1. Introduction and Summary

1.1 Scope

The analytical procedure described is suitable for the determination of residues of tralkoxydim (Figure 1) in environmental water samples using an external standardisation procedure. The limit of quantification has been set at 0.05 µg l⁻¹.

Figure 1: : Tralkoxydim

IUPAC Name : 2-[1-(ethoxyimino)propyl]-3-hydroxy-5-mesitylcyclohex-

2-enone

CAS Number : 87820-88-0

R Number : R162604

$$H_3C$$
 CH_3
 OH
 $N-O$
 CH_3
 CH_3

1.2 Method Summary

An analytical method has been developed and validated for the determination of tralkoxydim in environmental water samples. Water is passed through an Oasis® HLB solid phase extraction cartridge (SPE) on which residues of tralkoxydim are retained. The analyte is eluted using ethyl acetate. Final determination is by high performance liquid chromatography coupled to a triple quadrupole mass spectrometer (HPLC-MS) operating in single ion monitoring mode (SIM). The limit of quantification (LOQ) is 0.05 µg l⁻¹.

2. Materials

The recommended equipment and reagents are described in Appendices 1 and 2. Equipment with equivalent performance specifications and reagents of comparable purity can be substituted provided that they can be shown to be suitable.

2.1 Apparatus

See Appendix 1 for a list of apparatus used during this method.

REFERENCE COPY

2.2 Reagents

All solvents and other reagents must be of high purity, e.g. glass distilled/HPLC grade solvents and analytical grade reagents. Particular care must be taken to avoid contamination of the reagents used. See Appendix 2 for a list of reagents used in this method.

2.3 Preparation of Analytical Standards

It is recommended that the following precautions should be taken when weighing the analytical materials.

- 1. Ensure good ventilation.
- 2. Wear gloves and laboratory coat.
- 3. Prevent inhalation and contact with mouth.
- 4. Wash any contaminated area immediately.

Weigh out accurately, using a five figure balance, sufficient tralkoxydim analytical standard to allow dilution in acetone to give a 1000 μ g ml⁻¹ stock solution in a volumetric flask. This standard should then be diluted by serial dilution to 0.1 μ g ml⁻¹ in acetone. These standards should be used for the fortification of the samples prior to extraction and HPLC-MS analysis.

When not in use, always store the standard solutions in a refrigerator at \leq 7°C to prevent decomposition and/or concentration of the standard. Tralkoxydim analytical standards have been proven to be stable in acetone for four months when stored at \leq 7°C. Analytical standards should be replaced with freshly prepared standards after this time.

2.4 Safety Precautions and Hazards

The following information is included as an indication to the analyst of the nature and hazards of the reagents used in this procedure. If in any doubt, consult the appropriate safety manual (e.g. ZENECA Laboratory Safety Manual) which contains recommendations and procedures for handling chemicals or a monograph such as 'Hazards in the Chemical Laboratory', Edited by S G Luxon, The Chemical Society, London (Ref. 1).

2.5 Solvent Hazards

	Acetone	Ethyl acetate	Acetonitrile
Harmful Vapour	✓	/	
Highly Flammable	* * /		· /
Harmful by Skin Absorption	×	×	1
ZENECA Divisional Toxicity Class	4	4	3
OES Short Term (mg m ⁻³)	3560	n/a	105
OES Long Term (mg m ⁻³)	1780	1400	70

In all cases avoid breathing vapour. Avoid contact with eyes and skin.

Tralkoxydim has been assigned to ZENECA Divisional Toxicity Classification 3. The toxicity classification scale rates highly toxic chemicals as class 1 and non toxic chemicals as class 5.

2.6 Time Required for Analysis

The methodology is normally performed with a batch of 20 samples over the course of 1 day.

2.7 Work Stoppages

It is recommended that analysis is completed within a single day.

3. Analytical Procedure

3.1 Sample Collection

Water samples should be collected from a source using sampling techniques consistent with those employed for low level residue analysis. Ideally, samples should be collected directly into high density polyethylene bottles (500 ml volume or greater).

3.2 Sample Preparation Prior to Solid Phase Extraction Clean Up.

Accurately measure out 500 ml of each water sample to be analysed, using a measuring cylinder, and transfer to a suitable container (e.g. 500 ml round bottom flask).

