

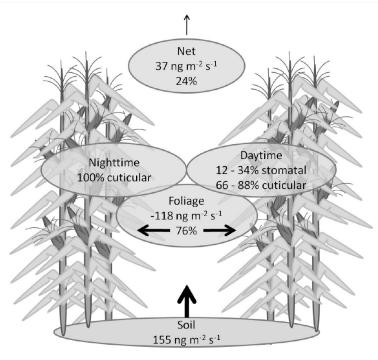
Fertilizer NH₃ Emission Estimates for 2017 National Emissions Inventory Using an Agricultural Ecosystem Model and an Air Quality Model

Jesse O. Bash¹, Venkatesh Rao², Wyat Appel¹

¹U.S. EPA ORD/NERL/CED ²U.S. EPA/OAR/OAQPS

Office of Research and Development Full Name of Lab, Center, Office, Division or Staff goes here.

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.

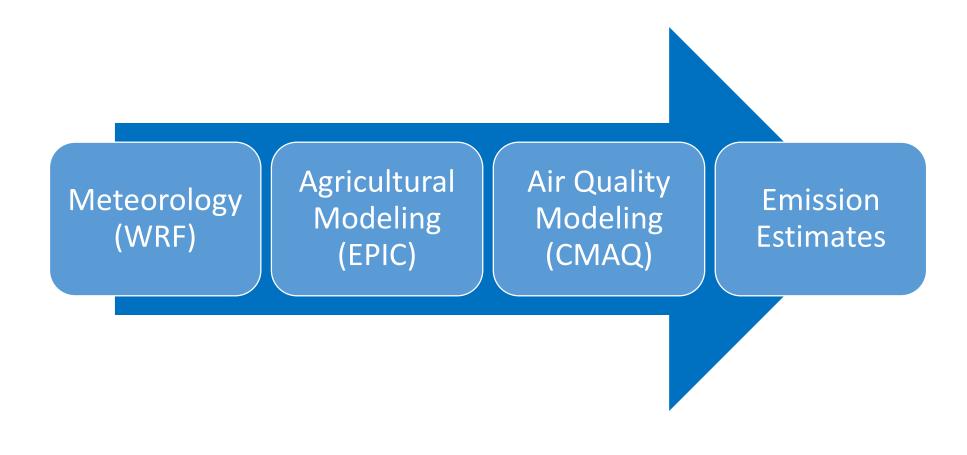

NH₃ Fertilizer Emissions

- Source Classification Code (SCC) 2801700099
 - Used by EPA to classify different activities that generate emissions
- EPA was able to leverage work done in an EPA/ORD and USDA Agriculture Research Service (ARS) collaboration
 - Develop the methodology to run the USDA's Environmental Policy Integrated Climate (EPIC) field scale model on a continental domain
- EPIC output is used by US EPA's CMAQ model to estimate NH₃ emissions from fertilizer considering bidirectional exchange
 - CMAQ uses EPIC for initial conditions and soil NH₄ inputs from fertilization and mineralization

NH₃ Bidirectional Exchange

- Measurements show that NH₃ can deposit or emit
 - Depending on meteorology and soil, plant nitrogen status, and ambient NH₃ concentration
- Traditionally emissions and deposition have been modeled separately in regional and global scale models
- NH₃ bidirectional exchange has been incorporated into the Community Multiscale Air Quality (CMAQ) Modeling system
 - Consistent representation of NH₃ emissions and deposition

