

Development of a Year 2016 Fire inventory for United States through a Multi-Agency Inventory Collaboration Effort

July 31, 2019

Jeff Vukovich, EPA Office of Air Quality Planning and Standards James Beidler, General Dynamics Information Technology

Acknowledgements

- The 2016 Fire Workgroup
 - US Forest Service, US National Park Service, USEPA (Regions, OAQPS, ORD) staff
 - WESTAR/Western Regional Air Partnership (WRAP)
 - State agencies: AK, AL, CA, CO, GA, ID, KS, MT, NC, NJ, NM, NV, NY, TX, UT, WA and WY
 - Tribes: Nez Perce (ID) and Kootenai (ID)
 - George Pouliot, EPA ORD (see Crop Residue and Rangeland Burning poster during Poster Session)
 - <u>http://views.cira.colostate.edu/wiki/wiki/9175</u>

Outline

- Goals of 2016 Fire Workgroup
- Approach
- Methods/Tools
- Data used
- Results
- Summary

Goals of Collaboration Effort

- Produce a wildfire, prescribed burn and agricultural burn emissions year 2016 inventory for Contiguous U.S. and Alaska for use in Emissions Modeling Platforms
 - **Day-specific emissions** calculated include:
 - Criteria Air Pollutants (CAPs)
 - 36 hazardous air pollutants (HAPs) (U.S. only)
- Produce ancillary data needed for using inventory in air quality modeling (e.g. heat flux, profiles)
- Provide documentation

2016 Approach: Similarities to 2014 NEI version2 approach

- Use existing inventory methods and tools
 - Wildfire and Prescribed burns used SmartFire2 and Bluesky Modeling Framework
 - Agricultural burns used G. Pouliot (2015) approach
 - <u>https://www.epa.gov/sites/production/files/2015-</u> 08/documents/crop_residue_burning_in_2014.pdf
- Input data sources
 - National datasets
 - Any submitted State/Local/Tribes data

2016 Approach: Differences with 2014 NEI v2 approach

- Collaborative Workgroup effort
- Grassland fires
 - Pouliot approach was used in 2014NEI for all grassland fires
 - In 2016 inventory, grassland fires moves into the SmartFire2-Bluesky Framework processing
 - Largest fire in 2016 (Anderson Creek) involved mainly grassland fuels in Kansas and Oklahoma
- Combustion phases for Plume Rise purposes
 - 2014NEI provided two phases: 1) flaming and 2) smoldering (co-existing smoldering with the flaming and residual smoldering)
 - 2016 provides two phases: 1) flaming (includes the co-existing smoldering) and 2) residual smoldering
- New fuel bed data used from Landfire version 1.4
 - <u>https://www.landfire.gov/fccs.php</u>
 - **Inventory Versions**

Tools: Blue Sky Modeling Framework

Input Data Sources: National Fire Activity

Data Set	Agency	Coverage
Hazard Mapping System (HMS)	National Oceanic and Atmospheric Administration (NOAA)	Satellite fire detections
Incident Status Summary (ICS-209)	National Wildfire Coordinating Group	Wildfire
U.S. Fish and Wildlife Service (USFWS)	USFWS	USFWS-managed lands: wildfire and prescribed
National Association of State Foresters (NASF)	NASF	State-managed lands: wildfires
Forest Service Activity Tracking System (FACTS) Perimeters	USFS	Prescribed fires on USFS-managed lands
Geospatial Multi-Agency Coordination (GeoMAC) Perimeters	GeoMAC Group	Wildfire perimeters
Monitoring Trends in Burn Severity (MTBS)	USGS, USFS	Wildfire and Prescribed perimeters

Input Data Sources: State/Tribe Submitted Fire Activity Data

2016 Inventory Versions

> 2016 alpha

- HMS detects, ICS209 and GeoMAC shapefiles
- Release March 2018

> 2016 beta

- Added National Assoc. of State Foresters (NASF), MTBS shapefiles, and state/local agency data
- Released February 2019

