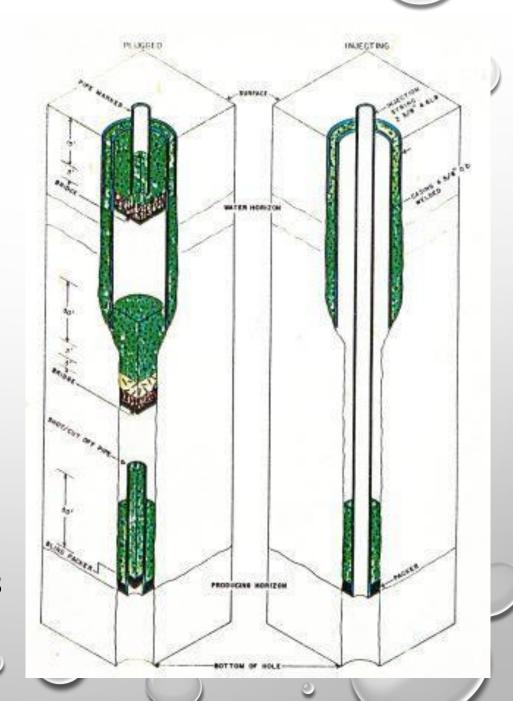
PLUGGING AND ABANDONMENT

CHUCK TINSLEY, EPA
UIC INSPECTOR TRAINING

JUNE, 2018

OUTLINE

- **♦ PURPOSE OF PLUGGING**
- **PLANNING THE INSPECTION**
- **EVALUATING PLUGGING DESIGN**
- **♦ PLUGGING MATERIALS**
- **PLACEMENT METHODS**
- **ABANDONMENT**


PURPOSE OF P&A

- ♦ FOR CLASSES I, II, AND III:
 - ♠ PREVENT THE MOVEMENT OF FLUIDS EITHER INTO OR BETWEEN USDWS.
 - ♦ PLUGGING RESTORES THE ORIGINAL CONFINEMENT
 - ♦ ACCOMPLISHED BY SETTING CEMENT PLUGS IN THE WELL
 - ♦ PLUGS SHOULD LAST INDEFINITELY
- ♦ THE INSPECTOR WITNESSES THE PLUGGING ACTIVITIES TO ENSURE THEY WERE DONE PROPERLY

PURPOSE OF P&A

- An unplugged well leaves pathways for fluid migration along the wellbore
- Proper plugging blocks all potential pathways
- Identify ALL potential pathways place plugs to prevent any fluid migration into USDWs

P&A OPERATIONS

- **♦IN THE OFFICE:**
 - **PLANNING**

- **♦IN THE FIELD:**
 - **WELL PREPARATION**
 - **WELL PLUGGING**
 - **ABANDONMENT**

PLANNING KNOW THE WELL CONDITIONS

- CONSTRUCTION DETAILS
 - ♦ CASING STRING SIZES, GRADES, DEPTHS
 - **♦** CEMENTING PROGRAM BOND LOGS
 - ♦ PERFORATED/OPEN HOLE SECTIONS

 - ♦ LOST CIRCULATION ZONES

Plugging design will in part depend on these factors

- ♦ USDWS AND OTHER FLUID-BEARING **ZONES**
- ♠ COMMERCIAL MINERAL RESERVES.

Plugs required to isolate these zones

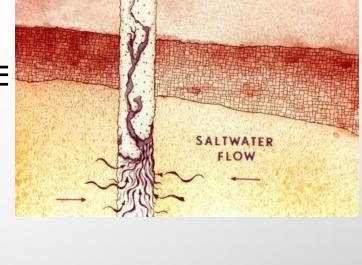
- MECHANICAL CONDITION

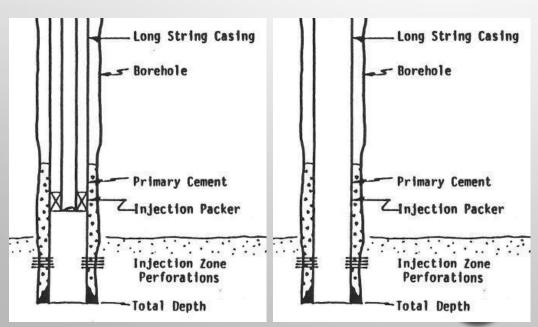
 - CASING COLLAPSE? CEMENT CHANNELING?
 - JUNK IN THE HOLE?
 - REMEDIAL ACTION NECESSARY?

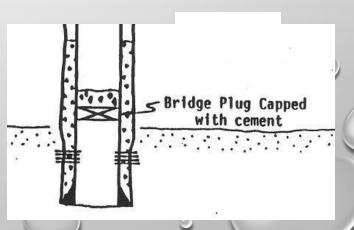
May perform MITs or other well logs to determine integrity

Additional depths may need to be isolated

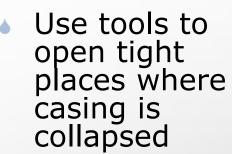
WELL PREP

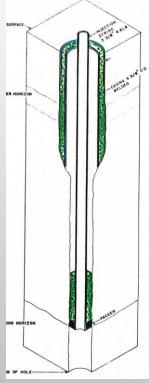

- **♦ PERFORM ANY REQUIRED TESTING**
- ♦ MOVE IN WORKOVER RIG AND REMOVE TUBING/PACKER, IF POSSIBLE
- **♦ REMEDIAL OPERATIONS**
 - BIT/SCRAPER OR WIPER RUNS TO IMPROVE BONDING
 - ◆ PLUG-BACK THE INJECTION ZONE (IF NECESSARY OR DESIRABLE AT THIS STAGE)
 - ♠ REPAIR OR REMOVE DAMAGED OR UNCEMENTED/POORLY CEMENTED CASING
- ♦ CIRCULATE THE HOLE WITH WEIGHTED FLUID TO ACHIEVE STATIC EQUILIBRIUM