Note: Should 500 ml water not be available, the stated LOQ of 0.05 μ g l⁻¹ may not be achievable .

REFERENCE COPY

- b) At least one untreated control and two control samples fortified with known amounts of tralkoxydim in acetone (not more than 0.5 ml) should be analysed with each batch of samples using the same procedure to enable verification of the method and recovery corrections to be made.
- c) Filter samples through two glass fibre filters into a suitable container (e.g. 500 ml round bottom flask) to remove particulate matter and prevent blockage of SPE columns.
- d) Immediately prior to loading samples onto the SPE columns, add glacial acetic acid (2.5 ml) to each sample and mix thoroughly. If less than 500 ml sample volume has been taken, adjust volume of acid accordingly e.g. add 0.5 ml of acetic acid to 100 ml water.

3.3 Sample Clean-up

- a) Take one Oasis[®] HLB (200 mg, 6 ml) solid phase extraction cartridge for each sample to be analysed and place on a suitable vacuum manifold (e.g. IST Vacmaster). Add methanol (2 ml) and draw through under vacuum to the level of the top frit at a rate of approximately 2 ml min⁻¹, discarding the column eluate. Do not allow the cartridges to become dry. Add water (2 ml) to the top of each cartridge and draw through under vacuum to the level of the top frit at the same rate, again discarding the column eluates. Do not allow the cartridges to become dry.
- b) Attach a column reservoir to the top of each column using a suitable column connector.
- c) Load samples from section 3.2 (d) onto the columns and draw through under low vacuum (approx. 200 mbar) at a rate of ~5 ml min⁻¹. Discard the column eluates. Tralkoxydim is retained on the column.
- d) Remove column reservoirs and adaptors. Add ultra pure water (2 x 2 ml) to the top of each cartridge and draw through under vacuum to the level of the top frit at a rate of approximately 2 ml min⁻¹. Discard the wash. Remove any remaining droplets of water adhering to the inside of the cartridge with absorbent tissue. And dry the cartridges under high vacuum (≤500 mbar) for approximately 30 minutes.

Note: Where achievable vacuums are less than specified or apparatus does not allow sufficient air flow through the cartridges, longer drying times may be required.

- e) Add hexane to the top of each cartridge and draw through under vacuum to the level of the top frit at a rate of approximately 2 ml min⁻¹. Remove excess hexane under vacuum (≤500 mbar), discarding the wash.
- f) Place collection tubes (10 ml) under each port, as required, in the manifold rack. Add ethyl acetate (2 ml) to the top of each cartridge and draw through under vacuum to the level of the top frit at a rate of approximately 2 ml min⁻¹ to elute tralkoxydim.
- g) Evaporate the samples to dryness in a heating block at 40°C under a stream of dry air and dissolve the residual material in acetonitrile (200 µl) with ultrasonication. Add ultra pure water (800 µl) and mix with ultrasonication. Transfer the samples to appropriate autosampler vials for analysis by HPLC-MS. The sample concentration factor is 500.

Note: The above SPE procedure has been developed using columns from the stated manufacturer, however, it is possible to carry out the procedure using similar columns from other manufacturers. In all cases it is strongly recommended that the elution profile is checked prior to commencing analysis. This will rule out any variation between manufacturers' products and between batches.

3.4 Preparation of Calibration Standards in the Presence of the Matrix

For HPLC-MS final determination it has been found that there are matrix enhancement and suppression effects. These were found to be approximately 30% enhancement for drinking water and sea water. River and ground water produced a suppression of approximately 75% and 40% respectively. To compensate for these effects a calibration standard in the presence of matrix can be prepared if deemed necessary. The decision to use a matrix standard is left to the discretion of the study director.

To prepare a matrix standard, take a second untreated control sample through the entire procedure as described in sections 3.2 and 3.3, up to point 3.3 (f). To prepare, for example, a 0.025 μ g ml⁻¹ matrix matched standard, add 25 μ l cf a 1 μ g ml⁻¹ tralkoxydim in acetone to the sample at point 3.3 (f). Evaporate to dryness under a stream of clean, dry air in a heating block at 40°C. Dissolve the residual material in 200 μ l acetonitrile and ultrasonicate the solution thoroughly. Add ultra pure water (800 μ l) and mix with ultrasonication. Transfer the samples to appropriate autosampler vials for analysis by HPLC-MS.

