Introduction to the Underground **Injection Control** Program

Some Reminders 2018

- If you seek a course certificate, you must take the exam after the course.
 - A certificate is required to obtain a federal inspection credential
- Exam will:
 - Be open book
 - Need to be completed within 90 days
 - Be passed with a score of at least 70%
- If you do NOT seek a course certificate, you do not need to take the exam.

Objective

- Describe the foundation of the Underground Injection Control (UIC) program
 - Historical uses of injection wells
 - EPA's mandate under SDWA (Safe Drinking Water Act)
 - Mission of the UIC program
 - Regulatory timeline
 - Basic terminology

History Leading to UIC

- The need for lighting: whale oil replaced by kerosene
- 1859: "Colonel" Drake drills first oil well in Titusville, PA (70 feet) to refine into kerosene
- Co-produced brine waste problems begin
- No regulations existed
- Brine dumping was the norm
- This was also the beginning of the use of a "barrel" of oil = 42 gallons

Source: https://aoghs.org/petroleum-pioneers/american-oil-history/

History Leading to UIC

Source: https://en.wikipedia.org/wiki/Spindletop#/media/File:Lucas_gusher.jpg

1901: The center of oil and gas production moved to Texas Spindletop oilfield discovered near Beaumont, Texas Lucas gusher well: initial production was 100,000 barrels/day Started the petroleum era (according to Daniel Yergin)

Early Injection

- 1930s: Oil companies began injecting wastes into depleted reservoirs through converted oil production wells
- 1950s: Injection of hazardous chemical and steel industry wastes began
- 1960s: Injection practices increase sharply as the manufacturing of chemicals boomed

Cause for Concern

 1968: PA - Hammermill Paper Company's leak suspected to cause contamination five miles away

1974-75: TX - Velsicol Chemical Company injection well determined to have contaminated an underground source of drinking water

Basic Timeline

Early State programs regulate ground water discharges	States actively involved in ground water and surface water pollution issues	США	Fe re SDWA	First ederal UIC egulations	Additional Federal UIC regulations
1930s	1960s	1972	1974	1980	1986- 2010

Mission of the UIC Program

 The UIC program's mission is to protect underground sources of drinking water (USDW) from the subsurface emplacement of fluids.

UIC Terminology

- 809
- Primacy and Direct Implementation
- Regs: Title 40 of the Code of Federal Regulations (40 CFR) – written by EPA
- Statute: Safe Drinking Water Act (SDWA) – written by the U.S. Congress

ENVIRONMENTAL LAW STATUTES DIE-2017 Educational Editor

Selected

1974 SDWA - Basic UIC Concepts

 SDWA requires EPA to promulgate regulations to protect drinking water sources from contamination by underground injection

Selected

ENVIRONMENTAL LAW STATUTES 2016-2017 Educational Edition

- Defines:
 - Underground injection
 - Endangering drinking water sources
- Designed to be implemented by States

1974 SDWA -EPA Requirements

Mandates that EPA:

- Not unnecessarily interfere with oil and gas production
- Consider varying geologic, hydrologic, or historical conditions
- Avoid promulgating regulations that would unnecessarily disrupt existing State programs

Ninimum Statutory UIC Requirements

- The SDWA Part C requires EPA to develop a UIC program to prevent endangerment to USDWs. Minimum requirements must include
 prohibition against endangering drinking water sources,
 - permitting,
 - inspection,
 - monitoring,
 - record-keeping,
 - reporting

Statutory Definition: Underground Injection

The SDWA Sec. 1421 defines
 "Underground Injection" as follows
 Subsurface emplacement of fluids
 through well injection.

- Excludes
 - Gas storage injection

Hydraulic fracturing unless diesel fuel is used

Regulatory Definition of Well Injection

• Injection: Subsurface emplacement of fluids

CFR

 Well: A bored, drilled, or driven shaft, or a dug well or dug hole where the depth is greater than the largest surface dimension; or an improved sinkhole; or a subsurface distribution system.

Define Aquifer and USDW

- Aquifer: Geologic formation that is capable of yielding a significant amount of water to a well or spring
- Underground source of drinking water: An unexempted aquifer or portion of an aquifer that
 - Supplies any public water system or contains a quantity of ground water sufficient to supply a public water system; and either

CFR Protection of En

- Currently supplies drinking water for human consumption, or
- Contains fewer than 10,000 mg/L total dissolved solids

What's an Exempted Aquifer?

