>(C⁰) | Volume<br>pumped<br>(L) |
|------|-----------------------------|------------------------|--------------|-------------|----------------|--------------------------------------------------|--------|---------------|-------------------------|
| 1546 | 0.3<br>1Pm                  | 25.9                   | 7.55         | 184         | 118            | 1.31                                             | 7.24   | 5.95          | .25                     |
| 16D  | 11                          | 25.489                 | 2.04         | 138         | 86             | 1-28                                             | \$7.05 | 10.50         | 4.25                    |
| 1610 | н                           | 25.92                  | 1.59         | 123         | 32.0           | 1.28                                             | 7.07   | 10.62         | 7-75                    |
| 1616 | (                           | 26.01                  | 1.55         | 116         | 18.8           | 1.27                                             | 7.07   | 10.6          | 9-75                    |
| 1622 | 10                          | 25.96                  | 1.52         | 112         | 11.4           | 1.27                                             | 7.07   | 10.75         | 11.75                   |
| 1625 | Ц                           | 25-89                  | 1.50         | 110         | 9.82           | 1.27                                             | 7.05   | 10.9          | 12.75                   |
| 1630 | - ((                        | 26.01                  | 1.39         | 109         | 7.84           | 1.27                                             | 7.06   | 10.92         | 14-0                    |

20

Type of Samples collected:

(antimed )

**Stabilization Criteria** 

| D.O.  | +/- 0.3 mg/l |
|-------|--------------|
| Turb. | +/- 10%      |
| S.C.  | +/- 3%       |
| ORP   | +/- 10 mV    |
| рН    | +/- 0.1 unit |

1 casing

Total volume purged prior to sample collection:

<sup>1</sup>BTOC-Below Top of Casing <sup>2</sup>TOC-Top of Casing <sup>3</sup>Specific Electrical Conductance

38

|      |                             | HIZ-                   | -12          | 1-3-13      |                  | P              | 120f2 | - PAG           | E 18 OF                 |
|------|-----------------------------|------------------------|--------------|-------------|------------------|----------------|-------|-----------------|-------------------------|
| Time | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | рН    | . Temp.<br>(C⁰) | Volume<br>pumped<br>(L) |
| 1642 | 0-31Pm                      |                        | 1.40         | 108         | 1.27             | 5-7            | 7.09  | 10.86           |                         |
|      |                             |                        |              |             |                  |                |       |                 | (                       |
|      |                             |                        |              |             |                  |                |       |                 |                         |
|      |                             |                        |              |             |                  |                |       |                 |                         |
|      |                             |                        |              |             |                  |                |       |                 |                         |
| Time | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | pН    | Temp.<br>(Cº)   | Volume<br>pumped<br>(L) |
|      |                             |                        |              |             |                  |                |       |                 |                         |
|      |                             |                        |              |             |                  |                |       |                 |                         |
|      |                             |                        |              |             |                  |                |       |                 |                         |
|      |                             |                        |              |             |                  |                |       |                 |                         |
|      | Dumning                     | 10/otor                |              |             | 8503             |                |       | Tomp            | Volumo                  |

| Time | Pumping<br>rates<br>(L/Min) | Water<br>level<br>(ft) | DO<br>(mg/L) | ORP<br>(mv) | SEC <sup>3</sup> | Turb.<br>(NTU) | ρН | Temp.<br>(C⁰) | Volume<br>pumped<br>(L) |
|------|-----------------------------|------------------------|--------------|-------------|------------------|----------------|----|---------------|-------------------------|
|      |                             |                        |              |             |                  |                |    |               |                         |
|      |                             |                        |              |             |                  |                |    |               |                         |
|      |                             |                        | i            |             |                  |                |    |               |                         |
|      |                             |                        |              |             |                  |                |    |               |                         |
|      |                             |                        |              |             |                  |                |    |               |                         |
|      |                             |                        |              |             |                  |                |    |               |                         |
|      |                             |                        |              |             |                  |                |    |               |                         |

Appendix C Sample Alteration Forms

# Sample Alteration Form

Project Name and Number: \_Lower Yakima Dairy Investigation, ESD-163F\_\_\_\_\_

Material to be Sampled: Investigation-Derived Waste

Measurement Parameter: \_See Attached Table 1.\_\_\_\_\_

Standard Procedure for Field Collection & Laboratory Analysis (cite reference):

\_Up to three (3) composite samples from the containerized wastewater will be collected and sent to TestAmerica Tacoma for analyses. See approved project QAPP and attached Table 1 for field sampling SOPs and analytical method references.

