# **Urban Water Fun!**

John E. McCray Civil & Environmental Engineering Department Colorado School of Mines <u>imccrav@mines.edu</u> 303-273-3490

South Platte River Urban Water Partnership Quarterly Meeting





19 Feb 2019

SEPA United States Environmental Protection Agency

**ReNUWIt: Reinventing the Nation's Urban Water Infrastructure** 

## **Topics Today**

- 1. Request participation from SPRUWP on new NSF funded workshops related to beneficial use of stormwater (.... Gasp!....).
- 2. Talk on our automated urban water stormwater quality sampling program (including dry weather flows and snowmelt sampling).
- 3. Talk on one of our new green-infrastructure technologies for stormwater treatment under development at Mines. This one is about engineered streambeds for improving urban water quality in streams and channels.
- 4. If time, a brief overview of some other stormwater green infrastructure technologies/efforts ongoing at Mines.

#### 1. NSF Funded Workshop to Brainstorm Ideas to Overcome Policy / Legal Barriers to Beneficial Stormwater Use in the Front Range

<u>Participants</u>: Mines, ReNUWIt, CWCB, Front Range Stakeholders (SPRUWP?)

What: 2 or 3 workshops based on a particular case study to get the discussion started. Each workshop could build on the next. If successful, could pursue additional funding (CWCB, NSF, etc) to continue the workshops and perhaps formalize a working group

When: Late Summer or Fall

Where: TBD. Likely at Mines, or at front range organizations

<u>Partners</u>: Looking for partners to promote the agenda and co-host (CWCB, SPRUWP, CSC, CAFSM, UDFCD, etc..)

**Call for Interested Organizations / Individuals:** 

E-mail John McCray and Katie Spahr: jmccrav@mines.edu: kspahr@mines.edu

With Subject Line: Stormwater Beneficial Use Workshops

#### 2. Stormwater Quality Related to Infill Re-development in Denver: Storm Sewer Monitoring for Data-Based Decision Making

John E. McCray, PhD Kyle Gustafson, MS Student; Kimberly Slinski, PhD;

**Colorado School of Mines** 

**Presented to** 



South Platte River Urban Water Partnership

19 Feb 2019



**ReNUWIt: Reinventing the Nation's Urban Water Infrastructure** 



2001

211

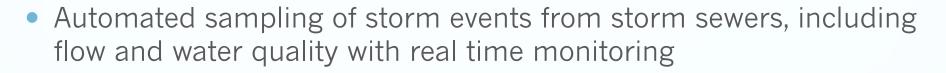
Goal:

# Partnership with City of Denver: 2020 Sustainability Goals



#### Rapid Growth with Infill Re-Development

#### **Berkeley neighborhood in west Denver**




#### More stormwater runoff

Lot size < 1 acre: stormwater quality control **not** required

Expect degraded stormwater quality

#### Urban Water Quality Sampling Data-Driven Decision Making - Is it better?



- Identify potential water quality impacts from urban basins undergoing different stages of infill development.
- Inform new policies regarding water quality mitigation for infill development
- Inform development, location and scale of green infrastructure for stormwater quality enhancement.

Determine "local" Event Mean Concentrations (EMCs) for infilldeveloped neighborhoods, compare to city-wide residential EMCs.



# Sampling Locations

- West Rapidly developing + highly developed -
- Central Highly developed (Tennyson District)
- East Slowly developing

| Site    | Area<br>(ac) | Impervious<br>Area (Ac) | lmpervious<br>(%) |  |  |
|---------|--------------|-------------------------|-------------------|--|--|
| West    | 328          | 184                     | 56%               |  |  |
| Central | 79           | 47                      | 60%               |  |  |
| East    | 393          | 181                     | 45%               |  |  |
| Total   | 800          | 411                     | 51%               |  |  |