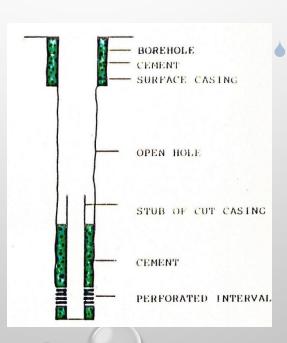



WELL PREP

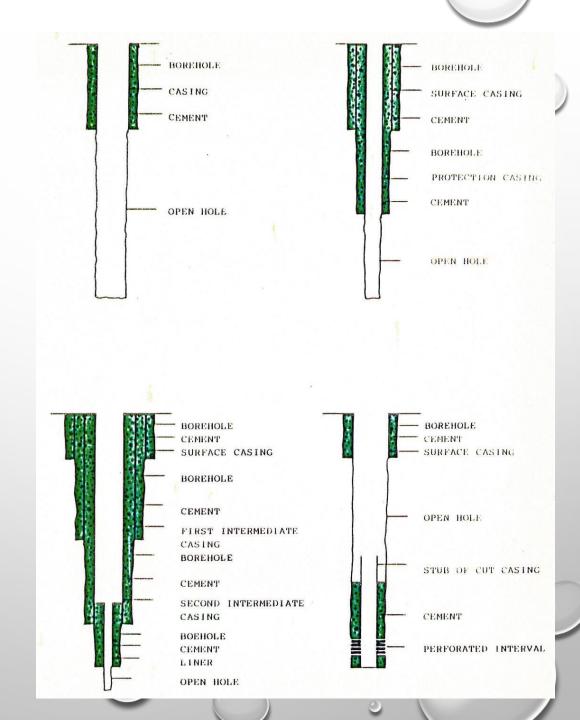
- ♦ PLUG BACK THE LOWER ZONES (ESP. INJECTION ZONE)
- ♦ PREVENTS FLUID FROM ENTERING THE WELL





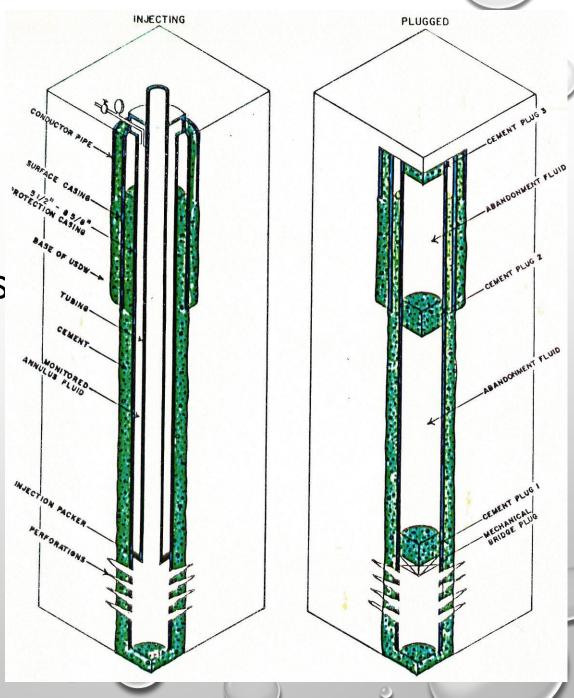

JUNITED STATES. TO NEED TO NOTIFICATION OF THE COLOR

- ♠ RIP & PULL, OR PERFORATE AND SQUEEZE CEMENT BEHIND ANY FREE CASING
 - **♦** SMOOTH THE TOP OF THE REMAINING PIPE



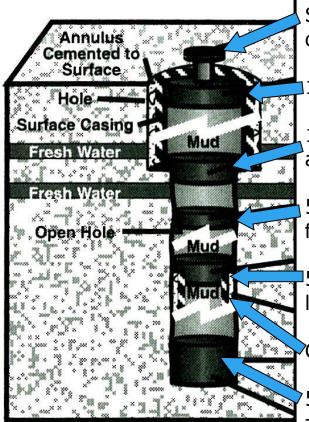
If cement voids or other loss of cement integrity is suspected, squeeze cementing may be necessary

WELL PREP COMPLETE


Prepared and ready for plugs!

But, where do they go?

PLUG FUNCTIONS


- ♦ ISOLATE THE SURFACE
- ♦ ISOLATE THE USDWS
 FROM OTHER
 FORMATIONS
- ♦ISOLATE ANY
 MINERAL-BEARING
 FORMATIONS
- ♦ ISOLATE THE INJECTION ZONE

GENERIC REQUIREMENTS FOR WELL PLUGGING

TYPICAL PLUGGING REQUIREMENTS FOR OIL AND GAS WELLS IN MOST STATES

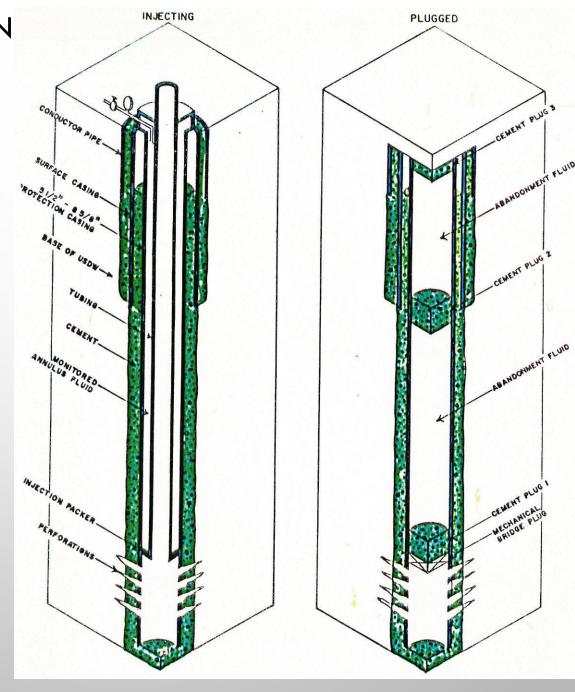
After Herndon & Smith 1976

Steel pipe with marker or pipe cut off below plow depth

10-25 foot cement plug at the surface

100 foot cement plug – 50 foot below and 50 foot above the shoe of surface AND intermediate casing

