

OFF-SITE INTERIM MEASURE WORK PLAN AND RESPONSE TO COMMENTS

Franklin Power Products, Inc. / Amphenol Corporation Administrative Order on Consent, Docket #R8H-5-99-002 EPA ID # IND 044 587 848 980 Hurricane Road Franklin, Indiana 46131

Prepared For:

Carolyn Bury United States Environmental Protection Agency, Region 5 77 West Jackson Boulevard Chicago, Illinois 60604

Date: June 18, 2019

Prepared by:

IWM Consulting Group, LLC 7428 Rockville Road Indianapolis, IN 46214 Phone No. (317) 347-1111 Fax No. (317) 347-9326

OFF-SITE INTERIM MEASURE WORK PLAN AND RESPONSE TO COMMENTS

Franklin Power Products, Inc. / Amphenol Corporation Administrative Order on Consent, Docket #R8H-5-99-002 EPA ID # IND 044 587 848 980 Hurricane Road Franklin, Indiana 46131

Prepared For:

Carolyn Bury United States Environmental Protection Agency, Region 5 77 West Jackson Boulevard Chicago, Illinois 60604

Prepared By:

Alute

Christopher D. Parks, LPG Senior Project Manager

June 18, 2019 Date

Bradley E. Gentry, LPG Vice President/Brownfield Coordinator June 18, 2019 Date

TABLE OF CONTENTS

1.0	Introduction1
2.0	Response to Comments
3.0	Project Background12
4.0	Off-Site Potential Exposure Pathways
4.1	Conceptual Site Model
5.0	Corrective Action Objectives
6.0	Off-Site Interim Measure Conceptual Design
6.1	Project Overview and Goals
6.3	Local Challenges
6.4	Site Conditions
6.4	1 Design-Level Data Soil Boring Installation and Analytical Results
6.4	2 Off-Site Temporary Well Installation and Groundwater Analytical Results
6.5	Design Approach25
6.5	1 Site-Specific Constraints/Considerations
6.6	Plan Design
6.6	1 Materials Management Plan
6.6	2 Confirmatory Soil Sampling
6.6	3 Excavation Dewatering
6.6	4 Backfill
6.6	5 Ambient Air Monitoring Program
6.6	6 Sewer Main and Lateral Lining
6.6	7 Monitoring Well Network Expansion
6.6	8 Confirmatory Groundwater Sampling
6.7	Key Companies and Personnel
6.8	Schedule
7.0	Conclusion
8.0	References

FIGURES

Figure 1 – Study Area Map
Figure 2 – Draft Vapor Intrusion Conceptual Site Model
Figure 3 – Groundwater Flow Map – March 2019
Figure 4 – Upper Forsythe Street – Soil Boring Location Map

FIGURES (continued)

- Figure 5 Upper-Middle Forsythe Street Soil Boring Location Map
- Figure 6 Lower-Middle Forsythe Street Soil Boring Location Map
- Figure 7 Lower Forsythe Street Soil Boring Location Map
- Figure 8 Soil Isoconcentration Map TCE Above Sewer
- Figure 9 Soil Isoconcentration Map TCE Below Sewer
- Figure 10 Soil Isoconcentration Map TCE Unit B Base
- Figure 11 Cross-Section Location Map
- Figure 12 Cross-Section A-A'
- Figure 13 Cross-Section B-B'
- Figure 14 TCE Groundwater Isoconcentration Map
- Figure 15 Proposed Off-Site Interim Measure (Excavation and Lining)
- Figure 16 Sanitary Sewer Design Plan Upper Forsythe
- Figure 17 Sanitary Sewer Design Plan Lower Forsythe
- Figure 18 Off-Site Interim Measure Implementation Schedule
- Figure 19 Proposed Monitoring Well Location Map

TABLES

- Table 1 Site-Specific Recalculated Soil Migration to Groundwater Screening Levels
- Table 2 Corrective Action Objectives
- Table 3 Design-Level Data Soil Sampling Analytical Results
- Table 4 Off-Site Groundwater Sampling Analytical Results

APPENDICES

- A. Detailed Bid Specifications and Preliminary Construction Plans (Crossroad Engineers, P.C.)
- B. Design-Level Data Soil Boring Logs and Temporary Monitoring Well Soil Boring Logs
- C. Laboratory Analytical Reports and Data Validation Reports
- D. Groundwater Treatment System Components and Drawings
- E. Ambient Air Monitoring Plan (Groundwater & Environmental Services, Inc.)

Off-Site Interim Measure Work Plan And Response to Comments Franklin Power Products, Inc. / Amphenol Corporation Administrative Order on Consent, Docket #R8H-5-99-002 EPA ID # IND 044 587 848 980 Hurricane Road Franklin, Indiana 46131

1.0 Introduction

In accordance with the request made by the United States Environmental Protection Agency (USEPA) in a letter dated December 11, 2018, Industrial Waste Management Consulting Group, LLC (IWM Consulting), on behalf of Amphenol Corporation (Amphenol) the "Performing Respondent", is submitting this Off-Site Interim Measure Work Plan (OIM Work Plan). Reports entitled Off-Site Interim Measure Conceptual Design (Conceptual Design) and Off-Site Interim Measure Conceptual Design Addendum (Conceptual Design Addendum) were submitted to the USEPA on May 7, 2019 and May 16, 2019, respectively, which proposed the removal of impacted soil and groundwater surrounding portions of the sanitary sewer system along Hamilton Avenue and North Forsythe Street. The removal of soil and groundwater surrounding the sanitary sewer system was proposed to create an environment which will not produce soil vapors which can potentially impact preferential exposure pathways to residents and businesses down-gradient of the facility. The USEPA has reviewed the Conceptual Design document and provided comments in a letter dated June 3, 2019. This OIM Work Plan is being submitted to provide a detailed work plan for the removal of impacted soil and groundwater from the Study Area. The Study Area includes portions of streets and adjacent structures that are near and downgradient of the Former Amphenol facility located at 980 Hurricane Road, Franklin, IN (Site), including Hurricane Road, Hamilton Avenue, Forsythe Street, Glendale Drive, and Ross Court. A map depicting the Study Area has been included as Figure 1.

This OIM Work Plan addresses USEPA comments from the June 3, 2019 letter and requests from the December 11, 2018 letter and outlines off-Site potential exposure pathways, corrective action objectives (CAOs), challenges, Site conditions, the design plan, and the anticipated implementation schedule.

2.0 Response to Comments

The USEPA reviewed the Conceptual Design document prepared by IWM Consulting and supplied comments in a letter dated June 3, 2019. The following responses have been prepared to address those comments.

USEPA General Comment 1: "The aerial scope of the remedy must be explained and supported. A comparison of Figures 10 and 11 to figures displaying elevated VOC vapors in sewers and sewer-line soils shows that some impacted sewers are not included in the proposed remedy. Specifically, the eastern portion of Hamilton Avenue, portions of Glendale Drive and the sewer connection between Glendale Drive and Forsythe Street. These areas having elevated VOC measurements are not

included in the remedy. EPA notes that per the City's 2015 Sewer System Evaluation Study, the City also planned to line the north/south western portion of Glendale Drive, ostensibly due to the line breaks recorded in the City's video logging event.

In the next design phase, expand the remedial design scope to include all areas impacted with VOC vapors in the sewer lines. Alternatively, provide a justification why these other areas are not included in the current design scope."

IWM Consulting Response: The areal extent of the remedy is based upon the documented extent of trichloroethylene (TCE) contamination in soil, groundwater, and soil gas media, rather than the presence of impacted sewer gas. Between Manhole 250053 and 250056 on Hamilton Avenue, and Manhole 250052 and 250040 on Forsythe Street, impacted soil will be excavated (and the sewer line will be replaced). The primary benefit of this activity is removal of residual contamination that may be present beneath the sewer line and serving as a continued source of groundwater contamination via leaching. A secondary benefit of this activity is that the new sewer line will not have cracks and inactive laterals through which soil gas can enter. As discussed in the Conceptual Design, it is believed that soil gas vapors emanating from groundwater may be entering sewer lines, which can then act as a preferential pathway for vapor intrusion to indoor air. By sealing cracks and unused laterals along the sewer line, much of this pathway is mitigated because soil gas vapors do not have entry points into the sewer line. An overall map showing the extent of proposed excavation and sewer lining activities has been included as **Figure 15**.