Page 20: TMJ4401B

4. Final Determination by HPLC-MS (SIM)

4.1 Equipment

The following conditions have been found to be suitable for analysis of tralkoxydim in water in this laboratory. Other instruments can be equally used, however optimisation may be required to achieve the desired separation and sensitivity. The operating manuals for the instruments should always be consulted to ensure safe and optimum use.

Mass spectrometer : Hewlett Packard 1050 quaternary pump;

LC pump : Hewlett Packard 1050 automatic sampler;

Autosampler : Hewlett Packard 1050 automatic sampler;

Degasser : Hewlett Packard 1050 degasser;

Column oven : Hewlett Packard 1050 column compartment

Chromatography Conditions

Column : Spherisorb S3ODS1 50 x 3.2 mm

Column temperature : 40°C

Mobile phase : Solvent A = Ultra pure water + 0.2% glacial

acetic acid.

Solvent B = Acetonitrile

Gradient conditions

Time (min)	% A	% B
0.00	85	15
0.5	85	15
6.0	35	65
6.1	5	95
8.5	5	95
8.6	85	15
.10.0	85	15 ₋

Stop Time : 10 minutes

Flow rate : 1.5 ml min⁻¹

Injection volume : $100 \mu l$

Injection protocol : Analyse calibration standard after 3 to 4

sample injections.

Tralkoxydim retention time : 6.28 minutes

Mass Spectrometer Operating Conditions

Instrument : PE Sciex API III, triple quadrupole MS-

MS

Ionisation mode : Ionspray (ESI) positive ion mode

Acquisition type : Single Ion Monitoring (SIM): m/z 330

protonated molecular ion.

Protonated molecular ions m/z = 330 are generated in the ion source then monitored and used for quantitative analysis.

Typical chromatograms are shown in Appendix 4, Figures 2-17

Should confirmation of residues be required by an alternative technique, samples may also be analysed by HPLC-MS-MS using the same instrument and chromatography conditions, but operating in Single Reaction Monitoring (SRM) mode.

Protonated molecular ions m/z 330 are generated in the ion source are selected and subjected to further fragmentation by collisional activation. The most abundant ion, m/z 138 in the resulting daughter spectrum is then monitored and used for quantitative analysis.

Typical chromatograms for HPLC-MS-MS (SRM) are shown in Appendix 4, Figures 18-21.

5. Calculation of Results

Tralkoxydim residues may be calculated in $\mu g l^{-1}$ for each sample using a mean standard response from each of the injections bracketing the sample as follows.

- a) Make repeated injections of a standard containing tralkoxydim at an appropriate concentration into the HPLC-MS operated under conditions as described in Section 4. When a consistent response is obtained, measure the peak area obtained for tralkoxydim.
- b) Make an injection of each sample solution and measure the peak heights or areas of the peaks corresponding to tralkoxydim.
- c) Re-inject the standard solution after a maximum of four injections of sample solutions.
- d) Calculate the tralkoxydim residue in the sample, expressed as µg l⁻¹, using a mean standard response from each of the injections bracketing the sample as follows.

Residue =
$$\frac{PK \text{ area (SA)}}{PK \text{ area (STD)}} \times \frac{Standard Conc.}{Sample Conc.} \times 1000$$

PK area (SA) = Peak response for sample

PK area (STD) = Average peak response for bracketing standards

Standard Conc. = Concentration of tralkoxydim standard (µg ml⁻¹)

Sample Conc. = Sample concentration factor

Page 23 : TMJ4401B

Example calculation of tralkoxydim recovery from drinking water:

PK area (STD) =
$$(2645391 + 2824314) \div 2$$

= 2734852

PK area (SA) = Peak response for sample

= 1195863

Standard Conc. = $0.05 (\mu g \text{ ml}^{-1})$

Sample Conc. = 500

Residue =
$$\frac{PK \text{ area (SA)}}{PK \text{ area (STD)}} \times \frac{Standard Conc.}{Sample Conc.} \times 1000$$

Residue =
$$\frac{1195863}{2734852} \times \frac{0.05}{500} \times 1000$$

Residue = $0.044 \mu g \, l^{-1}$

To calculate the percentage recovery:

% Recovery =
$$\frac{\text{Residue } (\mu \text{g l}^{-1})}{\text{Fortification Level } (\mu \text{g l}^{-1})} \times 100$$

% Recovery =
$$\frac{0.044}{0.050} \times 100$$

% Recovery = 88%

If residues need to be corrected for average percentage recovery, then the equation below should be used.

