INTRODUCTION

This report describes the validation of a residue analytical method for the determination of MON 102100 (tioxazafen, 3-phenyl-5-thiophen-2-yl-1,2,4-oxadiazole) and its potential environmental degradates, MON 102130 (3-thienyl 102100, 3-phenyl-5-thiophen-3-yl-1,2,4-oxadiazole) and benzamidine, in drinking, surface and ground water. Validation of the method was conducted over the concentration range of 0.10 - 1.0 ng/mL (ppb). Common names, chemical names and molecular formulae for the analytes used in this study are presented in <u>Tables 1-3</u>.

This study was conducted to fulfill data requirements outlined in the US EPA Ecological Effects Test Guidelines, OCSPP 850.6100 (\underline{I}) and in compliance with US EPA FIFRA Good Laboratory Practices, 40 CFR 160. The validation also complies with the requirements of OECD method ENV/JM/MONO/2007/17 and Canada PMRA Regulatory Directive Dir98-02 ($\underline{2}$ - $\underline{3}$) according to the study protocol amendment #1 (Appendix A).

EXPERIMENTAL PHASE

Sample Origin, Preparation, Storage and Characterization

The control samples of drinking, ground and surface water were sourced directly by EPL BAS. On arrival, the samples were placed in a refrigerator set to maintain a specimen temperature of 2 °C where they were stored at all times until removed for analysis. No sample preparation or homogenization was necessary prior to sample analysis. Full sample details are included in the raw data package.

Prior to use, the control samples were characterized for pH, calcium, magnesium, hardness, conductivity, total suspended solids, turbidity, alkalinity, total organic carbon and dissolved organic carbon. Certificates of analysis for the control samples can be found in <u>Appendix B</u>.

Tast/Component	Drinking Water ¹	Ground Water ²	Surface Water ³
Test/Component	761-X001	761-X002	761-X003
pH	8.3	8.1	8.5
Calcium (ppm)	22	63	61
Magnesium (ppm)	8.9	27	55
Hardness (mg equiv.	92	272	382
CaCO ₃ /L)			
Conductivity (mmhos/cm)	1.17	0.59	3.12
Total Suspended Solids (ppm)	10	8	8
Turbidity (NTU)	0.39	0.31	6.77
Alkalinity (mg CaCO ₃ /L)	387	201	521
Total Organic Carbon (ppm)	2.3	1.6	23.4
Dissolved Organic Carbon	1.9	0.6	22.3
(ppm)			

¹An aliquot of 759-X001 (AGVISE Sample ID 14-25)

²An aliquot of 759-X002 (AGVISE Sample ID 14-26)

³An aliquot of 759-X004 (AGVISE Sample ID 14-27)

Calculation of Standard Calibration Curve

The reference substance/analytical standards and internal standards used during the conduct of method validation are detailed in <u>Tables 1-3</u>. Certificates of analysis for the reference

substances and internal standards can be found in <u>Appendix B</u>. Standard stock solutions, calibration standard solutions and fortification solutions were prepared as described in the analytical method (<u>Appendix C</u>). Full details of these materials are included in the raw data package for the study along with details of the preparation of all analytical and fortification standards prepared from the primary reference substances. The reference and internal standards will be retained until expiry and then disposed of following relevant Testing Facility disposal SOP's with the approval of the Study Monitor.

Calculation of a standard curve began with the injection of a series of calibration standards prepared as described in <u>Appendix C</u> and acquisition of the peak areas for the following transitions:

MON 102100	<i>m/z</i> 228.9/111.1 <i>m/z</i> 228.9/82.9	(Quantitative) (Confirmatory)
MON 102130	<i>m/z</i> 228.9/111.1 <i>m/z</i> 228.9/82.9	(Quantitative) (Confirmatory)
Benzamidine	<i>m/z</i> 121.0/104.1 <i>m/z</i> 121.0/77.0	(Quantitative) (Confirmatory)
(Phenyl- ¹³ C ₆)MON 102100	<i>m/z</i> 235.0/111.0	(Quantitative)
(¹³ C ₆)Benzamidine	<i>m/z</i> 127.0/110.0	(Quantitative)

Confirmation of Residue Identity

The method was specific for the determination of MON 102100, MON 102130 and benzamidine by virtue of the chromatographic separation and selective detection system used. Confirmation was performed to demonstrate the selectivity of the primary method by monitoring one additional precursor-to-product ion transition simultaneous to the primary detection transition for each analyte. Untreated control matrix samples and samples fortified at the lowest fortification level for each analyte/matrix combination were provided to demonstrate the selectivity of the method.