From Manhole 250040 to 250010 (along Forsythe Street, south of Ross Court), the sewer line is submerged beneath the water table and groundwater is expected to flow into the sewer line, rather than sewer contents flowing outward. Groundwater contamination in the northern portion of this stretch is believed to have flowed south along the sewer line from leaks in the vicinity of Ross Court. Additionally, soil impacts in the vicinity of the sewer main at concentrations in excess of screening levels were not documented to the south of Ross Court. As such, there is no need to remove contaminated soil materials in the same way as areas along Forsythe Street north of Ross Court, and excavation of the sewer line is not proposed. Instead, this section of sewer line along Forsythe Street from Ross Court to near Hurricane Creek will be lined. This lining will prevent infiltration of groundwater into the sewer line, where contaminants could potentially volatilize. VOCs in sewer gas can potentially travel greater distances than they would in soil gas. The lining of the sewer will extend south beyond the extent of groundwater contamination.

The sewer line will also be lined along the western portion of Ross Court, from Manhole 250040 to 250041. This section of sewer line is not along the flow path from the former Amphenol facility to the wastewater plant and soil beneath this sewer line has not been documented to be contaminated. However, some damage was observed during the City's video inspection and groundwater in a portion of this stretch of sewer line exceeds the 9.1 micrograms per liter (μ g/L) Indiana Department of Environmental Management (IDEM) Remediation Closure Guide (RCG) Residential Groundwater Vapor Exposure (GVE) screening level for TCE. To mitigate the potential for groundwater and soil gas infiltration, this section of sewer will be lined.

The sewer line in the Glendale Drive area connects to the Forsythe Street sewer line via a connector from Manholes 250070 to 250060 to 250050. The portion of this connector nearer Glendale Drive, between Manholes 250070 and 250060, was observed to be in good condition during the City's video inspection and is east of groundwater contamination that exceeds 9.1 μ g/L of TCE. Little damage was noted in the western portion of this connector between Manholes 250050 and 250060. However, this section of the connector within the groundwater plume will be preemptively lined to mitigate the potential for contaminated groundwater or soil gas entering the sewer.

The sewer line that is being replaced along Hamilton Avenue only extends as far east as the sewer lateral to the former Amphenol facility, which has already been replaced. A separate sewer line flows south along Hurricane Road before jogging left along a small stretch of Hamilton Avenue and then continuing south along Glendale Drive. As noted in US EPA's comment, a north-south portion of the sewer line on Glendale Drive was determined to have multiple condition issues during the City's video inspection. Since the inspection, the City has lined this section of sewer (between Manholes 250080 and 250070) during Spring 2019. Sewer gas concentrations of TCE at Manhole 250070 (which is also the beginning of the connector to the Forsythe Street sewer line) at the southern end of this newly lined section were below screening limits in September 2018, indicating that there is no significant soil gas migration into this lined section of sewer.

Following completion of the work outlined in the original Conceptual Design, all sewer lines within areas of groundwater concentrations exceeding 9.1 μ g/L will have been replaced or lined, with one exception. In the area of Manhole 250090, TCE concentrations in groundwater exceed the screening level. This manhole is located at the intersection of Hamilton Avenue and Glendale Drive. The City video inspection indicates the condition of this line to the south (Manhole 250090 to 250080) is good. To the east (Manhole 250090 to 250100), the City's video inspection noted debris in the line and light and moderate roots. Although these sections of sewer line are mostly outside of the groundwater plume area, they are in close enough proximity to the plume that contaminants volatilizing from groundwater could theoretically migrate along these lines through sewer gas. To further mitigate the potential for TCE in soil gas to enter sewer lines, lining of these two sections of sewer line (Manhole 250100 to 250100 to 250100 to 250100 to 250090 and 250090 to 250080) will be included in the revised remedial design scope.

USEPA General Comment 2: "The next design phase should include a discussion of how remediation performance will be confirmed post-construction."

IWM Consulting Response: As discussed in the response to Comment 1 above, potentially contaminated vadose-zone soils beneath sewer lines will be excavated and removed from the project area. Furthermore, sewer lines within the areal extent of the groundwater plume will be either replaced or lined to further mitigate the possibility that contaminants in groundwater and soil gas can enter the sewer lines.

Based upon the results of the recent assessment activities and subsequent mitigation measures already completed to date, lining of sewer lines within the project area is not necessary to meet soil and groundwater remedial objectives. In the few houses where indoor air screening levels were exceeded, plumbing repairs and soil gas mitigation measures have been demonstrated to render exposure

pathways incomplete. That said, the additional cost of lining the sewers while the system is already being disturbed for excavation and source removal is considered worthwhile as an additional measure of assurance that exposure pathways will remain incomplete.

It is important to keep in mind that Amphenol's activities in Franklin serve two objectives: 1) to ensure the health and safety of residents affected by contamination from historical activities at the former Amphenol facility by eliminating exposure pathways, and 2) to perform activities that will lead to future reduction of TCE concentrations in groundwater, thereby eliminating the need to mitigate exposure pathways. To these ends, Amphenol has conducted extensive soil, groundwater and vapor intrusion investigations throughout the project area to identify potentially complete exposure pathways. Only five (5) residences were found to have indoor air concentrations above screening levels, and appropriate mitigation measures have either already been implemented or are being implemented that effectively prevent exposure of occupants to TCE contamination originating from the former Amphenol facility or potential other off-site sources. Post-mitigation vapor intrusion sampling confirms that the mitigation measures effectively reduced indoor air concentrations below screening levels. As such, remedial performance with respect to ensuring the health and safety of residents has already been demonstrated prior to completing excavation and sewer line replacement or lining activities.

With regards to the second objective (future reduction of TCE concentrations in groundwater), it has been demonstrated in many other remedial projects that the single most effective means to improve groundwater quality is to remove source areas from soil. Without the removal of contaminants in soil source areas, any contaminants removed via groundwater treatment are repeatedly replenished through additional leaching. With removal of source areas in soil, natural attenuation processes can effectively reduce groundwater concentrations. As discussed in the Conceptual Design, the remedial performance of sewer line excavation will be confirmed by collection of vadose zone soil samples to ensure that TCE concentrations in remaining soils are below the adjusted TCE RCG Migration to Groundwater (MTG) screening level of 0.065 milligrams per kilogram (mg/kg).

The long-term goal of sewer line excavation is reduction of TCE concentrations in groundwater. To this end, groundwater quality within the plume area will be monitored to demonstrate that chemical of concern (COC) concentrations are decreasing following source removal activities. Immediately following a disturbance such as the planned excavation, it is common to see short-term fluctuations in contaminant concentrations (both up and down) as conditions return to equilibrium. These fluctuations often last a few months, although the precise amount of time is difficult to predict due to site-specific conditions. Following completion of excavation and site restoration activities, off-Site monitoring wells (MW-31 through MW-40) will be sampled monthly for a period of one year. This will serve to 1) better identify when conditions have returned to equilibrium, and 2) establish a data set that is sufficiently large to serve as a basis for statistical evaluation (most statistical methodologies require a minimum of 8 samples). Proposed monitoring wells are displayed on **Figure 19**.

Following the one year of monthly sampling events, monitoring well sampling will continue on a semi-annual basis in the spring and fall of each year. Data will be statistically evaluated to ensure that TCE concentrations in groundwater decrease over time. Methods used will be consistent with USEPA's Unified Guidance - Statistical Analysis of Groundwater Monitoring Data at RCRA

Facilities (Unified Guidance) document EPA 530/R-09-007 dated March 2009. It is anticipated that a Mann-Kendall Trend Test will be most appropriate for demonstrating decreasing trends, although normality of data will first be evaluated. Groundwater monitoring will continue until it can be demonstrated that TCE concentrations at a monitoring well do not exceed 9.1 μ g/L. This demonstration will be made by one of the following methods: 1) no exceedance of 9.1 ug/L during two years (4 events) of monitoring, 2) demonstration that an upper confidence limit does not exceed 9.1 μ g/L in accordance with Sections 21.1 or 21.2 of the Unified Guidance, or 3) demonstration that the upper confidence band surrounding a trend line is below 9.1 μ g/L in accordance with Section 21.3 of the Unified Guidance. Groundwater conditions will be monitored until CAOs are achieved or until a demonstration can be made that the residual dissolved VOCs no longer pose an unacceptable exposure pathway.

USEPA General Comment 3: "The next design phase should include a list of potential contingency measures if remedial confirmation sampling reports that elevated VOC sewer vapors persist in the sewer lines."

