INTRODUCTION

This report describes the independent laboratory validation (ILV) of an analytical method for the determination of MON 102100 and its metabolite benzamidine in soil matrices. The representative soils selected for the ILV included a high clay and a high sand soil. The method was developed and validated at Monsanto Company as Method Number AG-ME-1636, "High Throughput Assay for MON 102100 and Benzamidine in Soil" (Appendix E).

The ILV study was conducted according to the protocol in <u>Appendix A</u> and was designed to fulfill the requirements of the US EPA Ecological Effects Test Guidelines OCSPP 850.6100: Environmental Chemistry Methods and Associated Independent Laboratory Validation (<u>1</u>). In addition, this study was conducted in compliance with U.S. EPA FIFRA (40 CFR Part 160) Good Laboratory Practice (GLP) standards (<u>2</u>).

The independent laboratory, the Study Director and the analysts chosen to conduct the ILV were unfamiliar with the method, both in its development and its subsequent use in analyzing samples. The independent laboratory used all of its own equipment and supplies with the exception of analytical reference standards supplied by the Sponsor, so that there was no common link between Monsanto Company and the ILV analysts. Throughout the conduct of the study, any communications between Monsanto Company and the Study Director and/or the analysts were logged for inclusion in the report (Appendix B). No one from Monsanto Company was allowed to visit the independent laboratory during the ILV trial to observe, offer help, or assist the chemists or analysts. These steps successfully maintained the integrity of the ILV study.

EXPERIMENTAL PHASE

Storage and Characterization of Control Samples

Characterized soil samples were purchased by EPL BAS to be used as controls. Upon arrival at EPL BAS, the samples were placed in a freezer at a temperature of approximately -20 °C until removed for analysis. Approximately 30-40 mL aliquots of each sample were homogenized for the ILV experiment by milling using a SPEX freezer mill with liquid nitrogen. Full sample details are included in the raw data package.

Prior to purchase by EPL, the control samples were characterized for percent sand, percent silt, percent clay, USDA Textural Class, FAO Textural Class, bulk density (disturbed), cation exchange capacity, moisture, organic matter and pH in1:1 soil: water ratio. Characterization was conducted at AGVISE Laboratories, Northwood, ND USA, under 40 CFR Part 160. Certificates of analysis for the control samples can be found in <u>Appendix C</u>.

Test/Component	High Sand Soil ¹	High Clay Soil ²
Test/Component	805-S001	805-X002
Percent Sand	89	29
Percent Silt	4	28
Percent Clay	7	43
USDA Textural Class (hydrometer method)	Sand	Clay
FAO Textural Class (hydrometer method)	Coarse	Fine
Bulk Density (disturbed, gm/cc)	1.24	1.07
Cation Exchange Capacity (meq/100 g)	10.3	31.0
Moisture (%)	9.3	28.4
Organic Matter (%)	2.0	2.1
pH in 1:1 soil: water ratio	6.5	8.0

¹AGVISE Sample ID 14-1256 ²AGVISE Sample ID 14-1257

Preparation of Stock Solutions, Calibration Standard Solutions and Fortification Solutions

The reference substance certificates of analysis can be found in <u>Appendix C</u>. Reagents used are of equivalent specifications as those described in the analytical method.

The following reference substances/analytical standards were utilized during the independent laboratory method validation:

Reference Substance/ Analytical Standard:	MON 102100 (tioxazafen) 3-phenyl-5-thiophen-2-yl-1,2,40xadiazole
Supplier:	Monsanto Company (Sponsor)
Batch/Lot No:	GLP-1103-21325-A
Purity:	99.9%
Expiration date:	31 December 2014
Storage:	Frozen

Reference Substance/	Benzamidine
Analytical Standard.	Monsonto Compony (Sponson)
Supplier:	Monsanto Company (Sponsor)
Batch/Lot No:	GLP-1205-22096-A and GLP-1405-23425-A
Purity:	98% and 95%
Expiration date:	31 May 2014 and 31 May 2015
Storage:	Ambient

In addition to the reference substances/analytical standards above, the following internal standards were utilized during the independent laboratory method validation.

Reference Substance/	(Phenyl- ¹³ C ₆)MON 102100
Analytical Standard:	3-(¹³ C ₆)phenyl-5-thiophen-2-yl-1,2,40xadiazole
Supplier:	Monsanto Company (Sponsor)
Batch/Lot No:	GLP-1202-21813-A
Purity:	Not assigned
Expiration date:	29 February 2016
Storage:	Ambient

Reference Substance/ Analytical Standard:	(¹³ C ₆)Benzamidine (¹³ C ₆)benzenecarboximidamide
Supplier:	Monsanto Company (Sponsor)
Batch/Lot No:	GLP-1207-22176-A
Purity:	Not assigned
Expiration date:	31 July 2016
Storage:	Ambient

Standard stock solutions, calibration standard solutions and fortification solutions were prepared as described in the analytical method. Full details of these materials are included in the raw data package for the study along with details of the preparation of all analytical and fortification standards prepared from the primary reference substances. The reference substances and internal standards will be retained until expiry and then disposed of following relevant disposal SOPs with the approval of the Study Monitor.

Fortification of Recovery Samples

The control specimens were fortified as described below:

Matrix	Reference Substances	Reagent Blank	Untreated Control Samples	Replicates at Lower Fortification Level (LOQ* and 4X LOQ*)	Replicates at Higher Fortification Level (10X LOQ* and 40X LOQ)
High Sand Soil	MON 102100 and Benzamidine	1	2	5 at 0.0050 μg/g (MON 102100) and 0.00125 μg/g (benzamidine)	5 at 0.050 μg/g (MON 102100) and 0.0125 μg/g (benzamidine)
High Clay Soil	MON 102100 and Benzamidine	1	2	5 at 0.0050 μg/g (MON 102100) and 0.00125 μg/g (benzamidine)	5 at 0.050 μg/g (MON 102100) and 0.0125 μg/g (benzamidine)
High Sand Soil	MON 102100 and Benzamidine	1	2	5 at 0.0050 μg/g (MON 102100 and benzamidine)	5 at 0.050 μg/g (MON 102100 and (benzamidine)

High Clay Soil	MON 102100 and Benzamidine	1	2	5 at 0.0050 μg/g (MON 102100 and benzamidine)	5 at 0.050 μg/g (MON 102100 and benzamidine)
-------------------	----------------------------------	---	---	--	---

*LOQ = Limit of Quantitation

Approximately 0.080-g subsamples of the control matrices were weighed into 1.4-mL polypropylene tubes. Five samples were fortified at 0.0050 μ g/g (ppm) for MON 102100 (LOQ) and 0.00125 μ g/g (ppm) for benzamidine (LOQ). Five samples were fortified at the upper fortification level of 0.050 μ g/g (ppm) for MON 102100 (10x LOQ) and 0.0125 μ g/g (ppm) for benzamidine (10x LOQ). Additional fortifications were added for benzamidine analysis: five samples were fortified at 0.0050 μ g/g (4x LOQ) and five samples were fortified at 0.050 μ g/g (40x LOQ). MON 102100 fortifications of 0.0050 μ g/g and 0.050 μ g/g were added to the extra fortification samples respectively to keep sample preparation consistent. The fortification solutions were added directly onto the matrix.

Method Principle

Soil samples were fortified, extracted and analyzed according to the analytical method included in the study protocol (Appendix A) and presented in Appendix E.

Sample Preparation for Analysis

- 1. 0.080 ± 0.005 g subsamples of soil matrix were weighed into 1.4-mL polypropylene tubes (for 96-well format).
- 40 μL of 65% acetonitrile (ACN) in water was added to the reagent blank and control samples. 40 μL of the appropriate MON 102100 Working Calibration Solution was added to the samples designated as calibration standards. 40 μL of the appropriate MON 102100 QC Fortification Solution was added to the fortification samples.
- 40 μL of 65% ACN in water was added to the reagent blank and control samples. 40 μL
 of the appropriate Benzamidine Working Calibration Solution was added to the samples

designated as calibration standards. 40 μ L of the appropriate Benzamidine QC Fortification Solution was added to the fortification samples. One grinding ball was added to each tube.