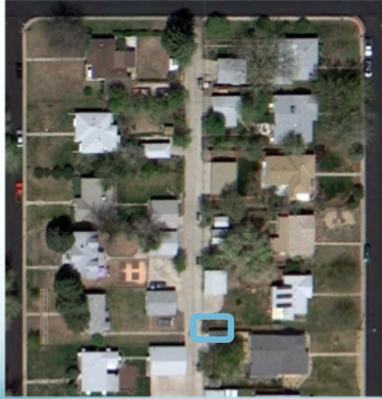
#### Infill – Central Basin



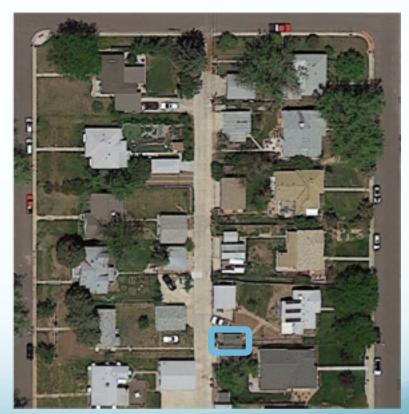


Tennyson St. **2014** 

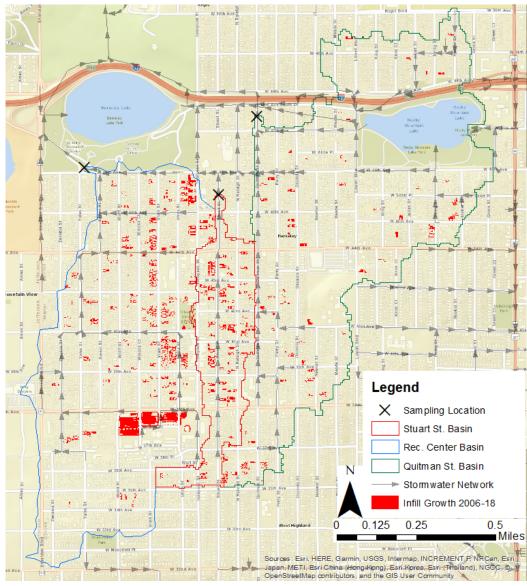
Tennyson St. **2017** 


#### Infill – Central Basin






Stuart St. **2017** 


## Infill - East Basin



Near Quitman St. 2011



Near Quitman St. **2017** 

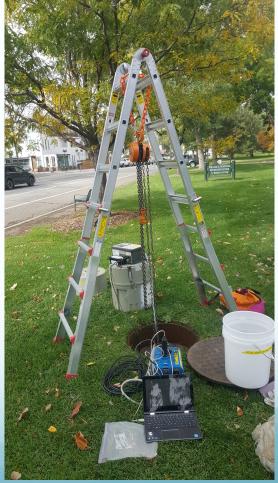


#### Infill Changes 2004-18

|                    | SST (Ac.) | OST (Ac.) | REC (Ac.) |
|--------------------|-----------|-----------|-----------|
| Building           | 2.6 (66%) | 2.3 (68%) | 6.4 (51%) |
| Driveway           | 0.5 (12%) | 0.4 (13%) | 1.2 (9%)  |
| Parking            | 0.0 (0%)  | 0.1 (2%)  | 2.4 (19%) |
| Sidewalk           | 0.5 (12%) | 0.3 (9%)  | 1.6 (13%) |
| Other              | 0.4 (10%) | 0.3 (9%)  | 1.0 (8%)  |
| Total (Acres)      | 4.0       | 3.3       | 12.6      |
| Basin Area (Acres) | 79.3      | 392.7     | 328.3     |
| Percent Change     | 5.0%      | 0.8%      | 3.8%      |

## Sampling Procedures




- ISCO Auto-samplers connected to flow sensors
- Real-time flow measurement
- Triggers above base flow
- Lab analysis within 24 hours
- Precipitation from RainVieux Corroborated with weather station in study area

