

# Magnitude and trend of NO<sub>x</sub> and SO<sub>2</sub> emissions constrained by OMI observations

Zhen Qu and Daven K. Henze University of Colorado Boulder

> zhen.qu@colorado.edu EIC 2019 , August 2, 2019

# Two ways to estimate emissions

- Bottom-up estimates prior emissions:
- Emission = emission factor x activity
- Large uncertainties, lag in time
- Top-down estimates posterior emissions

- Use observations and physical model to solve inverse problem which gives the maximum likelihood estimate of emissions

## Analytic inversion

- Expensive to compute the Jacobian matrix;
- Approximated by linear relationships of  $NO_2$  column to  $NO_x$ .

(Konovalov et al., 2006, 2008)

# Changes in European NO<sub>x</sub> emissions



## Analytic inversion

- Expensive to compute the Jacobian matrix;
- Approximated by linear relationships of  $NO_2$  column to  $NO_x$ .

(Konovalov et al., 2006, 2008)

- Ensemble Kalman Filter
  - Updated error covariance matrix;
  - Expensive using large ensemble members;
  - Hard to implement realistic localization.

(Miyazaki et al., 2015, 2017)



2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

## Analytic inversion

- Expensive to compute the Jacobian matrix;
- Approximated by linear relationships of NO<sub>2</sub> column to NO<sub>x</sub>.

(Konovalov et al., 2006, 2008)

- Ensemble Kalman Filter
  - Updated error covariance matrix;
  - Expensive using large ensemble members;
  - Hard to implement realistic localization.

## Plume model

(Miyazaki et al., 2015, 2017)

- Identify large, isolated, point sources;
- Need average over multiple years.



(*Beirle et al.*, 2011)

## Analytic inversion

- Expensive to compute the Jacobian matrix;
- Approximated by linear relationships of  $NO_2$  column to  $NO_x$ .

(Konovalov et al., 2006, 2008)

- Ensemble Kalman Filter
  - Updated error covariance matrix;
  - Expensive using large ensemble members;
  - Hard to implement realistic localization.

## Plume model

- Identify large, isolated, point sources;
- Need average over multiple years.

### Mass balance

- Fast;
- Approximate transport & nonlinear chemistry.

(Miyazaki et al., 2015, 2017)

(Beirle et al., 2011)

(*Martin et al.*, 2003)

#### 1999

Elbern & Schmidt Full 4D-Var for 3D CTM











# **Model setups: 3 domains** Surface NO<sub>x</sub> concentration (Jan 2010)





Model: GEOS-Chem chemical transport model and its adjoint

- Meteorological input from Goddard Earth Observing System (GEOS)
- Prior emissions: HTAP v2.1 bottom-up inventory (2010) for all years and domains
- Global domain: 2° lat x 2.5° lon resolution for 2005 2017

# **Model setups: 3 domains** Surface NO<sub>x</sub> concentration (Jan 2010)



Nested US and nested EA domain: BC from global 4° x 5° simulation, 2005 - 2012

# **Satellite observation**

- Ozone Monitoring Instrument (OMI) onboard Aura: NO<sub>2</sub> and SO<sub>2</sub>
- Overpass time : 13:45 local time, daily global coverage
- Footprint: 13 km x 24 km

- Use level 2 product for all work in the presentation
- Column density: total NO<sub>2</sub> and SO<sub>2</sub> molecules from surface to the top of the atmosphere within a model grid [molec cm<sup>-2</sup>]



# Methods

## Inversion approaches:

#### 4D-Var:

- adjust emissions independently in each grid cell
- takes into account transport and chemical reactions
- computationally expensive

# Methods

## Inversion approaches:

#### 4D-Var:

- adjust emissions independently in each grid cell
- takes into account transport and chemical reactions
- computationally expensive

#### Mass balance:

- scale emissions by the ratio of observed & simulated column
- computationally cheap
- limited by nonlinear chemistry and smearing from transport

# Methods

## Inversion approaches:

#### 4D-Var:

- adjust emissions independently in each grid cell
- takes into account transport and chemical reactions
- computationally expensive

#### Mass balance:

- scale emissions by the ratio of observed & simulated column
- computationally cheap
- limited by nonlinear chemistry and smearing from transport

### Hybrid 4D-Var / Mass balance:

- blend of accuracy and efficiency

# **Outline**

- **1.** Top-down NO<sub>x</sub> emissions
- 2. Top-down SO<sub>2</sub> emissions
- 3. Joint NO<sub>x</sub> and SO<sub>2</sub> inversions
- 4. Sector-based inversion

# Hybrid inversion for NO<sub>x</sub>

#### Hybrid method:

Base year (2010): 4D-Var

Other years (2005-2012): use 2010 4D-Var posterior for mass balance.