> 2016 version 1 (2016v1)

- Added USFS FACTS prescribed burn database, US Fish and Wildland Service data, and more state agency data
- To be released in September 2019

Results: Sample 2016 Fire Inventory Totals

Fire Type	Millions of Acres Burned	PM2.5 (tons)	VOC (tons)	NOX (tons)
CONUS Wildfires *	4.7	580,000	1,562,000	99,900
CONUS Prescribed Fires	11.9	655,000	1,547,000	127,500
CONUS Ag Rurps	2.0	24 000	18 300	10 800
Alaska All Fires	0.5	24,000	743 000	30,000
Total	19.1	1,522,000	3,870,300	268,200

* National Interagency Fire Center (NIFC) indicated 2016 CONUS Wildfire acres burn was ~5M ENVIRO

Annual Comparison: Contiguous United States

NEI years = 2008, 2011, 2014 EPA generated other years with national inputs 2006-2015

Results - Top 5 states

Top 5 States for Wildfires				
State	Acres Burned		State	PM2.5 emissions (tons)
CA	646,473		CA	85,167
ID	382,424		ID	71,132
ОК	341,772		WY	49,696
KS	337,452		ОК	33,991
WA	331,059		AZ	27,325

Top 5 States for Prescribed Burns				
State	Acres Burned		State	PM2.5 emissions (tons)
KS	2,788,555		KS	67,760
GA	1,279,432		AR	56,960
ТХ	1,039,322		MO	52,279
ОК	832,484		GA	52,151
FL	696,789		OR	43,973

Results – Top 10 Wildfires

Fire Name	State(s)	2016v1	NIFC	2016v1-NIFC %diff
Anderson Creek and 350 Complex	KS and OK	432,396	424,900	1.76%
Pioneer	ID	190,127	188,404	0.91%
Range 12	WA	170,441	176,600	-3.49%
Soberanes	CA	129,922	132,127	-1.67%
Hot Pot	NV	119,962	122,292	-1.91%
Tule	NV	59,803	59,727	0.13%
Henrys Creek	ID	52,952	52,972	-0.04%
Erskine	CA	48,027	48,019	0.02%
Chimney	CA	46,921	46,344	1.25%
Total		1,250,552	1,251,385	-0.07%

Wildfires: acres burned per square mile

36

32

28

91 05 05 AcresBurned per square mile

12

Prescribed burns: acres burned per square mile

US EPA OAQPS, Emission Inventory and Analysis Group

Results: U.S. Seasonality for Wildfires and Prescribed Burns

- Spring: March, April, and May
- Summer: June, July, and August
- Autumn: September, October, and November
- Winter: December, January and February

Results: U.S. Type Monthly

Gridded Annual PM2.5: 12km resolution

Includes wildfires and prescribed burns

US EPA OAQPS, Emission Inventory and Analysis Group cons/yea

Gridded Monthly PM2.5: 12km resolution

Includes wildfires and prescribed burns

US EPA OAQPS, Emission Inventory and Analysis Group

Summary

- Multi-agency Collaborative over a 1.5 year period has been successful in producing a wildfire, prescribed burn and agricultural burn dayspecific emissions inventory for Contiguous U.S. and Alaska for use in Emissions and Air Quality Modeling Platforms
- Input data and tools used similar to NEI efforts, with updates to fuel bed information
- Large wild grassland fires in Spring 2016 played a role in changing approach for all grassland fires
- Acres burned for top fire events in 2016 were captured

Extra Slides

US EPA OAQPS, Emission Inventory and Analysis Group

Default Fire Type Assignment

When satellite detect is the only fire activity data available

US EPA OAQPS, Emission Inventory and Analysis Group

Results: U.S. Seasonality for Agricultural Burns

- Spring: March, April, and May
- Summer: June, July, and August
- Autumn: September, October, and November
- Winter: January, February, and December