Reason for Change in Field Procedure or Analysis Variation:

\_The wastewater treatment plant (WWTP) where drilling wastewater will be discharged, which was named in Section 5 of the Work Plan, has been changed to the City of Zillah WWTP. The analyses in Table 1 were added to meet the WWTP requirements.

Variation from Field or Analytical Procedure:

None

Special Equipment, Materials or Personnel Required:

None

| Initiators Name:    | Date: 12/20/2012 |
|---------------------|------------------|
| Infinitions France. |                  |

Date: <u>12/20</u>/2012 Date: <u>12/20</u>/2012 10/10/- Date: 12 Project Officer:

OA Officer:

## Table 1 – Analytes, Methods, Holding Times and Preservation

| Analyte             | Number of<br>Field Samples | Analytical<br>Method | Reporting Limit           | Container<br>Type     | Bias<br>(accuracy) | Variability<br>(precision) | Holding<br>Time | Preservation                              |
|---------------------|----------------------------|----------------------|---------------------------|-----------------------|--------------------|----------------------------|-----------------|-------------------------------------------|
|                     |                            |                      | Laboratory N              | leasurements          |                    |                            |                 |                                           |
| Mercury             | 3                          | EPA 245.1            | 0.0002 mg/L               | 500ml<br>polyethylene | 80-120%            | +/- 20%                    | 28 Days         | HNO <sub>3</sub> to pH < 2,<br>< 6 deg. C |
| Metals <sup>1</sup> | 3                          | EPA 200.7            | See Footnote <sup>1</sup> | 500ml<br>polyethylene | 80-120%            | +/- 20%                    | 6 Months        | HNO₃ to pH < 2,<br>< 6 deg. C             |

<sup>1</sup>Priority Pollutant Metal (Reporting Limit) – Antimony (0.06 mg/L), Arsenic (0.06 mg/L), Beryllium (0.005 mg/L), Cadmium (0.01 mg/L), Chromium (0.025 mg/L), Copper (0.02 mg/L), Lead (0.03 mg/L), Nickel (0.02 mg/L), Selenium (0.1 mg/L), Silver (0.02 mg/L), Thallium (0.1 mg/L), Zinc (0.04 mg/L)

## QAPP Title, Author (company), Revision, and Approval Date of standing 'parent' QAPP:

Quality Assurance Project Plan, Lower Yakima Valley Dairy Investigation, December 2012, by U.S. Environmental Protection Agency, Region 10

## **Project Name and assigned Regional Project Code:**

Lower Yakima Valley Dairy Investigation, ESD-163F

## Material to be Used:

Installation of wells with a sand pack of grade 10-20 sand outside screens was planned for all the monitoring wells.

## **Measurement Parameters:**

## Standard Procedure for Field Collection and Laboratory Analysis (cite references):

## Reason for Change in Field Procedure or Analytical Variation:

Had several wells which were deeper than anticipated and ran out of the grade 10-20 sand which the driller had available, and the only sand which they could obtain was a sand of grade 8-12 which was coarser. Given that we had a tight field schedule days I (Rene Fuentes, USEPA, Lead Project Hydrogeologist) approved the change to the coarser material.

## Variation from Field or Analytical Procedure (reference specific QAPP sections):

| CONTACT, Title                                   | / ) APPROVAL SIGNATURE | DATE            |
|--------------------------------------------------|------------------------|-----------------|
| Initiator:<br>Rene Fuentes                       | Cene Friende           | 30 January 2013 |
| <b>EPA Project Coordinator:</b><br>Eric Winiecki | This of min            | 30 January 2013 |
| EPA QA Officer:<br>Donald M. Brown               | Dull B                 | 30 January 2013 |

## QAPP Title, Author (company), Revision, and Approval Date of standing 'parent' QAPP:

Quality Assurance Project Plan, Lower Yakima Valley Dairy Investigation, December 2012, by U.S. Environmental Protection Agency, Region 10

## Project Name and assigned Regional Project Code:

Lower Yakima Valley Dairy Investigation, ESD-163F

### Material to be Sampled:

Installation of monitoring wells and development based on water quality field parameter stabilization was planned for all the monitoring wells.