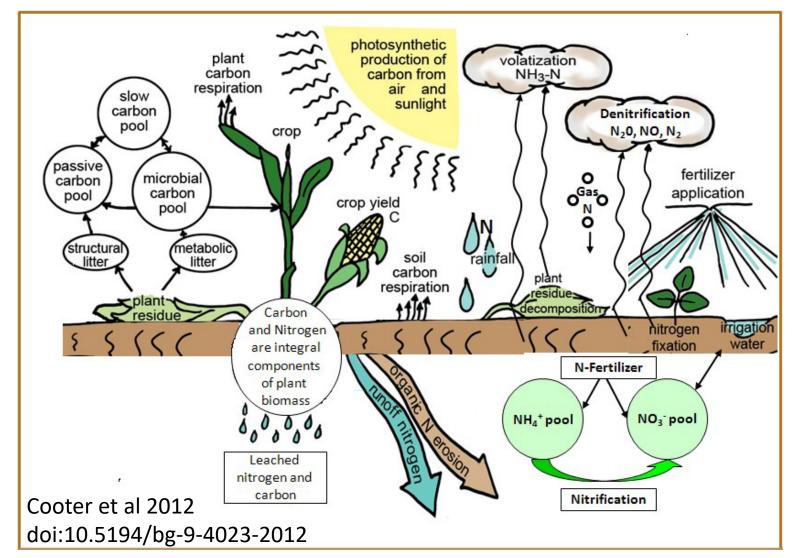
Walker et al 2013



Meteorological Factors Affecting Emissions

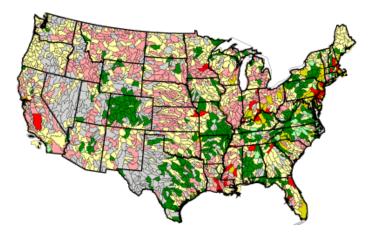
- Temperature temperature, temissions
 - Higher temperature reduces the soil equilibrium ammonium concentration
- - Higher wind speed decreases surface resistance
- - Precipitation dilutes the ammonium available for evasion in the soil
- Soil pH pH, emissions
 - Higher soil pH favors reduces the soil equilibrium ammonium concentration

Modeling of NH₃ Emissions in CMAQ



USDA EPIC Model

- Environmental Policy Integrated Climate (EPIC) Model
 - Assess the effect of soil erosion on productivity
 - Predict the effects of management decisions on:
 - Soil, water, nutrient, pesticide movements, soil loss, water quality, and crop yields for areas with homogeneous soils and management
 - We have developed an interface to run EPIC for CMAQ applications
 - Fertilizer Emission Scenario Tool for CMAQ (FEST-C)
 - Available at https://www.cmascenter.org/fest-c/
 - Includes EPIC and data needed to run for the contiguous US



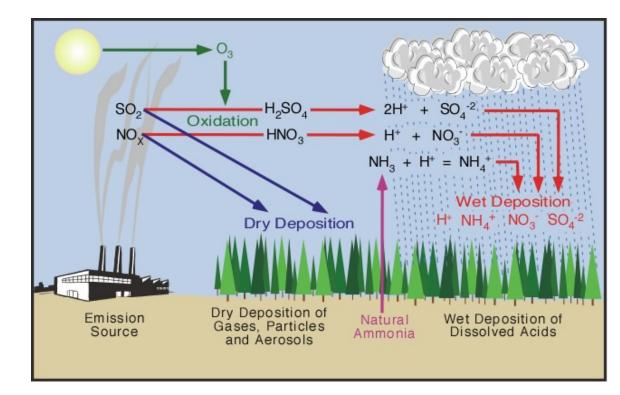
Processes considered in CMAQ coupled to the USDA Environmental Policy Integrated Climate (EPIC) model

EPIC Inputs

- Soil hydrological properties, type and pH
 - USDA National Resources Inventory agricultural soil survey data
- Crop Type and area
 - 2012 census of agriculture survey data
- Crop management
 - USDA Farm Production Regions based on census of agriculture data
- Meteorological data
 - Weather Research and Forecast (WRF) precipitation, wind speed, min and max daily temperature

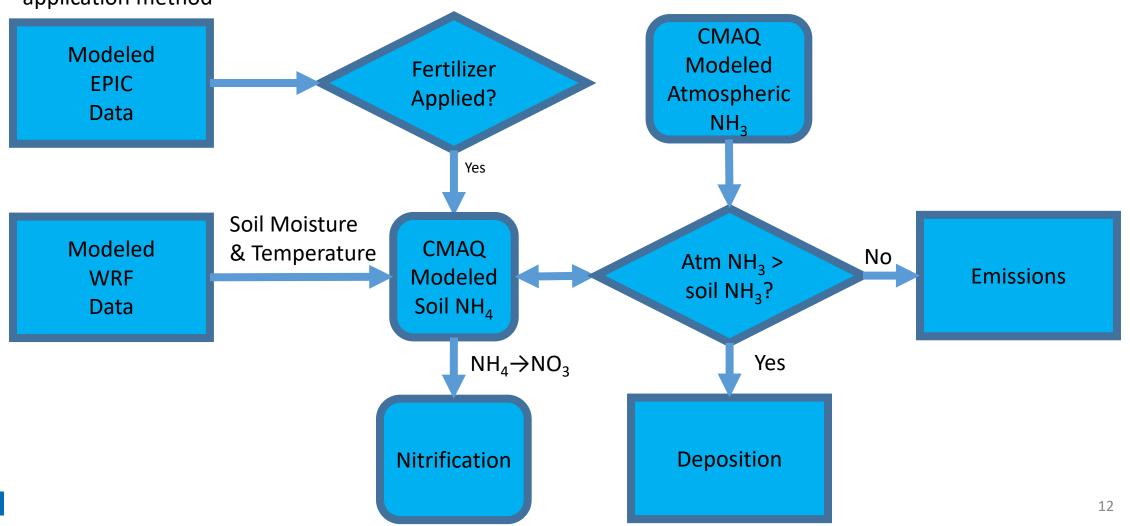
EPIC Crops Modeled for CMAQ Applications

