PLUGGING AND ABANDONMENT

UIC INSPECTOR TRAINING

JULY 2019

CHUCK TINSLEY

tinsley.chuck@epa.gov

♦ PURPOSE OF PLUGGING PLANNING THE INSPECTION **•**THE PLUGGING DESIGN **PLUGGING MATERIALS** ♦ PLACEMENT METHODS **ABANDONMENT**

PURPOSE OF P&A

♦ FOR CLASSES I, II, AND III:

- ♦ PREVENT THE MOVEMENT OF FLUIDS INTO AND BETWEEN USDWS
- PLUGGING RESTORES THE ORIGINAL CONFINEMENT
- ♦ ACCOMPLISHED BY SETTING CEMENT PLUGS IN THE WELL
- PLUGS SHOULD LAST INDEFINITELY

♦ INSPECTORS WITNESS PLUGS FOR THE CORRECT INTERVALS AND VOLUMES

PURPOSE OF P&A

- An unplugged well leaves pathways for fluid migration along the wellbore
- Proper plugging
 blocks potential
 pathways
- Identify ALL potential pathways place plugs to prevent unwanted fluid migration

P&A OPERATIONS

IN THE OFFICE:PLANNING

♦IN THE FIELD:

WELL PREPARATION

SETTING THE PLUGS

ABANDONMENT

PLANNING KNOW THE WELL CONDITIONS

CONSTRUCTION DETAILS

- ♦ CASING STRING SIZES, GRADES, DEPTHS
- CEMENTING PROGRAM BOND LOGS
- PERFORATED/OPEN HOLE SECTIONS
- MECHANICAL EQUIPMENT IN THE WELL
- ♦ LOST CIRCULATION ZONES
- GEOLOGY
 - USDWS AND OTHER FLUID-BEARING ZONES
 - COMMERCIAL MINERAL RESERVES
- MECHANICAL CONDITION
 - PAST MI ISSUES
 - CASING COLLAPSE? CEMENT CHANNELING?
 - ♦ JUNK IN THE HOLE?
 - REMEDIAL ACTION NECESSARY?

Plugging design will in part depend on these factors

Plugs required to isolate these zones

May have problems getting to some intervals

Additional depths may need to be isolated

WELL PREP

- PERFORM ANY REQUIRED TESTING
- MOVE IN WORKOVER RIG AND REMOVE TUBING/PACKER, IF POSSIBLE
- ♦ REMEDIAL OPERATIONS
 - ♦ BIT/SCRAPER OR WIPER RUNS TO IMPROVE BONDING
 - PLUG-BACK THE INJECTION ZONE (IF NECESSARY OR DESIRABLE AT THIS STAGE)
 - ♦ CUT OR PULL CASING?
- ♦ CIRCULATE THE HOLE WITH WEIGHTED FLUID TO ACHIEVE STATIC EQUILIBRIUM

CUT & PULL, OR PERF AND SQUEEZE CEMENT BEHIND ANY FREE CASING

♦ DRESS THE TOP OF THE REMAINING PIPE

Use tools to open tight places where casing is collapsed

If cement voids or other loss of cement integrity is suspected, squeeze cementing may be necessary

WELL PREP COMPLETE

Prepared and ready for plugs!

?

But, where do they go?

PLUG FUNCTIONS

ISOLATE THE SURFACE ISOLATE THE USDWS ISOLATE ANY MINERAL-BEARING FORMATIONS **ISOLATE THE**

INJECTION ZONE

- PLUG BACK THE LOWER ZONES (ESP. INJECTION ZONE)
- PREVENTS FLUID FROM ENTERING THE WELL
- MIGHT MAKE OTHER PREPARATORY STEPS EASIER

GENERIC REQUIREMENTS FOR WELL PLUGGING

TYPICAL PLUGGING REQUIREMENTS FOR OIL AND GAS WELLS IN MOST STATES

Steel pipe with marker or pipe cut off below plow depth

110-25 foot cement plug at the surface

100 foot cement plug – 50 foot below and 50 foot above the shoe of surface AND intermediate casing

50 foot cement plug set below, above, or across any fresh water or mineral-bearing zones in open hole

50-100 foot cement plug on top and in any casing left in hole

Cemented casing stub (may or may not be in hole)

50-100 foot cement plug above injection/production zone; Often has a bridge plug or cement retainer + cement

PLUG LOCATIONS IN A SIMPLE CLASS II WELL

- CEMENT PLUG SET AT THE SURFACE PREVENTS FLUID MOVEMENT TO AND FROM THE SURFACE
- A CEMENT PLUG AT THE BASE OF THE SC PREVENTS FLUIDS FROM MIGRATING UPWARD TO THE USDW
- BOTTOM PLUG ISOLATES THE INJECTION ZONE WITH CEMENT ON A BRIDGE PLUG