## **Measurement Parameters:**

## Standard Procedure for Field Collection and Laboratory Analysis (cite references):

## Reason for Change in Field Procedure or Analytical Variation:

Had many post calibration problems with the field parameter equipment reliability, even after multiple calibrations over several days. Values, mostly for the turbidity which is the key parameter, seemed significantly higher than what would be expected from a visual comparison, and the values would not stabilize or change in a reasonable pattern.

### Variation from Field or Analytical Procedure (reference specific QAPP sections):

The plan was to obtain water quality field parameters using a field monitor, but given that the values obtained seemed too erratic to trust, I (Rene Fuentes, USEPA, Lead Project Hydrogeologist) decided to proceed without the field parameter values as the criteria, and instead relied on visual changes of the water being discharged by the well development team as the criteria to accept well development as completed. Took photos of several of the wells development water to document the changes, and suggested that we use the field parameters during the field sampling event rather than rely on them for determining when well development was complete.

|                                                  | $\sim$                 |                 |
|--------------------------------------------------|------------------------|-----------------|
| CONTACT, Title                                   | / / APPROVAL SIGNATURE | DATE            |
| Initiator:<br>Rene Fuentes                       | Keni Fritz             | 30 January 2013 |
| <b>EPA Project Coordinator:</b><br>Eric Winiecki | 1 in Mail.             | 30 January 2013 |
| <b>EPA QA Officer:</b><br>Donald M. Brown        | - pm hB-               | 30 January 2013 |

## QAPP Title, Author (company), Revision, and Approval Date of standing 'parent' QAPP:

Quality Assurance Project Plan, Lower Yakima Valley Dairy Investigation, December 2012, by U.S. Environmental Protection Agency, Region 10

## Project Name and assigned Regional Project Code:

Lower Yakima Valley Dairy Investigation, ESD-163F

## Material to be Sampled:

Installation of wells with bentonite chips used for well construction seal outside the well casing.

## **Measurement Parameters:**

## Standard Procedure for Field Collection and Laboratory Analysis (cite references):

## **Reason for Change in Field Procedure or Analytical Variation:**

During the well installation several wells had water levels rise significantly once the air pressure was turned off from the drill rig. Driller requested that we allow the use of bentonite pellets rather than chips since these would sink through the water column outside the well casing faster than chips, and would minimize the potential for bridging with the bentonite chips. I (Rene Fuentes, USEPA, Lead Project Hydrogeologist) agreed that it seemed like a logical solution to the field problem and used the pellets in several wells where the rise in water was considered a problem for the bentonite chips.

## Variation from Field or Analytical Procedure (reference specific QAPP sections):

|                                                  | $\frown$               |                 |
|--------------------------------------------------|------------------------|-----------------|
| CONTACT, Title                                   | / / APPROVAL SIGNATURE | DATE            |
| Initiator:<br>Rene Fuentes                       | Class Theaty           | 30 January 2013 |
| <b>EPA Project Coordinator:</b><br>Eric Winiecki | the price              | 30 January 2013 |
| EPA QA Officer:                                  | Dai Ma                 | 30 January 2013 |

## QAPP Title, Author (company), Revision, and Approval Date of standing 'parent' QAPP:

Quality Assurance Project Plan, Lower Yakima Valley Dairy Investigation, December 2012, by U.S. Environmental Protection Agency, Region 10

## Project Name and assigned Regional Project Code:

Lower Yakima Valley Dairy Investigation, ESD-163F

## Material to be Sampled:

Installation of wells with twenty (20) foot screens was planned for all the monitoring wells. However, in wells HK-12 and HK-11 there was a zone of finer material which, while saturated, may have caused a turbidity problem if the wells were screened in that zone. I (Rene Fuentes, USEPA, Lead Project Hydrogeologist) and Erin Lynch (E&E Hydrogeologist and Project Manager) decided to use a shorter screen to avoid that zone.