50 foot cement plug set below, above, or across any fresh water or mineral-bearing zones in open hole

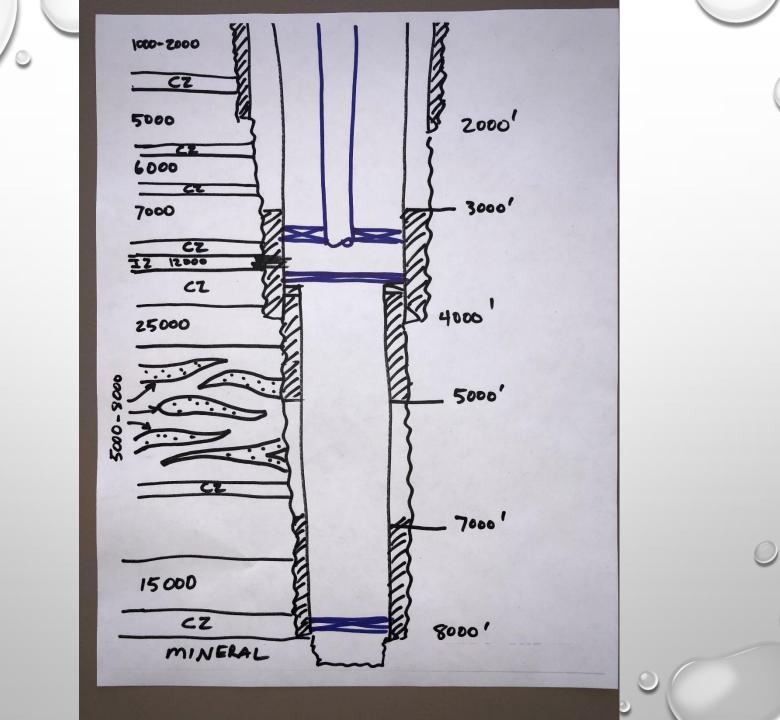

50-100 foot cement plug on top and in any casing left in hole

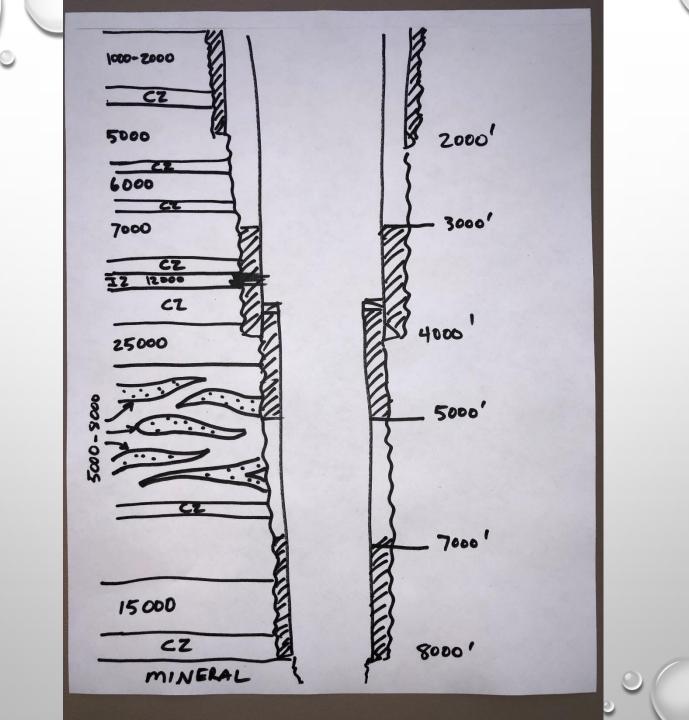
Cemented casing stub (may or may not be in hole)

750-100 foot cement plug above injection/production zone; Often has a bridge plug or cement retainer + cement

PLUG LOCATIONS IN A SIMPLE CLASS II WELL

- ◆ CEMENT PLUG SET AT THE SURFACE PREVENTS FLUID MOVEMENT TO AND FROM THE SURFACE
- ♠ A CEMENT PLUG AT THE BASE OF THE SC PREVENTS FLUIDS FROM MIGRATING UPWARD TO THE USDW
- ♦ BOTTOM PLUG
 ISOLATES THE
 INJECTION ZONE WITH
 CEMENT ON A BRIDGE
 PLUG