IWM Consulting Response: Sewer vapor flow is affected by numerous factors and thus the successful implementation of this remedy should not be measured by VOC sewer vapor concentrations. Sewer vapor flow in sewer lines is typically in the direction of water flow, unless forced otherwise (WERF 2009). However, in lines with little sewer water movement, sewer gas can move independently and relies more on pressure differentials and the buoyancy effect.

Typically, the most important factor in sewer gas movement is water drag. Water drag is the drag between the water surface and the air in the headspace of the sewer line. The sewer gas velocity is typically less than the sewer water velocity, generally in the range of 5% to 30% of the average water velocity (Pescod and Price 1982). However, when water velocity decreases due to changes in slope or headspace, the sewer gas flow rate will decrease as well. These decreases in flow rates often result in sewer vapors venting out through manholes. If velocities increase, air will often enter through manholes causing dilution of sewer gas (Lowe 2016). However, in lines with little to no sewer water movement, water drag is not expected to be the primary factor for sewer vapor movement. Portions of this system exhibit low to minimal flow.

Air pressure is the second major factor in sewer gas movement. Higher pressure areas want to move to lower pressure areas. Experimental studies have shown atmospheric parameters influence pressure within the sewer system. Sewer gas flow rates can be affected by small changes in pressure influence by atmospheric wind speed, air temperature, atmospheric humidity, and atmospheric pressure in addition to sewer headspace humidity and temperature (Parker and Ryan 2001).

The buoyancy effect is the third factor which influences air flow in the sewer system within the Study Area. Sewer gas if generally less dense than ambient air due to its high humidity. In the winter, cold and low humidity air enters lower portions of the sewer system and as it is warmed, becomes less dense and is forced out of higher elevation manholes. This is known as the stack effect (Lowe 2016).

Following the completion of source removal activities and subsequent decreases in groundwater concentrations are observed, soil gas will no longer be generated and will no longer have the ability

to impact sewer gas. Additionally, the installation of a new polyvinyl chloride (PVC) sanitary main (and select sanitary laterals) will provide a sealed sanitary sewer system to eliminate entry routes for soil gas and impacted groundwater. Therefore, if sewer vapors with the presence of volatile organic compounds (VOCs) are observed, they are likely being transported within the sewer system from secondary up- or down-gradient source areas that are not associated with the release from the Site.

USEPA General Comment 4: "Identify how long a re-lined clay pipe is expected to maintain its integrity and how the pipes will be monitored for deficiencies after replacement or re-lining."

IWM Consulting Response: Lined pipes have a minimum life expectancy of 50 years. However, manufacturers anticipate the life expectancy will be much longer than 50 years. The sewer lines in the project area that will be or have already been rehabilitated are being lined using EX Pipe or Cured-In-Place Pipe (CIPP) material by Miller Pipeline. Pipe liners range in thickness from 4.5 mil to 7.5 mil, depending on the pipe diameter and depth.

EX Pipe is produced from a base of PVC, conforming to ASTM D-1784 cell classification 12334-B, tested to ASTM F 1504-Standard Specifications for folded PVC Pipe for sewer rehabilitation. The EX Pipe delivers chemical, earthquake, and abrasion resistance, which results in a superior pipeline with long-term, proven stability. The jointless EX Pipe stops water infiltration (and exfiltration), root intrusion, and soil loss.

Similarly, CIPP is resin-impregnated flexible tube, which when cured, is continuous and tight fitting throughout the entire length of the original pipe. The flexible tube consists of one or more layers of absorbent non-woven fiberglass fabric which is impregnated with a resin that consists of a corrosion resistant polyester or vinyl ester resin and catalyst system.

The City of Franklin is responsible for inspecting and maintaining their sanitary sewer system. Different portions of the sanitary sewer system are cleaned and inspected annually. The sanitary sewer system in the Study Area was last inspected in 2015 and sewer cleaning, repairs, and lining were completed in early 2019. The sanitary sewer lining extends the life expectancy of the sanitary sewer lines a minimum of 50 years, and could extend the life of the lines to the vicinity of 70 to 100 years or more.

USEPA General Comment 5: "The remedy will remove contaminated soils in the vadose zone in designated sections of the sewer lines, and contaminated soils and groundwater in other sections of the sewer lines that intersect the water table. Based on the Conceptual Site Model described in Section 3.1, a smear zone could develop in the clean backfill. If the new PVC sewer line (e.g., joints) of the re-lined old clay pipe degrade in the future, how will renewed migration of VOC vapors be prevented in the future?"

IWM Consulting Response: Following the completion of source removal activities and subsequent decreases in groundwater concentrations are observed, soil gas will no longer be generated and will no longer have the ability to impact sewer gas, therefore, the creation of new smear zones will be of no consequence. Additionally, the installation of a new PVC sanitary main (and select sanitary laterals) will provide a sealed sanitary sewer system to eliminate entry routes for any residual soil gas

and impacted groundwater in the short term. Lined pipes have a minimum life expectancy of 50 years and it is expected that their life expectancy will be much longer than 50 years according to most manufacturers. Similarly, the new PVC sanitary system is expected to have a conservative life expectancy of 50 to 70 years, however, manufacturers indicate that a life expectancy of 100 or more years is likely with PVC sanitary systems. PVC deteriorates when in contact with sunlight, and since the PVC lines will be buried in the ground, sunlight is not a problem with shortening the lifespan of the PVC lines.

USEPA General Comment 6: "Given the post-remedial conditions of residual contaminated media, the next design phase should discuss how the remedy will be monitored into the future."

IWM Consulting Response: Following the completion of excavation and restoration activities, the existing monitoring well network will be expanded in order to monitor groundwater conditions in the Study Area. Off-site groundwater conditions will be monitored monthly for a period of one (1) year utilizing monitoring wells MW-31 through MW-40, displayed on Figure 19. Following the one year of monthly sampling events, monitoring well sampling will continue on a semi-annual basis in the spring and fall of each year. Data will be statistically evaluated to document TCE concentrations in groundwater have decreased over time. Methods used will be consistent with USEPA's Unified Guidance. It is anticipated that a Mann-Kendall Trend Test will be most appropriate for demonstrating decreasing trends, although normality of data will first be evaluated. Groundwater monitoring will continue until it can be demonstrated that TCE concentrations at a monitoring well do not exceed 9.1 µg/L. This demonstration will be made by one of the following methods: 1) no exceedance of 9.1 ug/L during two years (4 events) of monitoring, 2) demonstration that an upper confidence limit does not exceed 9.1 µg/L in accordance with Sections 21.1 or 21.2 of the Unified Guidance, or 3) demonstration that the upper confidence band surrounding a trend line is below 9.1 µg/L in accordance with Section 21.3 of the Unified Guidance. Groundwater conditions will be monitored until CAOs are achieved or until a demonstration can be made that the residual dissolved VOCs no longer pose an unacceptable exposure pathway.

USEPA General Comment 7: "In the next design phase, discuss whether the City contractors will be HAZWOPER trained, or supervised by a responsible individual who can stop work if they are exposed above occupational exposure levels (e.g., IDEM RCG construction excavation levels). This comment also applies to the "other utility entities (i.e. municipal water company and natural gas company)" which will be invited to replace utilities and take advantage of the open trench conditions. The utility companies could encounter contaminated soil during their work which could affect the schedule."

IWM Consulting Response: The contractor selected to complete the implementation of the OIM Work Plan will be supervised by a responsible individual employed by IWM Consulting which has been HAZWOPER trained. Soil conditions will be monitored by IWM Consulting personnel and if adsorbed COC concentrations exceed IDEM RCG Excavation Direct Contact screening levels, work will be stopped and the appropriate personal protective equipment (PPE) will be donned by excavation workers to prevent direct contact with impacted soil. Additionally, an ambient air monitoring plan (AAMP) has been developed and will be in place during work activities. Ambient air will be screened and compared to action levels developed based on the photo-ionization (PID) response factors for

tetrachloroethylene (PCE) or TCE to verify excavation workers do not exceed worker vapor exposure protection based on published exposure limits established by the Occupational Safety and Health Administration (OSHA) or the American Conference of Governmental Industrial Hygienist (ACGIH).