## **Measurement Parameters:**

## Standard Procedure for Field Collection and Laboratory Analysis (cite references):

## Reason for Change in Field Procedure or Analytical Variation:

Boring material from cyclone and water levels at time of drilling seemed to indicate that there was a zone above the proposed screen zone which may be finer grain material. Shorter screen located deeper to avoid getting too many of the fines in the well screen zones.

## Variation from Field or Analytical Procedure (reference specific QAPP sections):

Due to the apparent formation and water depths, ten (10) foot long screens were used.

| CONTACT, Title                                   | APPROVAL SIGNATURE | DATE            |
|--------------------------------------------------|--------------------|-----------------|
| Initiator:<br>Rene Fuentes                       | Keni Friets        | 28 January 2013 |
| <b>EPA Project Coordinator:</b><br>Eric Winiecki | Im Jinh.           | 28 January 2013 |
| <b>EPA QA Officer:</b><br>Donald M. Brown        | - OUN MB           | 28 January 2013 |

## Sample Alteration Form

Project Name and Number: \_Lower Yakima Dairy Investigation, ESD-163F\_\_\_\_\_\_ Material to be Sampled: \_Groundwater from monitoring wells.\_\_\_\_\_ Measurement Parameter: \_Ammonia\_\_\_\_\_

Standard Procedure for Field Collection & Laboratory Analysis (cite reference): \_ See approved project QAPP for field sampling SOPs and analytical method references.\_\_\_\_\_

Reason for Change in Field Procedure or Analysis Variation:

\_The QAPP called for equipment blanks to be sampled at a rate of one per sampling team for each analytical parameter. Since the EPA sampling team had no positive test strip results for ammonia, the equipment blank collected by EPA (Sample ID 12534021) will be canceled for analysis. Additionally, the QAPP called for trip blanks to be sent with each sample cooler. However, since the equipment and field blanks represent the same sampling conditions (i.e., preservation and sample container) as the trip blanks, the two trip blanks (Sample IDs 12534012 and 12534013) will be canceled for the ammonia analysis.

Variation from Field or Analytical Procedure: \_None\_\_\_\_\_

\_ Date: 01/07 2013 Initiators Name: ning Date: 1 Project Officer:

Date: 1/7/2013 QA Officer:

Appendix D Data Validation Memoranda



### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 10 1200 Sixth Avenue Seattle, Washington 98101

January 9, 2013

Reply to:Donald M. BrownAttn of:OEA-095

### **MEMORANDUM**

Subject: Data Validation Report for the Nitrate Analysis of the Water Samples Collected for the Lower Yakima Valley Dairy Investigation – Project Code ESD-163F
 From: Donald M. Brown, QA Chemist <sup>DMB</sup> USEPA Region 10, Office of Environmental Assessment, Environmental Services Unit
 To: Eric Winiecki, Project Coordinator USEPA Region 10, Office of Water and Watersheds, Drinking Water Unit

The quality assurance (QA) review of the analytical data generated from the analysis of ten (10) well water samples, two (2) trip blanks, two (2) equipment blanks, two (2) field blanks, and two (2) field duplicates collected from the above referenced project has been completed. These samples were analyzed for Nitrate in accordance with EPA Method 300.0 by TestAmerica Laboratories, Inc. located in Denver, Colorado.

This review was conducted for the following samples (station locations identified in parentheses):

| 12534000 (DC-3)  | 12534006 (HK-10)  | 12534016 (FD01WT) |
|------------------|-------------------|-------------------|
| 12534001 (DC-14) | 12534007 (HK-11)  | 12534017 (FD02WT) |
| 12534002 (DC-07) | 12534008 (HK-12)  | 12534020 (EB01WT) |
| 12534003 (DC-04) | 12534009 (DC-05)  | 12534021 (EB02WT) |
| 12534004 (DC-09) | 12534012 (TB01WT) | 12534024 (FB01WT) |
| 12534005 (DC-1)  | 12534013 (TB02WT) | 12534025 (FB02WT) |

The validation was conducted according to the Quality Control Specifications outlined in the *Quality* Assurance Project Plan for the Lower Yakima Valley Dairy Investigation (December 2012), USEPA Method 300.0 – Determination of Inorganic Anions by Ion Chromatography (Revision 2.1, August 1993), and the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (USEPA-540-R-10-011). Some of the data quality elements may be qualified using the reviewer's professional judgment. The conclusions presented herein are based on the information provided for the review.



