Analytical method for famoxadone (DPX-JE874) and its metabolites, IN-H3310, IN-JS940, IN-KF015 and IN-KZ007, in soil and water

Reports:	ECM: EPA MRID No.: 4997060 the Determination of Famoxador and Water by LC-ESI-MS/MS. F Report prepared by E. I. du Pont Protection, Newark, Delaware, a de Nemours and Company, Wiln issued November 3, 2015. ILV: EPA MRID No. 49970602. Validation of DuPont-43971, "A Famoxadone (DPX-JE874) and i ESI-MS/MS". Project Identificat Project No.: 150813. Report prep Pennsylvania, sponsored and sub Company, Wilmington, Delawar	 Fett, L.K. ne (DPX-JE8 Project Identi de Nemours nd sponsorec nington, Dela Black, M. 2 nalytical Me ts Metabolite ion No.: Dul pared by Alli patted by E. e; 175 pages 	2015. Analytical Method for 74) and its Metabolites in Soil fication No.: DuPont-43971. and Company, DuPont Crop I and submitted by E. I. du Pont aware; 94 pages. Final report 015. Independent Laboratory thod for the Determination of es in Soil and Water by LC- Pont-43972. Alliance Pharma ance Pharma, Malvern, I. du Pont de Nemours and . Final report issued November			
	18, 2015.					
Document No.:	MRIDs 49970601 & 49970602					
Guideline:	850.6100					
Statements:	ECM: The study was not conduc OECD Good Laboratory Practice conducted at a GLP compliant fa dated No Data Confidentiality, G provided (pp. 2-4). A Quality As included. ILV: The study was conducted in OECD GLP standards (p. 3 of M Confidentiality, GLP, Quality As provided (pp. 2-5).	ted in accord e (GLP) stand cility (p. 3 o GLP and Auth surance of the n accordance RID 499706 ssurance, and	lance with USEPA FIFRA and dards; however, the study was f MRID 49970601). Signed and nenticity statements were he study report was not with USEPA FIFRA and 02). Signed and dated No Data I Authenticity statements were			
Classification:	This analytical method is classified as Acceptable . However, the LOQ in water (0.10 μ g/L) is near but greater than the lowest toxicological level of concern in water (0.085 μ g/L). The ILV linearity was unsatisfactory for famoxadone in water. It could not be determined if the ILV was provided with the most difficult matrix with which to validate the method. The LOE for soil and water matrices were not reported in the ILV					
PC Code:	113202					
Final EPA Reviewer:	Lewis R. Brown, III, Environmental Biologist	Signature: Date:	Lewis Ross Brown, III 4/5/17			
CDM/CSS- Dynamac JV Reviewers:	Lisa Muto, Environmental Scientist Kathleen Ferguson, Ph.D., Environmental Scientist	Signature: Date: Signature: Date:	Hacalun P. Jergusson 1/10/17			

This Data Evaluation Record may have been altered by the Environmental Fate and Effects Division subsequent to signing by CDM/CSS-Dynamac JV personnel.

Executive Summary

This analytical method, DuPont-43971, is designed for the quantitative determination of famoxadone (DPX-JE874) and its metabolites, IN-H3310, IN-JS940, IN-KF015 and IN-KZ007, in soil at the LOQ of 10 ppb (10 μ g/kg) and in water at the LOQ of 0.10 ppb (0.1 μ g/L) using LC/MS/MS. The LOQ in soil (10 μ g/kg) is less than the lowest toxicological level of concern in soil (370 μ g/kg). The LOQ in water (0.10 μ g/L) is near but greater than the lowest toxicological level of concern in water (0.085 μ g/L). Characterized clay loam and sandy loam soils were used in the ECM soil validation; characterized ground and surface waters were used in the ECM water validation. The extraction procedure for the soil and water validations differed, but all analytes were identified using two ion transitions. The ILV validated the method in the first trial with insignificant modifications to the analytical instrumentation. Characterized sandy loam soil and surface water were used for the ILV validation; however, ILV may not have been provided with the most difficult matrices with which to validate the method. The ILV linearity was unsatisfactory for famoxadone in water, and the LODs for soil and water matrices were not reported in the ILV.

	MR	D						T imit of	
Analyte(s) by Pesticide	Environmental Chemistry Method	ental Independent EPA try Laboratory Review d Validation		Matrix	Method Date (dd/mm/yyyy)	Registrant	Analysis	Quantitation (LOQ)	
Famoxadone (DPX-JE874)									
IN-H3310				g 112				10 1	
IN-JS940		40070601 40070602		5011',2		E. I. du Pont		10 µg/kg	
IN-KF015									
IN-KZ007	40070601		40070602	49970602			03/11/2015	de Nemours	
Famoxadone (DPX-JE874)	49970601	49970002	70602		05/11/2015	and Company	LC/MS/MS		
IN-H3310									
IN-JS940				Water ^{3,4}				0.10 µg/L	
IN-KF015									
IN-KZ007									

Table 1. Analytical Method Summary

1 In the ECM, Drummer clay loam soil (25% sand, 41% silt, 34% clay; pH 6.5; 5.6% organic matter), collected from Rochelle, Illinois, and Nambsheim sandy loam soil (60% sand, 30% silt, 10% clay; pH 7.5; 3.8% organic matter), collected from Nambsheim, Germany, were used (p. 19 of MRID 49970601). Soil characterization was not specified as USDA.

2 In the ILV, Sassafras sandy loam soil (62% sand, 29% silt, 9% clay; pH 5.1 in 1:1 soil:water; 2.2% organic matter), collected from Pike Creek in Newark, Delaware, was used (USDA soil characterization; p. 21; Appendix 2, pp. 170-173 of MRID 49970602).

3 In the ECM, Kemblesville well water (pH 7.6; 68 mg equiv. CaCO₃/L; 222 ppm total dissolved solids), collected from Kemblesville, Pennsylvania, and White Clay Creek Water (pH 8.1; 144 mg equiv. CaCO₃/L; 254 ppm total dissolved solids), collected from White Clay Creek, Newark, Delaware, were used (p. 19 of MRID 49970601).