Description	Volume (µL)	Reagent Solution	Benzamidine Fortification (µg/g, ppm)	MON 102100 Fortification (µg/g, ppm)
Reagent Blank and Controls	80	65% ACN		
Samples fortified at LOQ	40 each		0.00125	0.0050
Samples fortified at 10x LOQ	40 each		0.0125	0.050
Samples fortified at 4x LOQ for Benzamidine	40 each		0.0050	0.0050
Samples fortified at 40x LOQ for Benzamidine	40 each		0.050	0.050

- 4. 720 μL of the Mixed Working Internal Standard Solution was added to each tube.
- 5. Samples were covered with a shaker cap mat.
- 6. Samples were sonicated for 3 min.
- 7. Samples were placed on a Geno/Grinder® at 1200 cpm (cycles per min) for 30 min.
- 8. Samples were then centrifuged at approximately $6000 \times g$ for 5 min at ≤ 10 °C.
- 9. Aliquots of each sample were removed and transferred to daughter plates following the table below.

Analyte	Daughter Plate	Transfer Volume (μL)
MON 102100	96-well microplate with clear glass conical inserts	400
Benzamidine	Agilent 96-well plate, 1 mL	50

For MON 102100 Analysis:

- 10A. 400 μ L of toluene was added to the 400 μ L aliquot.
- 11A. Samples were placed on a Geno/Grinder® at 1200 cpm for 2 min.
- 12A. Samples were centrifuged at approximately $6000 \times g$ for 2 min.
- 13A. At least 100 µL of each sample was then transferred to an amber GC vial and capped.
- 14A Samples were analyzed by GC-MS/MS.

For Benzamidine Analysis:

- 10B. 700 µL of 95% ACN, 10 mM ammonium formate was added to the 50 µL aliquot.
- 11B. Samples were analyzed by LC-MS/MS.

Analytical Instrumentation and Equipment

The instrumental conditions used during the ILV trial were optimized for the available instrumentation. Full instrumental conditions used are given below:

GC-MS/MS Operating Conditions for MON 102100

Instrumentation:	GC Bruker 436	
	Bruker CP8400 Autosampler	
	Bruker Scion Mass Spectrometer	
	MS Workstation data system	
Ion Source:	Electron Impact	
Column:	Restek Rxi-17 sil MS	
	$30\ m\times 0.25\ mm, 0.25\ \mu m$	
Injection Volume:	0.50 μL	
GC Carrier Gas:	Helium	
Syringe:	5 μL	
Air Volume:	1.0 μL	

Injection Speed:	5 µL/sec
Fill Volume:	4 μL
Fill Strokes:	5
Fill Speed:	0.30 µL/sec
Viscosity Delay:	3 sec
Inlet Temperature:	250 °C
Injection Pulse Pressure:	25 psi until 0.5 min
Column Flow:	1.0 mL/min

Time	Ramp	Initial Oven	Final Oven
(min)	Rate	Temperature	Temperature (°C)
	(°C/min)	(°C)	
0-1.0	0	90	90
1.0-6.25	40	90	300
6.25-7.75	10	300	315
7.75-12.75	1	315	315

Typical Mass Spectrometry Operating Conditions for MON 102100

Mode:	EI
Scan Type:	MRM
Resolution:	Q1-unit, Q3-unit
Source Temperature:	230 °C
Solvent Delay:	5 min
Collision Cell He:	2.25 mL/min
Collision Cell N ₂ :	1.5 mL/min

Analyte	Precursor	Product Ion	CE	Dwell	
	Ion Q1	Q3 (amu)	(V)	(ms)	
	(amu)				
	Quantitati	ve Ions			
MON 102100	228.0	119.0	13	125	
(Phenyl- $^{13}C_6$)	234.0	125.0	12	125	
MON 102100 (IS)	234.0	123.0	15	123	
Confirmatory Ions					
MON 102100	228.0	111.0	13	125	
(Phenyl-					
¹³ C ₆)MON 102100	234.0	111.0	13	125	
(IS)					

LC-MS/MS Operating Conditions for Benzamidine

Instrumentation:	Agilent 1290 LC System
	API 6500 Q-Trap MS/MS Detector
	MDS/Sciex Analyst/MultiQuant Data system
Column Temperature:	40 °C
Injection Volume:	5 μL
Column:	Supelco Ascentis Express HILIC Column
	$(2.1 \text{ mm} \times 50 \text{ mm}, 2.7 \mu\text{m})$
Run Time:	11.0 min
Mobile Phase:	A: 50% methanol, 50 mM Ammonium Formate
	B: 90% ACN, 10 mM Ammonium Formate

Time (min)	Flow (µL/min)	A,%	B, %
0.0	400	0	100
1.80	400	0	100
1.81	1000	100	0
4.19	1000	100	0
4.20	1000	0	0
7.00	1000	0	100
7.10	400	0	100
8.00	400	0	100
11.0	400	0	100

Typical Mass Spectrometry Operating Conditions for Benzamidine

Ionization Mode:	Positive Ion
Scan Type:	Scheduled MRM
Resolution:	Q1-unit, Q3-unit
Curtain Gas (CUR):	35 psi
Collision Gas (CAD):	6
IonSpray Voltage (IS):	5000 V
Temperature (TEM):	500 °C
Entrance Potential (EP):	10 V

			Declustering	Collision	Cell Exit	
Analyte	Q1 Ion	Q3 Ion	Potential, V	Energy, V	Potential, V	
	Quantitation Ions					
Benzamidine	121.1	104.0	81	25	14	
$^{13}C_6$ -Benzamidine (IS)	127.1	110.0	81	25	14	
Confirmatory Ions						
Benzamidine	121.1	77.0	81	41	16	
$^{13}C_6$ -Benzamidine (IS)	127.1	83.1	81	41	16	

Calculation of Results

Processing of calibration standard data for the determination of MON 102100 and benzamidine was performed using linear regression (1/x weighting). The linear regression was not forced through zero. For analysis of both soil types, calibration standards were prepared over a concentration range of 0.0080-2.0 μ g/mL for MON 102100 and 0.00050-0.60 μ g/mL for benzamidine corresponding to injected concentrations of 0.400-99.9 ng/mL for MON 102100 and 0.0238-28.5 ng/mL for benzamidine. Calibration standards for MON 102100 covered the equivalent sample concentration range of 0.0040-1.0 mg/kg (ppm), and calibration standards for benzamidine covered the equivalent sample concentration range of 0.0040-1.0 mg/kg (ppm), and calibration standards for benzamidine standards and sample extracts contained 0.045 μ g/mL of the MON 102100 internal standard and 0.0018 μ g/mL of the benzamidine internal standard. The equation for the calibration curve was calculated by plotting the calculated quantitation ratio generated by

dividing the peak area of MON 102100 or benzamidine in the sample by the peak area of the internal standard in the same sample versus analyte concentration ratio (ratio of analyte and internal standard concentrations). Determination of the net concentration of MON 102100 or benzamidine in each recovery sample was conducted by subtracting any background contribution found at the retention time of the analyte in the untreated control sample from that of the gross analyte concentration found in each recovery sample. No corrections were made for net concentration of MON 102100 or benzamidine reported in the recovery samples.

Example Calculations (Quantitation Transition)

Example calculations performed in Microsoft Excel 2007 are found below.

Relative Error Accuracy (RE, %) for a MON 102100 Standard with 0.4995 ng/mL Concn.