Scaled emissions in pseudo observation test

Hybrid posterior has smaller
NMSE (by 59% to 78%) and
better correlation.

(Qu et al., 2017)

# **Differences between bottom-up and top-down estimates**

Top-down – bottom-up, 2010 [TgN/year]



3.33e-04

-3.33e-04

-1.00e-03

Anthropogenic / total NO<sub>x</sub> emissions



- Underestimates in HTAP at regions with large anthropogenic sources (East Coast of US & Mexico City)
- Overestimates in HTAP at regions with moderate anthropogenic sources (mid US)

1.00e - 0.3

# **Smaller seasonality of top-down NO<sub>x</sub> emissions**

US NO<sub>x</sub> emissions in 2010



## Inter-annual variation: Changes of NO<sub>x</sub> emissions in NA





-0.01 0.003 0.003 0.01

- Annual budget of top-down NO<sub>x</sub> emissions decrease by 20% from 2005 to 2012 in the US
- NO<sub>x</sub> emission changes in Mexico are less than 1% from 2005 to 2012

## Large differences in OMI NO<sub>2</sub> column from two retrievals

### Large differences in OMI NO<sub>2</sub> column from two retrievals



OMI VCD<sub>SP</sub> – VCD<sub>DOMINO</sub>, Jan 2015

Vertical Column Density:

Standard Product (SP):  $VCD_{SP} = VCD_{SP OMI}^* AMF_{SP} / AMF_{GC_{SP}}$  $VCD_{DOMINO} = VCD_{DOMINO OMI} * AMF_{DOMINO} / AMF_{GC DOMINO}$ **DOMINO Product:** 

- NO<sub>2</sub> column densities from SP are  $\sim$  50% smaller than that from DOMINO in densely populated and industrial regions. (Qu et al., 2017; Canty et al., 2015; Zheng et al., 2014)

### Total NO<sub>x</sub> emissions in China



- Posterior  $NO_x$  emissions from SP is smaller than that from DOMINO by 39-46%.



- Posterior  $NO_x$  emissions from SP is smaller than that from DOMINO by 39-50%.
- The slowdown of NO<sub>x</sub> emissions is not reflected in NEI inventory.

(Jiang et al., 2018)

#### Total NO<sub>x</sub> emissions in Mexico



Figure 4-7. Annual Average Satellite NO<sub>2</sub> Columns over Mexico.

(RAMBOLL report)

#### Total NO<sub>x</sub> emissions in Mexico



Figure 4-7. Annual Average Satellite NO<sub>2</sub> Columns over Mexico.

#### (RAMBOLL report)

- Posterior  $NO_x$  emissions from SP is smaller than that from DOMINO by 47-51%.

## Impact of assimilating NO<sub>2</sub> observations on O<sub>3</sub> (2010)

Surface  $O_3$  concentration (posterior  $NO_x - prior NO_x$ ) [ppbv]



-  $NO_x$  emission is overestimated in US bottom-up inventory

Simulated O<sub>3</sub> are generally overestimated in US using HTAP 2010 emissions

Impact of assimilation on improving estimates of surface  $O_3$ depends upon the  $O_3$  metric, emphasizing the importance of hourly  $NO_x$  constraints

NMB of summertime surface O<sub>3</sub> (2010, compared to TOAR)



## SO<sub>2</sub> emissions constrained by OMI SO<sub>2</sub> NASA and BIRA products

 3 OMI SO<sub>2</sub> products: NASA standard (SP), NASA prototype, BIRA Treatment of clouds, radiative transfer model, and retrieval algorithm lead to differences in NASA and BIRA SO<sub>2</sub> retrievals, which are more consistent when VZA and SZA are small

(*Qu et al.,* 2019a)

### SO<sub>2</sub> emissions constrained by OMI SO<sub>2</sub> NASA and BIRA products

• **3 OMI SO<sub>2</sub> products**: NASA standard (SP), NASA prototype, BIRA

Treatment of clouds, radiative transfer model, and retrieval algorithm lead to differences in NASA and BIRA SO<sub>2</sub> retrievals, which are more consistent when VZA and SZA are small

 SO<sub>2</sub> emissions continuously increase in India from 2005 – 2017 and start to decrease in China from 2008.



(*Qu et al.,* 2019a)

## SO<sub>2</sub> emissions constrained by OMI SO<sub>2</sub> NASA and BIRA products

• **3 OMI SO<sub>2</sub> products**: NASA standard (SP), NASA prototype, BIRA

Treatment of clouds, radiative transfer model, and retrieval algorithm lead to differences in NASA and BIRA SO<sub>2</sub> retrievals, which are more consistent when VZA and SZA are small

 SO<sub>2</sub> emissions continuously increase in India from 2005 – 2017 and start to decrease in China from 2008.