- It does not now serve as a drinking water (DW) source
- And it cannot now, and will not in the future serve as a DW source, because at least one of these four is true:
 - 1. It is mineral, hydrocarbon or geothermal energy bearing
 - 2. It is situated at a depth or location which makes recovery technically or economically impractical
 - 3. Is so contaminated and could not be treated economically for human consumption
 - 4. It is located above a Class III mining area subject to subsidence or collapse; or
- Its TDS content is between 3,000 and 10,000 mg/l and is not reasonably expected to supply a public water system.
- An aquifer exemption requires EPA concurrence

Changes From 1974 To **ENVIRONMENTAL** Present STATUTES 016-2017 Educational Editio

- SDWA: Addition of section 1425 applicable to oil and gas related wells in 1980
- Regs:
- Additional requirements for hazardous waste UIC wells in 1986 (Subpart G)
- Class V well regs added to Section 144 (Subpart G) in 1999.
- Class VI well regs added in 2010.

Selected

LAW

Structure of the Program: **Primacy Requirements** ENVIRONMENTAL STATUTES

Selected

LAW

- SDWA Sec. 1422 approval States/Tribes must promulgate requirements that are at least as stringent as EPA's:
- Must incorporate all the EPA regulatory requirements
- May be more stringent than EPA's regulations
- Primacy for Class VI wells must be under Sec. 1422

Structure of the Program: Selected **Primacy Requirements** ENVIRONMENTAL STATUTES

LAW

- SDWA Sec. 1425 approval (oil and gas) In lieu of the requirements of Sec. 1422 States must:
 - Demonstrate that the State UIC program is effective in preventing USDW endangerment
 - Requirements are typically similar to EPA requirement
 - Applies solely for Class II injection wells

Structure of the Program: UIC Primacy Delegation

States, territories, and tribes with UIC primacy

https://www.epa.gov/uic/primary-enforcement-authority-underground -injection-control-program#primacy_states

Obtaining Primacy

State/Tribe promulgates injection well regulations under own authority

State/Tribe applies for Primacy

Per SDWA, EPA must have a Direct Implementation program everywhere unless Primacy is given

Primacy granted if State/Tribal program meets or exceeds SDWA 1422 or 1425 (Class II only)

Granting Primacy is an EPA rule-making, requiring public notice and comment

Structure of the Program: Federal UIC Regulations

CFR

Protection of Environm

- 40 CFR Part 22 Enforcement Procedures
- 40 CFR Part 35 State and Tribal Financial Assistance
- 40 CFR Part 124 Public Participation Requirements for Permitting
- 40 CFR Part 144 Permitting and Program Requirements

Structure of the Program: Federal UIC Regulations

CFR

otection of Environm

- 40 CFR Part 145 Requirements and Procedures for State/Tribal Program Approval
- 40 CFR Part 146 UIC Criteria and Standards
- 40 CFR Part 147 List of State/Tribal UIC Programs
- 40 CFR Part 148 Hazardous Waste Injection Restrictions

Structure of the Program: Authorization by Rule and Permitting

- Some wells may be authorized by rule; permit not required if comply with basic requirements
- Some well owners or operators must apply for permits to drill and to operate
- All wells must submit inventory data
- All wells are subject to non-endangerment standard

Structure of the Program: Inspections

- EPA is authorized to inspect any facility subject to the UIC program (SDWA 1445)
- Types of inspections vary, based on status of wells and facility

Structure of the Program: Enforcement

- Enforcement tools available include:
 Informal enforcement actions
 - Formal enforcement actions for UIC violations (SDWA 1423)
 - Others (emergency authority SDWA 1431)

Good inspections lead to good enforcement Good inspections often help achieve compliance

Structure of the Program: Public Involvement in UIC

- SDWA mandates public involvement
- Opportunities include
 - Any rule-making
 - Public hearings and/or public comment for Primacy program award or revisions, permitting decisions, aquifer exemptions, and formal federal enforcement actions
 - Public information meetings may be held for permitting decisions and other Agency actions

