



#### OBJECTIVE 1

The objective of this study was to validate the residue analytical method for the determination of IKI-3106 and its metabolites NK-1375 and NSY-137 in soil.

#### 2 CONDUCT OF STUDY

The study was conducted at Ishihara Sangyo Kaisha, Ltd., Central Research Institute, Safety Science Research Laboratory, Environmental Sciences Group, 3-1, 2-Chome, Nishi-shibukawa Kusatsu-shi, Shiga-ken, 525-0025 Japan. The experimental start and termination dates were April 26, 2011 and June 6, 2011, respectively.

#### 3 MATERIAL AND METHOD

#### 3.1 **Analytical standards**

# 3.1.1 IKI-3106

| Product name:  | IKI-3106                                                                                         |
|----------------|--------------------------------------------------------------------------------------------------|
| Chemical name: | $3	ext{-bromo-}N	ext{-}[2	ext{-bromo-}4	ext{-chloro-}6	ext{-}[[(1	ext{-cyclopropylethyl})amino]$ |
|                | carbonyl]phenyl]-1-(3-chloro-2-pyridinyl)-1 <i>H</i> -pyrazole-5-                                |
|                | carboxamide                                                                                      |
| Structure:     |                                                                                                  |

St



602.11

0804

99 %

Molecular weight: Lot No.: Purity:

3.1.2 NK-1375

Product name: Chemical name: NK-1375 3-bromo-2-((2-bromo-4H-pyrazolo[1,5-d]pyrido[3,2-b] [1,4]oxazin-4-ylidene)amino)-5-chloro-N-(1-cyclopropylethyl) benzamide



Structure:



Molecular weight: Lot No.: Purity: 565.65 20100825 98.0 %

3.1.3 NSY-137

Product name: Chemical name: NSY-137 8-bromo-2-(3-bromo-1-(3-hydroxypyridin-2-yl)-1H-pyrazol-5-yl)-6-chloro-3-(1-cyclopropylethyl)quinazoline-4(3H)-one

Structure:

|    | Î,  |   |
|----|-----|---|
| Br | N B | r |
|    | Nон |   |

Molecular weight: Lot No.: Purity:

# 565.65 20100917 95.9 %

### 3.2 Test soil

Two Japanese soils of different type were used in the study. Soil properties are shown in table below.

|                                | Unit     | Ibaraki | Kochi |
|--------------------------------|----------|---------|-------|
| pH (H <sub>2</sub> O)          | 1        | 6.7     | 6.6   |
| pH (KCl)                       |          | 6.2     | 5.5   |
| Caly <2 μm                     | % w/w    | 23.8    | 18.9  |
| Silt 2-50 µm                   | % w/w    | 27.8    | 24.5  |
| Sand 50-2000 µm                | % w/w    | 38.5    | 56.8  |
| Cation Exchange Capacity       | meq/100g | 33.2    | 13.3  |
| Maximum Water Holding Capacity | g/100g   | 96.0    | 59.4  |
| Organic Carbon                 | % w/w    | 4.1     | 1.4   |

Note: These information were based on the data of soil collected in same place in past time.



# 3.3 Reagents and apparatus

All reagents were of analytical, HPLC, or LC/MS/MS grade.

| REAGENTS & APPARATUS      | SUPPLIER           | NOTE                   |
|---------------------------|--------------------|------------------------|
| Purified water            | Millipore          | MILLIPORE UF           |
| Acetonitrile              | Wako Pure Chemical |                        |
| Methanol                  | Nacalai Tesque     |                        |
| Acetic acid               | Wako Pure Chemical |                        |
| Celite                    | Nacalai Tesque     | 545RVS                 |
| Erlenmeyer flask          | Iwaki              | 200 mL                 |
| with ground glass stopper |                    |                        |
| Volumetric flasks         | Iwaki              | various sizes          |
| Volumetric pipettes       | Iwaki              | various sizes          |
| Measuring cylinder        | Iwaki              | various sizes          |
| Glass funnel              | Iwaki              |                        |
| µL-Pipettes               | Nichiryo           | various sizes          |
| SPE Cartridge             | Waters             | OASIS <sup>®</sup> HLB |
|                           |                    | VAC RC (60mg)          |
| SPE manifold              | Waters             |                        |
| HPLC vial                 | Waters             | LC/MS certificated     |
| Analytical balance        | A&D                | HA-202M                |
| Laboratory balance        | UX4200S            | Shimadzu               |
| Reciprocal shaker         | TAIYO              | SR-2                   |
| Oven                      | ISUZU SEISAKUSHO   | MODEL 2-2132           |