# Sampling Procedures

| Water Quality Measure    | Lab Method/Analysis<br>Equipment     | Sample Hold<br>Time |
|--------------------------|--------------------------------------|---------------------|
| TSS                      | EPA Standard Method 2540D            | 7 days              |
| TDS and Conductivity     | Cole-Parmer Traceable                | 24 hours            |
| рН                       | Accumet AB15                         | 24 hours            |
| Total Recoverable Metals | EPA Standard Method<br>3015A/ICP-AES | 7 days              |
| Phosphorous              | Hach TNT 843                         | 24 hours            |
| Ammonia                  | Hach TNT 831                         | 24 hours            |
| Nitrate                  | Hach TNT 835                         | 24 hours            |
| Nitrite                  | Hach TNT 839                         | 24 hours            |
| FIB and E. coli          | Idexx Colilert                       | 24 hours            |

# Sampling Procedures

- Time-weighted Discrete or Composite
  - Provides time series of concentrations
- Flow-weighted Discrete or Composite
  - Provides higher accuracy for surface water load estimates
  - Composite sampling reduces labor and lab costs while still providing EMC values
- Grab samples for dry weather flows
  - Quantifies background concentrations
  - Irrigation, car washes, groundwater, residential sump pumps.



#### Rain Events Captured

#### • 9 rain events captured

- 7 at Rec Center
- 6 at Quitman St.
- 3 at Stuart St.
- Antecedent Dry Period: 1-8 Days
- All storms smaller than 2-yr storm events Rainfall 0.02-0.40"
- Peak flow: 0.007-0.25 m<sup>3</sup>/s
- +1 snowmelt event captured.

| Date    | Ant. Dry | Storm Return | Rainfall | Peak Rainfall Inten. | Peak Flow |
|---------|----------|--------------|----------|----------------------|-----------|
| Date    | Days     | Period       | (in.)    | (in/5mins)           | (m3/s)    |
| 7/2/18  | 8        | <2yr/30min   | 0.02     | 0.00                 | 0.007     |
| 7/7/18  | 5        | <2yr/2hr     | 0.24     | 0.06                 | 0.062     |
| 7/15/18 | 8        | <2yr/2hr     | 0.39     | 0.02                 | 0.08      |
| 7/23/18 | 7        | <2yr/10min   | 0.11     | 0.01                 | 0.027     |
| 7/24/18 | 1        | <2yr/10min   | 0.02     | 0.02                 | 0.032     |
| 8/18/18 | 3        | <2yr/10min   | 0.20     | 0.14                 | 0.251     |
| 8/21/18 | 2        | <2yr/30min   | 0.05     | 0.01                 | 0.009     |
| 9/5/18  | 5        | <2yr/1hr     | 0.40     | TBD                  | TBD       |
| 10/5/18 | 2        | <2yr/10min   | 0.16     | 0.03                 | 0.031     |

#### Infill/ Local EMCs

Phospho. Nitrite+

Red – Local EMC value exceeded citywide EMC.

Blue Boxes -Local EMC smaller than city-wide EMC.

