2 TEST AND REFERENCE ITEM

2.1 **Test Items**

The test items were supplied by Huntingdon Life Sciences and were also used as reference item (analytical standard). All information about the test items was provided by the Supplier.

2.1.1 **SL-573**

Identification: SL-573 PAI

Chemical Name: 1-[[1-ethyl-4-[3-(2-methoxyethoxy)-2-methyl-4-

(methylsulfonyl)benzoyl]-1*H*-pyrazol-5-yl]oxy]ethyl

methyl carbonate

20120131 Batch: 99.9% Purity:

Physical State/Appearance: Light yellow powder

Expiry Date: 31 May 2015 Storage Conditions (as provided by Frozen (-20 °C)

the Supplier):

Storage Conditions (as handled by

Harlan Laboratories Ltd.):

 $-20 \pm 5^{\circ}$ C

2.1.2 MT-2153

Identification: MT-2153

Chemical Name: 5-Hydroxy-1-ethylpyrazol-4-yl(3-(2- methoxyethoxy)-

2-methyl-4-(methylsulfonyl)phenyl]methanone

Batch: 20120615 Purity: 99.5%

Physical State/Appearance: White powder

06 November 2015 **Expiry Date:** Frozen (-20 °C)

Storage Conditions (as provided by

the Supplier):

Storage Conditions (as handled by

Harlan Laboratories Ltd.):

 -20 ± 5 °C

3 MATERIALS AND METHODS

Details of the materials and methods that are not specified in the subsequent sections of the present report are described in the appropriate standard operating procedures.

3.1 Definitions and Abbreviations

LC Liquid Chromatography
MS Mass Spectrometry

MS/MS Tandem Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantification

3.2 Test System

The test systems were selected by the Sponsor in accordance with the quoted guideline.

3.2.1 Drinking Water

Source: Harlan Laboratories canteen, 4452 Itingen / Switzerland

Blank Matrix: Drinking water (freshly sampled tap water)

pH-Value: 6.87

Dissolved organic carbon (DOC): 0.86 mg C/L Total hardness: 38.4 °fr.H

3.2.2 Ground Water

Source: 4460 Gelterkinden / Switzerland

Blank Matrix: Ground water (fountain)

Storage Location: Harlan Laboratories Ltd., 4452 Itingen / Switzerland

Storage temperature: 5 ± 3 °C pH-Value: 8.15 Total organic carbon (TOC): 0.0 g/L Total hardness: 18.0 °fr.H Evaporation residue: 0.21 g/L Filtration residue: 1.0 mg

3.2.3 Surface Water

Source: Ergolz, 4415 Lausen / Switzerland

Blank Matrix: Surface water (river)

Storage Location: Harlan Laboratories Ltd., 4452 Itingen / Switzerland

Storage temperature: 5 ± 3 °C pH-Value: 8.23

Total organic carbon (TOC):

Total hardness:

Evaporation residue:

Filtration residue:

0.0 g/L

0.56 g/L

0.56 g/L

0.6 mg

3.3 Reagents

ELGA water:

Acetonitrile:

J.T. Baker no. 9017

Ammonium acetate:

Sigma A1542

Formic acid:

Merck, 1-00264

Methanol:

J.T. Baker no. 8402

3.4 Equipment and Materials

Balance: UMT-2 Mettler Toledo

Laboratory Material: HPLC vials (2 mL, amber) BGB

Pipettes: Piston stroke pipette Gilson

Evaporator: - Barkey

Freezer: -20 ± 5 °C Liebherr

Vortex: Genie 2 Bender & Hobein AG

Refrigerator: 5 ± 3 °C Liebherr

Ultrasonic Bath: 220 Bandelin Sonorex

SPE cartridges: Strata X, 6cc, 100 mg Phenomenex

4 ANALYTICAL METHOD

Concentrations of SL-573 and MT-2153 were determined by liquid chromatography (LC) coupled with tandem mass spectrometric detection (MS/MS). The method was developed at Harlan Laboratories Ltd. under non-GLP conditions.

4.1 Solutions for Fortification and Calibration

4.1.1 Preparation of Stock Solutions

Stock solutions of SL-573 and MT-2153 were prepared separately.

Stock Solution A of SL-573 and MT-2153 (1000 µg/mL):

For example an amount of 7.9553 mg of SL-573 (see Section 2.1) was dissolved in acetonitrile (7.947 mL) using an ultrasonic bath for about 5 minutes.

For example an amount of 7.7978 mg of MT-2153 (see Section 2.1) was dissolved in acetonitrile (7.759 mL) using an ultrasonic bath for about 5 minutes.