RE(%) =

Where:

Lab Standard ID: CMW091714-2A, Set S001S

Calc. Std. Concn. (ng/mL) = 0.518

Nominal Std. Concn. (ng/mL) = 0.4995

To Solve:

RE (%) = ((0.518 - 0.4995) ×100) / 0.4995 = 3.704

MON 102100 recovery at 0.0050 µg/g (LOQ Fortification Level) Laboratory Sample ID: 805-S001-S1SA, Set S001S

 $\mu g/g (ppm) Found =$

<u>Amount Found (ng/mL) × Final Vol. (mL) × Dilution Factor</u> Sample Weight (g) × 1000 mg/g Where:

Amount Found (ng/mL) = 0.429Final Vol. (mL) = 0.800Dilution Factor = 1 Sample Weight (g) = 0.081

To Solve:

 $(0.429 \times 0.800 \times 1) / (0.081 \times 1000) = 0.00424 \,\mu g/g \,(ppm)$

Fortification Level $\mu g/g (ppm) =$ <u>Volume Spiking Solution (mL) × Concn. of Spiking Solution ($\mu g/mL$)</u> Sample Weight (g)

Where:

Volume Spiking Solution (mL) = 0.040

Concn. Of Spiking Solution ($\mu g/mL$) = 0.00999

Sample Weight (g) = 0.081

To Solve:

 $(0.040 \times 0.00999) / (0.081) = 0.00493 \ \mu g/g \ (ppm)$

Bkgd-Corrected Recovery (%) = $(\mu g/g Found in Spike - \mu g/g Found in Control) \times 100$ Fortification Level ($\mu g/g$)

Where: $\mu g/g$ (ppm) Found in Spike = 0.00424 Average $\mu g/g$ (ppm) Found in Controls = (0.0000 + 0.0000) / 2 = 0.0000Fortification Level $\mu g/g$ (ppm) = 0.00493

Monsanto Report Number: MSL0025798 EPL BAS Study Number: 115G805 Page 23 of 150

To Solve: ((0.00424 - 0.0000) × 100) / 0.00493 = $85.89^{\dagger}\%$

†Slight difference appears in data summary tables due to rounding in presented data.
Calc. stands for Calculated
Std. stands for Standard
Concn. stands for Concentration
Vol. stands for Volume
Bkgd stands for background

Statistical Treatment of Data

The mean recoveries and associated standard deviations for the fortified samples were calculated using the "AVERAGE" and "STDEV" functions of Microsoft Excel 2007. Percent relative standard deviation, (RSD, %) was calculated by dividing the standard deviation by the mean, and then multiplying by 100. Slight rounding differences may be found.

Confirmation of Residue Identity (Specificity)

Confirmation of the identities of the analytes was performed, to demonstrate the specificity of the method, by monitoring one additional SRM transition simultaneous to the primary detection (quantitation) transition for each analyte. Representative confirmatory ion chromatograms for MON 102100 and benzamidine are found in <u>Appendix D</u>.

Matrix Interference (Selectivity)

Untreated control matrix samples and samples fortified at the lowest fortification level for each analyte/matrix combination were analyzed to demonstrate the selectivity of the method. Fortified samples were corrected for the background signal found in unfortified control matrix samples.

Monsanto Report Number: MSL0025798 EPL BAS Study Number: 115G805 Page 25 of 150

Problems Encountered, Changes or Modifications Made and Critical Steps

One modification was required for the MON 102100 analysis. The final aliquot removed in the MON 102100 preparation was transferred to an amber GC vial. This was because the autosampler on the GC-MS/MS is not equipped to accommodate 96-well plates.

The sponsor requested three changes for the final attempt at method validation for the benzamidine method. The HPLC gradient was modified from the one displayed in Appendix 1 of the protocol (Appendix A) to the one presented below. The equilibration time at the end of the method is 3.0 min at 400 μ L per min and 100% B.

Time (min)	Flow (µL)	A,%	В, %
0.0	400	0	100
1.80	400	0	100
1.81	1000	100	0
4.19	1000	100	0
4.20	1000	0	100
7.00	1000	0	100
7.10	400	0	100
8.00	400	0	100
11.0	400	0	100

Additional benzamidine fortification levels were added at 4x LOQ and 40x LOQ for a total of twenty fortifications instead of ten. MON 102100 fortifications of 0.005 μ g/g and 0.05 μ g/g were added to the extra fortification samples respectively to keep sample preparation consistent. Two additional calibration points were added to the lower end of the curve at 50% and 25% of the lowest calibration standard in the method. The calibration for benzamidine had a total of fourteen calibration points.

Study Number: 115G805 Page 10 of 39

 bughput Assay for MON 102100 and Benzamidine in Soil bis procedure describes the analytical method used by Environmental Sciences echnology Center personnel for the determination of MON 102100 and/or enzamidine in soil. The method is an internal standard method in which analyte-beeific stable-labeled internal standards are used to compensate for procedural losses and matrix-based ionization effects in mass spectral analysis. bollowing is a synopsis of the changes in this SOP from its last version: Updated sample homogenization description. Modified method soil sample processing descriptions to reflect the available and preferred options. Corrected column headings and units in tables contained within the validation summary document.
 his procedure describes the analytical method used by Environmental Sciences echnology Center personnel for the determination of MON 102100 and/or enzamidine in soil. The method is an internal standard method in which analyte-becific stable-labeled internal standards are used to compensate for procedural losses and matrix-based ionization effects in mass spectral analysis. ollowing is a synopsis of the changes in this SOP from its last version: Updated sample homogenization description. Modified method soil sample processing descriptions to reflect the available and preferred options. Corrected column headings and units in tables contained within the validation summary document.
 his procedure describes the analytical method used by Environmental Sciences echnology Center personnel for the determination of MON 102100 and/or enzamidine in soil. The method is an internal standard method in which analyte-becific stable-labeled internal standards are used to compensate for procedural losses and matrix-based ionization effects in mass spectral analysis. ollowing is a synopsis of the changes in this SOP from its last version: Updated sample homogenization description. Modified method soil sample processing descriptions to reflect the available and preferred options. Corrected column headings and units in tables contained within the validation summary document.
 Updated sample homogenization description. Updated sample homogenization description. Modified method soil sample processing descriptions to reflect the available and preferred options. Corrected column headings and units in tables contained within the validation summary document.
 Updated sample homogenization description. Modified method soil sample processing descriptions to reflect the available and preferred options. Corrected column headings and units in tables contained within the validation summary document.
 Modified method soil sample processing descriptions to reflect the available and preferred options. Corrected column headings and units in tables contained within the validation summary document.
• Corrected column headings and units in tables contained within the validation summary document.
 Additional fortification level at 10X LOQ was added for QC fortification solution preparation.
 Updated significant figures and formatting.
 Corrected typographical errors. Clarifications were added on the procedures.
oil samples are milled to appropriate homogeneity to allow reproducible measuremen f 80-mg subsamples. The milled matrix is weighed into 96-well format tubes ollowed by the addition of a 65% ACN solution containing ISs for both MON 102100 nd benzamidine. The sample tubes are capped and then agitated on a high speed naker for extraction. Aliquots of the extract are transferred to separate 96-well plates or further processing for analysis of MON 102100 and/or benzamidine. The MON 02100 is partitioned with toluene for analysis by EI GC-MS/MS. The benzamidine iquot is subsequently diluted 15-fold with 95% ACN in 10 mM ammonium formate or analysis by LC-MS/MS with electrospray ionization. The working range of the tethod is 0.00125 to 0.30 mg/kg (ppm) for benzamidine and 0.0050 to 1.0 mg/kg ppm) for MON 102100.
ollow current Monsanto safety policies. Important precautions include:
Some solvents are volatile and flammable. Care must be taken to keep them away from any source of ignition
Ensure proper ventilation to avoid excessive exposure to solvent vapors.
Read and follow all safety warnings on reagent containers.
Ensure proper safety requirements are followed when operating liquid handlers or