Work being completed by private utility companies is not under the direction of Amphenol or IWM Consulting. Neither Amphenol nor IWM Consulting have control of the activities being completed by third party private utility companies within the right-of-way in the Study Area. Additionally, private utility installations are not expected to exceed four (4) feet in depth, well above any documented soil or groundwater impacts. IWM Consulting can make the attempt to advise the private utility companies regarding soil and groundwater conditions in the Study Area, materials management, and potential sampling of materials, however, neither Amphenol nor IWM Consulting can guarantee the cooperation of private utility companies. IWM Consulting will not be present during work completed by private utility companies.

USEPA General Comment 8: "The City contractor must have its own health and safety plan. For practical reasons, Amphenol's and the City's contractor should have HASPs that are harmonized where they agree to the same PPE, action levels, and conditions that require upgrading or downgrading PPE, etc."

IWM Consulting Response: The contractor selected to complete the implementation of the OIM Work Plan will have its own health and safety program and will have a site-specific health and safety plan (HASP) harmonized with IWM Consulting's HASP. The contractor's HASP will concur with IWM Consulting's HASP in regards to action levels, PPE, and other pertinent health and safety factors.

USEPA General Comment 9: "EPA assumes the following which should be explicit in the next design phase document:

Amphenol is responsible for

- a. determining what material is contaminated and for contaminated materials management (i.e. removing, staging, and disposing of contaminated material).
- b. materials management of non-contaminated material"

IWM Consulting Response: Amphenol and IWM Consulting will be responsible for determining what material is contaminated and non-contaminated and will coordinate materials management (removing, staging, sampling, and disposing of contaminated and non-contaminated materials). Asphalt materials will be milled and segregated to the extent practical and re-utilized removed as both permanent fill and temporary asphalt for maintenance of traffic on other projects.

In order to dispose of the impacted soils excavated from Project Area, lined roll-off boxes will be loaded by the contractor selected to implement the OIM Work Plan. The lined roll-off boxes will be tarp covered and transported back to the Site by an IWM Consulting sub-contractor and staged in a secure area where each roll-off box will be composite soil sampled to determine if the soils can be classified as non-hazardous using the IDEM's Contained-In Determination. Once the hazard classification of the soils has been determined, the lined roll-off boxes will be transported to a landfill for disposal by an IWM Consulting sub-contractor. Once the roll-off boxes are emptied, they will be

returned to the Site, re-lined, and the process will be repeated. All IWM Consulting sub-contractors will be supervised by IWM Consulting personnel and will adhere to IWM Consulting's HASP.

USEPA General Comment 10: "In the next design phase, identify who will be supplying and verifying clean fill."

IWM Consulting Response: The contractor selected to implement the OIM Work Plan will supply all backfill material. The backfill material supplied during the implementation of the OIM Work Plan will consist of Number 8 stone for sanitary sewer bedding, structure backfill (Type 1) for excavation backfilling, and Number 53 stone aggregate for road bedding and will meet Indiana Department of Transportation (INDOT) specifications. In order to meet INDOT specifications, these backfill materials will be virgin material sourced from a quarry, therefore, verification sampling for VOCs is not warranted. Topsoil used in surface restoration will be the original topsoil removed from the excavation area by the contractor selected to implement the OIM Work Plan. The top soil removed will be replaced, seeded, and mulched.

USEPA General Comment 11: "In the next design phase, identify whether pre-excavation of post-excavation surveys or related work will be required and who is responsible for doing that for sewer lines, water, and natural gas lines."

IWM Consulting Response: Pre- and post-excavation surveys in relation to the grade of the sanitary sewer and surface grade within the project area will be completed by Crossroad Engineers, P.C. (Crossroad). Surveys related to the water and natural gas lines are not being completed under the City of Franklin, Amphenol, or IWM Consulting's direction, therefore, it is not known if surveys related to these utilities will be completed.

USEPA General Comment 12: "In the next design phase, identify who is supplying all construction materials for water lines and natural gas lines."

IWM Consulting Response: Any water or natural gas line replacement is not being completed under the direction of the City of Franklin, Amphenol, or IWM Consulting, therefore, the materials being used for these potential utility replacements is unknown. Any water or natural gas lines replaced will be completed by the private utility company or their contractor.

USEPA Specific Comment 13: "Section 1.0 Introduction

Note that EPA requested the Conceptual Design in an email dated March 11, 2019, not just during the April 11, 2019 meeting with Amphenol Corporation ("Amphenol"). EPA also requested a conceptual design plan when we agreed to Amphenol's proposed plan to complete design-level soil sampling as a preliminary response to EPA's December 11, 2018 request for a remedial work plan for the sewer line remedy."

IWM Consulting Response: This oversight has been noted.

USEPA Specific Comment 14: "Section 2.0 Project Background

Page 1. In the discussion of previous remedial work, the status of the vapor mitigation system installed at the former manufacturing facility should be included."

IWM Consulting Response: The project background will be updated in this and future reports to clarify that the vapor mitigation systems in the former manufacturing facility had been deactivated and removed as of August 3, 2012.

USEPA Specific Comment 15: "Section 3.1 Conceptual Site Model

Page 3. This section should point out that while the portion of the sewer line intersects the water table, VOC vapors still decrease towards the southern, down-gradient end of the study area. Fluctuation of vapor concentrations, as were observed between the two sampling events, could potentially be explained by water table fluctuations and precipitation events."

IWM Consulting Response: As previously discussed, sewer vapor flow is affected by numerous factors. Sewer vapor flow in sewer lines is typically in the direction of water flow, unless forced otherwise (WERF 2009), or if there is little sewer water flow. There is considerably more sewer water flow in the southern portion than the northern portion of the Study Area. During sewer gas sampling events, sample concentrations were highly variable, as collected from Manhole 250010 with concentrations ranging from 2,732.8 micrograms per cubic meter (μ g/m³) [September 2018] to 230.94 μ g/m³ (October 2018) as well as samples from Manhole 250020 with concentrations ranging from 774.0 μ g/m³ (September 2018) to 37.06 μ g/m³ (October 2018). It is not likely that there was a large change in groundwater elevation on the southern end of the Study Area within a one-month time frame and there were not any rain events within several days of the sampling events. According to the onsite weather station, between the September 2018 and October 2018 sewer gas sampling events, only 1.55 inches of rain were received in the area over the course of eleven (11) different rain events. It is more likely that changes in atmospheric wind speed, air temperature, humidity, and pressure affected the concentrations of sewer gas observed. However, it is possible that changes in sewer gas concentrations and precipitation events.

USEPA Specific Comment 16: "Section 5.3 Local Challenges

Page 7. Amphenol will determine whether the groundwater remediation system may need to be taken off line during construction, or periodically during construction. If the sewer system will not be bypassed and the pump and treat system is turned off, in the next design phase, provide an analysis of how far groundwater might move off-site and a plan for how the plume will be monitored, and whether the water table is expected to rise due to not pumping, and if that would affect the planned construction."

IWM Consulting Response: Following discussions with Crossroad, it is anticipated that the remediation system will remain fully operational for the duration of the OIM Work Plan implementation.

USEPA Minor Comment 17: "Figure 1. Study Area Boundary

The figure includes the extended study area boundary to the south where additional manholes were sampled as part of the sewer vapor investigation. In the next phase design, include the area to the west and south where additional groundwater sampling was completed."

IWM Consulting Response: The Study Area Boundary has been updated on **Figure 1** to depict areas where off-site groundwater sampling has been conducted.

USEPA Conceptual Design Addendum Comment 18: "EPA noted that the "Right of Way Access, Repair and Payment Agreement between Amphenol and the City of Franklin" (Attachment A) ("Agreement") does not mention replacement or relining of sewer laterals."

IWM Consulting Response: The sewer laterals are privately owned and will be evaluated on a property by property basis. If it is determined that the private lateral is in poor condition (contains roots, cracks, breaks, etc.) and is located within a documented groundwater exceedance area, then the lateral will be lined or replaced if a private property access agreement between Amphenol and the property owner can be obtained.

USEPA Conceptual Design Addendum Comment 19: "Addendum – There appears to be a presumption that all waste collected for disposal will be non-hazardous. Either explain the presumption or revise the text to state that the waste soil will be sampled and analyzed for the IDEM contained in determination."