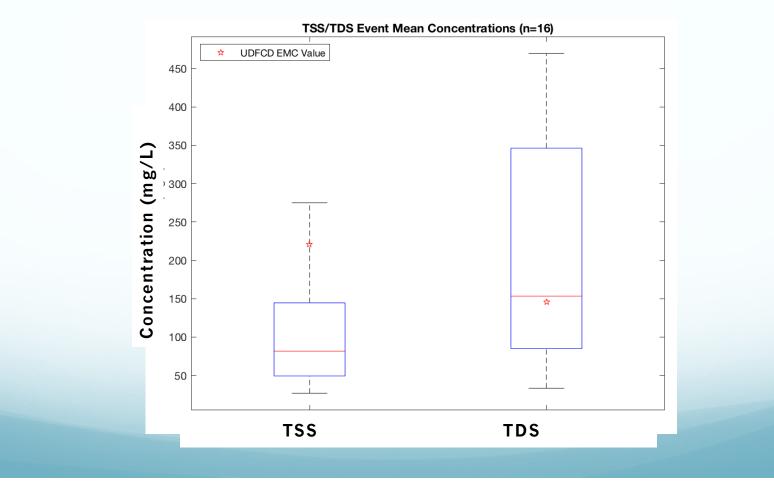
|                   | as P<br>(mg/L) | Nitrate<br>(mg/L) | TSS<br>(mg/L) | TDS<br>(mg/L) | FIB<br>(MPN/100mL)                     | E. Coli<br>(MPN/100mL)                 |
|-------------------|----------------|-------------------|---------------|---------------|----------------------------------------|----------------------------------------|
| UDFCD EMC         | 0.5            | 1.0               | 221.0         | 146.0         | NA                                     | NA                                     |
| 7/2/2018 West     | 0.4            | 2.7               | 156.9         | 428.9         | NA                                     | NA                                     |
| 7/7/2018 West     | 1.1            | 1.8               | 218.1         | 133.5         | 7.7 <sub>E+06</sub>                    | 1.6 <sub>E+06</sub>                    |
| 7/15/2018 West    | 0.6            | 1.4               | 120.3         | 72.6          | 1.5 <sub>E+05</sub>                    | 9.0 <sub>E+05</sub>                    |
| 7/23/2018 West    | 1.4            | 4.4               | 132.5         | 157.5         | 1.3 <sub>E+06</sub>                    | 1.0 <sub>E+06</sub>                    |
| East              | 1.0            | 2.7               | 52.1          | 342.9         | 1.3 <sub>E+06</sub>                    | 8.6 <sub>E+05</sub>                    |
| 7/24/2018 West    | 0.4            | 2.1               | 90.4          | 149.3         | 6.7 <sub>E+06</sub>                    | 5.4 <sub>E+04</sub>                    |
| East              | 0.7            | 2.8               | 73.0          | 217.2         | 1.3 <sub>E+06</sub>                    | 3.5 <sub>E+04</sub>                    |
| 8/18/2018 East    | 0.8            | 1.8               | 275.1         | 97.4          | 1.1 <sub>E+06</sub>                    | 3.7 <sub>E+05</sub>                    |
| Central           | 0.9            | 1.6               | 93.9          | 59.8          | 8.7 <sub>E+05</sub>                    | 2.1 <sub>E+05</sub>                    |
| East              | 0.4            | 4.2               | 26.9          | 469.4         | NA                                     | NA                                     |
| 8/21/2018 Central | 0.3            | 3.3               | 47.4          | 349.3         | NA                                     | NA                                     |
| West              | 0.4            | 3.9               | 51.2          | 372.3         | NA                                     | NA                                     |
| 9/5/2018 East     | 0.8            | 0.9               | 46.9          | 33.2          | 8.1 <sub>E+05</sub>                    | 1.6 <sub>E+04</sub>                    |
| Central           | 1.1            | 1.7               | 207.6         | 63.4          | 1.3 <sub>E+06</sub>                    | 7.0 <sub>E+03</sub>                    |
| 10/5/2018 East    | 1.5            | 3.2               | 59.0          | 167.0         | 1.1 <sub>E+06</sub>                    | 4.2 <sub>E+05</sub>                    |
| Central           | 1.2            | 3.0               | 29.0          | 145.5         | 1.3 <sub>E+06</sub>                    | 3.3 <sub>E+05</sub>                    |
| Mean (SD)         | 0.7 (0.3)      | 2.8 (1.0)         | 127.9 (87)    | 239.1 (138)   | <sup>2.6</sup> E+6 ( <sup>3</sup> E+6) | <sup>6.4</sup> E+6 ( <sup>5</sup> E+5) |
|                   |                |                   |               |               |                                        |                                        |

