METHODS DEVELOPMENT FOR ENVIRONMENTAL CONTROL BENEFITS ASSESSMENT

· · · Volume IV

MEASURING THE BENEFITS OF AIR QUALITY IMPROVEMENTS IN THE SAN FRANCISCO BAY AREA

by

Edna Loehman Purdue University and SRI, International

> David **Boldt** SRI, International

> Kathleen Chaikin SRI, International

USEPA Grant # R805059-01-0

Project Officer

Dr. Alan Carlin Office of Policy Analysis Office of Policy, Planning and Evaluation Us. Environmental Protection Agency Washington, D.C. 20460

OFFICE OF POLICY ANALYSIS OFFICE OF POLICY, PLANNING AND EVALUATION U.S. ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

METHODS DEVELOPMENT FOR ENVIRONMENTAL CONTROL BENEFITS ASSESSMENT

Volume IV

a . .

MEASURING THE BENEFITS OF AIR QUALITY CHANGES IN THE SAN FRANCISCO BAY AREA

by

Edna Loehman Purdue University and SRI, International

> David **Boldt** SRI, International

> Kathleen Chaikin SRI, International

USEPA Grant # R805059-01-0

Project Officer

Dr. Alan **Carlin** Office of Policy Analysis Office of Policy, Planning and Evaluation U.S. Environmental Protection Agency Washington, **D.C.** 20460

OFFICE OF POLICY ANALYSIS OFFICE OF POLICY, PLANNING AND EVALUATION U.S. ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, **D.C.** 20460

OTHER VOLUMES IN THIS SERI ES

volume 1, Measuring the Benefits of Clean Air and Water, EPA-230-12-85-019.

This volume is a nontechnical report summarizing recent research for EPA on methods development for better estimates of **economic** benefits from environmental improvement. The report..presents the basic **economic** concepts and research methods underlying benefits estimation as well as a number of case studies, **including** several **from** other volumes of this series. Finally, it offers insights regarding the quantitative benefits of environmental improvement.

Volume 2, Six Studies of Health Benefits frcmAir Pollution Control, EPA-230-12-85-020.

This volume contains six statistical epidemiology studies. They show that large associations between health and current levels of air pollution are not robust with respect to the statistical model specification either for mortality or morbidity. They also find that significant relationships, mostly small, oc-casionally appear.

Volume 3, Five Studies on Non-Market Valuation Techniques, EPA-230-12-85-021.

This volume presents analytical and empirical comparisons of alternative techniques for the valuation of non-market goods. The methodological base of the survey approach - directly asking individuals to reveal their preference in a structural hypothetical market - is examined for bias, replication, and validation characteristics.

Volume 5, <u>Measuring Household Soiling Damages from Suspended Particulate:</u> A Methodological Inquiry, EPA 230-12-85-023.

This volume estimates the benefits of reducing particulate matter levels by examining the reduced costs of household cleaning. The analysis considers the reduced frequency of cleaning for households that clean themselves or hire a cleaning service. These estimates were compared with willingness to pay estimates for total elimination of air pollutants in several U.S. cities. The report concludes that the willingness-to-pay approach to estimate particulate-related household soiling damages is not feasible.

Volume 6, <u>The Value of Air Pollution Damages to Agricultural Activities in</u> Southern California, EPA-230-12-85-024.

This volume contains three papers that address the economic implications of air pollution-induced output, input pricing, cropping, and location pattern adjustments for Southern California agriculture. The first paper estimates the economic losses to fourteen highly valued vegetable and field crops due to pollution. The second estimates earnings losses to field workers exposed to oxidants. The last uses an econometric model to measure the reduction of economic surpluses in Southern California due to oxidants. Volume 7, Methods Development for Assessing Acid Deposition Control Benefits, EPA-230 -12-85-0 25.

This volume suggests types of natural science research that would be most useful to the economist faced with the task of **assessing** the **economic** benefits of controlling acid precipitation. Part of the report is devoted to development of a resource allocation process framework for explaining the behavior of **ecosystems** that can be integrated into a **benefit/cost** analysis, addressing diversity and stability.

Volume 8, The Benefits of Preserving Visibility in the National Parklands of the Southwest, EPA-230-12-85-026.

This volume examines the willingness-to-pay responses of individuals surveyed in several U.S. cities for visibility **improvements** or preservation in several National **Parks.** The respondents were asked to state their willingness to pay in the form of higher utility bills to prevent visibility deterioration. The sampled **responses** were extrapolated to the entire U.S. to estimate the national benefits of visibility preservation.

