Half-Life Data Sheet

Name:	Date:
Each radioactive (unstable) element has a different half-life. Hypo	othesize what half-life is:

Complete the half-life demonstration as directed by your teacher.

Calculate the number of radon atoms remaining after each half-life starting with a radon sample of 400 atoms. Write the number of atoms in the "Number of Remaining Radon Atoms" column. Round decimals to the nearest hundredth (For example: .474 = .47). Plot the number of radioactive atoms on the graph according to the half-life number.

Half-Life	Number of
Number	Radon Atoms
0	400
1	
(3.8 days)	
2	
(7.6 days)	
3	
(11.4 days)	
4	
(15.2 days)	
5	
(19 days)	
6	
(22.8)	
7	
(26.6 days)	
8	
(30.4 days)	
9	
(34.2 days)	
10	
(38 days)	

1. Observations:

2.	Con	clusions:
•		
3.	wny	r is it useful to know the half-life of radioactive materials?
4.		on is the second leading cause of lung cancer. How does the half-life of radon and its decay products se damage to lung tissue that can lead to lung cancer over the course of a lifetime?

