March 2, 2017

Mr. Linc Wehrly, Director Light Duty Vehicle Center Compliance Division Office of Transportation and Air Quality 2000 Traverwood Drive Ann Arbor, Michigan 48105

RE: FCA Group LLC Request for GHG Credit for Variable Crankcase Suction Valve Technology in Denso AC Compressors

Dear Mr. Wehrly:

Pursuant to the provisions of 40 CFR 86.1869-12(d), FCA Group LLC ("FCA") requests 1.1 g/mi of greenhouse gas off-cycle credit for the use of the Denso SAS AC compressor with variable crankcase suction valve technology.

EPA has previously reviewed a similar request from General Motors dated December 2014 for this technology and approved the requested amount of 1.1 grams CO₂/mile. FCA plans the introduction of this compressor technology beginning with the 2019 MY Ram pickup truck. Additional applications of the SAS compressor are expected as we continue to roll out the technology to the fleet.

The technology description, test methodology, test results and durability discussion are described in the enclosures.

Please contact me should you have any questions with respect to this submission at 248-576-5464 or through email at <u>Paul.Mendrick@FCAGroup.com</u>.

Very Best Regards,

Pan Merdil

Paul Mendrick

Manager – Certification and Compliance Group

cc: Gary Oshnock, Manager-Fuel Economy/GHG Regulatory Development

Enclosure A-Technology Description Test Methodology Test Results Durability Discussion and Projected Volumes Enclosure B-Denso SAS Compressor Presentation to EPA, April 2013 Enclosure C-Compressor Bench Test Data and LCCP Modeling Enclosure D-AC17 Vehicle Test Data

Enclosure A: Technology Description, Test Methodology, Test Results, Durability Discussion and Projected Volumes

Technology Description

Compressor technology has become significantly more efficient within that last 15 years. Fixed displacement compressors ("FDCs") were the norm throughout the 1990s and into the early 2000s. Variable displacement compressor ("VDC") technology debuted at that time in AC systems as an efficiency improvement over the FDC compressor technology. VDCs tailored the amount of refrigeration necessary to the cabin load without having to reheat the incoming air, something that FDCs could not achieve. An example of this type of compressor technology would be Denso's SBU compressor.

The latest compressor efficiency improvement can be found in the Denso SAS compressor. The SAS compressor has improved pressure drop through the cylinders and a crankcase suction valve that minimizes internal compressor losses at conditions other than maximum capacity. See Enclosure B - Denso SAS Compressor Presentation to EPA, April 2013 for a comparison of the SAS technology with the SBU technology.

Test Methodology

The Denso SAS compressor is an efficiency improvement over the baseline VDC compressor that can be quantified for greenhouse gas ("GHG") credit. An off-cycle test methodology for capturing this improvement would be to bench test both the old and new compressor technologies to the same standard and then evaluate the CO₂ impact while correcting for climate throughout the USA.

The standardized testing tool is the Society of Automotive Engineers ("SAE") standard for system performance measurement on a bench, *SAE J2765-Procedure for Measuring System COP of a Mobile Air Conditioning System on a Test Bench*. This standard uses 40 test points to evaluate an HVAC system or component against any other system of component. The technology being evaluated is active in 25 of the 40 test points of SAE J2765. These 25 test pointes were then evaluated for CO₂ impact according to the Life Cycle Climate Performance ("LCCP") model given in *SAE J2766- Life Cycle Analysis to Estimate he CO2-Equivalent Emissions from MAC Operation*. Each compressor Test details between the Denso SAS Denso SBU compressors and the LCCP analysis are given in Enclosure C – Compressor Bench Test Data and LCCP Modeling.

Vehicle confirmation testing was performed on a 2014 Dodge Charger. The testing consisted of back to back testing of the Denso SAS and SBU compressors on the same vehicle to confirm the difference between the two compressors. The AC17 test cycle given in 40 CFR 86.167-17 was used to confirm the AC emissions benefit of the improved compressor technology. Test details and results are given in Enclosure D - AC17 Vehicle Test Data.