 Evaluation with surface & aircraft measurements: Reduced NMB in annual mean surface SO<sub>2</sub> in China, India and US but not in Korea possibly due to differences in SO<sub>2</sub> vertical profile in model and real atmosphere. (Qu et al., 2019a)

# **Top-down emissions**

## Still ...

- Chemical interactions are not being considered so far
- Uncertainties in other species emissions are likely degrading the top-down emission of the constrained species



# Joint NO<sub>2</sub> & SO<sub>2</sub> 4D-Var inversion -- better match observations and surface measurements (January, 2010)

Joint – Single posterior emissions



**Joint:** assimilate  $NO_2$  and  $SO_2$ observations to optimize  $NO_x$  and  $SO_2$ emissions simultaneously

**Single:** only assimilate  $NO_2$  (SO<sub>2</sub>) observations to optimize  $NO_x$  (SO<sub>2</sub>) emissions

(*Qu et al.,* 2019b)

# Joint NO<sub>2</sub> & SO<sub>2</sub> 4D-Var inversion -- better match observations and surface measurements (January, 2010)



# Similar magnitude and trend of single species and joint inversion posterior emissions



(*Qu et al.,* 2019b)

### Accounting for correlated co-emitted pollutants in 4D-Var

#### **Transportation**

Energy







Similar ratio of NO<sub>x</sub>, SO<sub>2</sub> and CO emissions in the same sector, yet very different across sectors. (*Qu et al.,* in prep)

### **Evaluations of posterior simulations with measurements**



NMB of posterior simulations from sector-based inversions are 59.8% (SO<sub>2</sub>) and 61.4% (NO<sub>2</sub>) smaller than the ones from species-based inversion.



• The magnitude of top-down emissions depends on retrieval products.



- The magnitude of top-down emissions depends on retrieval products.
- Different magnitude and trend of emissions from top-down and bottomup perspectives (e.g., NO<sub>x</sub> in the US, EDGAR SO<sub>2</sub> in China).

- The magnitude of top-down emissions depends on retrieval products.
- Different magnitude and trend of emissions from top-down and bottomup perspectives (e.g., NO<sub>x</sub> in the US, EDGAR SO<sub>2</sub> in China).
- Impact of assimilation on improving estimates of surface O<sub>3</sub> depends upon the O<sub>3</sub> metric -- diurnal variations of surface O<sub>3</sub> are potentially wrong in the model.

- The magnitude of top-down emissions depends on retrieval products.
- Different magnitude and trend of emissions from top-down and bottomup perspectives (e.g., NO<sub>x</sub> in the US, EDGAR SO<sub>2</sub> in China).
- Impact of assimilation on improving estimates of surface O<sub>3</sub> depends upon the O<sub>3</sub> metric -- diurnal variations of surface O<sub>3</sub> are potentially wrong in the model.
- Reduced error in NO<sub>x</sub> and SO<sub>2</sub> top-down emissions using multiple species joint inversion, through correction of OH concentration in the model, at months when observation uncertainties of optimized species are large.

- The magnitude of top-down emissions depends on retrieval products.
- Different magnitude and trend of emissions from top-down and bottomup perspectives (e.g., NO<sub>x</sub> in the US, EDGAR SO<sub>2</sub> in China).
- Impact of assimilation on improving estimates of surface O<sub>3</sub> depends upon the O<sub>3</sub> metric -- diurnal variations of surface O<sub>3</sub> are potentially wrong in the model.
- Reduced error in  $NO_x$  and  $SO_2$  top-down emissions using multiple species joint inversion, through correction of OH concentration in the model, at months when observation uncertainties of optimized species are large.
- A new sector-based inversion is developed to estimate emissions at process level using satellite observations.

Qu et al. (2019a), SO<sub>2</sub> emission estimates using OMI SO<sub>2</sub> retrievals for 2005 – 2017 Qu et al. (2019b), Hybrid mass balance / 4D-Var joint inversion of NO<sub>x</sub> and SO<sub>2</sub> emissions in East Asia

Qu et al. (2017), Monthly top-down Nox emissions for China (2005-2012): A hybrid inversion method and trend analysis

# **Causes of slowdown**

- The decreasing relative contributions of gasoline cars, due to the ongoing effectiveness of three-way catalytic converters
- The increasing relative emissions of NO<sub>x</sub> from off-road vehicles and industrial, residential, and commercial boilers
- Slower-than expected reductions in emissions by heavyduty diesel trucks that have newer (and still maturing) catalytic converter technologies