Volume 9, <u>Evaluation of Decision Models for Environmental Management</u>, EPA-230-12-85-027.

This volume discusses how EPA can use decision models to achieve the proper role of the government in a market economy. The report recommends three models useful for environmental management with a focus on those that allow for a consideration of all tradeoffs.

Volume 10, Executive Summary, EPA-230-12-85-028.

This volume summarizes the methodological and empirical findings of the series. The **concensus** of the **empirical** reports is the benefits of air pollution control appear to be sufficient to warrant current **ambient** air quality standards. The report indicates the greatest proportion of benefits fran control resides, not in health benefits, but in aesthetic improvements, maintenance of the ecosystem for recreation, and the reduction of danages to artifacts and materials.

DISCLAIMER

This report has been reviewed by the Office of Policy Analysis, U.S. Environmental Protection Agency, and approved for publication. Mention in the text of trade names or commercial products does not constitute endorsement or recommendation for use.

ABSTRACT

This **study** reports the results of using two alternative methods of measuring benefits of air quality changes in the San Francisco Bay Area; both methods are based on the hypothesis that benefits are measured by willingness to pay. In one method, property values **were** used to infer willingness to pay for air quality. In the other method, willingness to pay was obtained directly from a survey.

Pollution was shown to have a statistically significant negative effect on property values. Willingness to pay obtained from the survey was shown to be correlated with visibility and health effects (as defined by the PSI index). Both methods resulted in an estimate of average benefits per household of about **\$80 annually** for **a** 30 percent improvement in air quality; this represents an annual total benefit of about \$130 million for a 30 percent improvement for the Bay area (using 1977-1978 air quality conditions as a base and 1978 socioeconomic conditions and property values).

CONTENTS

a 1 - 54

Abstract	iii viii ix
Tables inAppendixA. .	xiii xiv
 Overviewofstudy 1.1 Objectives 1.2 Comparison of the Bay Area with the Los Angeles 	1 1
Area	1 3 3 7
2. 3 Total Suspended Particulate	7 10 12
3. All Quality Measurement and Classification	15 15 17 20 20 22
3.4 Classification of Air Quality in Bay Area 3.4.1 Classification of Visibility Types 3.4.2 Classification of Health Types 3.4.3 Combination of Health and Visibility Typology	23 23 25 25
3.5 Areas with Uncertainty in Air Quality Data 3.6 Correlation of Pollution Measures	25 25 25
4. Overview. 4. 1 Overview. 4. 2 Analyses of City and Tract Types. 4. 2 Analyses of City and Tract Types. 4. 2.1 City Typology. 4. 2. 2 Census Tract Typology.	31 31 31 31 34
 4.3 Other Market Area Classifications. 4.4 Stratification of Census Tracts and Household Sample Design 	39 41
4.5 Simple Property Value Comparisons	52 55 55 57

PAGE

PAGE

	5.3 Past Hedonic Pricing Studies	59 59 59
	5.4.1 Aggregation and Sampling	70 70
	5.4.3 Pollution Measures.	70 71 71
	5.5.1 Variables used in the Replication	71 75
	5.6 Model Modifications. 5.6.2 Experiments with Pollution Measures,	78
6	Aggregation and Market Stratification 5.6.3 Conclusions from Experiments	83 88 91
0.	6 1 Theory	91
	6 2 Measurement of Inverse Demand Equations	92
	6.3 Estimation of Benefits	94
	6.3.1 Estimation of Average Household Benefits Using the Property Value	, ,
	Equation Directly	99
	6.3.2 Household Benefit Measures Using the	104
	Inverse Demand Relation	104
	6.3.3 ESTIMATES OF IOTAL BENEFITS	104
7	6.3.4 Comparisons to the Los Angeles Study	109
1.	Survey and contingent valuation Benefits	109
	7.1 PurposeorSurvey	110
	7.2 Design and Execution of Survey	110
	7.2.1 Outline of Survey Questions	114
	7.2.2 Photograph Preparation.	
	7.2.3 Comparison of the Survey Instrument to the	115
		115
		115
	7.2.3.2 Venicie Blas	115
	7.2.3.3 Separability of Blus and	115
	7 2 2 4 Activities and Substitution	115
	7.2.3.4 Activities and Substitution 7.2.3.5 Description of Health and Visibility and Effect of	110
	Information	116
	7.2.3.6 Effect of Time of Clean-up	117
	7.2.4 Execution of the Survey	117
	7.3 Analysis of Survey Responses	117
	7.3.1 Air Quality Perception Responses.	119
	7.3.2 Correlation of Perception Questions	122
	7.3.3 Health Related Questions	126
	7.3.4 Vehicle Maintenance/Inspection	128
	7.3.5 Average Willingness to Pay by Area	130
	7.4 Willingness to Pay Bid Curves	133
	7.4.1 Theory of the Bid Curve	140
	/.4.2 Empirical Results	142
	7.4.2.1 Estimation of the Bid Curves.	142