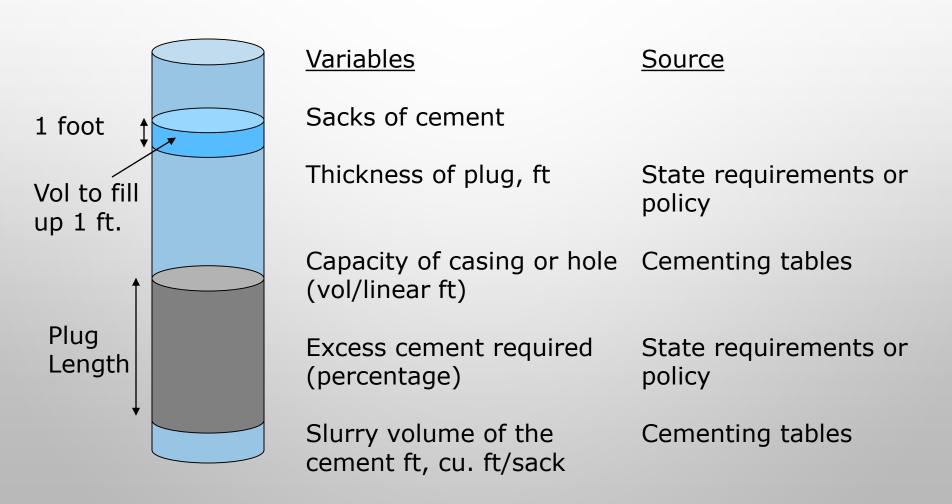

TYPES OF CEMENT


- ◆ BASIC CEMENTS: CLASS A, C, G, AND H (OFTEN DENSIFIED WITH A DISPERSANT)
- ♦ ADDITIVES: FOR HIGHER OR LOWER DENSITY, FASTER OR SLOWER THICKENING TIME, IMPROVED BOND, ETC.
- ♦ WATER: CLEAN & FRESH IS BEST
- ♦ CHECK THE SLURRY VOLUME IN FT³/SACK
- ♦ PLUG DEPTH AND STRENGTH MUST BE VERIFIED
 - ♦ WAIT FOR CEMENT TO SET AND TAG THE PLUG
 - ♦ SET PLUG WITH A BRIDGE PLUG BELOW

PLUG LOCATIONS

- START WITH REQUIRED PLUGS FROM OTHER AGENCIES
 INJECTION ZONE OTHER PERFS
 MINERALS
 CASING SHOES/LINER TOPS
- ISOLATE INTO/BETWEEN USDWS > 2000 MG/L
- USE CIBP AS PLUG BASE OR TAG PLUGS
- CONSIDER HOW THE OPERTOR WANTS TO PLUG

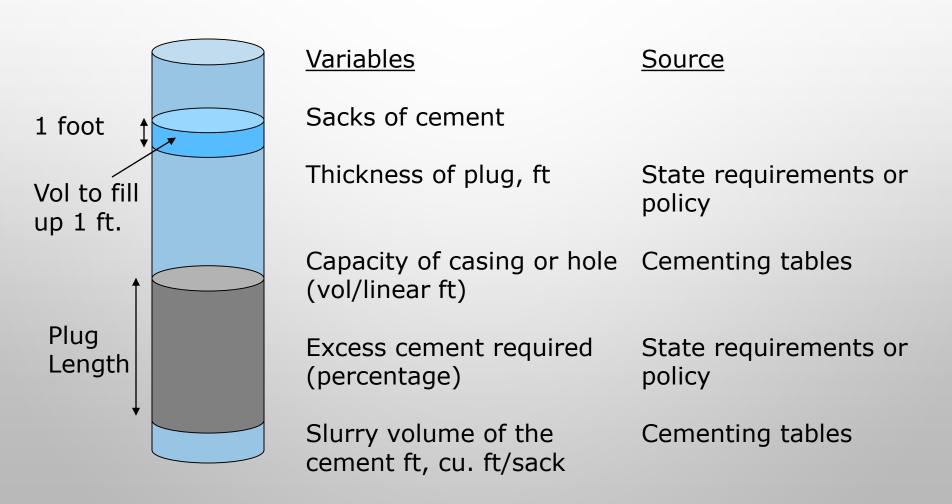
HYPOTHETICAL P&A WHERE TO SET PLUGS



PLUG LOCATIONS

- START WITH REQUIRED PLUGS FROM OTHER AGENCIES
 INJECTION ZONE OTHER PERFS
 MINERALS
 CASING SHOES/LINER TOPS
- ISOLATE INTO/BETWEEN USDWS > 2000 MG/L
- USE CIBP AS PLUG BASE OR TAG PLUGS
- CONSIDER HOW THE OPERTOR WANTS TO PLUG

BASIC CEMENT CALCULATION


- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED?

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED?
 CASING CAPACITY?

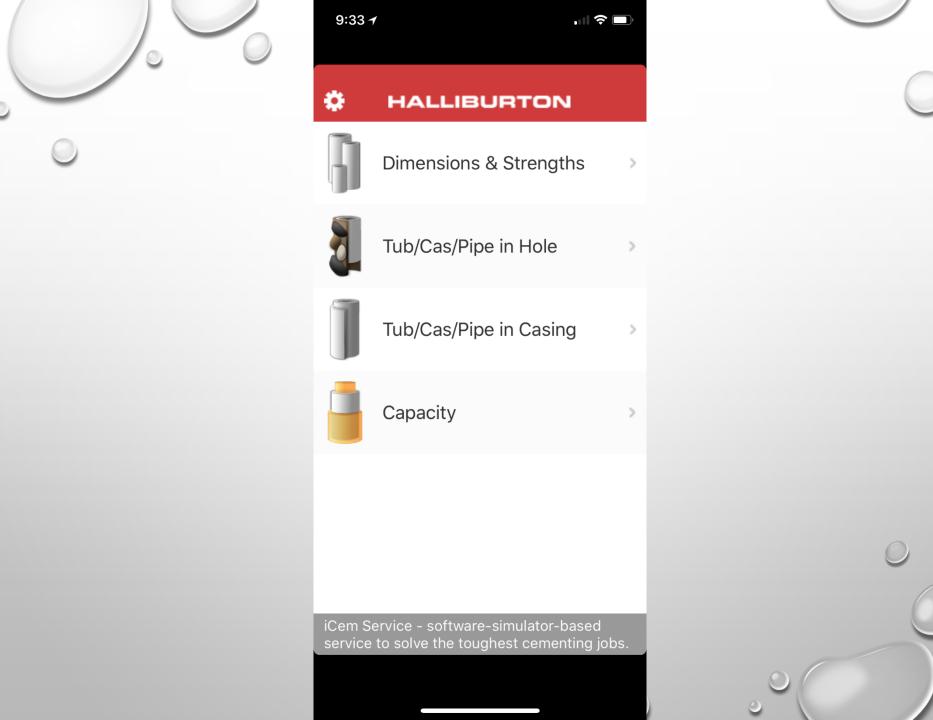
BASIC CEMENT CALCULATION

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED?
 CASING CAPACITY?