4 In the ILV, Pike Creek surface water (pH 7.6; 114 mg equiv. CaCO₃/L; 184 ppm total dissolved solids), collected from Pike Creek in Newark, Delaware, was used (p. 21; Appendix 2, pp. 174-175 of MRID 49970602).

I. Principle of the Method

<u>Soil samples</u> $(10.0 \pm 0.1 \text{ g})$ in 50-mL polypropylene centrifuge tubes were fortified and extracted twice with methanol:30 mM aqueous sodium acetate adjusted to pH 2.5-3 (4:1, v:v; 20 mL and 15 mL; pp. 15, 19-20 of MRID 49970601). For each extraction, the mixture was vortexed for \geq 30 seconds, sonicated for 5 minutes, vortexed briefly then centrifuged for \geq 5 minutes at \geq 2500 rpm. The supernatant was decanted into a clean 50-mL polypropylene centrifuge tube. The combined extract solution was diluted to 50 mL with 0.01M aqueous formic acid then centrifuged (\geq 5 minutes at \geq 2500 rpm) to separate extract from particulate matter. An aliquot from the extract was analyzed using reverse-phase LC/MS/MS.

<u>Water samples</u> (0.2 L) were fortified and adjusted to *ca*. 0.01% formic acid and 5% acetonitrile (10 mL of acetonitrile and 20 μ L of concentrated formic acid; pp. 15-16, 19-21 of MRID 49970601). A C₁₈-solid phase extraction (SPE) cartridge (3 cc/500 mg) was pre-conditioned with 5 mL each of methanol and Milli-Q water. The cartridge was not allowed to dry before the water sample was added. After all of the sample was applied to the cartridge, a vacuum was applied to achieve a fast drip rate (2-3 mL/min) until all of the solution passed through the cartridge. The analytes were eluted with 2.5 mL of 0.01% formic acid in acetonitrile and 2.5 mL of 0.01% formic acid in methanol using a slow drip rate with vacuum, as necessary. The 0.60 mL of the final extracts were combined with 0.40 mL of 0.01M aqueous formic acid in autosampler vials prior to analysis by reverse-phase LC/MS/MS.

Soil and water samples were analyzed for famoxadone and its metabolites, IN-H3310, IN-JS940, IN-KF015 and IN-KZ007, using Agilent 1200 HPLC system (Zorbax® XDB C18 column, 4.6 mm x 50 mm, 1.8 μ m column; column temperature 40°C) using a gradient mobile phase of (A) 0.01M aqueous formic acid and (B) 0.01M formic acid in methanol [time ratio A:B; 0.0-1.0 min. 35.0:65.0, 10.0 min. 12.5:87.5, 10.4-14.0 min. 35.0:65.0] coupled with a AB Sciex API Triple quadrupole mass spectrometer using a Turbo Ion Spray interface (TIS) in Multiple Reaction Monitoring (MRM) mode in positive and negative ion mode (pp. 21-23 of MRID 49970601). Injection volume was 100 µL. Negative mode was employed for famoxadone, IN-JS940, IN-KF015 and IN-KZ007; positive mode was employed for IN-H3310. Two ion transitions (±0.1) were monitored (quantitation and confirmatory, respectively) for each analyte as follows: m/z. $373.1 \rightarrow 281.9$ and m/z $373.1 \rightarrow 329.1$ (water)/m/z $373.1 \rightarrow 133.0$ (soil) for famoxadone, m/z256.9→211.0 and *m/z* 256.9→93.0 for IN-JS940, *m/z* 282.2→195.0 and *m/z* 282.2→239.2 for IN-KF015, *m/z* 389.1→345.0 and *m/z* 389.1→132.7 for IN-KZ007, and *m/z* 213.2→170.9 and m/z 213.2 \rightarrow 153.0 (water)/m/z 213.2 \rightarrow 153.0 (soil) for IN-H3310. Injection volumes were 50 µL. Retention times were ca. 7.06, 5.10, 2.99, 4.54 and 3.51 minutes for famoxadone, IN-H3310, IN-JS940, IN-KF015 and IN-KZ007, respectively.

In the ECM, the following precautions for the extraction procedure were reported: 1) glassware should be rigorously cleaned to avoid contamination since the analytes readily adsorb to the surfaces of containers when in mostly aqueous solution; 2) filtration should not be used; and 3) methanol should be used to rinse containers for environmental water samples since loss of analytes occurs in aqueous solutions (p. 30 of MRID 49970601).

In the ILV, the ECM was performed as written, except for the use of a different LC/MS/MS system (pp. 22-26 of MRID 49970602). A Shimadzu LC-30AD HPLC system (Agilent XDB-C18 column, 4.6 mm x 50 mm, 1.8 μ m column; column temperature 40°C) was coupled to an AB Sciex API 400 Triple Quad MS/MS system. Retention times were *ca*. 7.2, 5.2, 3.2, 4.7 and 3.7 minutes for famoxadone, IN-H3310, IN-JS940, IN-KF015 and IN-KZ007, respectively. The monitored ions were the same as those of the ECM, ±0.2. No other modifications of the ECM were reported.

The Limits of Quantification (LOQs) for soil and water were 10 ppb (10 μ g/kg) and 0.10 ppb (0.1 μ g/L), respectively, in the ECM and ILV (pp. 10, 29 of MRID 49970601; p. 13 of MRID 49970602). The Limits of Detection (LODs) for soil and water were 3 ppb (3 μ g/kg) and 0.03 ppb (0.03 μ g/L), respectively, in the ECM (See Reviewer's Comment #2). The LODs were not reported in the ILV.