Stock Solution B of SL-573 and MT-2153 (1000 μ g/mL):

For example an amount of 6.1922 mg of SL-573 (see Section 2.1) was dissolved in acetonitrile (6.186 mL) using an ultrasonic bath for about 5 minutes.

For example an amount of 6.6300 mg of MT-2153 (see Section 2.1) was dissolved in acetonitrile (6.597 mL) using an ultrasonic bath for about 5 minutes.

The stock solutions were stored frozen (-20 ± 5 °C) until completion of the analyses.

4.1.2 Preparation of Fortification Solutions

A defined volume of the stock solution A of SL-573 and MT-2153 was diluted with acetonitrile to obtain fortification solutions with a concentration of 10 μ g/mL, 0.18 μ g/mL and 0.018 μ g/mL as described in the table below.

Fortification solution	Aliquot [µL]	Aliquot taken from	Final volume [mL]	Solvent	Final concentration [µg/mL]	
1F	100	stock solution A of SL-573 and MT-2153	10	a a atau ituil a	10	
2F	180	1F	10	acetonitrile	0.18	
3F	1000	2F	10		0.018	

These solutions were stored frozen (-20 ± 5 °C) until completion of the analyses.

4.1.3 Preparation of Intermediate Solutions

A defined volume of the stock solution B of SL-573 and MT-2153 was successively diluted with methanol/water; 5 mM ammonium acetate (20/80, v/v) to obtain three intermediate solutions with concentrations of 10, 1 and 0.1 μ g/mL.

Intermediate solution	Aliquot [µL]	Aliquot taken from	Final volume [mL]	Solvent	Final concentration [µg/mL]	
1I	100	stock solution B of SL-573 and MT-2153	10	methanol/water;	10	
2I	1000	1I	10	5 mM NH ₄ Ac (20/80, v/v)	1	
3I	1000	2I	10	(20/80, V/V)	0.1	

These solutions were kept in the refrigerator (5 \pm 3 °C) until completion of the analyses.

4.1.4 Preparation of Calibration Solutions

Defined volumes of the intermediate solutions were diluted with methanol/water; 5 mM ammonium acetate (20/80, v/v) to obtain additional intermediate calibration solutions in the range of 2 ng/mL to 75 ng/mL. These solutions were kept in the refrigerator (5 ± 3 °C) until completion of the analyses.

The intermediate calibration solutions were further diluted using control extract of the matrix to obtain matrix matched standard solutions in the range of 0.2 ng/mL to 7.5 ng/mL. These solutions were freshly prepared before use.

4.2 Fortification

In order to demonstrate the validity of the analytical method, untreated drinking, ground and surface water samples were fortified with fortification solutions of SL-573 and MT-2153 prior to the extraction and extracted as described in Section 4.3. Five separate samples of each fortification level were prepared:

 $0.01 \,\mu\text{g/L}$: 100 μL of the fortification solution 3F (0.018 $\mu\text{g/mL}$) were added to

180 mL of an untreated drinking, ground or surface water sample

0.10 μ g/L: 100 μ L of the fortification solution 2F (0.18 μ g/mL) were added to

180 mL of an untreated drinking, ground or surface water sample

4.3 Sample Work up

- 1. 180 mL untreated drinking, ground or surface water were transferred into an appropriate vessel
- 2. the fortification samples were spiked accordingly to the spike system (see Section 4.2)
- **3.** the samples were vortexed

- 4. the SPE cartridge was conditioned using 5 mL of methanol and 5 mL of water
- 5. the sample was loaded onto the SPE cartridge (flow rate approximately 2 mL/min)
- **6.** the sample was eluted using 2 x 3 mL of acetonitrile and 2 x 2 mL of methanol
- 7. the eluate was evaporated to dryness under N_2
- 8. the residue was reconstituted in 3.0 mL of methanol/water; 5 mM ammonium acetate (20/80, v/v)
- **9.** an aliquot was transferred into an amber HPLC-vial and final solutions were measured by LC/MS/MS.