Statistical Treatment of Data

Statistical treatment of the data was performed using AB Sciex Analyst[®] Chromatography Software, MultiQuant Data Analysis Software and Microsoft Excel. Statistical treatments included but were not limited to the calculation of linear regression equations and coefficients of determination (r^2) for describing the linearity of calibration curves; and means, standard deviations, and relative standard deviations of the results for the fortified samples.

Example calculations performed in Excel are found below.

MON 102100 recovery at 0.10 ng/mL (LLMV Fortification Level)

Laboratory Sample ID: 761-X001-S1, Set V001

Amount Found (ng/mL, Instrumental Response) = Calculated Concn.

Peak area, MON 102100 = 9012

Peak area, MON 102100 Internal Standard = 910356

Internal Standard (ITSD) Concentration = 5.0 ng/mL

Linear Regression equation: y = 0.67188 x + (0.00135)

Where: $y = (MON \ 102100 \ peak \ area/ITSD \ peak \ area) = 0.0098994$

 $x = (MON \ 102100 \ Concn. / ITSD \ Concn.) = (Calculated \ Concn. /5)$

To solve:

(0.0098994) - (0.00135) = (0.67188) * (Concn. /5)

Calculated Concn. = [(0.0098994 - 0.00135)] *5 / 0.67188 = 0.0636 ng/mL

Amount Found (ng/mL) =

<u>Amount Found (ng/mL) * Final Volume (mL)</u> Sample Volume (mL)

Where:

Amount Found = 0.0636 ng/mL

Final Volume = 1 mL

Sample Volume = 0.750 mL

To solve:

Amount Found (ng/mL) = [(0.0636 ng/mL) * (1 mL)] / [0.750 mL]

Amount Found (ng/mL) = 0.08480 ng/mL

Fortification Level (ng/mL) =

<u>Vol. of Fortification Solution (mL) * Concn. of Fortification Solution (ng/mL)</u> Sample Volume (mL)

Where:

Vol. of Fortification Solution = 0.075 mL

Concn. of Fortification Solution = 1.000 ng/mL

Sample Volume = 0.750 mL

To solve:

Fortification Level (ng/mL) = (0.075 mL * 1.000 ng/mL) / 0.750 mL

Fortification Level (ng/mL) = 0.1000 ng/mL

Recovery (%) =

<u>Amount Found (ng/mL) * 100</u> Fortification Level (ng/mL)

Where:

Amount Found (ng/mL) = 0.08480 ng/mL

Fortification Level (ng/mL) = 0.1000 ng/mL

To solve:

Recovery (%) = (0.08480/0.1000) * 100

Recovery (%) = 84.80 %

Concn. stands for Concentration

Vol. stands for Volume

Identifying Information	Structure and IUPAC Name	
Common Name of Compound:		
Tioxazafen		
Molecular Formula: C ₁₂ H ₈ N ₂ OS		
Molecular Weight: 228.27	N-0'	
Appearance: White solid		
CAS Number: 330459-31-9	3-phenyl-5-thiophen-2-yl-1,2,4-oxadiazole	

Table 1. Identities and Structures of MON 102100 and Related Internal Standard

Table 2: Identities and Structures of MON 102130 and Related Internal Standard

Sponsor Report Number: MSL0025809 EPL BAS Study Number: 115G761 Page 27 of 181

Identifying Information	Structure and IUPAC Name	
Common Name of Compound:	NH	
Benzamidine	NH ₂	
Molecular Formula: C7H8N2		
Molecular Weight: 120.15		
Appearance: White crystalline solid	benzenecarboximidamide	
CAS Number: 618-39-3		

Table 3: Identities and Structures of Benzamidine and Related Internal Standard

Sponsor Report Number: MSL0025809 EPL BAS Study Number: 115G761 Page 106 of 181

Analytical Method for MON 102100 and Environmental Degradates in Water

EPL-BAS Method No. 115G761A

Method Summary

Water samples are first centrifuged to remove suspended solid particles. Sample supernatants are mixed (3:1, v/v) with a solution of stable-labeled $({}^{13}C_6)$ internal standards in an organic solvent comprised of formic acid and heptafluorobutyric acid anhydride in a mixture of acetonitrile, methanol and isopropanol. Samples are agitated and analyzed by LC-MS/MS for the analytes MON 102100 (tioxazafen), MON 102130 (3-thienyl 102100) and benzamidine. The lower limit of method validation (LLMV) of the method is 0.10 ng/mL (ppb) and the working range of the method is 0.10 ng/mL (ppb) to 20 ng/mL (ppb) for each analyte. The method is validated for these analytes in drinking water, ground water and surface water.