II. Recovery Findings

<u>ECM (MRID 49970601) - Soil</u>: Mean recoveries and relative standard deviations (RSDs) were within guideline requirements (mean 70-120%; RSD \leq 20%) for analysis of famoxadone and its metabolites, IN-H3310, IN-JS940, IN-KF015 and IN-KZ007 in clay loam and sandy loam soil matrices at fortification levels of 10 ppb (10 µg/kg; LOQ) and 100 ppb (100 µg/kg; 10×LOQ; Table 3, pp. 32-35). All analytes were identified using two ion transitions; performance data (recovery results) from primary and confirmatory analyses were comparable. Drummer clay loam soil (25% sand, 41% silt, 34% clay; pH 6.5; 5.6% organic matter) was collected from Rochelle, Illinois, and Nambsheim sandy loam soil (60% sand, 30% silt, 10% clay; pH 7.5; 3.8% organic matter) was collected from Nambsheim, Germany (p. 19). Soil characterization was not specified as USDA.

<u>ECM (MRID 49970601) - Water</u>: Mean recoveries and RSDs were within guideline requirements for analysis of famoxadone and its metabolites, IN-H3310, IN-JS940, IN-KF015 and IN-KZ007 in ground and surface water matrices at fortification levels of 0.10 ppb (0.10 μ g/L; LOQ) and 1.0 ppb (1.0 μ g/L; 10×LOQ; Table 4, pp. 36-39). All analytes were identified using two ion transitions; performance data (recovery results) from primary and confirmatory analyses were comparable. Kemblesville well water (pH 7.6; 68 mg equiv. CaCO₃/L; 222 ppm total dissolved solids) was collected from Kemblesville, Pennsylvania, and White Clay Creek Water (pH 8.1; 144 mg equiv. CaCO₃/L; 254 ppm total dissolved solids) was collected from White Clay Creek, Newark, Delaware (p. 19).

<u>ILV (MRID 49970602) - Soil</u>: Mean recoveries and RSDs were within guideline requirements for analysis of famoxadone and its metabolites, IN-H3310, IN-JS940, IN-KF015 and IN-KZ007 in a sandy loam soil matrix at fortification levels of 10 ppb (10 μ g/kg; LOQ) and 100 ppb (100 μ g/kg; 10×LOQ; pp. 28-30). All analytes were identified using two ion transitions; performance data (recovery results) from primary and confirmatory analyses were comparable. Sassafras sandy loam soil (62% sand, 29% silt, 9% clay; pH 5.1 in 1:1 soil:water; 2.2% organic matter) was collected from Pike Creek in Newark, Delaware and characterized by Agvise Laboratories, Northwood, North Dakota (USDA soil characterization; p. 21; Appendix 2, pp. 170-173). The method was validated in the first trial with insignificant modifications to the analytical instrumentation (p. 31).

<u>ILV (MRID 49970602) - Water</u>: Mean recoveries and RSDs were within guideline requirements for analysis of famoxadone and its metabolites, IN-H3310, IN-JS940, IN-KF015 and IN-KZ007 in a surface water matrix at fortification levels of 0.10 ppb (0.10 μ g/L; LOQ) and 1.0 ppb (1.0 μ g/L; 10×LOQ; pp. 28-30). All analytes were identified using two ion transitions; performance data (recovery results) from primary and confirmatory analyses were comparable. Pike Creek surface water (pH 7.6; 114 mg equiv. CaCO₃/L; 184 ppm total dissolved solids) was collected from Pike Creek in Newark, Delaware and characterized by Agvise Laboratories, Northwood, North Dakota (p. 21; Appendix 2, pp. 174-175). The method was validated in the first trial with insignificant modifications to the analytical instrumentation (p. 31).

Table 2a. Initial Validation Method Recoveries for Famoxadone (DPX-JE874) and its Metabolites, IN-H3310, IN-JS940, IN-KF015 and IN-KZ007, in Soil^{1,2}

Analyte	Fortification	Number	Recovery	Mean	Standard	Relative Standard					
	Level (ppb)	of Tests	Range (%)	Recovery (%)	Deviation (%)	Deviation (%)					
	Clay Loam Soil										
		Quantitation ion									
Famoxadone	10 (LOQ)	5	70.4-85.7	77.5	7.0	9.0					
(DPX-JE874)	100	5	75.5-78.4	76.7	1.3	1.7					
IN-H3310	10 (LOQ)	5	81.2-84.7	83.3	1.4	1.7					
	100	5	80.2-82.0	81.5	0.7	0.8					
IN 18040	10 (LOQ)	5	85.3-94.6	88.0	3.7	4.3					
111-J3940	100	5	89.7-92.2	90.9	1.1	1.2					
IN VE015	10 (LOQ)	5	102.8-108.6	107.0	2.4	2.3					
IN-KF015	100	5	92.4-99.5	96.1	2.3	2.4					
	10 (LOQ)	5	75.3-77.4	75.9	0.9	1.1					
IN-KZ007	100	5	71.8-75.7	73.8	1.7	2.3					
			Co	onfirmatory ion							
Famoxadone	10 (LOQ)	5	73.8-91.6	83.0	6.8	8.1					
(DPX-JE874)	100	5	74.2-80.5	77.0	2.3	3.0					
IN 112210	10 (LOQ)	5	89.5-97.4	94.1	3.2	3.5					
пл-п5510	100	5	82.2-86.2	83.7	1.4	1.7					
	10 (LOQ)	5	85.0-96.9	88.2	4.9	5.6					
IIN-J5940	100	5	92.6-97.5	95.0	2.0	2.1					
IN KEO15	10 (LOQ)	5	93.6-118.8	106.1	8.9	8.4					
IN-KF015	100	5	90.4-96.5	93.5	2.7	2.9					
	10 (LOQ)	5	72.4-75.6	73.8	1.2	1.7					
IIN-KZ007	100	5	72.9-76.7	74.6	1.5	1.9					
			Sa	ndy Loam Soil		•					
			Q	uantitation ion							
Famoxadone	10 (LOQ)	5	72.2-87.5	81.0	6.3	7.8					
(DPX-JE874)	100	5	90.1-94.9	92.2	2.2	2.3					
IN 112210	10 (LOQ)	5	96.6-100.0	98.7	3.2	3.2					
IN-H3310	100	5	97.6-99.5	98.5	0.7	0.7					
	10 (LOQ)	5	83.1-85.4	84.5	1.0	1.2					
IIN-J5940	100	5	88.5-90.8	89.7	0.9	1.0					