Classes of Wells

- Six classes of wells are addressed in UIC regulations
- Generally categorized based on well purpose and depth
- Degree of endangerment potential generally varies with depth, injected fluid quality, and geologic setting

Well Classes - Basic

CFR

- Class I Industrial/Hazardous/Municipal
- Class II Oil and Gas
- Class III Subsurface Mining
- Class IV HW into/above USDW (banned*)
- Class V Other
- Class VI CO₂ geosequestration (new 2010)
- General: "Shallow" = Class IV, V; "Deep" = Class I, II, III, VI
- *Exceptions to the ban for Superfund/RCRA clean up wells

Well Class Inventory

Well Class	2017 National Inventory
Class I (Industrial, Hazardous, Municipal)	~800
Class II (Oil and Gas)	~184,000
Class III (Subsurface Mining)	~25,000
Class IV (BANNED HW into/above USDW)	<20
Class V (Other)	~520,000
Class VI (CO ₂ Geosequestration)	<10
TOTAL	~730,000

Source: https://www.epa.gov/uic/underground-injection-well-inventory /

URL:https://www.epa.gov/uic/underground-injection-control-well-classes

Class | Wells

Industrial (non-haz and haz), Municipal Extensive permitting requirements CI. I Haz - No-migration demonstration – 10,000 year demonstration Continuous annulus monitoring (except municipal) Internal MIT: - Haz- every year

Nonhaz - every five years

Frequent reporting (at least quarterly)

Class II Wells

Dispose of salt water produced with oil or natural gas production (II-D) Inject fluids for enhanced oil or gas recovery (II-R) Inject liquid hydrocarbons for storage (II-H)

Must be liquid at Std Temp and Pressure

Class II Wells, cont'd

Wells drilled prior to program approval may be rule-authorized until permitted May have multi-well area permits Wells must demonstrate mechanical integrity at least every 5 years Well owners and operators report well data annually

Class III wells

Used for solution mining minerals, such as salt, sulphur, uranium and copper

Inject chemical solutions, super-hot steam, or water into mineral formations

Hot injectate or water dissolves and mixes with minerals underground; mineral-saturated solution pumped to surface for mineral extraction

Injected fluids are frequently reused after some treatment

Class III Wells, cont'd

May have multi-well area permits

Wells drilled prior to program approval may be rule-authorized until permitted

Salt solution wells must demonstrate MI at least every 5 years

 Well owners and operators report well data quarterly

Class IV Wells

 Used to dispose of hazardous or radioactive waste into or above a formation which contains a USDW within 1/4 mile of the well

Prohibited

Class IV wells-Banned under all scenarios except as part of authorized hazardous waste cleanup activities

- One exception: wells that reinject into same formation treated ground water pursuant to approved CERCLA or RCRA clean-ups
- Voluntary site clean-ups not subject to exception

Class V Wells

Class V: All injection wells that do not meet the definitions of Classes I, II, III, IV or VI

Most are shallow and low-tech

Most inject into or above USDWs

Operators must submit inventory information

Must not endanger USDWs

Class V Wells - More

Class VI Wells

Newest Well Class

- Regulations Promulgated 12/20/2010
- Regulates the Sequestration of Carbon Dioxide (CO₂)
 - Requirements Similar to Class I Well Standards
 - Not the same as Class II enhanced oil recovery CO₂ injection wells

Specific Exclusions

- Injection wells on drilling platforms or elsewhere beyond State's territorial waters
- Wells used for injection of gas hydrocarbons for storage
- Hydraulic fracturing related to oil, gas or geothermal production, unless using diesel fuels

Specific Exclusions

Individual or single-family residential waste disposal systems (cesspools or septic systems) Non-residential cesspools or septic systems that receive only sanitary waste and serve fewer than 20 people per day Dug holes not used for subsurface fluid emplacement

Extra Slides

Other Federal Statutes Affecting UIC

- RCRA site regulation divided into above ground and below ground surface
 - Hazardous waste sites
 - Underground storage tanks
- CERCLA program overlap similar to RCRA

Other Federal Statutes Affecting UIC

- Toxic Substances Control Act PCB issues
- Clean Water Act storm water, antidegradation
- Emergency Planning and Community Right-to-Know Act - Toxic Release Inventory
- Federal Land Policy and Management Act - mining site requirements on Federal lands