FROM REDBOOK

NO. 214 OF CAS	SING				
Barrels Per Lin. Ft.	Lin. Ft. Per Barrel	Cu. Ft. Per Lin. Ft.	Lin. Ft. Per Cu. Ft.	Wt. Per Ft. With Couplings Lb.	Size O. D. In.
.0162 .0159 .0159 .0149 .0142 .0136 .0128	61.54 62.70 64.34 66.99 70.32 73.05 77.69	.0912 .0895 .0872 .0838 .0798 .0768	10.960 11.167 11.459 11.932 12.525 13.010 13.838	9.50 10.50 11.60 13.50 15.10 16.60 18.80	41/2 41/2 41/2 41/2 *41/2
.0161 .0202 .0196 .0188	61.78 49.51 50.97 52.98 56.30	.0908 .1134 .1101 .1059 .0997	11.003 8.817 9.078 9.436 10.028	16.00 11.50 13.00 15.00 18.00	*43/ ₄ 5 5 5
.0170 .0167 .0167 .0158 .0155	58.80 59.60 59.66 62.95 64.34	.0954 .0942 .0941 .0892 .0872	10.473 10.615 10.625 11.211 11.459	20.30 20.80 21.00 23.20 24.20	*5 *5 *5 *5 *5
.0247 .0244 .0240 .0238 .0232	40.46 40.98 41.61 42.01 43.01	.1387	7.206 7.299 7.411 7.483 7.661	13.00 14.00 15.00 15.50	*5½ 5½ *5½ *5½ 5½
.0221 .0211 .0200 .0271 .0261	45.09 47.20 49.77 36.79 38.22	.1245 .1189 .1128	8.031 8.407 8.864 6.552	20.00 23.00 26.00	51/2 51/2 51/2 *51/2

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED? CASING CAPACITY = .1336 CU FT/LIN FT


- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED?

CASING CAPACITY = 0.1336 CU FT/LIN FT

PLUG VOLUME = (0.1336 CU FT/LIN FT) * (150 FT) = 20.04 CU FT

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT

USING E-REDBOOK

9:34 ≁				
<	Res	Сору		
OD	Weight	ID	Depth	
5.5 in	15.5 lbs/ft	4.95 in	150 ft	
Totals				
bbl			3.57	
ft ³			20.05	
gal			149.95	
Factors				
bbl/ft			0.0238	
ft/bbl			42.0126	
ft³/ft			0.1336	
ft/ft ³			7.4828	
gal/ft			0.9997	
ft/gal			1.0003	

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT
- HOW MANY SACKS OF CEMENT ARE NEEDED?

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT
- HOW MANY SACKS OF CEMENT ARE NEEDED?
 SLURRY VOLUME (YIELD)

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT
- HOW MANY SACKS OF CEMENT ARE NEEDED?
 SLURRY VOLUME (YIELD) = 1.18 CU FT/SACK

CALCULATE SOME PLUG VOLUMES

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT
- HOW MANY SACKS OF CEMENT ARE NEEDED?
 SLURRY VOLUME (YIELD) = 1.18 CU FT/SACK

SACKS = (20.04 CU FT) / (1.18 CU FT/SACK) = 16.98 SACKS

CALCULATE SOME PLUG VOLUMES

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT
- HOW MANY SACKS OF CEMENT ARE NEEDED = 16.98 SACKS

CALCULATE SOME PLUG VOLUMES

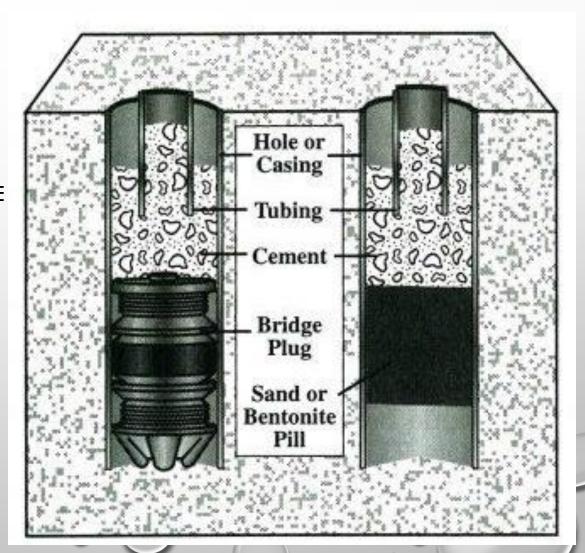
- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT
- HOW MANY SACKS OF CEMENT ARE NEEDED = 16.98 SACKS

TO REITERATE

- 1) CALCULATE THE VOLUME NEEDED TO FILL THE SPACE FOR YOUR PLUG
- 2) CALCULATE THE NUMBER OF SACKS NEEDED TO MAKE UP THAT VOLUME OF CEMENT