TYPES OF CEMENT

- BASIC CEMENTS: CLASS A, C, G, AND H (OFTEN DENSIFIED WITH A DISPERSANT)
- ADDITIVES: FOR HIGHER OR LOWER DENSITY, FASTER OR SLOWER THICKENING TIME, IMPROVED BOND, ETC.
- ♦ WATER: CLEAN & FRESH IS BEST
- ♦ CHECK THE SLURRY VOLUME IN FT³/SACK
- ♦ PLUG DEPTH AND STRENGTH MUST BE VERIFIED
 - ♦ WAIT FOR CEMENT TO SET AND TAG THE PLUG
 - ♦ SET PLUG WITH A BRIDGE PLUG BELOW

PLUG LOCATIONS

- START WITH REQUIRED PLUGS FROM OTHER AGENCIES INJECTION ZONE – OTHER PERFS MINERALS CASING SHOES/LINER TOPS
- ISOLATE INTO/BETWEEN USDWS >2000 MG/L
- USE CIBP AS PLUG BASE OR TAG PLUGS
- CONSIDER HOW THE OPERTOR WANTS TO PLUG

WHERE TO SET PLUGS

 \mathcal{O}

BASIC CEMENT CALCULATION

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED?

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED? CASING CAPACITY?

BASIC CEMENT CALCULATION

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED? CASING CAPACITY?

FROM REDBOOK

	NO. 214	SING				
	Barrels Per Lin. Ft.	Lin. Ft. Per Barrel	Cu. Ft. Per Lin. Ft.	Lin. Ft. Per Cu. Ft.	Wt. Per Ft. With Couplings Lb.	Size O. D. In.
×	0162 0159 0155 0149 0142 0136 0128	61.54 62.70 64.34 66.99 70.32 73.05 77.69	.0912 .0895 .0872 .0838 .0798 .0768 .0722	10.960 11.167 11.459 11.932 12.525 13.010 13.838	9.50 10.50 11.60 13.50 15.10 16.60 18.80	41/2 41/2 41/2 41/2 41/2 *41/2 *41/2
	.0161 .0202 .0196 .0188	61.78 49.51 50.97 52.98	.0908 .1134 .1101 .1059	11.003 8.817 9.078 9.436	16.00 11.50 13.00 15.00	*43/4 5 5 5
-	.0177 .0170 .0167 .0167 .0158 .0155	56.30 58.80 59.60 59.66 62.95 64.34	.0997 .0954 .0942 .0941 .0892 .0872	10.028 10.473 10.615 10.625 11.211 11.459	18.00 20.30 20.80 21.00 23.20 24.20	5 *5 *5 *5 *5
	.0247 .0244 .0240 .0238 .0232	40.46 40.98 41.61 42.01 43.01	.1387 .1370 .1336 .1336	7.206 7.299 7.411 7.483 7.661	13.00 14.00 15.00 15.50	*51/2 51/2 *51/2 51/2
6	.0221 .0211 .0200 .0271 .0261	45.09 47.20 49.77 36.79	.1245 .1189 .1128 .1526	8.031 8.407 8.864 6.552	20.00 23.00 26.00	51/2 51/2 51/2 *51/2

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED?
 CASING CAPACITY = .1336 CU FT/LIN FT (RED BOOK)

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED? CASING CAPACITY = 0.1336 CU FT/LIN FT PLUG VOLUME = (0.1336 CU FT/LIN FT) * (150 FT) = 20.04 CU FT

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT

USING E-REDBOOK

ITUNES STORE: Halliburton eRedBook

0	. 2	3	
Э	.5	Э	-/

HALLIBURTON

Dimensions & Strengths

pe in Hole

Tub/Cas/Pipe	in Casing

Capacity

>

>

>

>

. . . 🗢 🗔

iCem Service - software-simulator-based service to solve the toughest cementing jobs.

9:33 🛪		.II	
<	Capacit	y	UoM
Casing	Tubing	DP	СТ
OD			Select >
Weight			
ID			
Grade			
Reset Selectio	Get from Favorite	n es	Add to Favorites
Depth			1 ft >
	Get Resu	ılts	

9:34 🛪			
<	Res	Сору	
OD	Weight	ID	Depth
5.5 in	15.5 Ibs/ft	4.95 in	150 ft
Totals			
bbl			3.57
ft ³			20.05
gal			149.95
Factors			
bbl/ft			0.0238
ft/bbl			42.0126
ft³/ft			0.1336
ft/ft ³			7.4828
gal/ft			0.9997
ft/gal			1.0003

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT
- HOW MANY SACKS OF CEMENT ARE NEEDED?