тсс

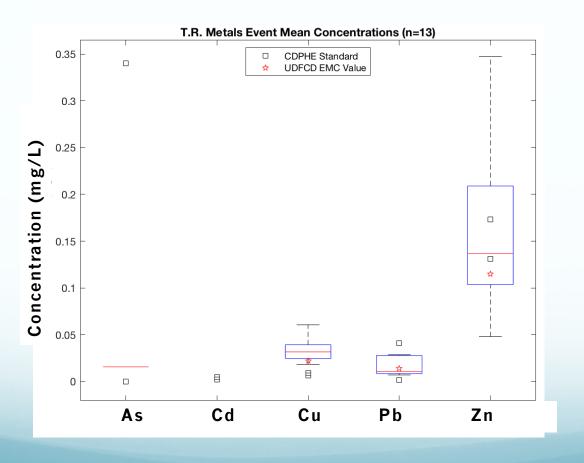
тос

#### Infill/ Local EMCs

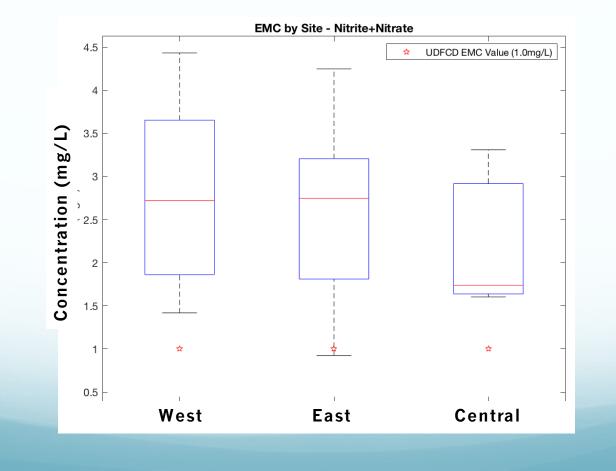
**Red – Local EMC value exceeded** City-wide EMC.


Blue Boxes - Local EMC smaller than city-wide EMC.

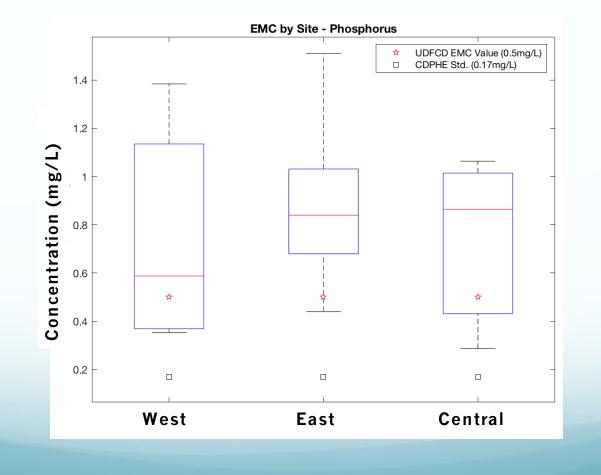
|           |                 | As<br>(ug/L) | Cd<br>(ug/L) | Cu<br>(ug/L) | Pb<br>(ug/L) | Zn<br>(ug/L) |
|-----------|-----------------|--------------|--------------|--------------|--------------|--------------|
| UDFCD EMC |                 | NA           | NA           | 22.0         | 14.0         | 115.0        |
| Detect    | Detection Limit |              | 0.6          | 2.9          | 5.0          | 4.1          |
| 7/2/2018  | West            | 15.6         | BDL          | 60.65        | 27.53        | 347.10       |
| 7/7/2018  | West            | BDL          | BDL          | 38.61        | 6.99         | 117.33       |
| 7/15/2018 | West            | BDL          | BDL          | 26.87        | BDL          | 118.24       |
| 7/23/2018 | West            | BDL          | BDL          | 51.92        | 28.50        | 262.49       |
| //25/2010 | East            | BDL          | BDL          | 31.21        | 10.71        | 140.35       |
| 7/24/2018 | West            | BDL          | BDL          | 32.01        | BDL          | 136.50       |
| //24/2010 | East            | BDL          | BDL          | 23.51        | BDL          | 105.47       |
| 8/18/2018 | East            | BDL          | BDL          | 37.5         | BDL          | 191.2        |
| 0/10/2010 | Central         | BDL          | BDL          | 39.9         | BDL          | 267.4        |
|           | East            | BDL          | BDL          | 18.3         | BDL          | 71.3         |
| 8/21/2018 | Central         | BDL          | BDL          | 25.8         | 9.0          | 149.0        |
|           | West            | BDL          | BDL          | 19.6         | BDL          | 97.8         |
| 9/5/2018  | East            | BDL          | BDL BDL BI   |              | BDL          | 48.0         |
| Mean (SD) |                 | NA           | NA           | 33.8 (13)    | 16.5 (11)    | 157.9 (84)   |