IWM Consulting Response: Based on observed concentrations during the design-level data soil investigation, it is anticipated that all soil collected for disposal will be non-hazardous. However, roll-off boxes will be loaded by the contractor selected to implement the OIM Work Plan and the boxes will be transported back to the Site by an IWM Consulting sub-contractor and staged in a secure area. The soils within each roll-off box will be soil sampled to determine if the soils can be classified as non-hazardous using the IDEM's Contained-In Determination. Once the hazard classification of the soils has been determined, they will be transported to a landfill for disposal by an IWM Consulting sub-contractor. If the soils are determined to be hazardous, they will be transported to a permitted hazardous waste landfill.

USEPA Conceptual Design Addendum Comment 20: "Page 3. Crossroad Engineers, P.C. will prepare a community relations plan. Please provide a draft plan to the EPA so that we may ensure that any included risk information is communicated appropriately and is consistent with EPA's messaging."

IWM Consulting Response: Crossroad has prepared a community relations plan to communicate construction related details to the community. As the on-Site inspection team for the City of Franklin, Crossroad will update adjacent property owners on maintenance of traffic, property access issues, temporary sewer interruptions, and project schedule via bi-weekly newsletters. Crossroad will also utilize door to door communication with those directly impacted during construction. Additionally, the City of Franklin will post the bi-weekly newsletters on their website and request that the USEPA share the newsletters with the email distribution list collected from the public meetings. All health risk associated correspondence to the public will be directed under supervision of the USEPA.

USEPA Conceptual Design Addendum Comment 21: "Page 3. Please provide EPA with the draft SWPPP."

IWM Consulting Response: Crossroad has prepared a Storm Water Pollution Prevention Plan (SWP³). The SWP³ identifies all potential sources of pollution which may reasonably be expected to affect the quality of storm water discharges from the project Site and the steps necessary to prevent or reduce pollutants from affecting storm water. The SWP³ will be submitted to IDEM for review and approval. A copy of the SWP³ has been included in the Preliminary Construction Plans included in **Appendix A**.

3.0 Project Background

The main manufacturing building on the subject Site was constructed in 1961 by Dage Electric, Inc. In 1963, the operation was acquired by Bendix Corporation (Bendix) for the manufacture of electrical connectors. The subject Site operated as an electric connectors manufacturing facility from approximately 1961 through 1983. In 1983, Bendix was acquired by Allied Corporation (Allied) and Bendix was merged with Allied's Amphenol Products Division. As a result of consolidation efforts, manufacturing at the Franklin facility ceased in September 1983 and the plant was closed. In 1986, Amphenol Products Division became Amphenol Corporation.

Manufacturing activities at the subject Site consisted of the following: manufacturing of electrical connectors, electroplating, machining, assembling, and storing of manufactured components and raw materials required for production. From 1961 to 1981, waste acid, cyanide/alkalide, and chromium wastewaters from plating operations were routed into a sanitary sewer manhole, which discharged into the local sanitary sewer system south of the subject Site. Wastewater was discharged to the sanitary sewer system under a discharge permit issued by the City of Franklin. In 1981, a wastewater pretreatment system was installed in a separate building for treatment of cyanide and chromium bearing wastewater from the plating room. Treated wastewater was then discharged to the sanitary manhole south of the facility.

A subsurface investigation was completed at the Site in 1985 and VOCs were detected in the soil and groundwater beneath the Site. Subsequent investigations have been conducted on- and off-Site in order to define the vertical and horizontal extent of adsorbed, dissolved, and vapor phase COCs. Additionally, numerous corrective actions have been implemented at the Site, including: excavating and disposing of approximately 856 cubic yards of impacted soil; disconnecting and plugging the subject Site's former sanitary sewer line and installing a new sanitary sewer line beneath the property; completion of an enhanced bioremediation pilot study; source remediation using Modified Fenton's Reagent beneath the former plating room; installation of a sub-slab vapor barrier beneath the floor of the former plating room; installation of a vapor mitigation system at the former manufacturing facility; and installation and operation of an interim corrective measure (ICM) consisting of a groundwater pump and treat remedial system. The ICM was installed at the Site in February 1995, has operated continuously since that time, and has recovered 269,311,986 gallons of groundwater as of May 24, 2019. The sub-slab depressurization systems at the former manufacturing facility were deactivated and removed as of August 3, 2012.

Between July 2018 and June 2019, the USEPA requested Amphenol complete additional on- and off-Site investigations of soil, groundwater, soil vapor, ambient air, and sewer gas, prepare an OIM

Conceptual Design, and prepare this OIM Work Plan. Amphenol has complied with the USEPA requests and completed numerous investigations of soil, groundwater, ambient air, soil vapor, and sewer gas conditions on- and off-Site, performed sanitary sewer repairs at nine (9) private residences, installed five (5) vapor mitigation systems at private residences, and submitted the OIM Conceptual Design.

4.0 Off-Site Potential Exposure Pathways

Based on ambient air, indoor air, sub-slab, and sewer gas testing completed at twenty-nine (29) priority residences (PRs) within the Study Area, the primary exposure routes in which COCs may potentially enter off-Site structures are through sewer gas vapor leaks inside the structure and soil gas vapor intrusion. It should be noted that soil gas vapor intrusion has only been detected in structures which are constructed on basements. TCE is the only compound that has exceeded IDEM RCG Residential Indoor Air (RIA) screening levels within a residential structure as a result of sewer gas leaks or direct soil gas vapor intrusion. Although 1,2-dichloroethane (1,2-DCA) has been detected within indoor air above RIA screening levels in some of the structures sampled, all observed concentrations above screening levels appear to be from indoor or ambient sources rather than sewer gas leaks or soil gas vapor intrusion and the USEPA has agreed with this conclusion. All other COCs detected in indoor air have been below RCG RIA screening levels.

4.1 Conceptual Site Model

Off-Site soil, sewer bedding, groundwater, soil vapor, and sewer gas impacts are present as a result of impacted wastewater escaping the sanitary sewer main along Hamilton Avenue and North Forsythe Street from 1961 to 1983. Impacted wastewater historically leaked from cracks, breaks, and joints in the vitrified clay pipe of the sanitary sewer main and migrated vertically downward through the vadose zone and sewer bedding until it reached groundwater, at which time, impacts were transported to the south-southeast via groundwater flow. Changes in groundwater elevation since the release have created a "smear" zone of absorbed COCs in the area directly above the normal groundwater surface, which is in close proximity to the sanitary sewer main.

Residual impacts in soil and sewer bedding beneath the sanitary main may continue to provide a source for COCs to leach to groundwater and generate soil vapor. Additionally, volatilization from the residual soil and groundwater impacts beneath the sanitary sewer main and private sewer laterals are likely continuing to influence sewer gas concentrations. Sanitary sewer mains and private sewer laterals in the Study Area appear to be preferential pathways for impacted sewer gas.

The highest observed sub-slab soil gas concentrations of TCE were detected at PR #14 and PR #22, south-southeast of the northern-most documented break in the sanitary sewer main along North Forsythe Street. Additionally, the homes on the east side of Forsythe Street had higher elevated TCE concentrations in sewer gas when compared to the homes on the west side of Forsythe. It is plausible that impacts at the groundwater surface migrating to the south-southeast from the sanitary sewer main are volatilizing and directly entering private sanitary laterals that are in poor condition.

The highest observed soil gas concentrations have been observed near documented breaks in the sanitary sewer main, further confirming that soil and groundwater impacts beneath the sanitary sewer main are most heavily concentrated in the vicinity of sanitary sewer main breaks or cracks.

It is unlikely that significant quantities of COCs remain directly within the sanitary sewer lines, due to historic city maintenance activities (cleaning of the lines) and years of fluids moving within the lines. Sewer gas impacted with COCs are likely from soil vapor entering breaks in the line (northern portion of Forsythe Street and Hamilton Avenue) or from volatilization off of groundwater which has entered the line (southern portion of Forsythe Street). As the sanitary sewer main proceeds south on Forsythe Street, the main becomes submerged beneath groundwater, and due to hydrostatic pressure, impacted groundwater can enter the sanitary sewer main through breaks or cracks in the main, rather than impacted wastewater leaking out of the main as in the northern portion of Forsythe Street. Submerged portions of the sanitary sewer main likely did not historically leak impacted wastewater from breaks or cracks, rather, groundwater likely entered the sanitary sewer main in these areas. Changes in groundwater elevation over time may change the method of entry (i.e. groundwater infiltration) of impacts into the sanitary main at any given entry point.

