

ENVIRONMENTAL PROTECTION DIVISION

Inventory MOVES with Hourly Meteorology for Use in Air Quality Models

Gil Grodzinsky, KJ Liao, James Boylan, and Byeong-Uk Kim Planning and Support Program Georgia EPD - Air Protection Branch 2019 International Emissions Inventory Conference Dallas, TX July 31, 2019

BACKGROUND

- On-road mobile is a significant source of ozone precursors (NOx and VOCs)
- MOVES can be run in inventory mode or rate mode to generate on-road emissions
- EPA uses SMOKE-MOVES (rate mode) to generate gridded on-road emissions for photochemical grid models
 - The SMOKE-MOVES method requires many simplifying assumptions
 - Few states can run SMOKE-MOVES since it is resource intensive

SMOKE-MOVES

- Emissions = (County-level Activity) x (Emission Factor)
- County-level Activity: VMT, vehicle pop, starts, & hoteling
- Emission Factors (EF) tables are developed for representative counties by running MOVES in rate mode
 - Representative counties: fleet age, I/M program, fuel blends, & ramp fractions
 - RPD (vehicle/road type, T, RH, speed, fuel month etc.), RPP, & RPV
 - 2 fuel seasons (winter/summer)
- EFs for a county are calculated from the precomputed EF tables for the corresponding representative county
 - Hourly meteorology at grid cell level from WRF
 - Speed, month, day, hour, vehicle and road type, & pollutant

REPRESENTATIVE COUNTIES (CONUS)

REPRESENTATIVE COUNTIES (GA)

Reference County Groups 2016 NEIv1

SMOKE-MOVES

Current approach: SMOKE RatePerDistance processing steps

Figure obtained from SMOKE v3.7 manual

PURPOSE

- PART 1 Demonstrate "Inventory MOVES" (MOVES in inventory mode) can run like SMOKE-MOVES when using hourly meteorology instead of monthly average diurnal meteorology
 - Eliminates the one simplifying assumption associated with Inventory MOVES
 - Inventory MOVES is easier for states to work with
- PART 2 Process hourly Inventory MOVES emissions through SMOKE to generate gridded inputs for photochemical grid models

INVENTORY MOVES

- Tested Inventory MOVES with 2014NEIv2 inputs for 3 ozone nonattainment counties in Georgia
 - Case 1: Used monthly diurnal meteorology (M-MET)
 - Case 2: Used hourly meteorology (H-MET) for each day of the year
- Meteorology from nearby monitoring stations was provided by EPA
- County level input databases directly used
 - No fuel season simplification for transition months (April/October)
 - Average speed distributions weighted over 16 bins

H-MET minus M-MET % Difference: Annual Differences

	Total Annual (2014) NO _x			Total Annual (2014) VOC		
	Emissions			Emissions		
	Hourly	Monthly	Difference	Hourly	Monthly	Difference
	(TPY)	(TPY)	(%)	(TPY)	(TPY)	(%)
Fulton	12,228.6	12,264.8	0.29	5,630.0	5,565.7	1.16
DeKalb	8,412.8	8,373.7	0.47	3,607.1	3,578.4	0.01
Cobb	7,825.4	7,798.3	0.01	3,939.2	3,932.3	0.18

H-MET minus M-MET % Difference Fulton County, GA

Month of Year

H-MET minus M-MET % Difference DeKalb County, GA

H-MET minus M-MET % Difference Cobb County, GA

H-MET vs. M-MET NOx Emissions

H-MET vs. M-MET VOC Emissions

Difference = 4.52%

H-MET minus M-MET NOx and VOC Emissions vs. Δ Temp

H-MET minus M-MET NOx and VOC Emissions vs. Δ RH

H-MET minus M-MET NOx and VOC Emissions vs. ∆ Temp

July 2014, Fulton County

H-MET minus M-MET NOx and VOC Emissions vs. \triangle RH

H-MET minus M-MET NOx and VOC Start Emissions vs. ∆ Temp

NOx Difference = 1.8% VOC Difference = 13.0 %

H-MET minus M-MET NOx and VOC Start Emissions vs. ∆ RH

NOx Difference = 1.8% VOC Difference = 13.0 %

20

H-MET minus M-MET NOx and VOC Start Emissions vs. ∆ Temp

NOx Difference = 0.1% VOC Difference = 0.2 %

21

H-MET minus M-MET NOx and VOC Start Emissions vs. ∆ RH

22

NOx Difference = 0.1% VOC Difference = 0.2 %

H-MET minus M-MET NOx and VOC Running Emissions vs. ∆ Temp

NOx Difference = -1.1 % VOC Difference = 0.0 %

23

H-MET minus M-MET NOx and VOC Running Emissions vs. ∆ RH

NOx Difference = -1.1 % VOC Difference = 0.0 %

24

H-MET minus M-MET NOx and VOC <u>Running</u> Emissions vs. ∆ Temp

NOx Difference = 0.3 % VOC Difference = -0.1 %

H-MET minus M-MET NOx and VOC Running Emissions vs. \triangle RH

26

NOx Difference = 0.3 % VOC Difference = -0.1 %

NO_X EMISSIONS DIFFERENCES BETWEEN H-MET AND M-MET

 NOx monthly averaged emission differences between H-MET and M-MET were < 2% for all counties and months

No seasonality

- NOx hourly emission differences were up to ~15% impact on specific hours
 - Biggest differences were due to <u>relative humidity</u> impacts on <u>running emissions</u> in the summer months
 - Temperature is not a significant factor

VOC EMISSIONS DIFFERENCES BETWEEN H-MET AND M-MET

- VOC monthly averaged emission differences between H-MET and M-MET were < 3.3% for all counties and months
 - EXCEPT for January (up to 6%)
- VOC hourly emission differences were up to 20-30% impact on specific hours
 - Biggest differences were due to <u>temperature</u> impacts on <u>start emissions</u> ("cold starts") in the winter months
 - RH is not a significant factor

NEXT STEPS

- Run MOVES in inventory mode for 4 additional ozone nonattainment counties in Georgia
- Analyze additional pollutants
 - PM, CO, NH₃, and SO₂
- Look at emission comparisons for 2017 NEI
- Process hourly Inventory MOVES emissions through SMOKE ("MOVES-SMOKE") to generate gridded inputs for photochemical grid models
 - See next two slides

MOVES-SMOKE vs. SMOKE-MOVES

Current approach: SMOKE RatePerDistance processing steps

MOVES-SMOKE APPROACH

Figure obtained from SMOKE v3.7 manual

CONCLUSIONS

- Hourly VOC emissions are sensitive to temperature in the winter due to start emissions (cold starts)
- Hourly NOx emissions are sensitive to RH in the summer due to running emissions
- The "Gold Standard" should be Inventory MOVES runs with hourly meteorology from observations
 - GA EPD feels that running Inventory MOVES (MOVES-SMOKE) is preferred to running SMOKE-MOVES since there are no additional simplifying assumptions and observed meteorology is more accurate than modeled meteorology
- If resource are limited, can apply hourly meteorology to nonattainment/maintenance counties and monthly diurnal meteorology to the remaining counties
 - GA EPD "Hybrid Approach"

CONTACT INFORMATION

DEPT. OF NATURAL RESOURCES Gil Grodzinsky, Ph.D. **Georgia Dept. of Natural Resources** 4244 International Parkway, Suite 120 Atlanta, GA 30354 Gil.Grodzinsky@dnr.ga.gov 404 - 363 - 7123

EXTRA SLIDES

H-MET vs. M-MET NOx Emissions

H-MET vs. M-MET VOC Emissions

