Parameterization of MOVES-based Onroad Mobile Emission Factors Lookup Tables in SMOKE

B.H. Baek, Carlie Coats and Rizzieri Pedruzzi

University of NC at Chapel Hill, USA

- Enhanced the meteorology dependency on mobile emissions for air quality modeling system
- Technical Challenges:
 - Slow and Most Computationally Expensive!
 - Big size of ASCII-format MOVES Emissions Factors Lookup Table files
 - Processing the limited numbers of Reference County-specific Lookup Tables

SMOKE-MOVES Integration Tool

- RatePerDistance [grams/miles]
 - Exhaust and most evaporative emissions that happen on real roadtypes
 - Sorted By SCC (=vehicle/road/process), 16 Speed Bins and Ambient Temperature Bins
- RatePerVehicle [grams/vehicle/hour]
 - Exhaust and most evaporative emissions that occur off-network
 - Sorted By SCC, Hour of day and Ambient Temperature Bins
- RatePerProfile [grams/vehicle/hour]
 - Vapor venting evaporative emissions that occur off-network
 - Sorted By SCC, Hour of day and Min/Max Temperatures
- RatePerHour [grams/hour]
 - APU operation and extended idling processes
 - Sorted By SCC, Ambient Temperature

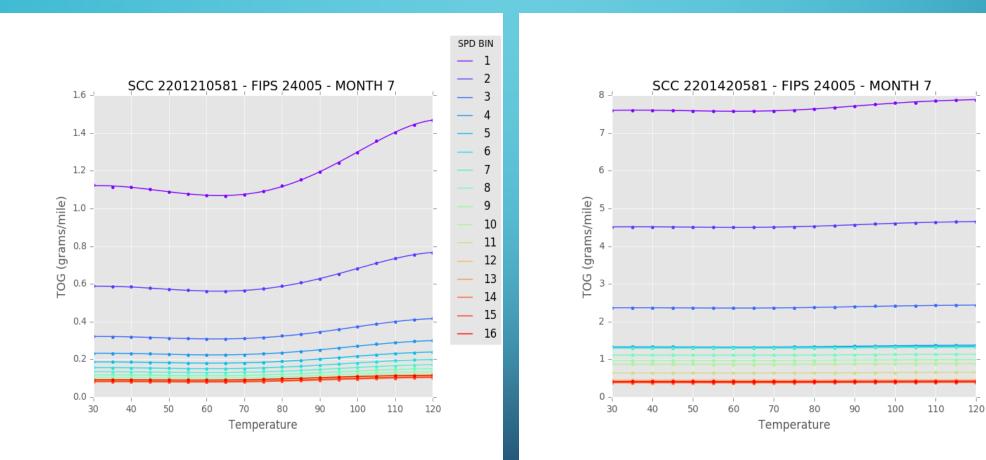
Current SMOKE-MOVES Integration Runs

- 304 Reference Counties for Continental U.S. Modeling Domains with Two Fuel Months per Each Reference County (Based on NEI 2014 Modeling Platform)
- Size of MOVES Lookup Tables:
 - RPD: 85-150MB (66.7GB), RPV: 28-86MB (36GB), RPP: 15-50MB, PRH: Less than 1MB
- Processing Optimization: Processing 7 consecutive days at a time.
 - Faster processing but requires more RAM memory
 - Processing 1 days at at time, much slower processing time
 - Tagging or source grouping options: much more memory and slower processing time
 - More Grid Cells and more reference counties = more memory and slower processing time

Sectors	Computing Time	RAM Memory Usages	
RPD	4 hours	10-20 GB	
RPV	1.5 hours	5-10 GB	
RPP	30 minutes < 1 GB		
RPH	5 minutes	2 GB	

Future Plans

- Computational Optimization of the SMOKE-MOVES Integration tool
- Reduce the size and numbers of MOVES EF lookup tables:
 - Aggregated Processes (Less than 15 processes)
 - Aggregated Vehicle and Road Types
 - Reduced optimized temperature increments
 - Limited numbers of reference counties.