As previously discussed, sewer vapor flow is affected by numerous factors. Sewer vapor flow in sewer lines is typically in the direction of water flow. There is considerably more water flow in the southern portion of the Study Area than the northern portion, which may correlate with groundwater infiltration into the sewer main. It is likely that changes in atmospheric wind speed, air temperature, humidity, and pressure have affected the concentrations of sewer gas observed. However, it is possible that changes in sewer gas concentrations could be caused by water table fluctuations and precipitation events.

Vapor intrusion from soil gas only appears to be a potential exposure pathway in structures which are completed within Unit B (basements). Structures which are constructed within Unit A (crawl spaces or slab on-grade foundations) do not have vapor intrusion from soil gas. All structures constructed with crawl space or slab on-grade foundations which have exhibited COC concentrations within indoor air were subsequently determined to have been caused by sewer gas leaks from plumbing fixtures within the structures and not from vapor intrusion originating from soil gas.

Soil vapors originating from impacted groundwater appear to only be directly entering or underlying structures with basements. Structures with basements which have exhibited sub-slab soil gas concentrations in excess of RCG screening levels have been equipped with mitigation systems to control the exposure pathway, with the exception of PR #29. The owner of PR #29 has declined installation of a mitigation system because they do not want a hole installed through the basement floor. Following the implementation of this OIM Work Plan, groundwater conditions are expected to improve over time thereby decreasing sub-slab soil gas concentrations. Groundwater conditions will be monitored until CAOs are achieved or until a demonstration can be made that the residual dissolved VOCs no longer pose an unacceptable exposure pathway.

Direct contact with impacted soil is not a potential exposure pathway for occupants of structures to the south-southeast of the facility. Additionally, shallow groundwater in the Study Area is not used

for consumption purposes. Potable water is supplied to structures in the Study Area by Indiana-American Water Company.

A Conceptual Site Model (CSM) diagram for potential off-Site exposure pathways has been included as **Figure 2**.

5.0 Corrective Action Objectives

CAOs have been developed to protect human health and the environment based on the potential exposure pathways set forth in Section 4.0. IWM Consulting has worked in conjunction with the USEPA to develop a shortlist for VOC COCs associated with the Site. The VOC shortlist includes the following compounds: TCE, PCE, vinyl chloride, trans-1,2-dichloroethene (trans-1,2-DCE), 1,1-dichloroethane (1,1-DCA), cis-1,2-dichloroethene (cis-1,2-DCE), 1,2-DCA, methylene chloride, and 1,1,1-trichloroethane (1,1,1-TCA).

Since the generation of soil vapor from dissolved and adsorbed TCE is the primary driver for potential exposure to vapor-phase COCs at concentrations above RIA screening levels, IWM Consulting is proposing that CAOs in unsaturated soil be set at site-specific re-calculated IDEM RCG MTG screening levels based on RCG Residential Groundwater Volatilization to Indoor Air screening levels as opposed to Maximum Contaminant Levels (MCLs). The RCG Residential Groundwater Volatilization to Indoor Air screening level for TCE is 9.1 μ g/L and is based, in part, on Indiana's regional groundwater temperature of 12.5 degrees Celsius (°C) [54.5 degrees Fahrenheit]. Therefore, the adjusted TCE RCG MTG screening level based on a TCE Residential Groundwater Volatilization to Indoor Air screening level of 9.1 μ g/L is 0.065 milligrams per kilogram (mg/kg) as opposed to 0.036 mg/kg. The re-calculated VOC shortlist MTG screening levels are included as **Table 1**. The calculation to develop these revised screening levels can be found in Appendix A of the RCG and is given below.

		$SL_{MTG} = SL_{GW} \times DAF \times \left[\left(K_{oc} \times f_{oc} \right) + \frac{\theta_{W} + \left(\theta_{A} \times H^{\prime} \right)}{\rho_{b}} \right]$
Where		
SLMIG	=	Migration to ground water screening level, in mg/kg
SL _{GW}		Ground water screening level, in micrograms per liter (μ g/L), from column seven of Table A-6. This level may be a maximum contaminant level (MCL) for some chemicals.
DAF	н	Dilution attenuation factor (DAF, unitless). As recommended in US E.P.A. (2011) for source areas of 0.5 acres, IDEM uses a default DAF value of 20. IDEM will accept other values that are appropriately derived using site-specific data. See Section 4.11.5 of US E.P.A. (2011) for additional information.
K _{oc}	=	Chemical-specific organic carbon partition coefficient, in liters per kilogram (L/kg). For most chemicals, IDEM uses K_{oc} values from the RSL Chemical-specific Parameters Supporting Table when calculating IDEM migration to ground water screening levels. For metals, IDEM uses the K _d values appearing in Section 4.11 of U.S. EPA (2011) in place of ($K_{oc} x f_{oc}$).
f_{oc}	=	Fraction of organic carbon, in grams per gram (g/g). IDEM uses a default value of 0.002 when calculating IDEM migration to ground water screening levels. IDEM will accept other values that are appropriately derived from site-specific data.
$\theta_{\scriptscriptstyle W}$	=	Water filled soil porosity, in liters of water per liters of soil. IDEM uses a default value of 0.3 when calculating IDEM migration to ground water screening levels. IDEM will accept other values that are appropriately derived from site-specific data.
θ_{A}	Ξ	Air filled soil porosity, in liters of air per liters of soil. IDEM uses a default value of 0.13 when calculating IDEM migration to ground water screening levels. IDEM will accept other values that are appropriately derived from site-specific data.
H^*	н	Chemical-specific dimensionless Henry's Law constant (unitless). IDEM uses values from the RSL Chemical-specific Parameters Supporting Table when calculating IDEM migration to ground water screening levels.
$ ho_b$	=	Dry soil bulk density, in kilograms per liter (kg/L). IDEM uses a default value of 1.5 when calculating IDEM migration to ground water screening levels. IDEM will accept other values that are appropriately derived from site-specific data.

Equation A-9: Migration to Ground Water Screening Levels

COC concentrations in saturated soil samples do not apply to these recalculated MTG soil CAOs as COC concentrations exhibited by saturated soil samples are a combination of adsorbed and dissolved COCs, since impacted groundwater fills the pore space of the soil. Saturated soil will be evaluated using groundwater conditions.

Since groundwater is not being used as a potable water source, shallow groundwater at the interface with the vadose zone and in direct communication with the sewer main is the only groundwater media of concern due to the potential for volatilization of COCs and generation of soil gas. Shallow groundwater CAOs will be defined by IDEM RCG Residential Groundwater Volatilization to Indoor Air screening levels. These screening levels are based on Indiana's regional groundwater temperature of 12.5°C and are more representative of actual Site conditions than the USEPA's Vapor Intrusion Screening Levels (VISLs), which uses a default groundwater temperature of 25°C.

A summary of unsaturated soil and shallow groundwater CAOs are summarized on Table 2.

6.0 Off-Site Interim Measure Conceptual Design

6.1 Project Overview and Goals

This project will provide an off-Site interim measure for adsorbed soil impacts, impacted groundwater, and soil gas surrounding and within the sanitary sewer main and laterals in the Study Area and will provide a vapor resistant conveyance structure for the City of Franklin's wastewater as it is transported through the Study Area. It will identify and prioritize approaches that protect human health and the environment, thereby preventing and/or minimizing potential exposure pathways. Other goals include:

- Prevent and/or minimize soil gas vapor intrusion into residential sanitary sewer laterals and the City of Franklin's sanitary sewer main within the Study Area.
- Prevent and/or minimize impacted groundwater infiltration into the sanitary sewer main and residential laterals within the Study Area.
- Prevent and/or minimize potential soil vapor intrusion into residential structures by removing source (impacted soil) surrounding and beneath the sanitary sewer main and installing vapor mitigation systems, as necessary.
- Identifying private sewer laterals and verifying that only active laterals are connected to the sanitary sewer main.
- Active removal of source material (VOC impacted soil and sewer bedding) and recovery of groundwater from excavation areas to assist in reduction of groundwater concentrations to levels near CAOs.
- Maintaining safe environments for residents in the Study Area.
- Protecting the water quality of Hurricane Creek.