I. Reference Substances and Reference Substance Solutions

A. <u>Reference Substances and Internal Standards</u>

The following reference standards are used:

Common name	Tioxazafen		
Monsanto code name:	MON 102100		
Chemical name (IUPAC):	3-phenyl-5-thiophen-2-yl-1,2,4-oxadiazole 330459-31-9		
CAS-Registry-No .:			
Chemical structure:	N S N O		
Molecular formula:	C ₁₂ H ₈ N ₂ OS		
Molecular weight:	228.27		
Common name	3-Thienyl 102100		
Monsanto code name:	MON 102130		
Chemical name (IUPAC):	3-phenyl-5-thiophen-3-yl-1,2,4-oxadiazole		
CAS-Registry-No.: 255866-91-2			
Chemical structure:	N-OS		
Molecular formula:	C12H8N2OS		
Molecular weight:	228.27		
Common name	Benzamidine		
Chemical name (IUPAC):	Benzenecarboximidamide		
CAS-Registry-No .:	618-39-3		
Chemical structure:	NH NH ₂		
Molecular formula:	$C_7H_8N_2$		
Molecular weight:	120.15		

In addition, the following internal standards are used:

Common name	(Phenyl- ¹³ C ₆)MON 102100		
Chemical Name (IUPAC):	3-(¹³ C ₆)Phenyl-5-thiophen-2-yl-1,2,4-oxadiazole Not assigned		
CAS-Registry-No .:			
Chemical structure:	$\begin{array}{c} {}^{13}C \\ {}^{$		
Molecular formula:	¹³ C ₆ C ₆ H ₈ N ₂ OS		
Molecular weight:	234.22		
Common name	(¹³ C ₆)Benzamidine		
Chemical Name (IUPAC):	(¹³ C ₆)Benzenecarboximidamide		
CAS-Registry-No .:	Not assigned		
Chemical structure:	NH		

NH₂

Molecular formula:	¹³ C ₆ CH ₈ N ₂	
Molecular weight:	126.11	
Worcediar weight.	120,11	
B Reference Substan	and Internal Standard Solutions	

Substanc

Sample volumes may be adjusted as long as proportionality is maintained.

MON 102100	Weigh 10 mg (recorded to at least 0.1 mg) of MON 102100		
Calibration	reference material into a 10-mL class A volumetric flask and		
Stock Solution	dilute to volume with acetonitrile (ACN). The solution may		
(1.0 mg/mL)	be sonicated briefly to ensure complete dissolution. Store		
	frozen (approximately -20 °C) in an amber bottle.		
Benzamidine	Weigh 10 mg (recorded to at least 0.1 mg) of benzamidine		
Calibration	reference material into a 10-mL class A volumetric flask and		
Stock Solution	dilute to volume with ACN. The solution may be sonicated		
(1.0 mg/mL)	briefly to ensure complete dissolution. Store frozen (approximately -20 °C) in an amber bottle.		

3-Thienyl 102100	Weigh 10 mg (recorded to at least 0.1 mg) of 3-thienyl	
Calibration	102100 reference material into a 10-mL class A volumetric	
Stock Solution	flask and dilute to volume with ACN. The solution may be	
(1.0 mg/mL)	sonicated briefly to ensure complete dissolution. Store frozen (approximately -20 °C) in an amber bottle.	

IntermediatePrepare the following Intermediate Calibration Solutions by
dilution of the appropriate Calibration Stock Solution with
65/35 ACN/water. These solutions are all prepared in 10-mL
class A volumetric flasks and stored frozen (approximately –
20 °C) in amber bottles.

Intermediate Calibration Solution	termediate Calibration Source Solution ID Solution	
10 µg/mL	MON 102100 Calibration Stock Solution (1.0 mg/mL)	0.100
Intermediate Calibration	3-Thienyl 102100 Calibration Stock Solution (1.0 mg/mL)	0.100
Solution	Benzamidine Calibration Stock Solution (1.0 mg/mL)	0.100
1.0 μg/mL Intermediate Calibration Solution	10 μg/mL Intermediate Calibration Solution	1.00
0.10 µg/mL Intermediate Calibration Solution	1.0 μg/mL Intermediate Calibration Solution	1.00
0.01 µg/mL Intermediate Calibration Solution	0.10 μg/mL Intermediate Calibration Solution	1.00

Working	Prepare the following Working Calibration Standard
Calibration	Solutions by dilution of the appropriate Intermediate
Standard	Calibration Solution in water. All solutions are prepared in
Solutions	10-mL class A volumetric flasks and stored refrigerated in amber bottles.