## **Holding Time**

Sample holding times were evaluated from the dates of sample collection to the dates of sample analysis. All samples were analyzed within the 48 hour holding time for nitrate.

## Sample Results & Reporting Limits

A comparison of the reported analyte values was conducted against the instrument data and the results were verified. All sample results that were less than the method detection limit (MDL) were considered non-detected (ND) and qualified "U". Additionally, sample results that were greater than the MDL but less than the reporting limit (RL) were qualified "J".

The following samples were reanalyzed at dilutions (listed in parentheses) to bring the concentration of nitrate within the linear range of the instrument: 12534000 (50X), 12534001 (5X), 12534003 (5X), 12534005 (2X), 12534007 (5X), 12534008 (5X), and 12534009 (5X). Results for this analyte in these samples are reported from the diluted analyses and the reporting limit is elevated.

## **Field Quality Control**

There are two (2) field duplicate pairs in this data set and they are identified as follows: sample 12534002 is the parent sample of field duplicate 12534016 and sample 12534004 is the parent sample of field duplicate 12534017. All field QA/QC samples were evaluated according to the specifications listed in the quality control results table below.

## **Quality Control Results Summary**

The assessment of instrument specific quality control results included instrument calibration, verification standards, and blanks. Sample quality control results were assessed for matrix spike and matrix spike duplicate (MS/MSD) recoveries as well as laboratory duplicate comparison. Field quality control results were assessed for blanks and field duplicate comparison. The following table is a list of these quality control indicators, the relevant evaluation criteria, and an indication of compliance.

| Quality Control Test                           | <b>Outliers</b> ? | Evaluation Criteria             |
|------------------------------------------------|-------------------|---------------------------------|
| Calibration, Method, Equipment, Field, & Trip  | Ν                 | Non-detect or sample <10X Blank |
| Blanks                                         |                   |                                 |
| Initial & Continuing Calibration Verification  | Ν                 | 90-110%                         |
| Method Reporting Limit Check                   | Ν                 | 50-150%                         |
| Laboratory Control Sample / Laboratory Control | Ν                 | 90-110%                         |
| Sample Duplicate                               |                   |                                 |
| LCS/LCSD Comparison                            | Ν                 | <10% RPD                        |
| Matrix Spike / Matrix Spike Duplicate          | Ν                 | 80 - 120 %                      |
| MS/MSD Comparison                              | Ν                 | <20% RPD                        |
| Laboratory Duplicate Comparison                | Ν                 | <15% RPD                        |
| Field Duplicate Comparison                     | Ν                 | <20% RPD                        |

(Note: RPD = Relative Percent Difference)

## **Data Qualifiers**

The following is a list of validation qualifiers applied to the sample result(s) when needed to indicate associated out-of-control QA/QC results:

|   | Data Qualifiers                                                                                                                                                                         |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U | The material was analyzed for but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. |
| J | The associated value is an estimated quantity.                                                                                                                                          |



UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 10 LABORATORY 7411 Beach Dr. East Port Orchard, Washington 98366

### QUALITY ASSURANCE MEMORANDUM FOR INORGANIC CHEMICAL ANALYSES

| Date:    | January 14, 2013                                                                        |
|----------|-----------------------------------------------------------------------------------------|
| To:      | Eric Winiecki, Project Manager<br>Office of Water and Watersheds, US EPA Region 10      |
| From:    | Katie Adams, Chemist<br>Office of Environmental Assessment, US EPA Region 10 Laboratory |
| Subject: | Quality Assurance Review of Yakima Basin Monitoring Well Sampling for Ammonia           |
|          | Project Code: ESD-163F<br>Account Code: 20132014B10P501E44                              |

CC: Renee Nordeen, E&E

The following is a quality assurance review of the results of the analysis of 6 water samples for ammonia. These samples were submitted for the Yakima Basin Monitoring Well Sampling Project. The analyses were performed by EPA chemists at the US EPA Region 10 Laboratory in Port Orchard, WA, following US EPA and Laboratory guidelines.