 Convert current ASCII-formatted MOVES EF lookup tables into NetCDF format

Proposed BCFA Method

- Parameterization of Current ASCII-format MOVES EF Lookup Tables into Polynomial Algorithms using Best-Fitted Curve Algorithms (BFCA) [Done]
- Store the algorithms in NetCDF format to eliminate I/O bottlenecks: [Done]
- Coupling with SMOKE [Ongoing]
- Coupling with AQ models including forecasting AQ [2020]

RPD TOG: Gasoline-Passenger Car(left) and Buses (Right)

Urban Unrestricted Access All Exhaust, Evaporative, Brake and Tire [81]

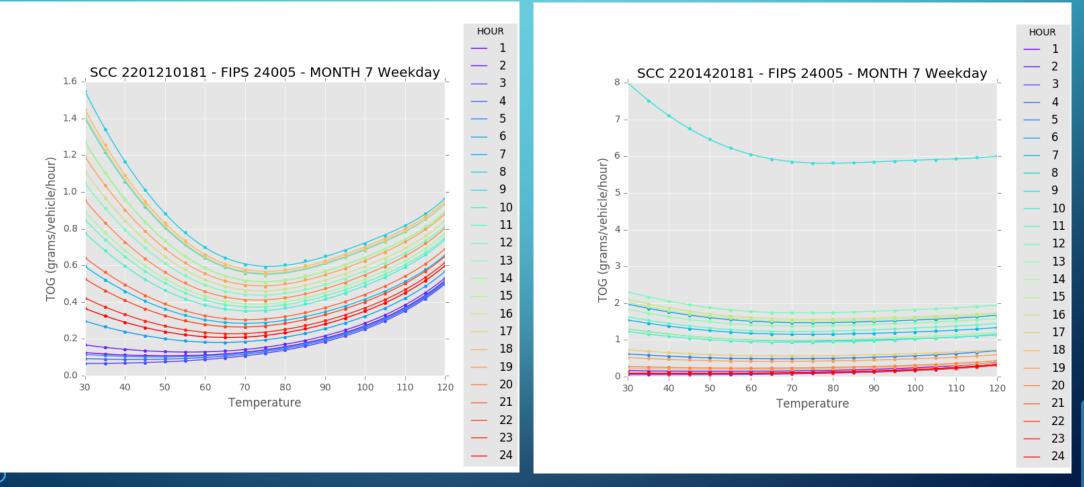
SPD BIN

RPD NOx: Gasoline-Passenger Car(left) and Buses (Right)

Urban Unrestricted Access All Exhaust, Evaporative, Brake and Tire [81]

2019 INTERNATIONAL EMISSIONS INVENTORY CONFERENCE AT DALLAS, TEXAS (JULY 29-AUGUST 2,2018)

RPD PM_{2.5}: Gasoline-Passenger Car(left) and Buses (Right)


Urban Unrestricted Access Refueling [62] and All Exhaust, Evaporative, Brake and Tire [81]

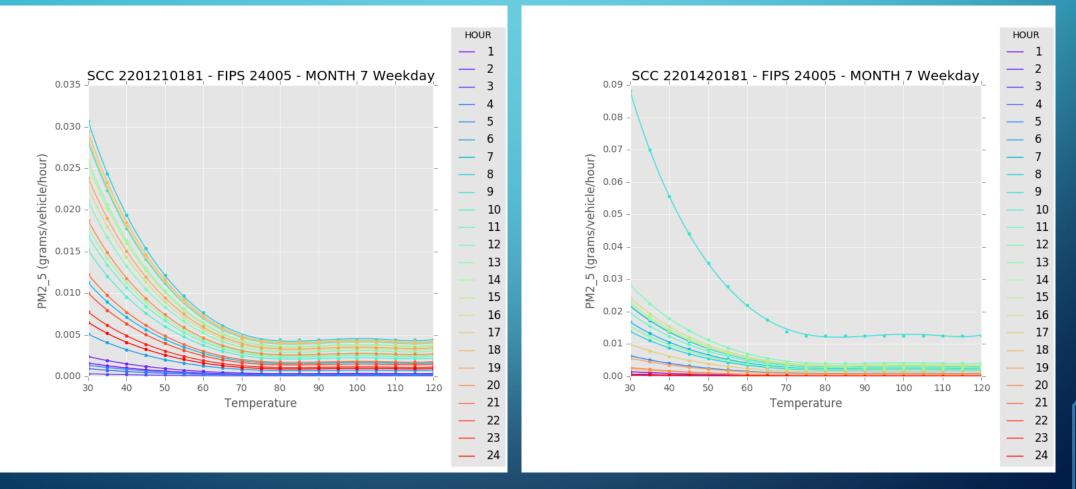
2019 INTERNATIONAL EMISSIONS INVENTORY CONFERENCE AT DALLAS, TEXAS (JULY 29-AUGUST 2,2018)