6.2 Project Benefits

The Project Area where active excavation or lining of sanitary sewer mains and laterals will include portions of Hamilton Avenue, North Forsythe Street, Glendale Drive, and Ross Court. The excavation of impacted soils from the areas surrounding the sanitary sewer system will minimize future vapor intrusion into the sanitary sewer system and assist in reducing COC concentrations in groundwater in the Project Area. Additionally, the replacement of the sanitary sewer main and select laterals along a portion of North Forsythe Street and Hamilton Avenue will provide a sanitary sewer system that should prevent and/or minimize vapor intrusion as a potential exposure pathway relating to vapor phase VOCs. Additionally, sanitary sewer mains and laterals will be lined in areas where significant cracks or breaks are documented, but no soil or sewer bedding impacts above CAOs have been observed. The new and lined sanitary sewer mains will allow for better flow of wastewater within the Project Area since breaks will have been repaired and roots will no longer be able to enter into the sewer main or laterals. This project will also reduce groundwater infiltration into the sanitary sewer system in the Project Area and thereby lessen the amount of wastewater treatment at the sanitary sewer plant. Additional benefits of this project include the reduction of maintenance by city personnel and residents since the sanitary sewer main and private sewer laterals (as applicable) will be new or newly lined and roots should no longer be entering into the sewer lines. The new/lined sewer system will

have an increased life expectancy of a minimum of 50 years, but more realistically in the vicinity of 100 years or more.

Other utility entities (i.e. municipal water company and natural gas company) were invited by the City of Franklin to replace or upgrade their existing utility structures along North Forsythe Street or Hamilton Avenue in conjunction with replacement of the sanitary sewer main and select laterals. It appears that Indiana-American Water may install a new water main prior to implementation of the OIM Work Plan. This will allow the utility entities to forego future utility upgrades and disturbance to the streets and residents and save cost related to surface restoration that would have to be passed onto its customers (residents).

Groundwater remediation will occur by source removal and excavation dewatering. During excavation activities, dewatering activities are anticipated to recover approximately 25 gallons per minute (gpm) of groundwater, which equals to 36,000 gallons per day (gpd). It is expected that the sanitary sewer line and sewer bedding and soil directly below the line are submerged within the southern two-thirds of the Project Area. Over the course of the excavation portion of the project, it is expected that between 1,000,000 and 2,000,000 gallons of groundwater may be recovered, treated, and discharged to the sanitary sewer system.

6.3 Local Challenges

The following items have been identified as potential challenges during this project.

- Groundwater levels may cause delays and challenges for excavation activities and sanitary sewer line replacement. Dewatering of the excavation and subsequent groundwater treatment and discharge to the down-gradient sanitary sewer line will be incorporated as part of the OIM Work Plan.
- Transportation of the excavated soil will require the loading of the soil into lined roll-off boxes. This will require the constant staging and re-staging of the roll-off boxes. The roll-off boxes will be sampled and results will need to be received and reviewed prior to the roll-off boxes being transported to a landfill for disposal. The sampling results will determine whether the soil located in the roll-off boxes can be transported to a permitted hazardous or permitted non-hazardous landfill.
- By-passing of the up-gradient sanitary sewer flow due to the on-Site groundwater pump and treat system. The on-Site groundwater pump and treat system will remain operational during the duration of the OIM Work Plan implementation.
- Due to the potential length of this project (approximately 90 days), public acceptance and patience with this project may be a considerable challenge. This will include the development of acceptable traffic re-routes and local access for residents/occupants to their homes/businesses.

- Numerous buried utility service lines and mains have been identified along Forsythe Street and Hamilton Avenue which will require significant consideration to avoid damage and service disruption to local residents/occupants. Additionally, the narrow streets have low overhead lines on both sides of the street, with telephone and electric lines periodically crossing the street. It will be the selected OIM Work Plan implementation contractor's responsibility to repair any damaged private or public utilities.
- Following the completion of activities each day, the sewer line will be temporarily re-connected to the sanitary sewer main in order to temporarily restore sanitary sewer service to local residents and businesses and to minimize overnight collapsing of the sewer trench.

6.4 Site Conditions

The former Amphenol facility historically covered an area of approximately 15.16 acres. The former Amphenol facility has recently been sub-divided into five parcels and is currently occupied by Grayson Thermal Systems, Miller Chemical, Bastin Logan Water Services, Inc., and the groundwater pump and treat remediation system. The Site is located in part of the Northwest Quarter of the Northwest Quarter of Section 13, Township 12 North, Range 4 East on the northeastern side of Franklin, Indiana. The Site is bound on the east by Hurricane Road, on the South by Hamilton Street, on the north by an abandoned rail line, and on the west and northwest by former Farm Bureau Co-Op facility and former Arvin Industries, respectively. The Site is relatively flat with approximate elevations ranging from 730 and 735 feet above Mean Sea Level. Within the Study Area, the topography gently slopes to the southeast, toward Hurricane Creek.

The Site-wide geology can be described as four distinct Units (A, B, C, and D). Unit A is a 3-foot to 10-foot thick silty loam unit which has been impacted by VOCs. Unit B is an approximately 1-foot to 14-foot thick sandy, water-bearing unit that is known to be impacted by VOCs and is thinner on the southern end of the Study Area, toward Hurricane Creek. Unit C is an approximately 23-foot thick glacial till unit of loam texture. This unit is underlain by Unit D, a 17-foot to 20-foot thick coarse and loamy sand unit. Unit C and Unit D are not considered to be impacted by VOCs. The groundwater beneath the Site is present within Unit B, is unconfined, and was most recently (March 2019) encountered at depths ranging between approximately 3 and 17 feet below land surface (BLS). Groundwater flow during the March 2019 gauging event was to the south-southeast, which is consistent with historic groundwater flow directions at the Site. The March 2019 groundwater flow map has been included as **Figure 3**.

6.4.1 Design-Level Data Soil Boring Installation and Analytical Results

Based on the results of the off-Site sewer and soil gas investigation completed within the right-of-way (ROW) in September/October 2018, IWM Consulting advanced forty-seven (47) soil borings to the base of Unit B on February 25 through February 28, 2019. The borings were continuously sampled and select sample intervals were submitted for laboratory analysis in order to determine if soils are impacted by short-list VOCs above, at, or below the sanitary sewer main. Soil borings were placed approximately every 100 feet along the sewer main in addition to soil borings concentrated in areas

surrounding documented breaks in the sanitary sewer main, which were observed in a 2015 sewer inspection provided by the City of Franklin. The off-Site design-level data soil boring locations are displayed on **Figure 4** through **Figure 7**. The work plan to collect these samples was submitted to the USEPA on February 19, 2019 and was subsequently approved on February 21, 2019.

Soil borings were advanced utilizing direct-push technology. The direct-push probe utilizes hydraulics to advance a sampler into the soil; consequently, excess soil cuttings were not generated during direct-push drilling activities. Continuous soil samples were obtained utilizing dual-tube sampling methods where a five-foot long acetate sleeve contained within a stainless-steel casing was advanced hydraulically to obtain the soil sample. Soil samples passed through the sampler cutting shoe and were retained within a sealed disposable acetate plastic sampling tube for retrieval. The acetate sleeve containing the soil sample was then removed while the stainless-steel outer casing remained in place. A new acetate sleeve was placed inside the casing for continued sampling and advancement of the borehole. Any soil cuttings generated were placed in labeled 55-gallon steel drum for characterization and future disposal. The drum was temporarily stored near the existing groundwater treatment building located on the Site and was removed for disposal on April 25, 2019.

Strict decontamination procedures were followed during the investigation activities by IWM Consulting personnel to reduce the potential for cross-contamination. Drilling and all non-disposable, down-hole sampling equipment was decontaminated prior to first use on-Site, and thereafter between uses, using a vigorous wash in Alconox[®] solution, followed by a tap water rinse. Any decontamination water generated was temporarily placed in a 55-gallon steel drum which was temporarily stored near the existing groundwater treatment building on the Site, and then removed on April 25, 2019 for proper disposal at a certified disposal facility.

The soil samples collected were field screened using a PID in an effort to determine the relative presence of VOCs. The soil was also visually examined and logged in general accordance with the Unified Soil Classification System (USCS). To ensure accurate VOC screening, the quantity of the soil, temperature, and headspace volume are kept as constant as possible. Prior to field activities, the PID was calibrated in accordance with manufacturer's directions to minimize error through instrument drift. Soil boring logs are included in **Appendix B**.

Soil Sampling Activities

Soil samples were collected from the soil borings to determine if soil impacts or non-aqueous phase liquid (NAPL) were present at concentrations exceeding site-specific re-calculated MTG screening levels.