Analyte	Fortification Level (ppb)	Number of Tests	Recovery Range (%)	Mean Recovery (%)	Standard Deviation (%)	Relative Standard Deviation (%)
IN REO15	10 (LOQ)	5	101.0-115.1	108.3	5.6	5.2
IIN-KF015	100	5	97.7-106.8	102.4	3.3	3.3
	10 (LOQ)	5	80.1-83.9	81.8	1.6	2.0
IIN-KZ007	100	5	80.7-82.7	81.6	0.9	1.1
			Co	onfirmatory ion		
Famoxadone	10 (LOQ)	5	63.0-100.7	91.6	16.1	17.6
(DPX-JE874)	100	5	74.9-83.4	80.3	3.6	4.4
IN H2210	10 (LOQ)	5	90.7-112.4	101.0	8.0	7.9
пл-п5510	100	5	95.2-100.7	98.1	2.2	2.2
IN ISO40	10 (LOQ)	5	81.7-84.9	83.8	1.4	1.7
111-J3940	100	5	90.5-93.9	92.3	1.2	1.3
IN VEO15	10 (LOQ)	5	88.8-107.1	97.7	7.2	7.4
IIN-KF015	100	5	98.2-101.9	100.4	1.6	1.5
	10 (LOQ)	5	76.7-84.2	80.5	3.2	3.9
IIN-KZUU/	100	5	79.9-83.7	81.6	1.4	1.7

Data (uncorrected recovery results, pp. 24-26) were obtained from Table 3, pp. 32-35 of MRID 49970601.

1 The Drummer clay loam soil (25% sand, 41% silt, 34% clay; pH 6.5; 5.6% organic matter) was collected from Rochelle, Illinois, and Nambsheim sandy loam soil (60% sand, 30% silt, 10% clay; pH 7.5; 3.8% organic matter) was collected from Nambsheim, Germany (p. 19). Soil characterization was not specified as USDA.

2 Two ion transitions (±0.1) were monitored (quantitation and confirmatory, respectively) for each analyte as follows: *m/z* 373.1→281.9 and *m/z* 373.1→133.0 for famoxadone, *m/z* 256.9→211.0 and *m/z* 256.9→93.0 for IN-JS940, *m/z* 282.2→195.0 and *m/z* 282.2→239.2 for IN-KF015, *m/z* 389.1→345.0 and *m/z* 389.1→132.7 for IN-KZ007, and *m/z* 213.2→170.9 and *m/z* 213.2→153.0 for IN-H3310 (p. 23).

Analyte	Fortification	Number of Tosts	Recovery	Mean Bocovory (%)	Standard	Relative Standard				
	Level (ppb)	Cround/Well Weter								
			010	uantitation ion						
Famoxadone	0.10 (LOQ)	5	70.9-91.5	77.1	8.2	10.6				
(DPX-JE874)	1.0	5	73.6-95.8	80.3	8.9	11.1				
DI 112210	0.10 (LOQ)	5	88.7-93.8	90.8	1.9	2.1				
IN-H3310	1.0	5	84.3-101.2	89.5	6.8	7.6				
	0.10 (LOQ)	5	70.3-94.0	76.3	10.0	13.1				
IN-J5940	1.0	5	80.4-94.0	83.5	5.9	7.1				
IN VEO15	0.10 (LOQ)	5	88.9-114.6	96.4	10.4	10.8				
IIN-KF015	1.0	5	88.5-104.4	93.1	6.5	7.0				
IN K7007	0.10 (LOQ)	5	75.5-100.1	83.2	9.7	11.6				
IIN-KZ007	1.0	5	79.3-98.7	94.4	8.1	9.5				
			Co	onfirmatory ion						
Famoxadone	0.10 (LOQ)	5	75.0-97.8	85.6	9.7	11.3				
(DPX-JE874)	1.0	5	78.4-96.9	84.1	7.5	8.9				
IN H2210	0.10 (LOQ)	5	80.7-100.6	92.6	7.2	7.8				
111-113310	1.0	5	86.7-95.6	90.8	4.2	4.6				
IN 15940	0.10 (LOQ)	5	70.3-88.3	75.7	7.3	9.6				
111-30740	1.0	5	80.7-95.8	85.1	6.1	7.1				

Table 2b. Initial Validation Method Recoveries for Famoxadone (DPX-JE874) and itsMetabolites, IN-H3310, IN-JS940, IN-KF015 and IN-KZ007, in Water^{1,2}