Study Number: 115G805 Page 11 of 39

AG-ME-1636-02	High Throughp	out Assay for MON 102100 and Benzamidine in Soil	Page 2 of 30
Abbreviations	The following	abbreviations are used in this procedure:	
	Abbreviation	Definition	
	ACN	acetonitrile	
	amu	atomic mass units	
	ARS	Analytical Reference Standard	
	Cal.	Calibration	
	CE	collision energy	
	cps	counts per second	
	CXP	collision exit potential	
	CV	coefficient of variation	
	Concn	Concentration	
	DP	declustering potential	
	EP	entrance potential	
	ESI	electrospray ionization	
	EI	electron impact	
	HPLC	high performance liquid chromatography	
	g	gram	
	Int.	Intermediate	
	IS	Internal Standard	
	kg	kilogram	
	LC-MS/MS	liquid chromatography/tandem mass spectrometry	
	GC-MS/MS	gas chromatography/tandem mass spectrometry	
	LOO	limit of quantitation	
	mg mL	milligram milliliter	
	mm	millimeter	
	MRM	multiple reaction monitoring	
	ms	millisecond	
	MS	mass spectrometry	
	N	number of samples	
	ppm	parts-per-million	
	μg	microgram	
	V	volts	
	xg	relative centrifugal force	

Contents

Section	Page
Overview	-1
Purpose & Scope	1
Materials	3
Reagent/Solution Preparations	4
Standard Calibration and QC Solution Preparation	5
Sample Preparation Procedure	10
Instrumental Analysis	13
Calculations	18
Documentation	18
Appendices	1
Appendix A: Chemical Structures	20
Appendix B: Example Chromatograms	21
Appendix C: Validation Summary	25

Study Number: 115G805 Page 12 of 39

AG-ME-1636-02	High Throughput Assay for MON 102100	and Benzamidine in Soil Page 3 of 30
Materials		
Equipment	The following equipment is used in this put the analyst in finding items. In most cases can be used.	occedure. Specific brands are listed to aid s, equivalent equipment from other vendors
	Equipment	Number/Specification
	Analytical balance	Capable of weighing 0.0001 g
	GC system (MON 102100 parent)	Agilent 7890A System with Gerstel MPS auto sampler
	Mass spectrometer (MON 102100 parent)	Agilent 7000 Triple Quadrupole with EI ionization source
	GC column (MON 102100 parent)	Agilent DB-17 MS 30 m \times 0.25 mm, 0.25 μ m (part number122-4732)
	GC data acquisition system	PC workstation with Agilent MassHunter and Gerstel Maestro software
	HPLC system (benzamidine)	Shimadzu Prominence 20A System: Solvent Degasser, at least 2 Pumps, Autosampler, Column Compartment and Controller
	HPLC switching valve (benzamidine)	Rheodyne, 6 port
	Mass spectrometer (benzamidine)	AB Sciex API 5000 [™] with Turbo-V ion source
	HPLC column (benzamidine)	Supelco Ascentis Express HILIC Column 50 mm × 2.1 mm, 2.7 μm
	LC data acquisition system	PC workstation with AB Sciex Analyst® software
	Freezer mill (secondary milling)	SPEX SamplePrep Model 6870 with 100 mL milling vessel
	High-speed plate shaker	Genogrinder 2000
	Sonicator	Branson B-22-4 Ultrasonic Cleaner
	Graduated evlinders (100 mL, 1 L)	suitable for procedure
	Volumetric flasks (1 L)	suitable for procedure
	Mechanical pipettes	suitable for procedure
	Repeating/dispensing pipette	Eppendorf Repeater Xstream
	Liquid handler	Tomtee, Inc. Quadra 4 or comparable pipetting system
	Water purification system (or HPLC quality water)	Millipore Compact Milli-Q Plus
	96-Well microplate with clear glass conical inserts (with sealing mat)	National Scientific, K96-1.1MB
	96 Deep-well plate, glass-coated polypropylene (1 mL)	National Scientific, P96U-1.0G
	96 Deep-well plate, clear	Axygen Scientific, VWR 10011-940
	Polypropylene extraction tubes (1.4 mL)	Thermo Scientific Cat. No. 4140MTX
	96-Well plate cap mat (shaker)	Sun-SRI Cat No. 400-079
	Matrix empty latch rack for 1.4 ml tubes	Thermo Scientific Cat. No. 4898
	96-Well plate, 1 mL (autosampler)	Agilent No. 5042-1387
	96. Well pre-slit can mat	Thermo Scientific Cat. No. 276011

Study Number: 115G805 Page 13 of 39

AG-ME-1636-02	High Throughput Assay for MON 10	2100 and Benzamidine in Soil	Page 4 of 30
	Grinding ball	About 3 mm diameter, stai	nless steel
	96-Well mat WEBSEAL, blue	XPERTEK 972150	A second second
	96-Well micro mat flat bottom	XPERTEK 971805	

Chemicals & Reagents The following reagents are used in this method. **Note:** Specific brands are listed to aid the analyst in finding items. In most cases, equivalent reagents from other vendors can be used. It is important to use high quality reagents to avoid chromatographic interferences. It is recommended to verify the isotopic purities of the internal standard materials prior to use.

Chemical/Reagent	Number/Specification
Toluene, ACS grade	EMD, TX0735-6
ACN, HPLC grade	Burdick & Jackson Cat. No. 015-4
Methanol, ultrapure grade	EMD Cat. No. MX04881
Ammonium formate, ≥95% purity	Fisher Cat. No. A666-500
Water, HPLC or higher purity grade	Milli-Q water or equivalent
MON 102100	Monsanto ARS Program
Benzamidine	Monsanto ARS Program
(Phenyl- ¹³ C ₆)MON 102100	Monsanto ARS Program
(¹³ C ₆)Benzamidine	Monsanto ARS Program

Reagent/Solution Preparation

Prepare the following reagent solutions for use in sample analysis. The absolute volume of the solutions may be varied at the discretion of the analyst, as long as the correct proportions of the components are maintained. A six month expiration date will be assigned to these solutions unless a shorter expiration is specified on the label. Solutions may be stored at room temperature in glass containers.

Solution	Preparation
65% ACN	Add 1300 mL ACN to 700 mL water
Stock Ammonium Formate	200 mM ammonium formate: Dissolve 6.30 g of ammonium formate in 500 mL of water
Benzamidine HPLC Mobile Phase A	50% methanol, 50 mM ammonium formate: Add 250 mL of stock ammonium formate (200 mM) to 250 mL water and 500 mL methanol
Benzamidine HPLC Mobile Phase B	90% ACN, 10 mM ammonium formate: Add 100 mL of stock ammonium formate (200 mM) to 100 mL water and 1800 mL ACN
Benzamidine HPLC Injection Needle Wash	95% ACN, 10 mM ammonium formate: Add 25 mL of stock ammonium formate (200 mM) to 475 mL ACN
Benzamidine Sample Dilution Solution	95% ACN, 10 mM ammonium formate: Add 25 mL of stock ammonium formate (200 mM) to 475 mL ACN
GC Wash Solvent 1	50% ethyl acetate in acetone: Add 250 mL of ethyl acetate and 250 mL acetone
GC Wash Solvent 2	100% toluene

Study Number: 115G805 Page 14 of 39

Monsanto Company Standard Operating Procedure			
AG-ME-1636-02	High Throughput Assay for MON 102100 and Benzamidine in Soil	Page 5 of 30	

Standard Calibration and QC Solution Preparation

Overview All standard calibration and fortification solutions must be properly labeled and stored in amber glass vials with airtight lids at approximately -20 °C. Preparation procedures which result in equivalent solutions may be substituted. Various additional solutions may be prepared.

Stability

The solution stability of MON 102100 and benzamidine was demonstrated during the validation of the crop methods AG-ME-1579-01 (benzamidine) and AG-ME-1604-01 (MON 102100) and is summarized in the following table.