Working Calibration Standard Solution (ng/mL)	Dilute this Intermediate Calibration Solution (µg/mL)	Aliquot Volume (mL)	Final Calibration Level (ng/mL)†
0.080	0.01	0.080	0.0600
0.10	0.01	0.100	0.0750
0.20	0.01	0.200	0.150
0.50	0.10	0.050	0.375
1.0	0.10	0.100	0.750
2.0	0.10	0.200	1.50
5.0	1.0	0.050	3.75
10	1.0	0.100	7.50
20	1.0	0.200	15.0

[†]Final Calibration Level (ng/mL) assumes 0.750 mL of the Working Calibration Standard Solution (ng/mL) is brought to a final volume of 1.00 mL.

QC	Prepare the following QC Fortification Solutions by dilution of			
Fortification	the appropriate solution with water. These solutions are all			
Solutions	prepared in 10-mL class A volumetric flasks and stored refrigerated in an amber bottles. Additional QC Fortification			
	Solutions may be prepared as needed.			

QC Fortification Solution (ng/mL)	Source Solution ID	Aliquot Volume (mL)	QC Level	
100	10 μg/mL Intermediate Calibration Solution	0.100	N/A	
10	0.10 μg/mL Intermediate Calibration Solution	1.00	10X LLMV (1 ppb)	
1	0.01 μg/mL Intermediate Calibration Solution	1.00	LLMV (0.1 ppb)	
2	0.01 μg/mL Intermediate Calibration Solution	2.00	2X LLMV (0.2 ppb)	

(Phenyl- ¹³ C ₆)	Weigh 10 mg (recorded to at least 0.1 mg) of (phenyl- ¹³ C ₆)
MON 102100	MON 102100 reference material into a 10-mL class A
Internal Standard	volumetric flask and dilute to volume with ACN. The solution
Stock Solution	may be sonicated briefly to ensure complete dissolution. Store
(1.0 mg/mL)	frozen (approximately –20 °C) in an amber bottle.
(¹³ C ₆)Benzamidine	Weigh 10 mg (recorded to at least 0.1 mg) of $({}^{13}C_6)$
Internal Standard	benzamidine reference material into a 10-mL class A
Stock Solution	volumetric flask and dilute to volume with ACN. The solution
(1.0 mg/mL)	may be sonicated briefly to ensure complete dissolution. Store
	frozen (approximately -20 °C) in an amber bottle.
Intermediate	Prepare the following Intermediate Internal Standard Solution
Internal	by dilution of the appropriate Internal Standard Stock

Internalby dilution of the appropriate Internal Standard StockStandardSolutions with Mobile Phase B (MPB). This solution isSolutionprepared in a 10-mL class A volumetric flask and is stored
frozen (approximately -20 °C) in an amber bottle.

Intermediate Internal Standard Solution (µg/mL)	Source Solution ID	Source Aliquot Volume (mL)	
	(Phenyl- ¹³ C ₆)MON 102100 Internal Standard Stock Solution (1.0 mg/mL)	0.010	
1.0	(¹³ C ₆)Benzamidine Internal Standard Stock Solution (1.0 mg/mL)	0.010	

InternalPrepare the following Internal Standard Working Solution onStandardPrepare the following Internal Standard Working SolutionWorking SolutionStandard Solution with MPB. This solution is prepared in a(20 ng/mL)25-mL class A volumetric flask.

Internal Standard Working Solution (ng/mL)	Source Solution ID	Source Aliquot Volume (mL)
20	Intermediate Internal Standard Solution (1.0 μg/mL)	0.500

II. Reagents and Reagent Solutions

A. Reagents

Acetonitrile (ACN), HPLC Grade Isopropanol (IPA), Analytical Grade Methanol (MeOH), HPLC Grade Heptafluorobutyric acid anhydride (HFBA), Analytical Grade Formic acid (FA), Analytical Grade Water, HPLC Grade or equivalent

B. Reagent Solutions

65/35 (v/v) ACN/ Water: For every liter of solution prepared, combine 650 mL of ACN with 350 mL of water. Invert to mix. Store ambient.

Mobile Phase A (MPA): Add 1 mL of formic acid and 1 mL of HFBA into 1000 mL of water. Invert to mix. Store ambient.

Mobile Phase B (MBP): Add 1 mL of formic acid and 1 mL of HFBA into 1000 mL of an organic solvent mixture with the composition of 50/475/475 (v/v/v) isopropanol/methanol/acetonitrile.