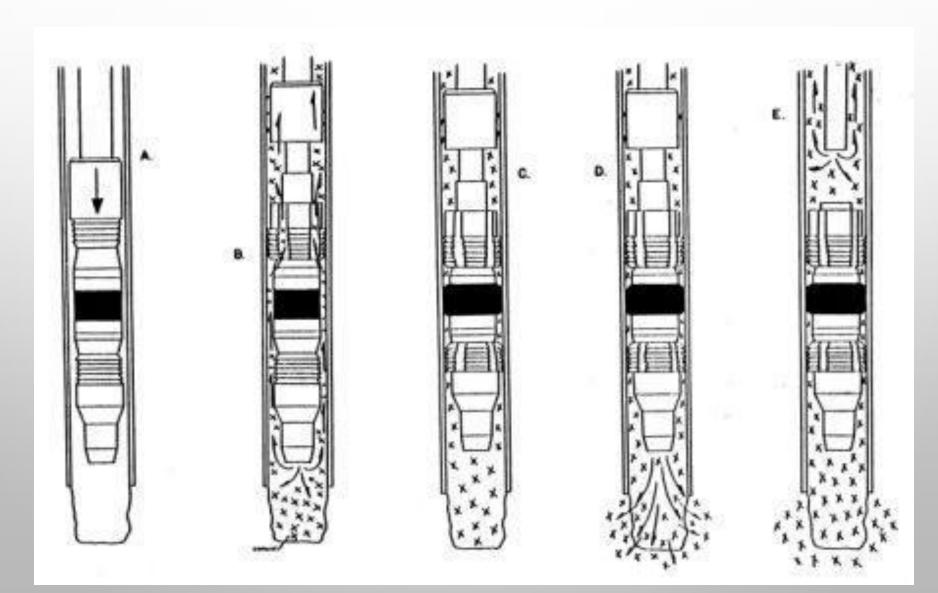
PLUGGING METHODS

- 3 METHODS APPROVED IN THE FEDERAL UIC REGULATIONS
 - **♦ THE BALANCE METHOD**
 - ♦ THE DUMP BAILER METHOD
 - ♦ THE TWO-PLUG METHOD


ALSO:

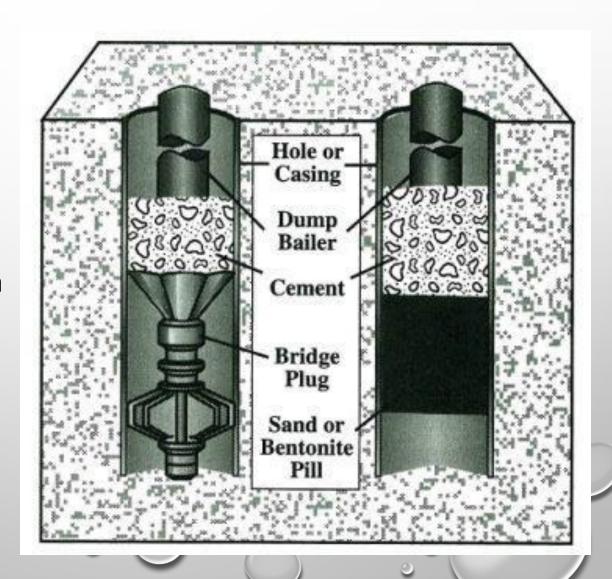
♦ AN ALTERNATE METHOD, APPROVED BY THE DIRECTOR, THAT WILL RELIABLY PROVIDE A COMPARABLE LEVEL OF PROTECTION MAY ALSO BE APPROVED

BALANCE METHOD



- BRIDGE PLUG IS SET (OR OTHER SURFACE PREPARED)
- **♦ TUBING IS LOWERED**
- ◆ CEMENT IS PUMPED DOWN INSIDE THE TUBING & COMES UP ON THE OUTSIDE
- PUMPING IS STOPPED
 WHEN THE LEVEL INSIDE
 AND OUTSIDE THE TUBING
 ARE EQUAL
- ♦ THE TUBING IS SLOWLY
 RAISED ABOVE THE TOP OF
 THE PLUG
- DOESN'T REQUIRE SPECIAL EQUIPMENT, BUT DOES REQUIRE SKILL

CEMENT RETAINER VARIATION



DUMP BAILER METHOD

- Mechanical bridge plug/cement basket assembly is placed at plugging depth
- The dump bailer is a cylindrical container holding a fixed amount of cement
- The cement is dumped on the mechanical plug
 - Seldom used

ABANDONMENT

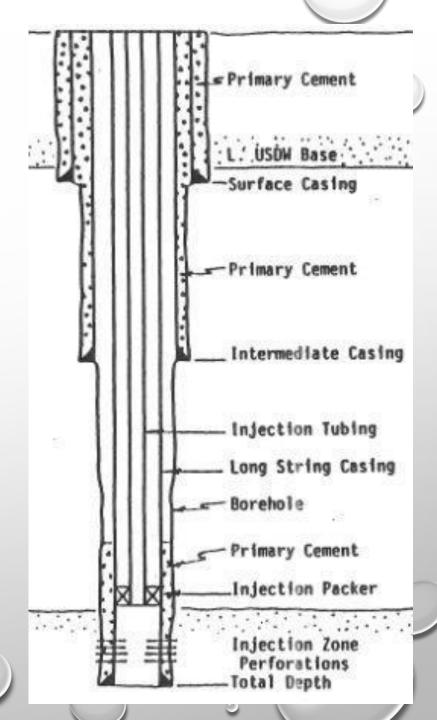
- May include post-closure care (required for Class I hazardous wells and Class VI wells)
- Surface remediation
 - Removing all equipment
 - Restoring vegetation
 - May be other special requirements
- You may not witness these activities, but you should know what is planned