Solution Components	Solution Type	Concentration or Range *	Solvent	Approx. Storage (° C)	Demonstrated Stability (Days)
MON 102100	Stock Solution	500. µg/mL	ACN	-20	97
MON 102100	Working Calibration Standard Solutions	0.25 to 1000 ng/mL	Toluene	-20	31
Benzamidine	Stock Solution	526 μg/mL 1000. μg/mL (MON 102100 equivalents)	ACN/Water	-20	204
Benzamidine	Working Calibration Standard Solutions	1.05 to 316 ng/mL 2.0 to 600. ng/mL (MON 102100 equivalents)	ACN/Water	-20	204

*Stability of benzamidine was established in method AG-ME-1579-01. In AG-ME-1579-01 benzamidine was expressed in MON 102100 equivalents. This method reports benzamidine *per se*; therefore, both values are shown for clarity.

0.200

1.00

1.00

0.100

1.00

1.00

9.8

9.0

9.0

9.9

9.0

9.0

Study Number: 115G805 Page 15 of 39

AG-ME-1636-02	High Throughput As	say for MON 102100 and Benzamidine	in Soil	Page 6 of 30
MON 102100 Calibration Stock Solution (0.50 mg/mL)	Weigh 20-25 mg (amber glass bottle prepare a 0.50 mg positive-displacen recommended. Th dissolution.	record to at least 0.1 mg) of MON 10210 . Add the appropriate volume (to the ne /mL solution of MON 102100 (purity ac nent mechanical pipette capable of deliv- ne solution should be sonicated briefly to	00 standard i earest 0.1 mL ljusted). An ering up to 5 o ensure com	nto a 60-mL) of ACN to adjustable 0 mL is plete
MON 102100 QC Stock Solution (0.50 mg/mL)	Prepare a separate using the procedur Preparation of this	0.50 mg/mL MON 102100 (purity adju re above for the MON 102100 Calibratic requires separate weighing.	sted) QC Sto on Stock Solu	ck Solution ation.
Benzamidine Calibration Stock Solution (0.50 mg/mL)	Weigh 20-25 mg (vial. Add the app prepare a 0.50 mg positive-displacen recommended. Th dissolution.	record to at least 0.1 mg) of benzamidin ropriate volume (to the nearest 0.1 mL) of /mL solution of benzamidine (purity adj nent mechanical pipette capable of deliv- ne solution should be sonicated briefly to	e standard in of 65% ACN usted). An a ering up to 5 o ensure com	to a 60-mL in water to djustable 0 mL is plete
Benzamidine QC Stock Solution (0.50 mg/mL)	Prepare a separate Solution using the Preparation of this	0.50 mg/mL solution of benzamidine (procedure above for the Benzamidine C requires separate weighing.	ourity adjuste Calibration St	ed) QC Stock tock Solution.
Intermediate Calibration Solutions	Prepare the followin glass vials by diluti These solutions wil	ng intermediate calibration standard solu on of the appropriate stock solution with I be used for the preparation of working	ations in 20-r n 65% ACN i solutions.	nL amber in water.
	Intermediate Calibration Solution (µg/mL)	Aliquot Solution ID	Aliquot Volume (mL)	Diluent Volume (mL)
	10	MON 102100 Calibration Stock	0.200	0.9

Solution (0.50 mg/mL)

10. µg/mL MON 102100 1.0 µg/mL MON 102100

Benzamidine Calibration Stock

Solution (0.50mg/mL) 5.0 µg/mL Benzamidine

0.50 µg/mL Benzamidine

10.

1.0

0.10

5.0

0.50

0.050

Study Number: 115G805 Page 16 of 39

AG-ME-1636-02	High Throughput Assay for MON 102100 and Benzamidine in Soil	Page 7 of 30
Working Calibration Standard Solutions	Solutions may be prepared in the following manner. Other concentrused as long as the preparation is documented. A suggested scheme calibration solution preparation is shown below. For each working slisted aliquot of the intermediate calibration solution to an amber glawith the specified volume of 65% ACN diluent. Additional standard prepared as necessary.	ations may be for working solution add the ass vial and dilut d levels may be

MON 102100 Working Cal. Solution (µg/mL)	Dilute this MON 102100 Int. Solution (µg/mL)	MON 102100 Aliquot Volume (mL)	65% ACN Volume (mL)	Matrix Equivalent MON 102100 Concn (mg/kg, ppm)*	Level in Mass Hunter
0.0080	0.10	0.800	9.2	0.0040	1
0.010	0.10	1.00	9.0	0.0050	2
0.012	0.10	1.2	8.8	0.0060	3
0.020	0.10	2.0	8.0	0.010	4
0.040	1.0	0.400	9.6	0.020	5
0.080	1.0	0.800	9.2	0.040	6
0.12	1.0	1.2	8.8	0.060	7
0.20	10.	0.200	9.8	0.10	8
0.40	10.	0.400	9.6	0.20	9
0.80	10.	0.800	9.2	0.40	10
1.2	10.	1,2	8.8	0.60	11
2.0	10.	2.0	8.0	1.0	12

*0.040 mL of working calibration standard solution used. Although no matrix is used in standards, study samples use 0.080 g of matrix. The values listed in this column represent the concentration of MON 102100 in solution given a target 0.080 g matrix sample.

Benzamidine Working Calibration Solutions

Benzamidine Working Cal. Solution (µg/mL)	Dilute this Benzamidine Int. Solution (µg/mL)	Benzamidine Aliquot Volume (mL)	65% ACN Volume (mL)	Matrix Equivalent Benzamidine Concn (mg/kg, ppm)*
0.0020	0.10	0.200	9.8	0.0010
0.0025	0.10	0.250	9.75	0.00125
0.0030	0.10	0.300	9.7	0.0015
0.0050	0.10	0.500	9.5	0.0025
0.010	0.10	1.00	9.0	0.0050
0.020	1.0	0.200	9,8	0.010
0.030	1.0	0.300	9.7	0.015
0.050	1.0	0.500	9.5	0.025
0.10	10.	0.100	9.9	0.050
0.20	10.	0.200	9.8	0.10
0.30	10.	0.300	9.7	0.15
0.60	10.	0.600	9.4	0.30

*0.040 mL of working calibration standard solution used. Although no matrix is used in standards, study samples use 0.080 g of matrix. The values listed in this column represent the concentration of benzamidine in solution given a target 0.080 g matrix sample.

Study Number: 115G805 Page 17 of 39

Monsanto Company Standard Operating Procedure			
AG-ME-1636-02	High Throughput Assay for MON 102100 and Benzamidine in Soil	Page 8 of 30	

QC Fortification Solutions

Solutions may be prepared in the following manner. Other concentrations may be used as long as the preparation is documented. A suggested scheme for QC fortification solution preparation is shown below. For each fortification solution, add the listed aliquot of the designated solution to an amber glass vial and dilute with the specified volume of 65% ACN. Additional fortification solution levels may be prepared as necessary.