- Fertilizer Emission Scenario Tool for CMAQ (FEST-C)
 - Interface to run EPIC on the contiguous US domain and formats EPIC output for CMAQ
 - Includes USDA survey data for farm practices and crops grown
 - Mapped to CMAQ domain
- Set up to model 21 crops


ntal Protection

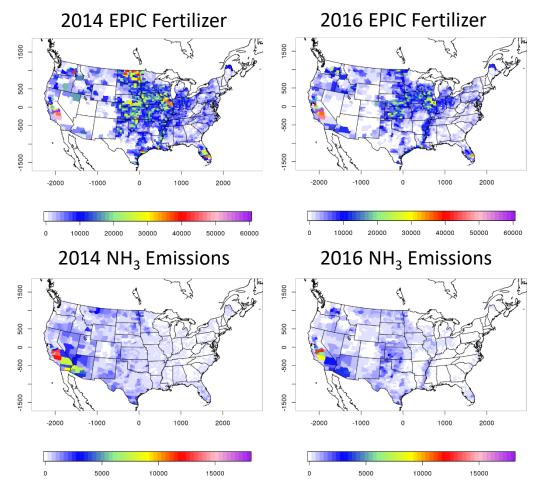
- Hay, Alfalfa, Grass, Barley, Beans Edible, Corn Grain, Corn Silage, Cotton, Oats, Peanuts, Potatoes, Rice, Rye, Sorghum Grain, Sorghum Silage, Soybean, Spring Wheat, Winter Wheat, Canola, Beans, Other Crops
- Other crops modeled as corn
- Crop rotation is modeled
- Biogenic nitrogen fixation and mineralization of organic material are modeled

Modeling NH₃ exchange


- CMAQ with bidirectional exchange connects the emission and deposition of NH₃ from cropping systems to ambient concentrations
 - Important for emissions and deposition weeks to months following fertilization
 - Captures the impact that vegetation coverage has on emissions

CMAQ with Bidirectional NH₃ Exchange

Ammonium, pH, and application method



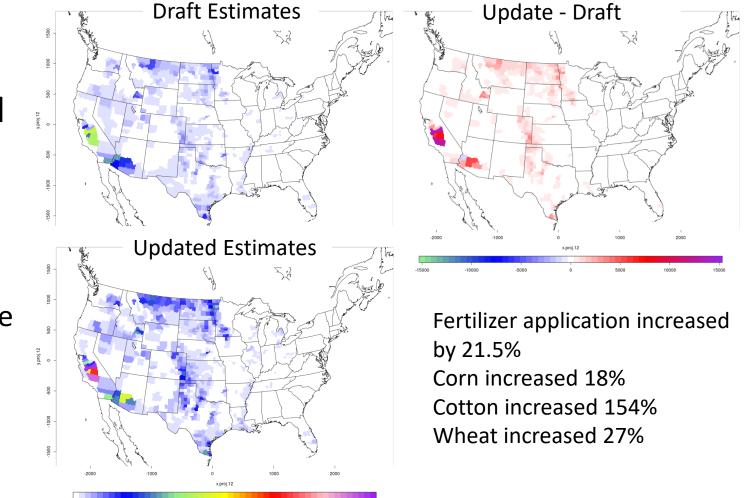
Draft 2017 Fertilizer NH₃ emissions

 Estimated fertilizer application lower than 2014 NEI due to updates to EPIC model

vironmental Protection

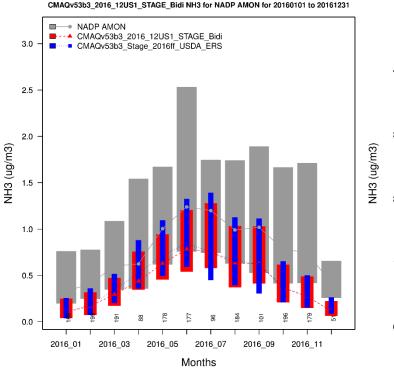
- CMAQ emissions estimates are similar despite different configuration
- EPIC fertilizer application estimates lower than sales or survey data