Analyte	Fortification	Number	Recovery	Mean	Standard	Relative Standard
	Level (ppb)	of Tests	Range (%)	Recovery (%)	Deviation (%)	Deviation (%)
IN-KF015	0.10 (LOQ)	5	81.2-114.9	93.2	13.1	14.1
	1.0	5	85.5-100.9	89.8	6.4	7.1
IN-K7007	0.10 (LOQ)	5	75.2-99.2	82.2	9.7	11.9
111122007	1.0	5	79.6-97.8	94.4	7.5	8.9
			Surfa	ce/Stream Wate	r	
			Q	uantitation ion		
Famoxadone	0.10 (LOQ)	5	74.5-81.6	77.3	3.0	3.8
(DPX-JE874)	1.0	5	83.5-85.2	84.3	0.7	0.8
IN H2210	0.10 (LOQ)	5	92.9-103.6	99.3	4.5	4.6
пл-п5510	1.0	5	87.2-95.1	91.4	2.9	3.2
IN ISO40	0.10 (LOQ)	5	85.2-95.0	88.0	4.2	4.8
IIN-J5940	1.0	5	96.1-101.1	98.1	2.1	2.1
IN VE015	0.10 (LOQ)	5	106.3-114.5	111.4	3.3	2.9
IIN-KF015	1.0	5	98.6-104.2	101.1	2.4	2.4
	0.10 (LOQ)	5	71.5-78.0	74.2	2.7	3.7
IIN-KZ007	1.0	5	72.9-75.2	73.8	0.9	1.3
			Co	onfirmatory ion		
Famoxadone	0.10 (LOQ)	5	72.2-109.2	88.0	15.9	18.0
(DPX-JE874)	1.0	5	81.2-85.5	83.0	1.8	2.2
IN 112210	0.10 (LOQ)	5	70.5-108.2	88.9	17.3	19.5
IIN-H5510	1.0	5	85.1-94.2	89.9	3.9	4.4
IN ISO40	0.10 (LOQ)	5	84.5-92.9	87.7	3.5	4.0
111-J3940	1.0	5	96.2-101.2	98.2	1.9	2.0
IN VE015	0.10 (LOQ)	5	104.4-116.9	111.7	5.2	4.7
	1.0	5	97.6-102.0	100.0	1.7	1.7
	0.10 (LOQ)	5	71.4-78.2	74.2	2.5	3.4
IIN-KZUU/	1.0	5	72.6-74.9	73.7	1.0	1.3

Data (uncorrected recovery results, pp. 24-26) were obtained from Table 4, pp. 36-39 of MRID 49970601.

1 The Kemblesville well water (pH 7.6; 68 mg equiv. CaCO₃/L; 222 ppm total dissolved solids) was collected from Kemblesville, Pennsylvania, and White Clay Creek Water (pH 8.1; 144 mg equiv. CaCO₃/L; 254 ppm total dissolved solids) was collected from White Clay Creek, Newark, Delaware (p. 19).

2 Two ion transitions (±0.1) were monitored (quantitation and confirmatory, respectively) for each analyte as follows: m/z 373.1 \rightarrow 281.9 and m/z 373.1 \rightarrow 329.1 for famoxadone, m/z 256.9 \rightarrow 211.0 and m/z 256.9 \rightarrow 93.0 for IN-JS940, m/z 282.2 \rightarrow 195.0 and m/z 282.2 \rightarrow 239.2 for IN-KF015, m/z 389.1 \rightarrow 345.0 and m/z 389.1 \rightarrow 132.7 for IN-KZ007, and m/z 213.2 \rightarrow 170.9 and m/z 213.2 \rightarrow 153.0 for IN-H3310 (p. 23).

Analyta	Fortification	Number	Recovery	Mean	Standard	Relative Standard					
Analyte	Level (ppb)	of Tests	Range (%)	Recovery (%)	Deviation (%)	Deviation (%)					
		Sandy Loam Soil									
			Q	uantitation ion							
Famoxadone	10 (LOQ)	5	84-89	86	2.2	3					
(DPX-JE874)	100	5	88-94	92	2.4	3					
IN H3310	10 (LOQ)	5	90-98	95	3.2	3					
Пу-пээто	100	5	93-99	97	2.8	3					
IN ISO40	10 (LOQ)	5	84-92	89	3.6	4					
111-33740	100	5	83-87	86	1.5	2					
IN KE015	10 (LOQ)	5	93-99	97	2.6	3					
IIN-KF013	100	5	93-100	96	2.7	3					
	10 (LOQ)	5	80-87	84	2.5	3					
IIN-KZ007	100	5	80-86	84	2.2	3					
			Co	onfirmatory ion							
Famoxadone	10 (LOQ)	5	70-104	84	12.6	15					
(DPX-JE874)	100	5	84-92	87	3.2	4					
IN 112210	10 (LOQ)	5	91-109	97	7.8	8					
Пу-пээто	100	5	93-100	97	2.6	3					
IN ISO40	10 (LOQ)	5	81-89	85	2.8	3					
111-35940	100	5	87-90	88	1.7	2					
IN REO15	10 (LOQ)	5	95-112	102	7.4	7					
IIN-KFUI3	100	5	89-96	93	2.9	3					
	10 (LOQ)	5	73-85	80	4.4	5					
IIN-KZ007	100	5	83-85	84	0.8	1					

Table 3a. Independent Validation Method Recoveries for Famoxadone (DPX-JE874) and its Metabolites, IN-H3310, IN-JS940, IN-KF015 and IN-KZ007, in Soil^{1,2}

Data (uncorrected recovery results, pp. 26-27) were obtained from pp. 28-30 of MRID 49970602.

1 The Sassafras sandy loam soil (62% sand, 29% silt, 9% clay; pH 5.1 in 1:1 soil:water; 2.2% organic matter) was collected from Pike Creek in Newark, Delaware, and characterized by Agvise Laboratories, Northwood, North Dakota (USDA soil characterization; p. 21; Appendix 2, pp. 170-175).

2 Two ion transitions (±0.1) were monitored (quantitation and confirmatory, respectively) for each analyte as follows: m/z 373.1 \rightarrow 282.1 and m/z 373.1 \rightarrow 133.0 for famoxadone, m/z 256.9 \rightarrow 211.0 and m/z 256.9 \rightarrow 93.0 for IN-JS940, m/z 282.2 \rightarrow 195.0 and m/z 282.2 \rightarrow 239.2 for IN-KF015, m/z 389.1 \rightarrow 345.0 and m/z 389.1 \rightarrow 132.7 for IN-KZ007, and m/z 213.2 \rightarrow 170.9 and m/z 213.2 \rightarrow 153.1 for IN-H3310 (pp. 28-30).