The difference between bench testing and vehicle testing is shown in the test results. The vehicle confirmation test result from the AC 17 test of 3.16 g/mi is much greater than the 1.1 g/mi requested for the technology. While the AC 17 test measures the technology impact over a drive cycle for constant

temperature and humidity the bench tests consider the loading the technology will encounter and the LCCP analysis adjusts the result across the country.

Test Results

Each compressor was tested at 25 of the 40 total conditions given in SAE J2765 corresponding to conditions under which the crankcase suction valve operates. Coefficient of Performance ("COP") for each compressor at each of the 25 conditions was then loaded into the LCCP model to determine the CO_2 benefit of each compressor that is given in Table 1.

Compressor	LCCP Average CO2 Value
SBU	18.7 g/mi
SAS	17.6 g/mi
Difference	1.1 g/mi

Table 1. Average US Vehicle Indirect CO₂ Emissions Benefit Based on Bench Testing

Vehicle testing per the AC 17 test cycle confirmed a benefit to the crankcase suction valve technology. The A to B test values are shown in Table 2. The benefit of the Denso SAS compressor at the AC 17 vehicle test condition is an average of 3.16 g/mi.

Test Run	Compressor CO2 Emissions
SAS Test 1	16.95 g/mi
SAS Test 2	17.25 g/mi
SAS Test 3	22.4 g/mi
SAS Test 4	19.55 g/mi
SAS Average	19.04 g/mi
SBU Test 1	23.15 g/mi
SBU Test 2	20.5 g/mi
SBU Test 3	21.75 g/mi
SBU Test 4	23.4 g/mi
SBU Average	22.2 g/mi
SAS Benefit over SBU	3.1625

Table 2. AC 17 Vehicle Test Runs on a 2014 Dodge Charger

Additional test details are given in Enclosure D - AC17 Vehicle Test Data.

Durability Discussion

The Denso SAS compressor is being developed and integrated into a full size pickup truck in its first application. From a development perspective there are no differences to the vehicle interface that need to be modified to take advantage of the crankcase suction valve technology. Normal development timelines and testing apply.

FCA requires compressor technology to live for the period of the vehicle's life. Design validation and reporting per USCAR templates are required of the supplier for component testing and from Engineering for vehicle level testing.

The Denso SAS compressor is expected to have the same or better durability than the Denso SBU compressor it replaces in this application and is warranted in the same way as its predecessor.

Projected Volumes

The first application of the Denso SAS compressor will be in the future RAM full-size pickup truck.

FCA Confidential Business Information

Forecast of FCA Indirect A/C Credits with Denso SAS Compressor

Enclosure B-Denso SAS Compressor Presentation to EPA, April 2013

Indirect CO₂ Credit for DENSO SAS Compressor

April 5, 2013 DENSO International America, Inc.

- DENSO Corporation
- Background / Objective
- SAS Efficiency Improvement Mechanism
- Off-cycle Engineering Analysis Method
- Testing Details
- Test Results
- LCCP Results
- Conclusions
- Time permitting: Cold Storage Evaporator Discussion

DENSO Corporation

- Established: Dec. 16, 1949
- Capital: US\$2.3 billion
- Net Sales: US\$38.4 billion
- Net Income: US\$1,086.5 million
- Employees: 126,000 in 35 countries

Data are consolidated base

• As of March 31, 2012

• U.S. dollar amounts have been translated from Japanese yen for convenience only at the rate of 82.19 yen= US\$1

DENSC

Consolidated Base

DENSO Operations in North America

Federal fuel economy tests do not include A/C usage, but A/C usage generates CO_2 and reductions to these emissions benefit the environment.

DENSO's new SAS external variable displacement compressor (EVDC) improves energy consumption compared to current generation technology. Therefore, we feel SAS compressor should qualify for CO_2 off cycle credits.

Objective: Perform an engineering analysis to quantify the amount of indirect CO_2 credit that the SAS compressor should receive. Use this information to support customer applications to the EPA for credit.

The new SAS compressor has two efficiency improvements over the existing SBU compressor: optimized suction and discharge valves and a CS valve.

Clutch less version (called SES) is available and has same internal design.