 This review was conducted for the following samples:

 12534000
 12534004
 12534008
 12534017
 12534020
 12534024

### **Data Qualifications**

Comments below refer to the quality control specifications outlined in the Laboratory's current Quality Assurance Manual, Standard Operating Procedures (SOPs) and the Quality Assurance Project Plan (QAPP). No excursions were required from the method Standard Operating Procedure.

All measures of quality control met Laboratory/QAPP criteria.

For those tests for which the USEPA Region 10 Laboratory has been accredited by the National Environmental Laboratory Accreditation Conference (NELAC), all requirements of the current NELAC Standard have been met.

### 1. Sample Transport and Receipt

Upon sample receipt, all conditions met Laboratory/QAPP requirements for this project.

### 2. Sample Holding Times

The concentration of an analyte in a sample or sample extract may increase or decrease over time depending on the nature of the analyte. For this reason, holding time limits are recommended for samples. The samples covered by this review met method holding time recommendations.

### 3. Sample Preparation

Samples were prepared according to the method outlined in the SOP for this analyte for this type of matrix. No qualification of the data was required based on sample preparation. A comparison study was performed to ensure similar

analytical results are obtained from analyzing distilled and non-distilled samples; reported results are from the non-distilled analysis.

### 4. Initial Calibration and Calibration Verification

The linear regression generated for the initial calibration met method criteria. The low point of the calibration curve is usually the Minimum Reporting Level (MRL) of the method. All calibration verification checks met the frequency and recovery criteria on the day of analysis. No qualification was required based on calibration or calibration verification.

### 5. Laboratory Control Samples

All laboratory control sample results met the recovery acceptance criteria for the method and project QAPP. No qualification was required based on laboratory control sample analysis.

### 6. Blank Analysis

The method blank did not contain detectable levels of analyte which would require data qualification.

### 7. Duplicate Analysis

Duplicate analysis was performed on sample 12534004. Sample results which were greater than five times the MRL level were within the +/-20% RPD requirement. No qualification was required based on duplicate analysis.

### 8. Matrix Spike/Matrix Spike Duplicate Analysis

Matrix spike analyses were performed on sample 12534004. Sample results were within the 75-125% recovery and relative percent difference (RPD) requirements. No qualification was required based on matrix spike analyses.

### 9. Reporting Limits

All sample results that fall below the MRL are assigned the value of the MRL and the 'U' qualifier is attached.

### 10. Data Qualifiers

The (U) qualifier was attached to those results which were below the Method Reporting Limit (MRL). No other qualification was required. The definition for the data qualifier is as follows:

U - The analyte was not detected at or above the reported value.

The usefulness of qualified data should be treated according to the severity of the qualifier in light of the project's data quality objectives. Should questions arise regarding the data, contact Katie Adams at the Region 10 Laboratory, phone number (360) 871- 8748.

### 11. Definitions

Accuracy - the degree of conformity of a measured or calculated quantity to its actual value.

- Duplicate Analysis when a duplicate of a sample (DU), a matrix spike (MSD), or a laboratory control sample (LCSD) is analyzed, it is possible to use the comparison of the results in terms of relative percent difference (RPD) to calculate precision.
- Laboratory Control Sample (LCS) a clean matrix spiked with known quantities of analytes. The LCS is processed with samples through every step of preparation and analysis. Measuring percent recovery of each analyte in the LCS provides a measurement of accuracy for the analyte in the project samples. A

laboratory control sample is prepared and analyzed at a frequency no less than one for every 20 project samples.

- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Sample analyses performed to provide information about the effect of the sample matrix on analyte recovery and measurement within the project samples. To create the MS/MSD, a project sample is spiked with known quantities of analyte and the percent recovery of the analyte is determined.
- Method Blank- An analytical control that is carried through the entire analytical procedure. The method blank is used to define the level of laboratory background and reagent contamination. A method blank is prepared and analyzed for every batch of samples at a minimum frequency of one per every 20 samples. To produce unqualified data, the result of the method blank analysis is required to be less than the MRL and less than 10 times the amount of analyte found in any project sample.
- Minimum Reporting Level (MRL) the smallest measured concentration of a substance that can be reliably measured using a given analytical method.

Precision – the degree of mutual agreement or repeatability among a series of individual results.

Relative Percent Difference – The difference between two sample results divided by their mean and expressed as a percentage.