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT
- HOW MANY SACKS OF CEMENT ARE NEEDED? SLURRY VOLUME (YIELD)

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT
- HOW MANY SACKS OF CEMENT ARE NEEDED? SLURRY VOLUME (YIELD) = 1.18 CU FT/SACK

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT
- HOW MANY SACKS OF CEMENT ARE NEEDED?
 SLURRY VOLUME (YIELD) = 1.18 CU FT/SACK

SACKS = (20.04 CU FT) / (1.18 CU FT/SACK) = 16.98 SACKS

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT
- HOW MANY SACKS OF CEMENT ARE NEEDED = 16.98 SACKS

- 5-1/2 INCH, 15.5 LB/FT CASING
- PLUG NEEDED = 150 FT
- HOW MANY CU FT OF CEMENT IS NEEDED = 20.04 CU FT
- HOW MANY SACKS OF CEMENT ARE NEEDED = 16.98 SACKS

- 1) CALCULATE THE VOLUME NEEDED TO FILL THE SPACE FOR YOUR PLUG
- 2) CALCULATE THE NUMBER OF SACKS NEEDED TO MAKE UP THAT VOLUME OF CEMENT

PLUGGING METHODS

♦ 3 METHODS APPROVED IN THE FEDERAL UIC REGULATIONS

- THE BALANCE METHOD
- ♦ THE DUMP BAILER METHOD
- ♦ THE TWO-PLUG METHOD

ALSO:

AN ALTERNATE METHOD, APPROVED BY THE DIRECTOR, THAT WILL RELIABLY PROVIDE A COMPARABLE LEVEL OF PROTECTION MAY ALSO BE APPROVED

BALANCE METHOD

- BRIDGE PLUG IS SET (OR OTHER SURFACE PREPARED)
- TUBING IS LOWERED
- CEMENT IS PUMPED DOWN INSIDE THE TUBING & COMES UP ON THE OUTSIDE
- PUMPING IS STOPPED
 WHEN THE LEVEL INSIDE
 AND OUTSIDE THE TUBING
 ARE EQUAL
- THE TUBING IS SLOWLY RAISED ABOVE THE TOP OF THE PLUG
- DOESN'T REQUIRE SPECIAL EQUIPMENT, BUT DOES REQUIRE SKILL

CEMENT RETAINER VARIATION

DUMP BAILER METHOD

- Mechanical bridge plug/cement
 basket assembly is
 placed at plugging
 depth
- The dump bailer is a cylindrical container holding a fixed amount of cement
- The cement is dumped on the mechanical plug Seldom used

- May include post-closure care (required for Class I hazardous wells and Class VI wells)
- Surface remediation
 - Removing all equipment
 - Restoring vegetation
 - May be other special requirements
 You may not witness these activities,
 but you should know what is planned

SUMMARY

Prepare for the inspection

- Know the well construction, the geology, and the plan
- Did your agency approve the plan?
 - Communicate with permit writers
- Ensure that the plan is appropriate for the conditions and that it is followed
 - Choice of plugging fluids, cement slurry, placement method, etc.
- No cutting corners in well preparation!
- Be prepared to adapt to unforseen circumstances

FOR MORE INFORMATION

- ♦ HALLIBURTON CEMENTING TABLES (PRINT COPY)
- ♦ EREDBOOK IS AVAILABLE FOR DESKTOP AND SMARTPHONES
 - GOOGLE "EREDBOOK"
- ♦ OILFIELD ACRONYMS:
 - WIKIPEDIA

PREPARED FOR PLUGGING

IDENTIFY ZONES WHICH MUST BE ISOLATED WITH CEMENT:

1) INJECTION ZONE

2) CASING STUB

3) ANY PRODUCING OR FLUID-BEARING ZONE IN THE OPEN HOLE

4) BASE OF THE INTERMEDIATE

CASING

5)BASE OF THE SURFACE CASING AND USDW

6) GROUND SURFACE

APPROVED PLAN

ASSUME:

- ♦ 9⁵/₈ IN., 36# INTERMEDIATE CASING
- ♦ 7 IN., 26# LSC IN A 8³/₄ IN. HOLE
- PLUG THICKNESSES FOLLOW THESE STATE REQUIREMENTS:
 - 1) 100' CEMENT ISOLATING THE IZ IF NO BRIDGE PLUG/CEMENT RETAINER IS USED
 - 2) 50' CEMENT ON A BRIDGE PLUG, IF USED
 - 3) 50' CEMENT ABOVE AND BELOW A RIP POINT OR SURFACE CASING SHOE
 - 4) 50' CEMENT ISOLATING PRODUCING ZONES
 - 5) 25' CEMENT AT THE SURFACE

PLUGS NUMBERED

ASSUME:

- ♦ 9⁵/₈ IN., 36# INTERMEDIATE CASING
- ♦ 7 IN., 26# LSC IN A 8³/₄ IN. HOLE
- PLUG THICKNESSES FOLLOW THESE STATE REQUIREMENTS:
 - 1) 100' CEMENT ISOLATING THE IZ IF NO BRIDGE PLUG/CEMENT RETAINER IS USED
 - 2) 50' CEMENT ABOVE AND BELOW A RIP POINT OR SURFACE CASING SHOE
 - 3) 50' CEMENT ISOLATING PRODUCING ZONES
 - 4) 25' CEMENT AT THE SURFACE

PLUG #1

- ♦ 9⁵/₈ IN., 36# INTERMEDIATE CASING
- 7 IN., 26# LSC IN A 83/4 IN. HOLE
- CLASS A CEMENT (1.18 FT³/SACK)
- $S_C = L \times C \times (1 + E_C) \div V_{SL}$

<u>PLUG 1</u>:

L = 100 FEET

 $C = 0.2148 FT^3/FT$

 $E_{C} = 0$

 $V_{SL} = 1.18 \text{ FT}^3/\text{SACK}$

 $S_{C} = 100 \text{ FT} \times 0.2148 \text{ FT}^{3}/\text{FT}$

1.18 FT³/SACK

= 18 SACKS

PLUG #2

- 9⁵/₈ IN., 36# INTERMEDIATE CASING
- 7 IN., 26# LSC IN A 8³/₄ IN. HOLE
- ♦ CLASS A CEMENT (1.18 FT³/SACK)
- $S_C = L \times C \times (1 + E_C) \div V_{SL}$

Plug 2 top:
L = 50 feet
$C = 0.4176 \text{ ft}^3/\text{ft}$
$E_{c} = 0.2$
$V_{sl} = 1.18 \text{ ft}^3/\text{sack}$
$S_c = 50 \times 0.4176$ × (1 + 0.2) ÷ 1.18 = 21.2 sacks

-Cement Plug 5 25' thick Plug. Fluid 1150 - Cement Plug 4 100' Plug. Fluid 3 Cement Plug 5 50' above Plug. 50' below Fluid Cement Plug 50' above 2 50' below Injection Zone

TOTAL = 31 SACKS

 9% IN., 36# INTERMEDIATE C 7 IN., 26# LSC IN A 8¾ IN. F CLASS A CEMENT (1.18 FT³/ S_C = L × C × (1+E_C) ÷ V_{SL} 	G #3 CASING HOLE SACK)	5	Plug Fluid Plug. Fluid	Cement Plug 25' thick L. USDW Base Cement Plug 100'
<u>Plug 3 bottom</u> : L = 50 feet C = 0.4176 ft ³ /ft E _c = 0.2	<u>Plug 3 top</u> : L = 50 feet C = 0.4340 ft ³ /ft $E_c = 0$	3	Plug. Fluid	Cement Plug 50' above 50' below
$V_{sl} = 1.18 \text{ ft}^3/\text{sack}$ $S_c = 50 \times 0.4176$	$V_{sl} = 1.18 \text{ ft}^3/\text{sack}$ $S_c = 50 \times 0.4340$	2	Plug Fluid	Cement Plug 50' above 50' below
$x (1 + 0.2) \div 1.18$ = 21.2 sacks TOTAL = 40 SACKS	1.18 = 18.4 sacks	1		100' Injection Zone

PLUG #4

- ♦ 9⁵/₈ IN., 36# INTERMEDIATE CASING
- 7 IN., 26# LSC IN A 8³/₄ IN. HOLE
- CLASS A CEMENT (1.18 FT³/SACK)
- $S_C = L \times C \times (1 + E_C) \div V_{SL}$

<u>PLUG 4</u>:

L = 100 FEET

 $C = 0.4340 \text{ FT}^3/\text{FT}$

 $E_{C} = 0$

- $V_{SL} = 1.18 \text{ FT}^3/\text{SACK}$
- $S_{C} = 100 \text{ FT} \times 0.4340 \text{ FT}^{3}/\text{FT}$

1.18 FT³/SACK

= 37 SACKS

PLUG #5

- ♦ 9⁵/₈ IN., 36# INTERMEDIATE CASING
- 7 IN., 26# LSC IN A 8³/₄ IN. HOLE
- CLASS A CEMENT (1.18 FT³/SACK)
- $S_C = L \times C \times (1 + E_C) \div V_{SL}$

<u>PLUG 5</u>:

L = 25 FEET

 $C = 0.4340 \text{ FT}^3/\text{FT}$

- $E_c = 0$
- $V_{SL} = 1.18 \text{ FT}^3/\text{SACK}$
- $S_{C} = 25 \text{ FT} \times 0.4340 \text{ FT}^{3}/\text{FT}$

1.18 FT³/SACK

= 9 SACKS