The optimized valves reduce suction and discharge pressure loss within the compressor, increasing efficiency.

SAS & SES Efficiency Improvement Mechanism

The CS valve increases efficiency of the SAS compressor at mid displacement.

DENSO

A/C Indirect CO₂ Credits

For A/C there are three CO_2 credit types available which can be used to meet the fleet average CO_2 emissions requirements:

Leakage credits for low refrigerant leakage rate or low GWP refrigerant.

Menu credits for improving system efficiency.

<u>Off-cycle credits</u> for advanced technology not on the menu. The technology must reduce emissions levels compared to current technology.

DENSO will do testing to show SAS/SES compressor may get off-cycle credits.

Bench Testing Per SAE J2765 for Each Compressor Analysis Using LCCP Model (CO₂ Emission Per City)

Calculate US Average CO₂ For Each Compressor

http://www.epa.gov/cppd/mac/compare.htm

LCCP is an existing method to estimate CO_2 impact of MAC systems. It was developed by EPA, GM, SAE, and JAMA.

LCCP analysis can be used as an acceptable engineering analysis method for determining the off-cycle CO_2 emissions impact for SAS compressor.

Test Bench System

All components were common during testing of the 6SBU14 and 6SAS14 compressors.

Test Conditions (J2765)

	Simulated	Compressor		Cond Face	Evap Air	Evap	Air Mass	Air Flow	Air Flow	Simulated	Evap Air
	Ambient	Speed	Cond Air In	Velocity	In Temp	Humidity	Flow	Volume	Volume	Air	Out Target
Test Name	Temp. [C]	[RPM]	Temp [C]	[m/s]	[C]	[%]	[kg/min]	[m3/h]	[CFM]	Selection	Temp [C]
160	45	900	60	1.5	35	25	9.0	475	280	Recirc	3
145	45	900	45	1.5	35	25	9.0	475	280	Recirc	3
L45	45	1800	45	2.0	35	25	9.0	475	280	Recirc	3
M45	45	2500	45	3.0	35	25	9.0	475	280	Recirc	3
H45	45	4000	45	4.0	35	25	9.0	475	280	Recirc	3
150a	35	900	50	1.5	35	40	9.0	477	281	OSA	3
135a	35	900	35	1.5	35	40	9.0	477	281	OSA	3
L35a	35	1800	35	2.0	35	40	9.0	477	281	OSA	3
M35a	35	2500	35	3.0	35	40	9.0	477	281	OSA	3
H35a	35	4000	35	4.0	35	40	9.0	477	281	OSA	3
140a	25	900	40	1.5	25	80	6.5	337	198	OSA	3/10
I25a	25	900	25	1.5	25	80	6.5	337	198	OSA	3/10
L25a	25	1800	25	2.0	25	80	6.5	337	198	OSA	3/10
M25a	25	2500	25	3.0	25	80	6.5	337	198	OSA	3/10
H25a	25	4000	25	4.0	25	80	6.5	337	198	OSA	3/10
140c	25	900	40	1.5	25	50	6.5	334	197	OSA	3/10
125c	25	900	25	1.5	25	50	6.5	334	197	OSA	3/10
L25c	25	1800	25	2.0	25	50	6.5	334	197	OSA	3/10
M25c	25	2500	25	3.0	25	50	6.5	334	197	OSA	3/10
H25c	25	4000	25	4.0	25	50	6.5	334	197	OSA	3/10
130	15	900	30	1.5	15	80	6.5	322	190	OSA	3/10
115	15	900	15	1.5	15	80	6.5	322	190	OSA	3/10
L15	15	1800	15	2.0	15	80	6.5	322	190	OSA	3/10
M15	15	2500	15	3.0	15	80	6.5	322	190	OSA	3/10
H15	15	4000	15	4.0	15	80	6.5	322	190	OSA	3/10

All conditions were run for each compressor

DENSO

Test Results

LCCP Results (per city)

Indirect CO₂ emissions for each US city.

LCCP Results (US Average)

Off-cycle CO₂ credit of 1.1g/mi should be requested for the SAS compressor.