#### 3.4 Standard solutions

#### 3.4.1 Stock solutions

Each 5.0 mg of IKI-3106, NK-1375 and NSY-137 was weighed into separate 500 mL-Volumetric flask. Acetonitrile was added to make stock standard solutions with a concentration of  $10 \mu g/mL$ .

#### 3.4.2 Fortification solutions

The stock solutions of 10  $\mu$ g/mL were diluted using acetonitrile to obtain standard solutions with a concentration of 1  $\mu$ g/mL.

The standard solutions of  $1 \mu g/mL$  were diluted using acetonitrile to obtain fortification solutions with a concentration of 100 ng/mL.

#### 3.4.3 Calibration solutions

Calibration solutions, over the concentration range 0.025 to 10 ng/mL of IKI-3106, NK-1375 and NSY-137, were prepared by serial dilution of the fortification solutions in acetonitrile.

*Note: NK-1375 and NSY-137 were prepared separately.* 

#### 3.5 Fortification

To demonstrate the validity of the method used, untreated soils were fortified with the following levels for the IKI-3106, NK-1375 and NSY-137.

| 0.005 mg/kg | 1 mL of the fortification solution (100 ng/mL) was added to 20 g (dry      |
|-------------|----------------------------------------------------------------------------|
|             | mass) soil.                                                                |
| 0.2 mg/kg   | 0.4 mL of the stock solution (10 $\mu g/mL$ ) was added to 20 g (dry mass) |
|             | soil.                                                                      |

Note: NK-1375 and NSY-137 were separately added to the individual untreated soil.



#### 3.6 Analytical method

#### 3.6.1 Extraction

20 g (dry mass) of the untreated soil sample was weighed into a 200 mL Erlenmeyer flask with ground glass stopper. 100 mL of acetonitrile:water (80:20, v/v) and 1 mL of 6 mol/L hydrochloric acid were added to the soil sample. The sample was shaken for 30 minutes using a reciprocal shaker. The mixture was filtered through a Celite 545. The filter cake was washed with 80 mL of acetonitrile:water (80:20, v/v). The filtrate and washings were combined and then filled up to 200 mL with acetonitrile:water (80:20, v/v).

#### 3.6.2 Sample clean up on SPE

A SPE cartridge (OASIS<sup>®</sup> HLB VAC RC, 60 mg) was placed onto a SPE vacuum manifold and conditioned using methanol (5 mL) followed by water (5 mL). 2 mL of the extract and 10 mL of water were mixed and transferred into the SPE cartridge. The aqueous sample solution was sucked through the column followed by 4 mL of acetonitrile:water (20:80, v/v). All eluates were discarded. IKI-3106, NK-1375 and NSY-137 were eluted with 10 mL of acetonitrile. The eluate was collected and then filled up to 10 mL with acetonitrile.

Note: The eluate samples were stored in refrigerator (4°C) overnight before quantitation

#### 3.6.3 Quantitation

Quantitation of the IKI-3106, NK-1375 and NSY-137 concentration was performed by LC/MS/MS using the external standard method. The calibration standards at seven concentrations (0.025, 0.05, 0.1, 0.2, 1, 2 and 10 ng/mL) were used for construction of a calibration curve. The calibration curve was constructed by plotting the peak areas against the concentration of calibration standards. From the calibration curve, the concentration of IKI-3106, NK-1375 and NSY-137 in the injected solution was determined and the residue of IKI-3106, NK-1375 and NSY-137 in soil sample was calculated.