MON 102100 QC Solution Conen (µg/mL)	Aliquot Solution ID	Aliquot Volume (mL)	65% ACN Volume (mL)	MON 102100 Fortification (mg/kg, ppm)*
10.	0.50 mg/mL MON 102100 QC Stock	0.200	9.8	N/A
1.0	10. µg/mL MON 102100 QC Stock	1.00	9.0	N/A
0.010	1.0 µg/mL MON 102100 QC Stock	0.100	9.9	0.0050 (LOQ QC)
0.10	10. µg/mL MON 102100 QC Stock	0.100	9.9	0.050 (10x LOQ QC)
0.20	10. µg/mL MON 102100 QC Stock	0.200	9.8	0.10 (Mid QC)
1.8	10. µg/mL MON 102100 QC Stock	1.80	8.2	0.90 (High QC)
8.0	10. µg/mL MON 102100 QC Stock	8.0	2.0	4.0 (Dilution QC)

MON 102100 QC Fortification Solutions

* 0.040 mL of QC fortification solution added to 0.080 g of control sample

Benzamidine QC Fortification Solutions

Benzamidine QC Solution Concn (µg/mL)	Aliquot Solution ID	Aliquot Volume (mL)	65% ACN Volume (mL)	Benzamidine Fortification (mg/kg, ppm)*
10.	0.50 mg/mL Benzamidine QC Stock	0.200	9.8	N/A
1.0	10 μg/mL Benzamidine QC Stock	1.00	9.0	N/A
0.10	1.0 µg/mL Benzamidine QC Stock	1.00	9.0	N/A
0.0025	0.10 µg/mL Benzamidine QC Stock	0.500	19.5	0.00125 (LOQ QC)
0.025	1.0 μg/mL Benzamidine QC Stock	0.250	9.75	0.0125 (10x LOQ QC)
0.050	1.0 µg/mL Benzamidine QC Stock	0.500	9.5	0.025 (Mid QC)
0.60	10. µg/mL Benzamidine OC Stock	0.600	9.4	0.30 (High OC)

* 0.040 mL of QC fortification solution added to 0.080 g of control sample

Study Number: 115G805 Page 18 of 39

AG-ME-1636-02 H	igh Throughput Assay for MON 102100 and	Benzamidine in Soil	Page 9 of 30
(Phenyl- ¹³ C ₆)MON 102100 IS Stock Solution (1.0 mg/mL)	Weigh 20-25 mg (record to at least 0.1 mg) in a 60-mL amber glass vial. Add the appr ACN to prepare a 0.50 mg/mL solution of (mL of diluent for 20.1 mg of (phenyl- $^{13}C_6$) displacement mechanical pipette capable of recommended. The solution should be som dissolution.	of (phenyl- ${}^{13}C_6$)MON 10 opriate volume (to the nex (phenyl- ${}^{13}C_6$)MON 10210 MON 102100). An adjust f delivering up to 50 mL i icated briefly to ensure co	2100 standard arest 0.1 mL) o 00 (e.g., 40.2 able positive- is pomplete
(¹³ C ₆)Benzamidine IS Stock Solution (1.0 mg/mL)	Weigh 20-25 mg (record all to at least 0.1 m 60-mL amber glass vial. Add the appropria 65% ACN to prepare a 1.0 mg/mL solution positive-displacement mechanical pipette ca recommended. The solution should be soni dissolution.	ng) of $({}^{13}C_6)$ benzamidine the volume (to the nearest of $({}^{13}C_6)$ benzamidine. A apable of delivering up to cated briefly to ensure co	standard in a 0.1 mL) of .n adjustable 50 mL is omplete
Intermediate IS Solutions	Prepare the following intermediate IS soluti stock solution with 65% ACN	ons by dilution of the app	propriate IS
	Intermediate IS	Aliquot Volume	65% ACN

Intermediate IS Solution (µg/mL)	Aliquot Solution ID	Aliquot Volume (mL)	65% ACN Volume (mL)
10.	(Phenyl- ¹³ C ₆)MON 102100 IS Stock Solution (0.50 mg/mL)	0.200	9.8
10.	(¹³ C ₆)Benzamidine IS Stock Solution (1.0 mg/mL)	0.100	9.9
1.0	(¹³ C ₆)Benzamidine IS Stock Solution (10, µg/mL)	1.00	9.0

Study Number: 115G805 Page 19 of 39

Mixed IS Working Solution (0.050 µg/mL (Phenyl- ¹³ C ₆)MON 102100	Prepare the IS working solution the day to be used for analysis by diluting intermediate IS solutions with 65% ACN. An example dilution scheme is shown below.						
0.0020 μg/mL (¹³ C ₆)Benzamidine)	¹³ C ₆ -Benz amidine Int. IS Solution (µg/mL)	(Phenyl- ¹³ C ₆)MON 102100 Int. IS Solution (µg/mL)	(¹³ C ₆)Benz amidine Aliquot (mL)	(Phenyl- ¹³ C ₆)MON 102100 Aliquot (mL)	Diluent Volume (mL)	Mixed IS Working Solution (¹³ C ₆)Benz Concn (µg/mL)	Mixed IS Working Solution (Phenyl- ¹³ C ₆)MON 102100 Concn (µg/mL)
	1.0	10.	0.200	0.500	99.3	0.0020	0.050

Sample Preparation Procedure

Sample Storage	Homogenized samples will be maintained frozen at approximately -20 °C for extended storage periods.
Sample Homogenization	Raw sample material must be thoroughly milled and homogenized using a two- step milling process to reproducibly measure 80-mg subsamples. The first step involves preliminary bulk homogenization of the frozen sample with dry ice using an appropriate milling device such as a vertical cutter mixer. After bulk homogenization, a 30-40-mL subsample is milled further using cryogenic cooling with liquid nitrogen to a powder-like state. This can be performed with a SPEX Freezer Mill or other comparable device. Typical milling conditions on a SPEX Freezer Mill are below.

	Off-Line Precooling Method	On-Line Precooling Method
Cycles	4	4
Off-line Precool (external to instrument)	8 minutes	N/A
On-line Precool (on instrument)	2 minutes	15 minutes
Run Time	2 minutes	2 minutes
Cool Time	1 minute	1 minute
Rate	9 cps	9 cps

Study Number: 115G805 Page 20 of 39

AG-ME-1636-02 1	High Throu	ighput Assay for MON 10	2100 and Benzamidine in Soil	Page 11 of 30	
Soil Sample Processing	The benz A typ	following describes the pre amidine analysis. bical analytical set will inc	paration of soil samples for MO lude study samples, QCs and sta	N 102100 and ndards.	
	Step		Action		
	1	1 Weigh 80 ± 5 mg of milled matrix into a 1.4-mL polypropylene tu 96-well format) and record the weight. Soil matrices must be kept on dry ice and transferred frozen during this process. A common matrix absent of any significant interference of MON 102100 and benzamidine (and their ISs) will be used for QCs and control blanl *Note: The exact sample mass will be used to adjust the dilution factor j correction of sample concentration (e.g., target sample weight 0.0800 g. sample weight of 0.0828 g, enter dilution factor of 0.966 in MassHunter tracket.			
	2A	 Add 40.0 μL of the follow 65% ACN to test san MON 102100 Working standards MON 102100 QC For QC, 10x LOQ QC, M 	wing solution to the designated s nples and controls ng Calibration Standard Solutior ortification Solutions to QC samp fid QC, High QC and/or Dilution	ample type: is to calibration iles (e.g. LOQ i QC)	
		QC Sample	Fortification Level (mg/k	g, ppm)	
		LOQ QC	0.0050		
		10x LOQ QC	0.050		
		Mid QC	0.10		
		High QC	0.90		
		Dilution QC	Variable, depending on dilut needed. Up to a 10x dilu	tion level ution.	
	2B	 Add 40.0 μL of the follow 65% ACN to test san Benzamidine Working standards Benzamidine QC Four QC, 10x LOQ QC, M 	wing solution to the designated s nples and controls g Calibration Standard Solution: rtification Solutions to QC sampl fid QC, High QC)	ample type: s to calibration es (e.g. LOQ	
		QC Sample	Fortification Level (mg/kg	g, ppm)	
		LOQ QC	0.00125		
		10x LOQ QC	0.0125		
		Mid QC	0.025		
		High QC	0.30		
	2C	Add 1 grinding ball to ca	ch tube.		
	3	Add 720. μ L of the Mixe ($^{13}C_6$)benzamidine and 0. tube (including tubes des handler or other pipetting	d Working IS Solution (0.0020 μ 050 μ g/mL (phenyl- ¹³ C ₆)MON 1 ignated for standards) using an a c device.	ng/mL 02100) to each utomated liquid	
	4	Cover the 96-well plate v sealed well before proceed	with a shaker cap mat. Ensure the	e cap mat is	
	5	Place the plate in a sonic	ator and sonicate for approximate	ely 3 minutes.	
	6	Shake samples on the Ge 1200 cycles per minute for	nogrinder to extract analyte from or 30 minutes). Examine the pla	matrix (e.g. at te and tubes for	