SUMMARY

- Prepare for the inspection
 - Know the well construction, the geology, and the plan
- Did your agency approve the plan?
 - Communicate with permit writers
- Ensure that the plan is appropriate for the conditions and that it is followed
 - Choice of plugging fluids, cement slurry, placement method, etc.
- No cutting corners in well preparation!
- Be prepared to adapt to unforseen circumstances

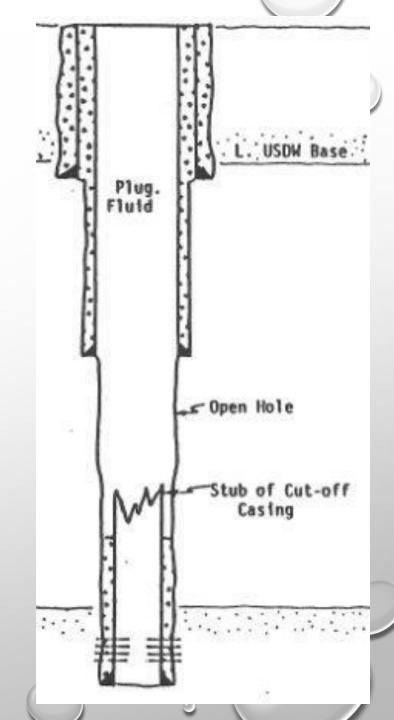
FOR MORE INFORMATION

- ♦ HALLIBURTON CEMENTING TABLES (PRINT COPY)
- ♠ EREDBOOK IS AVAILABLE FOR DESKTOP AND SMARTPHONES GOOGLE "EREDBOOK"
- OILFIELD ACRONYMS:


WIKIPEDIA

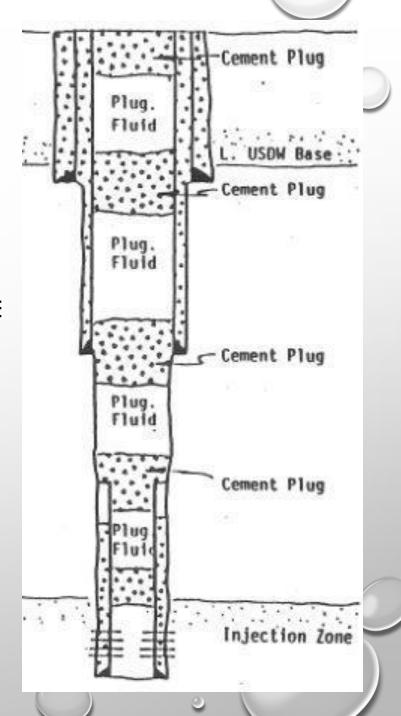
PLUGGING EXAMPLE

PREPARATION STEPS:


- 1) REMOVE TUBING, PACKER
- 2) CUT LSC ABOVE THE TOC AND PULL CASING
- 3) CIRCULATE MUD TO ACHIEVE STATIC EQUILLIBRIUM

PREPARED FOR PLUGGING

IDENTIFY ZONES WHICH MUST BE ISOLATED WITH CEMENT:


- 1) INJECTION ZONE
- 2) CASING STUB
- 3) ANY PRODUCING OR FLUID-BEARING ZONE IN THE OPEN HOLE
- 4) BASE OF THE INTERMEDIATE CASING
- 5)BASE OF THE SURFACE CASING AND USDW
- 6) GROUND SURFACE

APPROVED PLAN

ASSUME:

- ♦ 95/8 IN., 36# INTERMEDIATE CASING
- ♦ 7 IN., 26# LSC IN A 8¾ IN. HOLE
- PLUG THICKNESSES FOLLOW THESE STATE REQUIREMENTS:
 - 1) 100' CEMENT ISOLATING THE IZ IF NO BRIDGE PLUG/CEMENT RETAINER IS USED
 - 2) 50' CEMENT ON A BRIDGE PLUG, IF USED
 - 3) 50' CEMENT ABOVE AND BELOW A RIP POINT OR SURFACE CASING SHOE
 - 4) 50' CEMENT ISOLATING PRODUCING ZONES
 - 5) 25' CEMENT AT THE SURFACE

PLUGS NUMBERED

ASSUME:

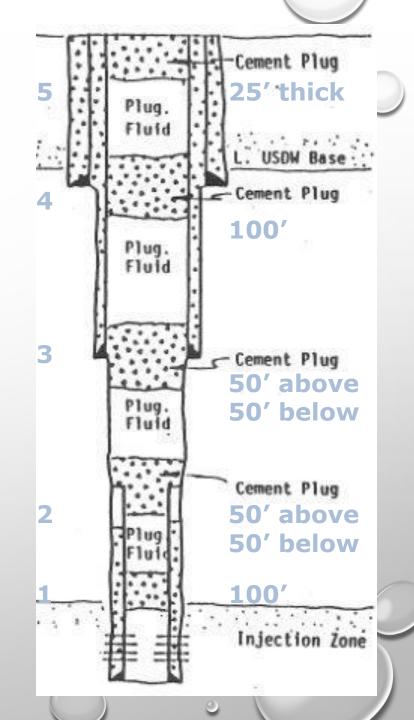
- ♦ 9% IN., 36# INTERMEDIATE CASING
- ♦ 7 IN., 26# LSC IN A 8¾ IN. HOLE
- PLUG THICKNESSES FOLLOW THESE STATE REQUIREMENTS:
 - 1) 100' CEMENT ISOLATING THE IZ IF NO BRIDGE PLUG/CEMENT RETAINER IS USED
 - 2) 50' CEMENT ABOVE AND BELOW A RIP POINT OR SURFACE CASING SHOE
 - 3) 50' CEMENT ISOLATING PRODUCING ZONES
 - 4) 25' CEMENT AT THE SURFACE