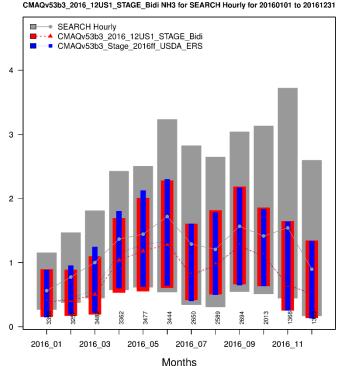
2017 Draft emissions


	2017 Updated	2017 Draft	2014 v2	2011 (2014 v1)
EPIC Fertilizer Application	13,914,762 tons N fertilizer 122,475 tons Biologically Fixed N	11,451,713 tons N fertilizer 122,475 tons Biologically Fixed N	18,851,866 tons N	20,314,303 tons N
CMAQ Emissions	962,985 tons N	592,218 tons N	883,526 tons N	948,616 tons N
Mean Annual Emissions Factor	6.9% total, 12.6% of urea/NH ₄	4.8% total, 8.9% of urea/NH ₄	4.7% total, 9.8% of urea/NH ₄	4.7% total, 9.1% of urea/NH ₄
Fertilizer Use*	Not Available	Not Available	13,295,000 tons N	12,814,000 tons N

* USDA Economic Research Service (https://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx)

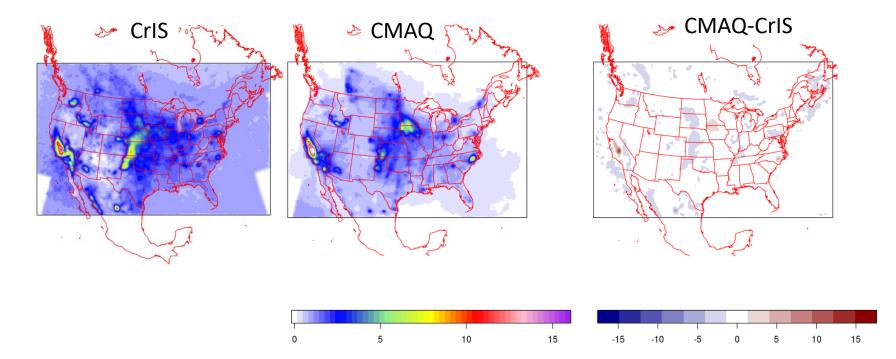
Post Processing EPIC for CMAQ


- USDA ERS and State submitted crop specific fertilizer application is used to adjust EPIC outputs
 - Assumed that EPIC spatial and temporal allocation is reasonable
 - Post processed EPIC data is then input in CMAQ with the STAGE deposition option
 - Maximum fertilization rates used from EPIC



15

CMAQ Model Evaluation



	AMON	SEARCH
Normalized	-37.9%	-30.1%
Mean Bias		
Normalized	60.0%	60.7%
Mean Error		
r	0.60	0.40

- CMAQ model under estimates AMoN and SEARCH observations.
- Fertilizer updates reduced model bias by 5% and 2% when compared against AMoN and SEARCH sites respectively
- Existing model biases are expected to be reduced with animal NH₃ emission updates

CMAQ Model Evaluation

- Cross Infared Sounder (CrIS) satellite observations using the latest retrieval algorithm v1.5
- CMAQ model simulations capture much of the spatial variability of the satellite observations
- CMAQ values are generally lower than CrIS observations

Summary

- Fertilizer sector emissions were developed using the EPIC/CMAQ modeling system for the 2017 NEI
- A methodology has been developed to address EPIC fertilizer usage estimate biases
 - Using USDA and state submitted data
- CMAQ model results underestimate NH₃ concentrations
 - Likely to improve with animal emission updates
- Spatial and temporal patterns of emissions appear to be reasonable when compared to satellite and surface observations