RPV TOG: Gasoline-Passenger Car(left) and Buses (Right)

Off-network All Exhaust, Evaporative, Brake and Tire [81]

RPV NOx: Gasoline-Passenger Car(left) and Buses (Right)

HOUR SCC 2201210181 - FIPS 24005 - MONTH 7 Weekday SCC 2201420181 - FIPS 24005 - MONTH 7 Weekday 0.6 -3.0 0.5 2.5 NOX (grams/vehicle/hour) NOX (grams/vehicle/hour) 2.0 0.4 1.5 0.3 1.0 0.2 0.5 0.1 0.0 0.0 Temperature Temperature


Off-network All Exhaust, Evaporative, Brake and Tire [81]

2019 INTERNATIONAL EMISSIONS INVENTORY CONFERENCE AT DALLAS, TEXAS (JULY 29-AUGUST 2,2018)

HOUR

RPV PM_{2.5}: Gasoline-Passenger Car(left) and Buses (Right)

Off-network All Exhaust, Evaporative, Brake and Tire [81]

2019 INTERNATIONAL EMISSIONS INVENTORY CONFERENCE AT DALLAS, TEXAS (JULY 29-AUGUST 2,2018)

Polynomial Algorithms Using BCFA Method

$y = ax^{6} + bx^{5} + cx^{4} + dx^{3} + ex^{2} + fx + g$

MOVES BCFA NetCDF formatted Emissions Factors Lookup Table File:


- Days of Week = 7
- No of Pollutatns : 30
- No of SCC : 320
- No of Speed Bin (for RPD) : 16 Bins
- No of Hours (for RPV and RPP) : 24 hours
- Minimum Temperature for all reference Counties
- Minimum Temperature for all reference Counties
- No of Polynomial Coefficients and intercept : 7 (a, b, c, d, e, f, and g)

Sectors	ASCII (MB)	CSV* (MB)	NetCDF* (MB)
RPD	95-150 (77*)	18	4.1
RPV	45-100 (55*)	11	2.1
RPH	<1MB (.65*)	0.11	0.04

Performances

- The size of NetCDF-format MOVES BCFA Lookup Table File : ~2.5G
 - Two Fuel Months (i.e., January and July) for 304 Reference Counties
- Significant improvement on SMOKE-MOVES computational processing time and memory usages:
 - Small Test Case: US12km 66*59 Domain with a Single Reference County
 - ✓ Current: 15 Seconds vs. BCFA: 5 Seconds (<u>5 times Faster!</u>)
 - Med. Test Case: US12km 66*59 Domain with Two Reference Counties
 - ✓ Current: 509 Seconds vs. BCFA: 20 Seconds (25 time Faster!)
 - U.S. EPA NEI Modeling Platform Case: 12US1_459X299 with full Ref. Counties
 - ✓ Current: 4165 Seconds vs. BCFA: 49 Seconds (85 times Faster!)
- The more no of reference counties, the better speed up of SMOKE-MOVES
 MOVES BCFA Lookup table approach for Humidity Dependency?

Fully Coupled AQ Modeling System

Coupled Inline Emissions

- 1. Biogenic
- 2. NH₃ Bi-directional
- 3. Lightning NOx
- 4. Sea salt
- 5. Windblown Dust
- 6. Plume Rise for Point sources
- 7. MOVES Mobile Sources

Develop the prove of concept for coupling MOVES-based mobile emissions with air quality modeling system that can reflects the meteorology feedbacks to MOVES-based emissions for a better air quality simulation near metropolitan areas