#### Local EMCs vs City Wide: Nutrients

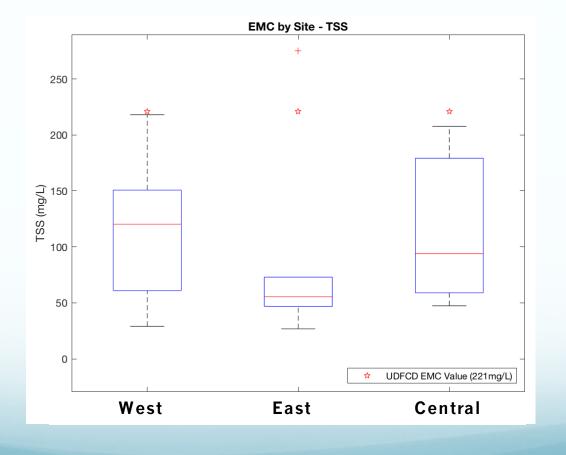



#### Local EMCs vs City Wide: TSS, TDS



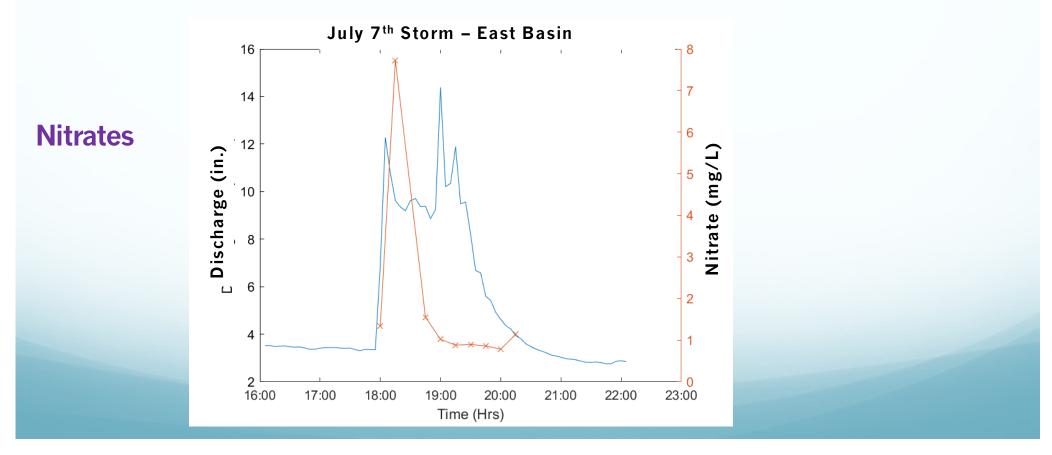

#### Local EMCs vs City Wide: Metals



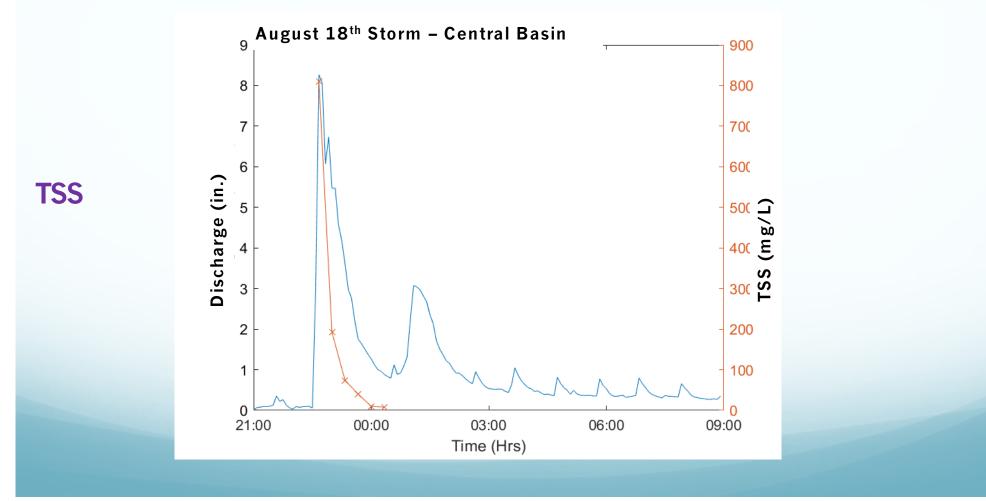

#### EMCs by Site: Nitrogen



#### EMCs by Site: Phosphorus




#### EMCs by Site: TSS




#### Evidence of First Flush and Washout

• First flush and washout consistent for nutrients and TSS



#### Evidence of First Flush and Washout



#### Water Quality Correlated with ....?

#### METHODS

- Independent variables:
  - Total Rainfall
  - Rainfall Intensity
  - Antecedent Dry Days
  - Impervious Coverage Initial "univariate" analysis using Pearson's correlation coefficients
- Statistical significance if Pvalues are below 0.05

#### PRELIMINARY RESULTS

- Significant correlation between Intensity and TDS, TSS, nitrogen
- Low correlation for most variables due to "small" data set relative to natural variability
- No significant correlation between any parameters and impervious cover, but likely swamped by rainfall intensity (working on this one).
- Need to conduct an multivariate analysis or filter out impact of intensity (expected) to test for other variables.

## **Snowmelt Sampling**

#### **1** round, **3** locations with replicates

|                       | Peak<br>Flow<br>(m3/s) | P<br>(mg/L) | NH4<br>(mg/L) | NO2<br>(mg/L) | NO3<br>(mg/L) | TSS<br>(mg/L) | Cond.<br>(mg/L) | TDS<br>(mg/L) | FIB<br>(MPN/100mL) | Ecoli<br>(MPN/100mL) |
|-----------------------|------------------------|-------------|---------------|---------------|---------------|---------------|-----------------|---------------|--------------------|----------------------|
| Storm<br>flow<br>Mean | 0.300                  | 0.8         | 1.1           | 0.2           | 2.4           | 117           | 311             | 205           | 2,092,120          | 488,262              |