Amalata	Fortification	Number	Recovery	Mean	Standard	Relative Standard				
Analyte	Level (ppb)	of Tests	Range (%)	Recovery (%)	Deviation (%)	Deviation (%)				
	Surface Water									
			Q	uantitation ion						
Famoxadone	0.10 (LOQ)	5	67-87	76	8.8	12				
(DPX-JE874)	1.0	5	63-87	72	9.4	13				
IN H2210	0.10 (LOQ)	5	86-103	93	7.9	8				
пл-пээто	1.0	5	80-104	90	8.6	10				
IN 18040	0.10 (LOQ)	5	75-97	89	8.6	10				
111-33940	1.0	5	85-106	100	5.1	5				
IN VE015	0.10 (LOQ)	5	91-109	98	9.5	10				
IIN-KF015	1.0	5	81-110	91	11.3	12				
IN K7007	0.10 (LOQ)	5	73-92	85	8.6	10				
IIN-KZ007	1.0	5	67-101	79	13.2	17				
			Co	onfirmatory ion						
Famoxadone	0.10 (LOQ)	5	66-80	73	5.0	7				
(DPX-JE874)	1.0	5	62-92	71	12.0	17				
IN H3310	0.10 (LOQ)	5	71-97	84	10.1	12				
111-115510	1.0	5	85-100	88	7.5	9				
IN 18040	0.10 (LOQ)	5	79-101	92	8.5	9				
111-J3940	1.0	5	95-109	99	5.9	6				
IN KE015	0.10 (LOQ)	5	84-104	93	9.5	10				
111-111-015	1.0	5	83-112	93	11.6	12				
IN K7007	0.10 (LOQ)	5	71-95	82	10.2	12				
11N-KZUU/	1.0	5	70-97	79	10.8	14				

Table 3b. Independent Validation Method Recoveries for Famoxadone (DPX-JE874) and its Metabolites, IN-H3310, IN-JS940, IN-KF015 and IN-KZ007, in Water^{1,2}

Data (uncorrected recovery results, pp. 26-27) were obtained from pp. 28-30 of MRID 49970602.

1 The Pike Creek surface water (pH 7.6; 114 mg equiv. CaCO₃/L; 184 ppm total dissolved solids) was collected from Pike Creek in Newark, Delaware, and characterized by Agvise Laboratories, Northwood, North Dakota (p. 21; Appendix 2, pp. 170-175).

2 Two ion transitions (±0.1) were monitored (quantitation and confirmatory, respectively) for each analyte as follows: m/z 373.1 \rightarrow 282.1 and m/z 373.1 \rightarrow 329.1 for famoxadone, m/z 256.9 \rightarrow 211.0 and m/z 256.9 \rightarrow 93.0 for IN-JS940, m/z 282.2 \rightarrow 195.0 and m/z 282.2 \rightarrow 239.2 for IN-KF015, m/z 389.1 \rightarrow 345.0 and m/z 389.1 \rightarrow 132.7 for IN-KZ007, and m/z 213.2 \rightarrow 170.9 and m/z 213.2 \rightarrow 153.0 for IN-H3310 (p. 23).

III. Method Characteristics

The LOQs for soil and water were 10 ppb ($10 \mu g/kg$) and 0.10 ppb ($0.1 \mu g/L$), respectively, in the ECM and ILV (pp. 10, 29 of MRID 49970601; p. 13 of MRID 49970602). In the ECM, the LOQ was defined as the lowest fortification level at which average recoveries of 70-120% and a RSD of <20% was achieved. No justification of the LOQ was reported in the ILV. The LODs for soil and water were 3 ppb ($3 \mu g/kg$) and 0.03 ppb ($0.03 \mu g/L$), respectively, in the ECM (See Reviewer's Comment #2). In the ECM, the LOD was reported as approximately one-third of the LOQ. The LODs were not reported in the ILV. No calculations or comparisons to background levels were reported to justify the LOQ and LOD for the method.

Analyte		Famoxadone (DPX-JE874)	IN-H3310	IN-JS940	IN-KF015	IN-KZ007		
Limit of Quantitation	ECM			10 mmh (10 mm/s)				
(LOQ)	ILV			10 ppb (10 µg/kg)				
Limit of Detection	ECM			3 ppb (3 µg/kg)				
(LOD)	ILV			Not reported				
Linearity (calibration curve r ² and concentration range)	ECM	$r^2 = 0.9990 (Q)$ $r^2 = 0.9978 (C)$	$r^2 = 0.9999 (Q)$ $r^2 = 0.9996 (C)$	$r^2 = 0.9999 (Q)$ $r^2 = 0.9998 (C)$	$r^2 = 0.9989 (Q)$ $r^2 = 0.9998 (C)$	$r^2 = 1.0000 (Q)$ $r^2 = 0.9992 (C)$		
	ILV ¹	$r^2 = 0.9966 (Q)$ $r^2 = 0.9916 (C)$	$r^2 = 0.9970 (Q)$ $r^2 = 0.9815 (C)$	$r^2 = 0.9970 (Q)$ $r^2 = 0.9968 (C)$	$r^2 = 0.9976 (Q)$ $r^2 = 0.9972 (C)$	$r^2 = 0.9988 (Q)$ $r^2 = 0.9958 (C)$		
	Concentration Range		(1.50-25.0 ng/mL)					
Repeatable	ECM^2		Y	Yes at LOQ and 10×LO	Q			
	ILV ^{3,4}		Y	Yes at LOQ and 10×LO	Q			
Reproducible		Yes at LOQ and 10×LOQ						
Specific	ECM	Yes, no matrix interferences were observed. Baseline was highly irregular in LOQ C ion chromatogram. ⁵	Yes, no matrix interferences were observed.	Yes, no matrix interferences were observed. Minor peak tailing was observed in most chromatograms.	Yes, no matrix interferences were observed. Baseline was irregular in LOQ C ion chromatogram. ⁵	Yes, no matrix interferences were observed.		
	ILV	Yes, no matrix interferences were observed.	Chromatogram. Chromatograms. Yes, no matrix interferences were interferences were observed. The LOQ C observed. ion peak was small					

Table 4a. Method Characteristics - Soil

Data were obtained from pp. 10, 17, 29; Table 3, pp. 32-35 (recovery data); Figure 6, pp. 45-46 (calibration curves); Figures 9-10, pp. 53-64 (chromatograms) of MRID 49970601; pp. 13, 28-30 (recovery data); Figure 11, pp. 113-122 (calibration curves); Figures 12-16, pp. 123-137 (chromatograms); Figure 22, pp. 153-162 (reagent blank chromatograms) of MRID 49970602. Q = Quantitation ion transition; C = Confirmatory ion transition.