We believe the total benefit for SAS or SES compressor should be 3.4 g/mi credit (Menu Credits + Off Cycle)

Based on 2012-2016 Regulation

DENSO

16/17

Our assumption is this data supporting the 1.1 g/mi credit can be applied to any vehicle using SAS or SES compressor.

Enclosure C – Compressor Bench Test Data and LCCP Modeling

See separate excel file attachment:

Enclosure C-Compressor Bench Test Data and LCCP Modeling.xls

Enclosure D-AC17 Vehicle Test Data

SAS technology Final AC17 Testing Results & Bench Test Report

SAS COMPRESSOR RESULTS

Date	Test	g/mi	Ywm	Emissions Difference On/Off (g/mi)	Notes	Observations	
2 /	SC03 - A/C On - Solar On	401.500	212 250				
	HFET - A/C On - Solar On	225.000	313.250	16.050		ОК	
2-Jall	SC03 - A/C Off - Solar Off	374.000	206.200	10.950	O		
	HFET - A/C Off - Solar Off	218.600	296.300				
	SC03 - A/C On - Solar On	401.100	212.000		5	ОК	
5-Jan	HFET - A/C On - Solar On	222.900	312.000	17.250			
	SC03 - A/C Off - Solar Off	373.100	204 750	17.250			
	HFET - A/C Off - Solar Off	216.400	294.750				
	SC03 - A/C On - Solar On	392.800	207 200				
11 100	HFET - A/C On - Solar On	222.800	507.800	22,400	2	ОК	
TT-J9U	SC03 - A/C Off - Solar Off	367.000	295 400	22.400	5		
	HFET - A/C Off - Solar Off	203.800	285.400				
	SC03 - A/C On - Solar On	406.600	216 700				
13-Jan	HFET - A/C On - Solar On	226.800	310.700	10 550		ОК	
	SC03 - A/C Off - Solar Off	374.800	207 150	19.550	4		
	HFET - A/C Off - Solar Off	219.500	297.150				

SBH COMPRESSOR RESULTS

SAS AVERAGE: 19.04 g/mi

Date	Test	g/mi	Ywm	Emissions Difference On/Off (g/mi)	Notes	Observations	
9-Dec	SC03 - A/C On - Solar On	411.600	220 500				
	HFET - A/C On - Solar On	229.400	520.500	22 150	Л	ОК	
	SC03 - A/C Off - Solar Off	374.100	207.250	25.150	4		
	HFET - A/C Off - Solar Off	220.600	297.550				
	SC03 - A/C On - Solar On	404.500	215.050			ОК	
12-Dec -	HFET - A/C On - Solar On	225.600	515.050	20 500	6		
	SC03 - A/C Off - Solar Off	373.300	204 550	20.500			
	HFET - A/C Off - Solar Off	215.800	294.550				
	SC03 - A/C On - Solar On	403.400	212 800			ОК	
12 Doc	HFET - A/C On - Solar On	222.200	512.800	21 750			
T2-Dec	SC03 - A/C Off - Solar Off	370.800	201.050	21.750	5		
	HFET - A/C Off - Solar Off	211.300	291.050				
	SC03 - A/C On - Solar On	405.400	214 650				
14-Dec	HFET - A/C On - Solar On	223.900	314.050	22,400	2	ОК	
	SC03 - A/C Off - Solar Off	370.100	201 250	25.400	3		
	HFET - A/C Off - Solar Off	212.400	291.250				

SBH AVERAGE: 22.20 g/mi

SBH AVERAGE: 22.20 g/mi SAS AVERAGE: 19.04 g/mi SAS AVERAGE: 19.04 g/mi

SAS compressor is shown to have an average emissions improvement of 3.16 g/mi. DENSO opinion is that this vehicle emission improvement value <u>meets expectations</u> for SAS. This result was expected based on previous test results.

The observed test-to-test variation meets DENSO expectation based on previous vehicle testing. This variation is likely due to fluctuation in performance of vehicle systems that were not monitored during the course of this test.