	PAGE
7.4.2.2 Evaluation of Predicted	
Bids	146
7.4.2.3 Conclusions	146
8. Comparisons of Valuation Methods	152
8.1 Comparison of Alternative Hedonic Techni ques	152
8.2 Comparison of Contingent valuation and Hedonic Results	156
"8.3 Comparison of the San Francisco and Los Angeles	150
Studies	157
Footnotes	159
References	161
Appendix A Data and Data Base Management	170
B Taxonomy Methods	211
C Air Quality Survey Form	215

.

FI GURES

a . . .

Number		Page
1	1978 Annual Average Nitor g en Dioxide Values in Parts Per Hundred Million (pphm)	8
2	1978 Annual Averages of 24-Hour West Gaeke Sulfur Dioxide Values in Parts Per Billion (ppb)	g
3	1978 Total Suspended Particulate, in μ g/m³, Annual Geometric Means	11
4	1978 Expected Annual Exceedances of Federal Ozone Standard	13
5	1978 Annual Number of Days with Carbon Monoxide Exceeding Federal Standards	14
6	AirQualityTypes	26
7	Temporal Correlation	30
8	City Cluster Characteristics by Factor	35
9	Tract Cluster Characteristics	•• 40
10	Stratification of Tracts by Type	42
11	1970 Census Data for Selected Tracts	43
12	Average Property Value for Sample Tracts	47
13	Hedonic Model	56
14	Potential Differences in Willingness to pay	58
15	Classification of Regression Variables	79

TABLES

Number		Page	
1	Air Pollution in the San Francisco Bay Area by Station and Contaminant (Ozone): 1977-78	. 4	
2	Air Pollution in the San Francisco Bay Area by Station and Contaminant (CO, SO ₂ , NO ₂ , TSP): 1977-78	5	
3	Air Pollution in the South Coast Air Basin by Station and Contaminant: 1977	. 6	
4	Pollution Measures Used in This Study	16	
5	Definition of PSI Index in Terms of Health Effects	18	
6	Definition of Air Quality Categories	. 19	
7	PSI Tabulation for Monitoring Stations	, 21	
8	Visibility by Airport Visibility Site and Categories	. 24	
9	Health-Visibility Typology for Bay Area Cities	. 27	
10	Pollution Correlation Matrix	. 28	
11	List of Variables Used in Factor Analysis: City Clustering	32	
12	Factor Definition for City Clustering	. 33	
13	Cluster Membership Table	36	
14	List of Variables Used in Factor Analysis: Tract Clustering		37
15	Factor Definition for Tract Clustering	38	
16	Air Quality Data for Cities in Sample	51	
17	Number of Households by Area	53	
18	Property Value Differentials	. 54	

.

TABLES (continued)

Number		Pag	ge
19	General Model Comparisons, Pollution Studies	. 6	0
2	$0\ \mbox{Comparison}$ of Independent Variables, Pollution Studies	. 6	1
21	General Model Comparisons, Bay Area Studies	. 6	4
22	Comparison of Independent Variables, Bay Area Studies	. 6	5
23	Los Angeles Study, Estimated Econometric Equations	. 7	2
24	Definition of Regression Variables	. 7	3
25	Replication Regression, Household L evel, Varying Pollution	. 7	6
26a, b	Household Property Value Model	. 8	81, 82
26c, d	Tract Property Value Model	. 8	84, 85
27	Comparison of Pollution Coefficients by Model	. 8	36
28	Comparison ofR2 by Model	. 8	37
29	Comparison of Selected Coefficients by Model	. 8	39
30	Hedonic Model for Benefit Measurement	. 9	93
31a	Demand Equation, Los Angeles	. 9	95
31b	Demand Equations, Selected Characteristics, Bay Area	. 9	96
32	Average AirQualitybyArea	. 9	8
33	Average Annual Benefit Per Household (Dollars) Direct Property Value Method, Tract Level Data, PS12	. 10	00
34	Average Annual Benefit Per Household (Dollars) Direct Property Value Method, Tract Level Data, OZONE	. 10	01
35	Average Annual Household Benefits (Dollars) Demand Demand Method, Household Level Data, OZONE	. 1(02
36	Average Annual Benefits Per Household, Ozone Measure Demand Method, City Level Data, OZONE	. 1(03
37	Comparison of Benefits, Obtain 30% Decrease (\$1,000)	. 10)5
38	Comparison of Benefits, Avoid 30% Increase (\$1,000)	. 1(07