1 Correlation coefficients (r²) values were reviewer-calculated from r values provided in the study report (Figure 11, pp. 113-122 of MRID 49970602; DER Attachment 2).

2 In the ECM, Drummer clay loam soil (25% sand, 41% silt, 34% clay; pH 6.5; 5.6% organic matter), collected from Rochelle, Illinois, and Nambsheim sandy loam soil (60% sand, 30% silt, 10% clay; pH 7.5; 3.8% organic matter), collected from Nambsheim, Germany, were used (p. 19 of MRID 49970601). Soil characterization was not specified as USDA.

3 In the ILV, Sassafras sandy loam soil (62% sand, 29% silt, 9% clay; pH 5.1 in 1:1 soil:water; 2.2% organic matter), collected from Pike Creek in Newark, Delaware, was used (USDA soil characterization; p. 21; Appendix 2, pp. 170-173 of MRID 49970602).

4 The ILV validated the method after one trial with insignificant modifications to the analytical instrumentation (p. 31 of MRID 49970602). 5 Based on Figure 9, p. 56 and Figure 10, p. 62 of MRID 49970601. Linearity is satisfactory when $r^2 \ge 0.995$.

Table 4b. Method Characteristics - Water

Analyte		Famoxadone (DPX-JE874)	IN-H3310	IN-JS940	IN-KF015	IN-KZ007				
Limit of Quantitation	ECM			0.10 pph (0.1 µg/L)						
(LOQ)	ILV		0.10 ppc (0.1 µg/2)							
Limit of Detection	ECM			0.03 ppb (0.03 µg/L)						
(LOD)	ILV			Not reported						
x · · · · ·	ECM	$r^2 = 0.9985 (Q)$ $r^2 = 0.9951 (C)$	$r^2 = 0.9996 (Q)$ $r^2 = 0.9989 (C)$	$r^2 = 0.9986 (Q)$ $r^2 = 0.9991 (C)$	$r^2 = 0.9990 (Q)$ $r^2 = 0.9993 (C)$	$r^2 = 0.9998 (Q)$ $r^2 = 0.9992 (C)$				
Linearity (calibration curve r^2 and concentration range)	ILV^1	$r^2 = 0.9874 (Q)$ $r^2 = 0.9831 (C)$	$r^2 = 0.9980 (Q)$ $r^2 = 0.9968 (C)$	$r^2 = 0.9986 (Q)$ $r^2 = 0.9992 (C)$	$r^2 = 0.9986 (Q)$ $r^2 = 0.9958 (C)$	$r^2 = 0.9984 (Q)$ $r^2 = 0.9960 (C)$				
concentration range)	Concentration Range		(1.80-30.0 ng/mL)							
Repeatable	ECM ²		Yes at LOQ and 10×LOQ							
	ILV ^{3,4}	Yes at LOQ and 10×LOQ								
Reproducible		Yes at LOQ and 10×LOQ								
Specific	ECM	Yes, no matrix interferences were observed. The LOQ C ion peak was very small; peak height was equivalent to baseline peak heights. ⁵	Yes, matrix interferences were <12% of the LOQ in the Q ion chromatograms (based on peak area). The LOQ C ion peak was small and peak integration was irregular. ⁵	Yes, no matrix interferences were observed. Minor peak tailing was observed in most chromatograms.	Yes, no matrix interferences were observed.					
ILV		Yes, no matrix interferences were observed.	Yes, no matrix interferences were observed. The LOQ C ion peak was small but clearly resolved.	Yes, no m	atrix interferences were	e observed.				

Data were obtained from pp. 10, 17, 29; Table 4, pp. 36-39 (recovery data); Figure 6, pp. 47-48 (calibration curves); Figures 11-12, pp. 65-76 (chromatograms) of MRID 49970601; pp. 13, 28-30 (recovery data); Figure 11, pp. 113-122 (calibration curves); Figures 17-22, pp. 138-162 (chromatograms & reagent blank chromatograms) of MRID 49970602. Q = Quantitation ion transition; C = Confirmatory ion transition.

- 1 Correlation coefficients (r²) values were reviewer-calculated from r values provided in the study report (Figure 11, pp. 113-122 of MRID 49970602; DER Attachment 2).
- 2 In the ECM, Kemblesville well water (pH 7.6; 68 mg equiv. CaCO₃/L; 222 ppm total dissolved solids), collected from Kemblesville, Pennsylvania, and White Clay Creek Water (pH 8.1; 144 mg equiv. CaCO₃/L; 254 ppm total dissolved solids), collected from White Clay Creek, Newark, Delaware, were used (p. 19 of MRID 49970601).
- 3 In the ILV, Pike Creek surface water (pH 7.6; 114 mg equiv. CaCO₃/L; 184 ppm total dissolved solids), collected from Pike Creek in Newark, Delaware, was used (p. 21; Appendix 2, pp. 174-175 of MRID 49970602).

4 The ILV validated the method after one trial with insignificant modifications to the analytical instrumentation (p. 31 of MRID 49970602).

5 Based on Figure 11, p. 68 and Figure 12, p. 74 of MRID 49970601.

Linearity is satisfactory when $r^2 \ge 0.995$.