# 3.7 LC/MS/MS conditions

### 3.7.1 HPLC

| Instrument:       | ACQUITY UPLC System (Waters)                      |  |  |  |
|-------------------|---------------------------------------------------|--|--|--|
| Column:           | BEH C18 2.1×50 mm, 1.7 μm (Waters)                |  |  |  |
| Guard column:     | VanGuard BEH C18 2.1×5 mm, 1.7 µm (Waters)        |  |  |  |
| Column temp.:     | 40°C                                              |  |  |  |
| Mobile phase:     | Acetonitrile:Water:Acetic acid (70:30:0.1, v/v/v) |  |  |  |
| Flow rate:        | 0.4 mL/min                                        |  |  |  |
| Injection volume: | 4 μL                                              |  |  |  |
| Retention time:   | 0.68 min (IKI-3106)                               |  |  |  |
|                   | 0.92 min (NK-1375)                                |  |  |  |
|                   | 1.95 min (NSY-137)                                |  |  |  |

### 3.7.2 MS/MS

| Instrument:        | API4000QTRAP (AB sciex)          |
|--------------------|----------------------------------|
| Ionization mode:   | ESI                              |
| Scan mode:         | MRM                              |
| Mass resolution    | Q1;unit, Q3;low                  |
| Heater gas temp.:  | 600 °C                           |
| Ion voltage:       | 5000 V                           |
| Gas flow settings: | Gas1;50, Gas2;90, CUR;15, CAD;11 |

### 3.7.3 Primary method

| Analyte  | Ion Polarity | Precursor<br>Ion (m/z) | Product<br>Ion (m/z) | CE | DP | EP | CXP |
|----------|--------------|------------------------|----------------------|----|----|----|-----|
| IKI-3106 | Pos. [M+H]+  | 601.8                  | 283.8                | 27 | 66 | 10 | 20  |
| NK-1375  | Pos. [M+H]+  | 565.8                  | 497.9                | 23 | 81 | 10 | 12  |
| NSY-137  | Pos. [M+H]+  | 565.8                  | 498.1                | 27 | 61 | 10 | 14  |

### 3.7.4 Confirmatory method

| Analyte  | Ion Polarity | Precursor<br>Ion (m/z) | Product<br>Ion (m/z) | CE | DP | EP | CXP |
|----------|--------------|------------------------|----------------------|----|----|----|-----|
| IKI-3106 | Pos. [M+H]+  | 601.8                  | 177.0                | 73 | 66 | 10 | 28  |
| NK-1375  | Pos. [M+H]+  | 565.8                  | 265.8                | 33 | 81 | 10 | 44  |
| NSY-137  | Pos. [M+H]+  | 565.8                  | 404.9                | 55 | 61 | 10 | 10  |



## 3.8 Calculation

The residue of IKI-3106, NK-1375 and NSY-137 in soil was calculated according to equation 1.

$$R = \frac{X \times V_F \times D}{W \times 1000}$$
(1)

Where

R = Residue of IKI-3106, NK-1375 and NSY-137 in soil sample [mg/kg]

X = Concentration of injected solution [ng/mL]

 $V_{\rm F}$  = Final Volume [10 mL]

D = Dilution Factor [if applicable]

W = Aliquot of sample [0.2 g]

1000 = Conversion factor from ng to  $\mu g$ 

The recovery of IKI-3106, NK-1375 and NSY-137 in soil was calculated according to equation 2.

$$\operatorname{Rec} = \frac{R \times 100}{F}$$
(2)

Where

Rec = Recovery of IKI-3106, NK-1375 and NSY-137 [%]

R = Residue of IKI-3106, NK-1375 and NSY-137 in soil sample [mg/kg]

F = Fortification level [mg/kg]