4.4 LC/MS/MS Conditions

Instrumentation

MS Detector: API 5000, MDS Sciex, Toronto/Canada

Software: ANALYST

LC Pumps: High pressure gradient system consisting of two Shimadzu LC-10AD

pumps and a Shimadzu SCL System Controller

LC Injector: CTC PAL

Sample Injection

Wash Solvent: 1: water / methanol / formic acid (80+20+0.5, v/v/v)

2: water / acetonitrile / methanol (10+45+45, v/v/v)

Washing Procedure: 2 x syringe and 2 x injection port with each solvent

Injection Volume: 50 μL

Chromatographic Separation

Analytical Column: Xbridge C8 (Waters) [2.1 mm x 50 mm; 3.5 μm]

Mobile Phases A: water / methanol; 5 mM ammonium acetate (95+5, v/v)

B: water / methanol; 5 mM ammonium acetate (5+95, v/v)

Gradient Program:

Tin	ne [min]	0	2.5	4.5	4.6	5.4	5.5	5.9	6.0	7.0
A	[%]	80	40	25	0	0	100	100	80	80
В	[%]	20	60	75	100	100	0	0	20	20
Fle	ow [μL/min]	300	300	300	300	300	300	300	300	300

Detection

Ionization: Pneumatically and thermally assisted electro spray ionization (ESI)

Source: Sciex Turbo-V-Source

Spray Voltage: 4500 V Heater Gas Temperature: 300 °C

Gases: Nebulizer (air), heater (air), curtain (N₂), collision (N₂)

Scan Mode: Multiple reaction monitoring (MRM)

Analyte	Ion Polarity	$m/z \rightarrow m/z$	Dwell time [ms]	CE [eV]
SL-573	$[M+H]^+$	$485.3 \rightarrow 383.3$	100	17
SL-573	[M+H] ⁺	$485.3 \to 409.3$	900	13.5
MT-2153	[M+H] ⁺	$383.3 \rightarrow 111.2$	300	59
MT-2153	$[M+H]^+$	$383.3 \rightarrow 325.2$	700	25

Resolution Q1: Unit resolution Resolution Q3: Unit resolution

4.5 Data Acquisition, Calculation and Quantification

Acquisition and peak calculations were performed with the software ANALYST. Quantification of the analytes was performed using the regression model:

y = b * x + a, weighting 1/y (1)

y = Area [counts]

x = Final concentration of analyte in extract [ng/mL]

a = Interceptb = Slope

4.5.1 Calculation

The results are calculated by external calibration using peak areas.

Individual residue levels in the specimen are calculated as shown in the following equation 2:

$$R = \frac{x \cdot V_F}{V_{sample}} \tag{2}$$

R = Recovered residue of analyte [μ g/L]

x = Final concentration of analyte in extract [ng/mL] (calculated from equation 1)

 V_F = Final sample volume [mL] V_{sample} = Volume of sample [mL] Recoveries are calculated as shown in the following equation 3:

$$Rec = \frac{R}{F} \cdot 100\% \tag{3}$$

Rec = Recovery [%]

R = Residue of analyte [μ g/L] F = Fortification level [μ g/L]

Note: The tabulated values represented rounded-off results obtained by calculations based on the exact data.

4.5.2 Example of Calculation

The calculation is exemplified with internal sample ID 111 (SL-573 in drinking water, primary mass transition, see Table 1). Numerical data in the tables represent rounded-off results obtained by calculations based on the exact data. Therefore, manual recalculation may slightly differ in values.

For example, the correlation of the calibration row (SL-573) of the recovery analysis of 20 November 2014 is calculated to be:

$$y = 4805 + 334836 \cdot x$$
 or $x = \frac{y - 4805}{334836}$ (4)

For a peak area of y = 180295 (counts) for the internal sample ID 111 the concentration of SL-573 in sample solution is calculated to be 0.5241 ng/mL.

The residue of SL-573 in the sample is calculated according to equation 2 using:

R = Recovered residue of analyte [µg/L]

x = Final concentration of analyte in extract (here: 0.5241 ng/mL)

 V_F = Final sample volume (here: 3.0 mL) V_{sample} = Volume of sample (here: 180 mL)

$$R = \frac{0.5241 \cdot 3}{180} = 0.008735 \,\mu\text{g/L}$$

The residue of SL-573 in the sample is calculated to be $0.008735 \,\mu g/L$.

The recovery of SL-573 in the sample is calculated according to equation 3 using:

Rec = Recovery [%]

R = Calculated residue of SL-573 in the sample of 0.008735 μ g/L

F = Fortification level (here: 0.01 μg/L)

$$Rec = \frac{0.008735}{0.01} \times 100\% = 87\%$$

The recovery of SL-573 in this drinking water sample is calculated to be <u>87%</u>.

5.8 Matrix Effects

The final sample solution of an untreated control surface, ground or surface sample was fortified with SL-573 and MT-2153 and analyzed by LC/MS/MS. The area counts were compared to an equivalent solution prepared without matrix.

Significant matrix influences for the determination of SL-573 in drinking, ground and surface water using this LC/MS/MS method were observed. For MT-2153 no significant matrix influences in drinking, ground and surface were observed. However, matrix matched standard solutions were used for analysis of SL-573 and MT-2153.