IV. Method Deficiencies and Reviewer's Comments

- 1. The LOQ in water (0.10 μ g/L) is near but greater than the lowest toxicological level of concern in water (0.085 μ g/L), which is the daphnid chronic toxicity NOEC (MRID 44946313).
- 2. In the ILV, linearity was unsatisfactory ($r^2 < 0.995$) for the quantitative and confirmatory ion analyses of famoxadone [$r^2 = 0.9874$ (Q); $r^2 = 0.9831$ (C)] in water and the confirmatory ion analyses of famoxadone ($r^2 = 0.9916$) and IN-H3310 ($r^2 = 0.9815$) in soil (Figure 6, pp. 45-48 of MRID 49970601). The reviewer noted that a confirmatory method is not always required when LC/MS/MS or GC/MS/MS is the primary identification method.
- 3. It could not be determined if the ILV was provided with the most difficult matrices with which to validate the method. For the ILV soil and water validations, only one matrix was tested versus two matrices tested in ECM. The ILV soil matrix, sandy loam soil, had a lower clay percentage than either of the ECM soil matrices. The hardness of the ILV surface water matrix was equivalent to the ECM surface water matrix, but the total dissolved solids was less than that of the ECM surface water matrix.
- 4. The estimations of LOQ and LOD in ECM and ILV were not based on scientifically acceptable procedures as defined in 40 CFR Part 136 ILV (pp. 10, 29 of MRID 49970601; p. 13 of MRID 49970602). In the ECM, the LOQ was defined as the lowest fortification level at which average recoveries of 70-120% and a RSD of <20% was achieved. No justification of the LOQ was reported in the ILV. In the ECM, the LOD was reported as approximately one-third of the LOQ. The LODs were not reported in the ILV. No calculations or comparisons to background levels were reported to justify the LOQ and LOD for the method.
- 5. In the ECM representative chromatograms for the soil analyses, the baseline was highly irregular in LOQ confirmatory ion chromatogram for famoxadone, especially in the case of clay loam soil (Figure 9, p. 56; Figure 10, p. 62 of MRID 49970601). Also, the baseline was also irregular in LOQ confirmatory ion chromatogram for IN-KF015, especially in the case of sandy loam soil. The reviewer noted that a confirmatory method is not always required when LC/MS/MS or GC/MS/MS is the primary identification method. Minor peak tailing was observed for IN-JS940 in most soil chromatograms.

In the ECM representative chromatograms for the water analyses, the famoxadone LOQ confirmatory ion peak was very small; the analyte peak height was equivalent to baseline peak heights (Figure 11, p. 68; Figure 12, p. 74 of MRID 49970601). Also, the IN-H3310 LOQ confirmatory ion peak was small and peak integration was irregular. The reviewer noted that a confirmatory method is not always required when LC/MS/MS or GC/MS/MS is the primary identification method.

6. In the ECM, the LODs for soil and water were reported as $0.3 \mu g/kg$ and $0.03 \mu g/L$, respectively; however, the reviewer reported the LOD for soil as $3 \mu g/kg$ since the ECM

reported that the LOD was considered to be approximately one-third of the LOQ (p. 29 of MRID 49970601). The reviewer determined that $0.3 \mu g/kg$ was a typographical error.

- 7. The reviewer noted that the RSDs for the famoxadone LOQ confirmation ion transitions in sandy loam soils differed significantly from the RSDs for the famoxadone LOQ quantitative ion transitions in the ECM (RSD 7.8% Q, 17.6% C) and ILV (RSD 3% Q, 15% C; Table 3, pp. 32-35 of MRID 49970601; pp. 28-30 of MRID 49970602).
- 8. Communications between the ILV and study monitor were summarized as 1) clarification/approval of the protocol and method, 2) acquisition of analytical standard, and 3) approval of final ILV results (p. 31 of MRID 49970602). The full list of communications was maintained with the study raw data.
- 9. In the ECM, it was reported that the standards and samples were stable in organic solutions for up to 1 month of refrigerated storage ($4 \pm 2^{\circ}$ C; p. 30 of MRID 49970601). Extracts for LC/MS/MS should be used within 48 hours or prepared again.
- 10. It was reported for the ILV that one sample set (two controls, five LOQ fortifications, and five 10×LOQ fortifications) required one working day (8 hours) with LC-ESI-MS/MS performed unattended (p. 31 of MRID 49970602). The reported time requirement was the same in the ECM (pp. 29-30 of MRID 49970601).

V. References

- U.S. Environmental Protection Agency. 2012. Ecological Effects Test Guidelines, OCSPP 850.6100, Environmental Chemistry Methods and Associated Independent Laboratory Validation. Office of Chemical Safety and Pollution Prevention, Washington, DC. EPA 712-C-001.
- 40 CFR Part 136. Appendix B. Definition and Procedure for the Determination of the Method Detection Limit-Revision 1.11, pp. 317-319.

Attachment 1: Chemical Names and Structures Famoxadone (DPX-JE874)

IUPAC Name:	(RS)-3-anilino-5-methyl-5-(4-phenoxyphenyl)-1,3-oxazolidine-2,4-dione
CAS Name:	5-Methyl-5-(4-phenoxyphenyl)-3-(phenylamino)-2,4-oxazolidinedione
CAS Number:	131807-57-3
SMILES String:	c1cc(Oc2ccccc2)ccc1C3(C)C(=O)N(Nc4ccccc4)C(=O)O3

IN-H3310

IUPAC Name: CAS Name: CAS Number: SMILES String: 1-(4-Phenoxyphenyl)ethanone Not reported Not available Not found

IN-JS940 IUPAC Name: CAS Name: CAS Number: SMILES String:

Not reported α -Hydroxy- α -methyl-4-phenoxybenzeneacetic acid Not available Not found

ΟН

IN-KF015IUPAC Name:5-Methyl-5-(4-phenoxyphenyl)-1,3-oxazolidine-2,4-dioneCAS Name:Not reportedCAS Number:Not availableSMILES String:Not found

IN-KZ007		
IUPAC Name:	Not reported	
CAS Name:	5-[-(4-Hydroxyphenoxy)phenyl]-5-methyl-3-(phenylamino oxazolidinedione)-2,4-
CAS Number:	Not available	
SMILES String:	Not found	
	HO	