Corrected Residue =
$$\frac{\text{Residue} \times 100}{\text{Average percentage Recovery}} \quad (\mu \text{g l}^{-1})$$

When the average percentage recovery is greater than 100%, the sample residue values should not be corrected.

6. Control and Recovery Experiments

Control and external recovery experiments should be completed as section 3 for each set of samples analysed. Provided the recovery values are acceptable they may be used to correct any tralkoxydim residues found.

The levels of external recoveries should be decided by the residue levels expected. A minimum of one control and two external recovery experiments should be run alongside each set of samples analysed (that is untreated samples accurately fortified with a known amount of tralkoxydim prior to extraction) in the range of 0.05 - 0.5 µg l⁻¹.

Recovery data are generally considered acceptable when the mean values are between 70% and 110% and with a coefficient of variation of <20%.

7. Interference

7.1 Matrix

For HPLC-MS final determination it has been found that there are matrix enhancement and suppression effects. These were found to be approximately 30% enhancement for drinking water and sea water. River and ground water produced a suppression of approximately 75% and 40% respectively. To compensate for these effects a calibration standard in the presence of matrix can be prepared if deemed necessary. The decision to use a matrix standard is left to the discretion of the study director.

7.2 Reagent and Solvent Interference

Using high purity solvents and reagents no reagent interference has been found.

7.3 Labware Interference

No labware interference has been observed. To eliminate the chance of any spot contamination it is recommended to thoroughly clean the solid phase extraction manifold and the sample concentration manifold before each use.

Appendix 1: Apparatus

UK Suppliers

Measuring cylinders, 500 ml size, available from Fisher Scientific UK, Bishop Meadow Road, Loughborough, Leicestershire LE11 5RG, UK.

Whatman Glass microfibre filters GF/C size 90 mm, available from Fisher Scientific UK, Bishop Meadow Road, Loughborough, Leicestershire LE11 5RG, UK.

Buchner porcelain funnel, size 96 mm diameter, available from Fisher Scientific UK, Bishop Meadow Road, Loughborough, Leicestershire LE11 5RG, UK.

Filtercones for Buchner funnel, available from Fisher Scientific UK, Bishop Meadow Road, Loughborough, Leicestershire LE11 5RG, UK.

Quickfit adaptor with 'T'-connection, available from Fisher Scientific UK, Bishop Meadow Road, Loughborough, Leicestershire LE11 5RG, UK.

Round Bottomed flasks, 500 ml size, available from Fisher Scientific UK, Bishop Meadow Road, Loughborough, Leicestershire LE11 5RG, UK.

Isolute Vacmaster-20[™] sample processing station, available from Jones Chromatography Ltd., Tir-y-Berth Industrial Estate, New Road, Hengoed, Mid Glamorgan CF8 8AU, UK.

Oasis[®] HLB 6 ml 200 mg size solid phase extraction columns available from Waters Ltd., The Boulevard, Blackmoor Lane, Croxley Green, Watford, Herts, WD8 8YW

70 ml column reservoirs part numbers 120-1009-F available from Jones Chromatography Ltd., Tir-y-Berth Industrial Estate, New Road, Hengoed, Mid Glamorgan CF8 8AU, UK.

Column connection adapters, available from Jones Chromatography Ltd., Tir-y-Berth Industrial Estate, New Road, Hengoed, Mid Glamorgan CF8 8AU, UK.

Disposable borosilicate glass test tubes 10 ml size, available from Fisher Scientific UK, Bishop Meadow Road, Loughborough, Leicestershire LE11 5RG, UK.

Techne Dri-block 3D heating block, available from Fisher Scientific UK, Bishop Meadow Road, Loughborough, Leicestershire LE11 5RG, UK. Part number BLD-750-010Y.