III. Equipment and Instrument

Balance, Analytical, capable of weighing to the nearest 0.1 mg Centrifuge, with rotor to accommodate 15-mL culture tube Culture Tubes, conical or round-bottom, 15-mL with screw-top lids Vortex Mixer HPLC System, Agilent 1200 Mass Spectrometer, AB SCIEX 6500 Autosampler Vials (1.8 mL) with pre-slit screw-top lids Pipettes, Air-displacement, 10-100 μL capacity with disposable tips Pipettes, Air-displacement, 100-1000 μL capacity with disposable tips Graduated Cylinders, various volumes up to 2000 mL Class A Volumetric Pipettes and Flasks, various volumes

IV. Sample Preparation Procedure

WaterThe following describes the preparation of water samples forSampleanalysis by LC-MS/MS. A typical analytical set will include (atProcessinga minimum) samples for analysis, QC fortifications and
calibration standards. Sample contact with plastic materials
should be minimized.

Step	Action					
1	Pipette approximately 10-15 mL of sample into a disposable 15-mL culture tube. For QC fortification samples, pipette 10-15 mL of water into a disposable 15-mL culture tube. Centrifuge the samples for 10 minutes at 4000 rpm to clear suspended materials from the liquid column.					
2	Aliquot the supernatant into a clean glass vial.					
3	 Samples: Transfer 0.750 mL of centrifuged sample into a 1.8-mL autosampler vial. QC Fortifications: Transfer 0.675 mL of centrifuged sample into a 1.8-mL autosampler vial. Calibration Standards: Transfer 0.750 mL of the appropriate Working Calibration Standard Solution into a 1.8-mL autosampler vial. 					
4	Add 75 µL of the following solutions to the appropriate QC Fortification samples.					
	QC Sample	QC Fortification Solution (ng/mL)	Final QC Fortification Concentration (ng/mL)			
	LLMV	1	0.10			
	10X LLMV	10	1.0			
5	Add 0.250 mL of the Working Internal Standard Solution (20 ng/mL) into each autosampler vial.					
6	Mix the solution well (a vortex mixer may be used).					
7	Submit for analysis by LC-MS/MS. Vials may be stored refrigerated up to 3 days pending instrumental analysis.					

V. Instrumental Analysis

Instrument Instrument operation is controlled by acquisition methods containing Setup all HPLC, source interface and mass spectrometer operating parameters. The typical precursor and product ions for the analytes are shown below (along with typical confirmatory ions). Alternate ions may be selected if necessary to improve data sensitivity and/or specificity. The following equipment and operating conditions may be modified to obtain optimal instrument performance. Actual method

F	parameters used mu	st be re	cord	ed in the	raw data.		
	Н	PLC Co	ondit	tions			
HPLC: Agilent 12	.00						
Column: Waters X	Kbridge Phenyl (2.1	x 100n	nm,	3.5 µm)			
Injection Volume:	20 μL						
Column Oven Ten	perature: 20 °C						
Autosampler Temp	perature: 20 °C						
Mobile Phase A: ().1% FA, 0.1% HFI	BA in V	Wate	r			
Mobile Phase B: 0	.1% FA, 0.1% HFB	A in IP	A/M	feOH/AC	N (50:475	:475)	
Flow Rate: 0.250 n	nL/min						
Gradient Profile In	formation						
Time (min)	% MPA	% N	IPB	1.11	Divert	21	
0.0	98	2	P	1.1	To waste		
5.0	98	2		1	Fo waste		
5.5	70	30	0		To MS		
23.0	30	70	0		To MS		
23.5	10	90			To MS		
26.0	5	95			To MS		
26.5	98	2		1	Fo waste		
30.0	98	2	Į	To waste			
	Mass Sp	ectrom	eter	Condition	IS	1000	
Mass Spectrometer	r: AB SCIEX 6500	Q-Trap	wit	h (what ic	n source-t	urbo V??)	
Ion Source: ESI							
Mode: Positive Ior	n						
Scan Type: Sched	uled MRM						
Resolution (Q1 and	d Q3): Unit		~	4. 20			
Curtain Gas (CUR): 20			Gas 1: 60				
Collision Gas (CAD): Medium			Gas 2: 60				
IonSpray Voltage ((IS): 5500 V		Ent	rance Pot	ential (EP)	: 10 V	
Temperature (TEN	1): 600 °C		-	02	-	- 1	CND
	1.40	Q		Q3	DD (ID	OF OD	CXP
An	alyte	(am	u)	(amu)	DP(V)	CE(V)	(V)
Benzamidine	(Quantitation)	121	.0	104.1	30	29	15
Benzamidine	(Confirmatory)	121	.0	//.0	50	42	13
(°C ₆)Benzamidine (IS)		127	.0	110.0	40	51	14
MON 102100 (Quantitation)*		228	.9	111.1	/0	41	14
MON 102100	(Confirmatory)*	228	.9	82.9	/0	55	14