TABLES (continued)

Number	Page
39	Information Given to Respondents, Health Effects Related to Air Quality
40	Information Given to Respondents, Definition of Air Quality Areas
41	Number of Respondents by Area
42	Average Income by Area
43	Percent Rating Air Quality Generally Good or Excellent 120 $$
44	Percent Rating Air Quality as Needing Improvement 120
45	Percent Rating Days Closest to Clear
46	Percent Rating Days Closest to Moderate
47	Average Number of Days Rated Not Visually Polluted 123
48	Average Number of Days Rates as Moderate Visibility 123
49	Average Number of Days Rated as Poor
50	Correlation Coefficients for Perception Questions 125
51	Percent Rating Health Effects as More Likely on Smoggy Days. 127
52	Average Health Index by Area
53	Average Risk Index by Area
54	Percent in Favor of Vehicle Maintenance/Inspection Plan 129
55	Percent Changes in Air Quality Measures Corresponding to Willingness to Pay Questions
56	Average Monthly Willingness to Pay for Changes by Air Quality Area, All Respondents
57	Average Monthly Willingness to Pay for Changes in Air Quality, by Air Quality Area, Bayside, and Urban/Suburban, All Respondents
58	Average Monthly Willingness to Pay by Area, Income \$15,000-30,000, All Respondents

TABLES (continued)

Number		Pag	ge
59	Average Monthly Willingness to Pay by Air Quality Area, Sel	ect	138
60	Median Monthly Willingness to Pay by Area		139
61	Willingness to Pay Regression Models		144
62	Comparison of Coefficients Across Air Quality Areas, West Bay Suburban		147
63	Comparison of Relative Values Across Models, West Bay Suburban		148
64	Comparison of Model Values, Monthly Willingness to Pay		149
65	General Comparison of Methods		153
66	Contingent Valuation Benefits		154
67	Hedonic Benefits		155
68	Comparison of Results		158

TABLES IN APPENDIX A

	a · · · ·		
Number		Pa	ge
AI	city - Monitoring Station Correspondence		177
A2	Health and Visibility Days by City		179
A3	Bay Area Employment Centers		181
A4	Commuting Flows Distribution Matrix *	. *	182
A5	CityDataSet		183
A6	Air Pollution Data (1977-78 Average)		187
A7	440ZoneData	*.	189
A8	Census Tract Data		190
A9	Household Data (47,214 Individual Transactions)		192
A10	Household Data (37,384 Individual Transactions)		194
ALI	Comparisons of Distributions, Household Sample		196
A12	Comparisons of Distributions, Pool		197
A13	Comparisons of Distributions, Master		198
A14	Property Value, Household, Surburban		199
A15	Property Value, Household, West Bay		201
A16	Property Value, Pool, Ail		. 203
A17	Property Value, Pool, Surburban		204
A18	Property Value, Pool, West Bay		206
A19	Property Value, Master, Surburban		208
A20	Property Value, Master, West Bay		210

ACKNOWLEDGMENTS

We wish to acknowledge the help of many persons in carrying out this Jim Sandberg and Paul Brand (from the Bay Area Air Pollution study . Control District) and Coe Owen from (EPA Region 9) provided us with extensive information regarding the air quality of the Bay Area. Paul Wilson of the Association of Bay Area Governments (ABAG) provided us with many items for our data base. Other individuals who provided assistance in survey design include: V.K. Srinivasan and Peter Flachsbart (Stanford) and Susan Russell and Steve Crocker (SRI) who helped develop the survey instrument; Zev Pressman, Ron Moore and Jon Livingston (SRI) who all contributed to the making of the photographs used in the survey; and Hal Javitz and Ron Promboin who provided extensive statistical and econometric Kathleen Chaikin, Jan Burns, and Jim Hewlett of SRI provided advi ce. assistance in computer analysis. Dan Wolf (SRI) provided us with the ISODATA program used to classify census tracts. Others who must be thanked for providing us with information or comments include Sylvia Champonier and Brenner Munger (California Air Resources Board), Pat Hackett and Vince Petrites (Metropolitan Transportation Commission), Senior Chief Jerry Barastad (Moffit Field Naval Air Station), Wayne Ott (EPA, Stanford University) and Dr. Barry Horn (Alameda County Medical Center).