Study Number: 115G805 Page 21 of 39

AG-ME-1636-02 High	High Thro	ughput Assay for N	MON 102100 and Benzamidin	e in Soil	Page 12 of 30
	7	Place plate in a \leq from the liquid c g).	10 °C centrifuge and spin to c olumn and form a solid pellet (lear suspend (e.g., 5 minu	ded materials ites at 6000 x
	8	Remove cap mat 96-well micropla suggested volum handler, multicha	and transfer appropriate volur tc(s) as needed for further ana es). This transfer can be perfo annel pipette or other pipetting	ne of superr lysis (see ta ormed using device.	natant to clean ble below for a liquid
		Analyte	Daughter Plate	Transfer V	olume (mL)
		MON 102100	96-well microplate with clear glass conical inserts	().400
		Benzamidine	Agilent 96-well plate, 1 mL	(0.050

For MON 102100 Analysis

Step	Action
9A	*Add 400. µL of toluene.
10A	Shake samples on the Genogrinder at 1200 cycles per minute for 2 minutes. Examine the plate and tubes for leaks. If leaks are detected discard and re-prepare.
11A	Place plate in a ≤ 10 °C centrifuge and spin so that all liquid is at the bottom of the tubes (e.g., 2 minutes at 6000 x g).
12A	Remove cap mat and transfer at least 100. μ L of the toluene layer (top) of the extract to a clean 96-well micro plate with clear glass conical inserts or a glass-lined polypropylene plate and cover with an autosampler cap mat. This transfer can be performed using a liquid handler, multichannel pipette or other pipetting device.
13A	Analyze by EI GC-MS/MS within storage time determined during method validation.

* Prior to Step 9A samples may be gently evaporated until approximately 150-200 μL remains to remove the majority of the ACN from the sample. The acceptability of method performance with and without this evaporation step was demonstrated during validation (see validation summary in **Appendix C**).

For Benzamidine Analysis

Step	Action		
9B	Add 700. μ L of Benzamidine Sample Dilution Solution (95% ACN, 10 mM ammonium formate) to the 50. μ L aliquot that was transferred in Step 8. Cover the plate with an autosampler cap mat. This transfer can be performed using a liquid handler, multichannel pipette or other pipetting device.		
10B	Analyze by ESI LC-MS/MS within storage time determined during method validation		

Study Number: 115G805 Page 22 of 39

AG-ME-1636-02	High Throug	ghput Assay for MON 102100 and Benzamidine in Soil	Page 13 of 30
Extract Dilution	High-le standar range c well as not cor necessa dilution be with sample the resp <u>Note</u> : interna	evel samples producing an analyte response greater than the d of the calibration curve must be diluted to within the ana of the standards and reanalyzed. Due to partitioning of MO the IS during extraction, the samples are diluted with a so tain IS to maintain the response ratio during sample diluti- ary to enter an additional dilution factor in calculations. The will be estimated so that the response of analyte and IS a in the analyte response range of the standards. <u>Note:</u> becc is are diluted with extraction solvent rather than a solution ponse ratio may not be within the range of response ratios of Dilution of samples for analysis of benzamidine using dilu- l standard did not pass validation acceptance criteria. The	at of the highest alyte response N 102100 as lvent that does on. It is <u>not</u> he amount of fter dilution will ause high-level containing IS, of the standards
	dilution Dilutio	n scheme for MON 102100 analysis is shown below. ns for MON 102100 analysis will be made by the followin	g procedure:
	Step	Action	
	1	Transfer an appropriate aliquot of the processed sample (above) to a new tube or well.	from Step 12A
	2	Add an appropriate volume of MON 102100 Sample Dile (toluene) and mix thoroughly.	ution Solution

3 Cap, mix and analyze by EI GC-MS/MS.

Instrumental Analysis

Sample Analysis Guidance and Acceptance Criteria Acceptance criteria for study samples utilizing this analytical method are:

Calibration Curve:

- Back-calculated calibration standard concentrations used to determine results must be within ±20% of their respective nominal concentrations.
- Calibration points may be removed for a documented analytical reason or a back-calculated inaccuracy outside ±20%. Values falling outside these limits can be removed and not included in the calculation, provided they do not change the established regression model (e.g. linear 1/x weighting). If a calibration standard(s) is removed the reason must be documented in the raw data (i.e. inaccuracy >20%).
- A minimum of six concentration levels (excluding blanks) and at least 75% of the total number of calibration standards must be represented in the final curve.

Study Number: 115G805 Page 23 of 39

AG-ME-1636-02	High Throughput Assay for MON 102100 and Benzamidine in Soil	Page 14 of 30			
	Quality Control Samples:				
	 The acceptance criterion for mean accuracy should be with the corrected, back-calculated nominal value. The acceptance criterion for precision is ≤20% RSD at each level. A maximum of 1 outlier (i.e. falls outside of acceptance criterions of discarded at each QC fortification justification and documentation of discarded outliers must be Any response in QC control samples falling within the retering a given analyte must be ≤30% of the response at the LOQ I where this response is exceeded, the presence of the target inadvertent contamination) versus an unknown interference assessed using an appropriate confirmatory technique. Any response from the matrix in QC control samples within window of the IS must be ≤5% of the response for the IS precontrol matrix sample with IS. Capability of dilution is demonstrated by including dilution 	in 70-120% of h fortification tteria and fails ion level. Proper be performed. ntion window of level. In cases analyte (i.e. e will be n the retention eak in the			
	the study. The dilution QC samples must meet acceptance quality control sample accuracy and precision.	criteria for			
	Injection Carryover:				
	The potential for carryover will be evaluated in each analytical placing a double blank after the highest calibration curve point.	or batch run by			
	• The response for analyte in the carryover sample must be ≤2 response at the LOQ level	20% of the			
	• The response for IS (if used) in the carryover sample must b response of the average IS response in the two replicate QC	e ≤5% of the control samples			
Instrument Setup	Instrument operation is controlled by acquisition methods containing all autosample LC or GC, switching valve (if utilized) and mass spectrometer operating parameters Precursor and product ions for the analytes are shown below along with choices for possible use in confirmatory analyses. Alternate ions may be used for quantitation of confirmation if they provide better data (sensitivity and/or specificity). The use of a minimum of one quantitation transition and one confirmatory transition is required cach batch run. The following equipment and conditions are instrument/system dependent and may be modified to obtain optimal instrument performance and				