| SD                    | 0.7                    | 0.4         | 0.7           | 0.2           | 0.9           | 88            | 213             | 141           | 2,431,639          | 509,949              |
| Snowmelt<br>Mean      | 0.004                  | 0.1         | 0.9           | 0.6           | 2.3           | 109           | 4,287           | 2,827         | 44,097             | NA                   |
| SD                    | 0.003                  | 0.1         | 0.3           | 0.0           | 0.7           | 54            | 1,725           | 1,141         | 59,984             | NA                   |

# Summary

- Local "neighborhood-scale" EMCs notably larger than City-wide EMC values for Nutrients, TDS, Cu, and Zn.
- FIB and E. coli levels extremely high during wet weather events
- First flush effects are noted for TSS and most nutrients, indicating contaminant build up and wash off - no significant first flush effect for metals
- High levels of variability. Statistical correlation with rainfall intensity, but no significant correlation with impervious coverage, antecedent dry days, likely due to relatively "limited data"... we are getting more!

If data are to be used for decision making with confidence, a rigorous multi-season data set is needed.

# **Moving Forward**

- Need to capture more storms to overcome variability
- Evaluate relationships between water quality parameters and impervious cover
- May need to add or refine sampling locations to capture different stages of Infill.
- Remote sensing methods to better track and evaluate re-development and impervious cover change on more frequent time intervals
- Inform policy and potential new regulations

Winter snowmelt sampling? Urban Drool?