- ♦ 7 IN., 26# LSC IN A 8¾ IN. HOLE
- ♦ CLASS A CEMENT (1.18 FT³/SACK)

PLUG 1:

L = 100 FEET

 $C = 0.2148 \text{ FT}^3/\text{FT}$


 $E_C = 0$

 $V_{SL} = 1.18 \text{ FT}^3/\text{SACK}$

 $S_C = 100 \text{ FT} \times 0.2148 \text{ FT}^3/\text{FT}$

1.18 FT³/SACK

= 18 **SACKS**

- ♦ 9% IN., 36# INTERMEDIATE CASING
- ♦ CLASS A CEMENT (1.18 FT³/SACK)

Plug 2 bottom:

L = 50 feet

 $C = 0.2148 \text{ ft}^3/\text{ft}$

 $E_c = 0$

 $V_{sl} = 1.18 \text{ ft}^3/\text{sack}$

 $S_c = 50 \times 0.2148$

1.18

= 9.1 sacks

Plug 2 top:

L = 50 feet

 $C = 0.4176 \text{ ft}^3/\text{ft}$

 $E_c = 0.2$

 $V_{sl} = 1.18 \text{ ft}^3/\text{sack}$

 $S_c = 50 \times 0.4176$ $\times (1 + 0.2) \div 1.18$

= 21.2 sacks

-Cement Plug Plug. Fluid Cement Plug 100' Fluid Cement Plug 50' above 50' below Cement Plug 50' above 50' below Injection Zone

TOTAL = 31 SACKS

- ♦ 9% IN., 36# INTERMEDIATE CASING
- ♦ CLASS A CEMENT (1.18 FT³/SACK)

Plug 3 bottom:

L = 50 feet

 $C = 0.4176 \text{ ft}^3/\text{ft}$

 $E_c = 0.2$

 $V_{sl} = 1.18 \text{ ft}^3/\text{sack}$

 $S_c = 50 \times 0.4176$ $\times (1 + 0.2) \div 1.18$ = **21.2 sacks**

Plug 3 top:

L = 50 feet

 $C = 0.4340 \text{ ft}^3/\text{ft}$

 $E_c = 0$

 $V_{sl} = 1.18 \text{ ft}^3/\text{sack}$

 $S_c = 50 \times 0.4340$ 1.18

= 18.4 sacks

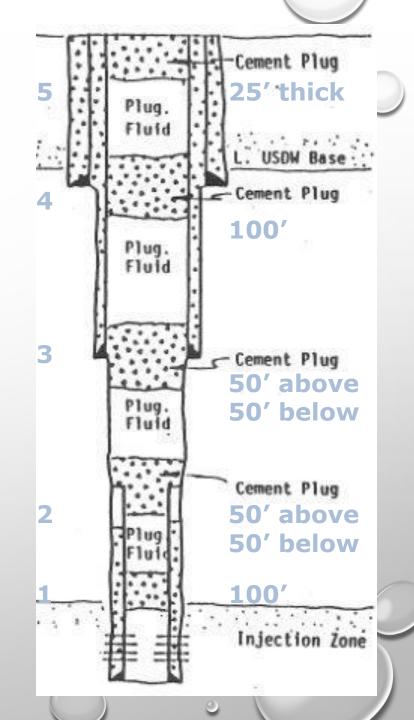
-Cement Plug Plug. Fluid Cement Plug 100' Fluid Cement Plug 50' above 50' below Cement Plug 50' above 50' below Injection Zone

- ♦ 9% IN., 36# INTERMEDIATE CASING
- ♦ 7 IN., 26# LSC IN A 8¾ IN. HOLE
- ♦ CLASS A CEMENT (1.18 FT³/SACK)

PLUG 4:

L = 100 FEET

 $C = 0.4340 \text{ FT}^3/\text{FT}$


 $E_C = 0$

 $V_{SL} = 1.18 \text{ FT}^3/\text{SACK}$

 $S_C = 100 \text{ FT} \times 0.4340 \text{ FT}^3/\text{FT}$

1.18 FT³/SACK

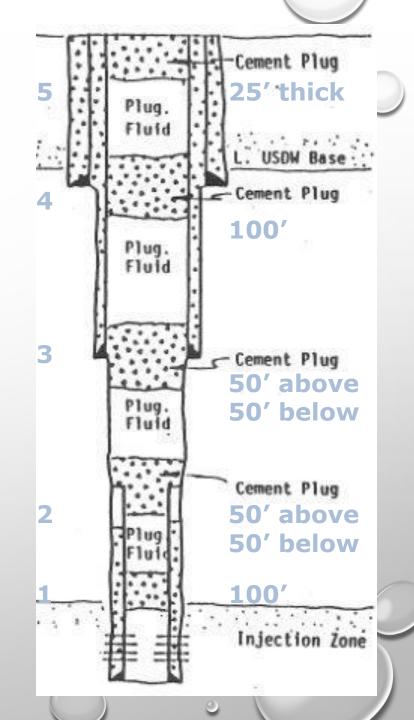
= **37 SACKS**

- ♦ 95/8 IN., 36# INTERMEDIATE CASING
- ♦ 7 IN., 26# LSC IN A 8¾ IN. HOLE
- ♦ CLASS A CEMENT (1.18 FT³/SACK)

<u>PLUG 5</u>:

L = 25 FEET

 $C = 0.4340 \text{ FT}^3/\text{FT}$


 $E_C = 0$

 $V_{SL} = 1.18 \text{ FT}^3/\text{SACK}$

 $S_C = 25 \text{ FT} \times 0.4340 \text{ FT}^3/\text{FT}$

1.18 FT³/SACK

= 9 SACKS