DENSO's request is to proceed with the credit value of 1.1 grams CO2 / mile observed from bench test data and U.S. LCCP calculations. The credit value based on bench test data can be considered to be more precise due less variation (as noted in the vehicle system). However, the vehicle test data provides valuable confirmation and supporting evidence.

Chrysler AC17 Testing – SBH / SAS Comparison

Key Conclusions of AC17 vehicle test:

- 1. FEAO pattern is repeatable for all 8 runs (4 SAS / 4 SBH) being used for comparison.
- 2. Control valve current is approximately 20-30mA lower for the 4 SAS runs.

We conclude that the compressor is working less to achieve the same evaporator air out temperature. This indicated that emissions would be lower for SAS than SBH (emissions values from previous data pages confirm this to be true).

→ Emissions improvement is achieved with SAS Compressor

This trend meets DENSO expectations for SAS performance vs. SBH performance.

Bench Summary – Off cycle Engineering Analysis Method

http://www.epa.gov/cppd/mac/compare.htm

LCCP is an existing method to estimate CO2 impact of MAC systems. It was developed by EPA, GM, SAE, and JAMA.

LCCP analysis can be used as an acceptable engineering analysis method for determining the off-cycle CO2 emissions impact for SAS compressor.

Test Bench System – Generic System

All components were common during testing of the 6SBU14 and 6SAS14 compressors.

Test Conditions (J2765)

	Simulated	Compressor		Cond Face	Evap Air	Evap	Air Mass	Air Flow	Air Flow	Simulated	Evap Air
	Ambient	Speed	Cond Air In	Velocity	In Temp	Humidity	Flow	Volume	Volume	Air	Out Target
Test Name	Temp. [C]	[RPM]	Temp [C]	[m/s]	[C]	[%]	[kg/min]	[m3/h]	[CFM]	Selection	Temp [C]
160	45	900	60	1.5	35	25	9.0	475	280	Recirc	3
145	45	900	45	1.5	35	25	9.0	475	280	Recirc	3
L45	45	1800	45	2.0	35	25	9.0	475	280	Recirc	3
M45	45	2500	45	3.0	35	25	9.0	475	280	Recirc	3
H45	45	4000	45	4.0	35	25	9.0	475	280	Recirc	3
150a	35	900	50	1.5	35	40	9.0	477	281	OSA	3
I35a	35	900	35	1.5	35	40	9.0	477	281	OSA	3
L35a	35	1800	35	2.0	35	40	9.0	477	281	OSA	3
M35a	35	2500	35	3.0	35	40	9.0	477	281	OSA	3
H35a	35	4000	35	4.0	35	40	9.0	477	281	OSA	3
140a	25	900	40	1.5	25	80	6.5	337	198	OSA	3/10
I25a	25	900	25	1.5	25	80	6.5	337	198	OSA	3/10
L25a	25	1800	25	2.0	25	80	6.5	337	198	OSA	3/10
M25a	25	2500	25	3.0	25	80	6.5	337	198	OSA	3/10
H25a	25	4000	25	4.0	25	80	6.5	337	198	OSA	3/10
140c	25	900	40	1.5	25	50	6.5	334	197	OSA	3/10
125c	25	900	25	1.5	25	50	6.5	334	197	OSA	3/10
L25c	25	1800	25	2.0	25	50	6.5	334	197	OSA	3/10
M25c	25	2500	25	3.0	25	50	6.5	334	197	OSA	3/10
H25c	25	4000	25	4.0	25	50	6.5	334	197	OSA	3/10
130	15	900	30	1.5	15	80	6.5	322	190	OSA	3/10
l15	15	900	15	1.5	15	80	6.5	322	190	OSA	3/10
L15	15	1800	15	2.0	15	80	6.5	322	190	OSA	3/10
M15	15	2500	15	3.0	15	80	6.5	322	190	OSA	3/10
H15	15	4000	15	4.0	15	80	6.5	322	190	OSA	3/10

All conditions were run for each compressor

Test Result

DENSU

COP for SAS is higher at middle ambient (as expected due to CS valve)

These values were entered into the LCCP model.

LCCP Results (per city)

Indirect CO_2 emissions for each US city.

LCCP Results (US average)