Ultrasonic bath e.g. Ultrawave U300/D, available from Fisher Scientific UK, Bishop Meadow Road, Loughborough, Leicestershire LE11 5RG, UK.

Crimp cap autosampler vials and caps available from Hewlett Packard Ltd., Cain Road, Bracknell, Berkshire RG12 1HN, UK.

PE Sciex AP III triple quadrupole mass spectrometer equipped with interchangeable ionspray ISP and atmospheric pressure chemical ionisation (ACPI, heated nebuliser) sources, available from Perkin Elmer Ltd, Beaconsfield Buckinghamshire, UK

Reversed phase HPLC column Spherisorb S3ODS available from Jones Chromatography Ltd., Tir-y-Berth Industrial Estate, New Road, Hengoed, Mid Glamorgan CF8 8AU, UK.

US Suppliers

Measuring cylinders, 500 ml size, available from Fisher Scientific, Liberty Lane, Hampton, NH 03842, USA.

Whatman Glass microfibre filters GF/C size 90 mm, available from Fisher Scientific, Liberty Lane, Hampton, NH 03842, USA.

Buchner porcelain funnel, size 96 mm diameter, available from Fisher Scientific, Liberty Lane, Hampton, NH 03842, USA.

Filtercones for Buchner funnel, available from Fisher Scientific, Liberty Lane, Hampton, NH 03842, USA.

Quickfit adaptor with 'T'-connection, available from Fisher Scientific, Liberty Lane, Hampton, NH 03842, USA.

Round Bottomed flasks, 500 ml size, available from Fisher Scientific, Liberty Lane, Hampton, NH 03842, USA.

Isolute Vacmaster-20™ sample processing station, available from Jones Chromatography USA Ltd., PO Box 280 329, Lakewood, Colorado, 8022-0329.

Oasis[®] HLB 6 ml 200 mg size solid phase extraction columns available from Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757.

70 ml column reservoirs part numbers 120-1009-F available from Jones Chromatography USA Ltd., PO Box 280 329, Lakewood, Colorado, 8022-0329.

Column connection adapters, available from Jones Chromatography USA Ltd., PO Box 280 329, Lakewood, Colorado, 8022-0329.

Disposable borosilicate glass test tubes 10 ml size, available from Fisher Scientific, Liberty Lane, Hampton, NH 03842, USA.

Techne Dri-block 3D heating block, available from Fisher Scientific, Liberty Lane, Hampton, NH 03842, USA.

Ultrasonic bath e.g. Ultrawave U300/D, available from Fisher Scientific, Liberty Lane, Hampton, NH 03842, USA.

Crimp cap autosampler vials and caps available from Hewlett Packard Co., PO Box 1000, Avondale, PA 19311-1000.

PE Sciex AP III triple quadrupole mass spectrometer equipped with interchangeable ionspray ISP and atmospheric pressure chemical ionisation (ACPI, heated nebuliser) sources, available from Perkin Elmer Ltd., 761 Main Avenue, Norwalk, CT 06859, USA.

Reversed phase HPLC column Spherisorb S3ODS1 available from Jones Chromatography USA Ltd, PO Box 280 329, Lakewood, Colorado, 8022-0329.

Appendix 2: Reagents

All solvents and other reagents must be of high purity, e.g. glass distilled/HPLC grade solvents and analytical grade reagents. Particular care must be taken to avoid contamination of the reagents used.

UK Suppliers

Glacial acetic acid, available from Fisher Scientific UK, Bishop Meadow Road, Loughborough, Leicestershire LE11 5RG, UK.

Hexane, ethyl acetate and acetonitrile, available from Romil Ltd., The Source, Convent Drive, Waterbeach, Cambridge CB5 9QT, UK.

Ultra pure water from a laboratory water purification system e.g. Elga Maxima available from Elga Ltd., High Street, Lane End, High Wycombe, Bucks HP14 3JH, UK.

US Suppliers

Glacial acetic acid, available from Fisher Scientific, Liberty Lane, Hampton, NH 03842, USA. Hexane, ethyl acetate and acetonitrile, available from B & J Brand Solvents, from Scientific Products Division of Baxter Healthcare Corporation, USA (Tel: 312-689-8410).

Ultra-pure water from a laboratory water purification system available from e.g. Waters Corporation, Milford, MA, USA.