Study Number: 115G805 Page 24 of 39

G-ME-1636-02	High Throughpu	at Assay for MON	102100 and Benzamidine	e in Soil Page 15 of 30			
vstem							
onditions for							
nalysis							
	GC	MS/MS System C	Conditions for Analysis	of MON 102100			
	GC: Agilent 789	90A					
	Autosampler: Gerstel MPS						
	Mass spectrome	ter: Agilent 7000 1	Friple Quadrupole				
	Ion source: elec	tron impact					
	Column: DB-17	MS 30m × 0.25m	m, 0.25 μm				
	Injection volum	e: 0.50 μL					
	Autosampler ter	nperature: 10 °C					
	GC carrier gas:	helium	the strength of the				
		Au	tosampler Conditions				
	Injection						
	Syringe: 5 µL						
	Injection volum	e: 0.5 μL					
	Air volume (bel	ow): 1.0 µL					
	Injection speed:	50.0 µL/sec					
	Fill volume: 4 µ	.L					
	Fill strokes: 2						
	Fill speed: 0.30 µL/sec						
	Viscosity delay:	3 sec					
	Eject speed: 25.	0 μL/sec					
	Cleaning						
	Fill sneed: 5.0 u	L/sec					
	Viscosity delay:	3 sec					
	Eject speed: 50.	0 uL/sec					
	-2	- Powers					
	Wash solvent 1:	50% ethyl acetate	in acetone				
	Wash solvent 2:	toluene					
	Wash 1: preclea	n: 0, postclean: 4					
	Wash 2: preclea	n: 1, postclean: 4					
	GC Conditions						
	Inlet						
	Inlet temperatur	e: 250 °C					
	Pulsed splitless						
	Injection pulse	pressure: 25 psi uni	til 0.5 min				
	Purge flow to sp	olit vent: 20 mL/mi	n at 0.5 min				
	Oven						
	Time (min)	Ramp Rate	Initial Oven	Final Oven			
	0.1.0	(Crimity 0		90			
	10.6.25	40	90	300			
	6 75 7 75	10	200	215			
	7 75 12 75	10	215	315			
	1.13-12.13	0	313	515			

Study Number: 115G805 Page 25 of 39

AG-ME-1636-02	High Throughput Assay for MON 102100 and Benzamidine in Soil Page 16 of						
	MS transfer line: 300 °C Column flow: 1.0 mL/min						
		Mass S	Spectrometer Condi	tions			
	Mode: EI	100 Aug 11					
	Scan type: MRM						
	Resolution Q1: uni	t					
	Resolution Q3: unit						
	Source temperature: 230 °C						
	Solvent delay: 5 min						
	Collision cell He: 2	2.25 mL/min					
	Collision cell N ₂ : 1	.5 mL/min	A				
	Analyte	Precursor Ion Q1 (amu)	Product Ion Q3 (amu)	CE (V)	Dwell (ms)		
	MON 102100	228	119	13	125		
	(Phenyl- ¹³ C ₆) MON 102100 (IS)	234	125	13	125		
	Confirmatory Ions						
	11031103100	778	111	13	125		
	MON 102100	220	111				

Study Number: 115G805 Page 26 of 39

Monsanto Company Standard Operating Procedure AG-ME-1636-02 High Throughput Assay for MON 102100 and Benzamidine in Soil Page 17 of 30

inence 20A					
Sciex API 500	00/5500				
tis Express HI	LIC Column.	50 mm × 2.1	mm, 2.7	um	
re: 4 °C					
re: 40 °C					
nethanol, 50 m	M ammoniun	n formate			
CN, 10 mM at	mmonium for	mate			
ons:					
Т	otal Flow	and the second			
%B (mL/min)	Divert			
100	0.400	To waste			
100	0.400	To MS			
100	0.400	To waste	_		
0	1.00	To waste	1		
100	1.00	To waste			
100	0.400	To waste	- 1 Jan 1		
ata collection	1.7 min with •	+2 sec delay	ime)		
Mass Spee	ctrometer Con	nditions			
		1.0	1	5000 17	
Duration: 1.7 min			Entrance Detection (ED): 10		
		Entrance Po	ater on	P): 10	
Gas 1:45 N.			Temperature (TEM): 500 °C		
Gas 2: 45 N.			Scan time (ms): 150		
Procursor Ion	Product Ion	DP	CE	CYP	
O1 (amu)	O3 (amu)	(V)	(V)	(V)	
121.1	104.0	81	25	14	
127.1	110.0	81	25	14	
	110.0				
121.1	77.0	81	41	16	
	Precursor Ion Mass Spee	Total Flow % minimized 2074 Sciex API 5000/5500 attis Express HILIC Column, re: 40 °C nethanol, 50 mM ammonium, CN, 10 mM ammonium for ons: Total Flow %B (mL/min) 100 0.400 100 0.400 100 1.00 100 1.00 100 0.400 ata collection 1.7 min with 4 Mass Spectrometer Cor Precursor Ion Product Ion Q1 (amu) Q3 (amu) 121.1 104.0	Sciex API 5000/5500 sciex API 5000/5500 attis Express HILIC Column, 50 mm × 2.1 re: 4°C re: 40 °C hethanol, 50 mM ammonium formate CN tre: 40 °C hethanol, 50 mM ammonium formate CN tre: 40 °C hethanol, 50 mM ammonium formate CN tre: 40 °C tre: 40 °C Total Flow $\sqrt{6B}$ (mL/min) Divert 100 0.400 To waste 100 0.400 To waste 100 1.00 To waste 100 0.400 To waste ata collection 1.7 min with 42 sec delay to Mass Spectrometer Conditions IonSpray vol Interface he Temperatur Scan time (i) Precursor Ion Product Ion DP Q1	Sciex API 5000/5500 sciex API 5000/5500 atts Express HILIC Column, 50 mm × 2.1 mm, 2.7 re: 4 °C re: 40 °C hethanol, 50 mM ammonium formate CN, 10 mM ammonium formate CN, 10 mM ammonium formate ON ON Value Mass Colspan="2">Immediation of the second se	

Study Number: 115G805 Page 27 of 39

AG-ME-1636-02	High Throughput Assay for MON 102100 and Benzamidine in Soil Page 18 of 3
Data Processing	Process the LC-MS/MS data using the Analyst [™] quantitation wizard. Process the G MS/MS data using the MassHunter quantitation wizard. A method may be creat which processes the data for the MRM transition pairs established in the acquisiti method. The method detects and integrates the analyte peaks based on retention the and MRM transition. Chromatograms may be smoothed prior to integration, as long the smoothing algorithm is consistent throughout the entire sample set. Manual per integration should be used when the automated procedure is not effective due baseline noise. Dilution factors, if applicable, must be added during data processing not input prior to the start of the instrument run.
Calculations	
Overview	Analyte concentrations are calculated using the Analyst® (for LC-MS/MS) or Mass Hunter (for GC-MS/MS) software. The software calculates the standard curve and applies the dilution factor to account for dilution or concentration during processing. Standard curves are generated as the ratio of the analyte response (e.g., peak area) to the internal standard response, for each standard level, plotted against concentration. linear regression model is used for quantitation with or without weighting (e.g. linear 1/x weighted). All the samples from a study must be analyzed with the same type of calibration curve for a given analyte.
Analyte Concentration	Analyte concentrations are reported in mg/kg (ppm) of matrix. The MassHunter and Analyst systems automatically calculate the raw concentration of the injected sample relative to the standard curve (<i>calculated concentration</i>). This value is also automatically multiplied by any value entered in the <i>dilution factor</i> column.
	Assumptions:
	 The nominal dilution of the sample during extraction (1:10 for MON 102100 and 1:150 for benzamidine) is incorporated into the calibration standard concentrations that are entered into the MassHunter or Analyst software. The calibration standard concentrations are entered as matrix equivalent concentrations ('Matrix Equivalen Concn (mg/kg, ppm)' in the Working Calibration Solution tables above). Calibration standard solutions are diluted equivalently to samples in the sample processing procedure of the method; therefore, these entered concentrations are 10 times and 150 times (for MON 102100 and benzamidine, respectively) their actual injected concentrations, so the dilution factor is climinated
	 The error in the 10x or 150x correction above due to actual sample weight is enter as the ratio of the target and actual sample weight (e.g., 0.080 g target / 0.0845 g actual = 0.9467) into the MassHunter or Analyst dilution factor column. Entry of a separate dilution factor is <u>not</u> required for samples with MON 102100 analyte responses higher than the highest calibration standard that are diluted into the range of the curve (samples are diluted with a solvent that does not contain IS,

The analytical raw data packages will include (at a minimum): the sample processing worksheet, instrumental sample queue/run record, calibration curves, MRM chromatograms, results tables, instrument acquisition parameters.

Study Number: 115G805 Page 29 of 39