In order to characterize soils located between the ground surface and the top of the sanitary sewer main for future disposal or potential re-use during implementation of the OIM Work Plan, one soil sample was collected from the one-foot interval located above the sanitary sewer main for laboratory analysis. Additional soil samples were collected from beneath the approximate depth of the sanitary sewer main in North Forsythe Street, Hamilton Avenue, and Ross Court to characterize soils potentially impacted by chlorinated solvents released from breaks or cracks in the sanitary sewer main. Therefore, a second soil sample was collected within approximately one-foot below the bottom of the

sanitary sewer main, a third soil sample was collected from the bottom one-foot of Unit B, and a fourth soil sample was collected from the mid-point between the second and third sample intervals (if the thickness between the second and third sample intervals exceeded two feet).

Soil samples were analyzed for short list VOCs using SW-846 Method 8260 and percent moisture. Soil samples collected for laboratory analysis of VOCs were obtained in general accordance with USEPA Sampling Method 5035 using bulk TerraCore[™] sampling supplies, including the 5-gram T-handle sampling device.

Samples were analyzed by the laboratory using a 48-hour turnaround time (TAT) and Level IV quality assurance/quality control (QA/QC) procedures. For QA/QC purposes, duplicates were collected at a rate of one (1) sample per every ten (10) soil samples and were analyzed for the same analytical parameters. In addition, matrix spike/matrix spike duplicate (MS/MSD) samples were collected at a rate of one (1) sample per every twenty (20) soil samples and were analyzed for the same analytical parameters. Trip blanks for VOC analysis accompanied each cooler shipment that contained samples for select VOC analyses. Equipment blanks were also obtained each day. The equipment blank was collected by pouring laboratory-prepared water through the field sampling equipment (e.g., the cutting shoe) and collecting the rinsate in the proper analytical containers.

Soil Analytical Results

During off-Site soil boring advancement, 183 soil samples were collected and submitted for laboratory analysis of select VOCs. Fifty-one (51) soil samples were collected from the one-foot interval above the sanitary sewer main; forty-six (46) soil samples were collected from the one-foot interval beneath the sanitary sewer main; sixty (60) soil samples were collected from the one-foot interval at the base of Unit B; and twenty-six (26) soil samples were collected from the mid-point between the base of Unit B and the one-foot interval beneath the sanitary sewer main.

Only one unsaturated soil sample [DSB-6 SL (9.4-10.4)] exhibited an adsorbed COC concentration in excess of the site-specific re-calculated MTG screening level. All other soil samples which exhibited a COC concentration in excess of a site-specific re-calculated MTG screening level were saturated and the results are biased high due to the presence of impacted groundwater within the soil matrix. However, of the 183 soil samples, only 41 (40 saturated and 1 unsaturated) soil samples exhibited COC concentrations in excess of re-calculated MTG screening levels. Soil analytical results are summarized in the following table and on shown in full within **Table 3**. TCE concentrations in soil are shown on **Figure 9**, and **Figure 10**.

Soil Samples with COC Concentrations in Excess of	Re-Calculated RCG MTG Screening Levels
---	---

	One-Foot Interval Above Sanitary Sewer Main	One-Foot Interval Below Sanitary Sewer Main	Mid-Point Between the One-Foot Interval Below Sanitary Sewer Main and the Base of Unit B Interval	Base of Unit B Interval
Soil Samples with COC Concentrations in Excess of Site-Specific Re-Calculated MTG Screening Levels	DSB-36	DSB-6*, DSB-36 and DSB-43	DSB-3, DSB-16, DSB-21, and DSB-35	DSB-1, DSB-2, DSB-3, DSB-12, DSB-14 through DSB-21, DSB-31, DSB-36 through DSB-40, DSB-42, DSB-43, DSB-44, DSB-46, DSB-47, TW-15, and TW-16

*Note - soil sample was not saturated.

As shown above, the majority of soil samples with COC concentrations in excess of their respective site-specific re-calculated MTG screening level were obtained from the base of Unit B and will not be accessible during soil excavation and sewer replacement activities based on the depth of the soil, extensive groundwater present within this zone, and due to limitations of the excavation equipment and necessary shoring to excavate to this depth. A cross-section location map has been included as **Figure 11** and cross-sections have been included as **Figure 12** and **Figure 13** which depict the location and depth of the sanitary sewer main in relation to the observed water table, soil impacts, as well as the depth to the base of Unit B.

All off-Site soil samples exhibited COC concentrations less than RCG Residential Direct Contact (RDC) screening levels. Laboratory analytical reports and third-party data validation reports are included in **Appendix C**.

6.4.2 Off-Site Temporary Well Installation and Groundwater Analytical Results

In order to delineate groundwater impacts, IWM Consulting advanced a total of thirty-one (31) boring locations to the base of Unit B and installed forty-five (45) temporary monitoring wells between October 23, 2018 and March 6, 2019. The borings were continuously sampled and soil samples were field screened using a PID in an effort to determine the relative presence of adsorbed VOCs. The soil was also visually examined and logged in general accordance with the USCS. To ensure accurate VOC screening, the quantity of the soil, temperature, and headspace volume are kept as constant as possible. Prior to field activities, the PID was calibrated in accordance with manufacturer's directions to minimize error through instrument drift. Temporary well boring logs and construction diagrams are included in **Appendix B**. The work plans to collect these samples were submitted to the USEPA

on October 18, 2018 and January 18, 2019 and were subsequently approved on October 23, 2018 and February 25, 2019, respectively.

Soil borings were advanced utilizing direct-push technology. The direct-push probe utilizes hydraulics to advance a sampler into the soil; consequently, excess soil cuttings were not generated during direct-push drilling activities. Continuous soil samples were obtained utilizing dual-tube sampling methods where a five-foot long acetate sleeve contained within a stainless-steel casing was advanced hydraulically to obtain the soil sample. Soil samples passed through the sampler cutting shoe and were retained within a sealed disposable acetate plastic sampling tube for retrieval. The acetate sleeve containing the soil sample was then removed while the stainless-steel outer casing remained in place. A new acetate sleeve was placed inside the casing for continued sampling and advancement of the borehole. Any soil cuttings generated were placed in labeled 55-gallon steel drum for characterization and future disposal. The drum was temporarily stored near the existing groundwater treatment building located on the Site and was removed for disposal on April 25, 2019.

Strict decontamination procedures were followed during the investigation activities by IWM Consulting personnel to reduce the potential for cross-contamination. Drilling and all non-disposable, down-hole sampling equipment was decontaminated prior to first use on-Site, and thereafter between uses, using a vigorous wash in Alconox[®] solution, followed by a tap water rinse. Any decontamination water generated was temporarily placed in a 55-gallon steel drum which was temporarily stored near the existing groundwater treatment building on the Site, and then removed on April 25, 2019 for proper disposal at a certified disposal facility.

The borings were advanced to the base of the first encountered saturated zone (Unit B) and did not exceed a total depth of 23.5 feet bgs. Temporary 2-inch diameter polyvinyl chloride (PVC) screens two feet in length (with varying lengths of PVC risers) were placed into the boreholes at the top of the observed saturated zone within Unit B to facilitate the collection of the one-time groundwater samples. If the saturated zones were thicker than 5 feet, a second temporary well was installed at the bottom of the saturated zone within Unit B in a similar manner. Although the groundwater sampling points were temporary, washed quartz (#5) sand was installed within the borehole and extended approximately 1-foot above the top of the screen interval in an effort to assist in filtering any suspended sediment in the groundwater being sampled. The remaining borehole was filled with bentonite in order to prevent surface water from entering into the borehole after installation activities.

Groundwater Sampling Activities

One-time groundwater samples were obtained from the temporary wells on either October 24 or 25, 2018 or March 5, 6, or 7, 2019. Groundwater samples were obtained from the temporary wells via low-flow sampling methods. Disposable tubing was utilized to minimize the risk of cross-contamination. Purge water generated during groundwater sampling activities was temporarily containerized within a labeled 55-gallon DOT approved steel drum, transported back to the Site, and then treated by the onsite groundwater remediation system, prior to discharge to the on-Site sanitary sewer per the approved municipal discharge permit with the City of Franklin.

A portable bladder pump in conjunction with a Horiba[®] U-52 Multi-Probe Field Meter was used to collect groundwater samples from the temporary wells. The pump was equipped with a disposable bladder sleeve that was exchanged between wells. Dedicated tubing was used for each well. The Multi-Probe Field Meter included probes for turbidity, temperature, pH, specific conductance, dissolved oxygen, and oxidation-reduction potential (ORP). Purge rates were established at a rate that minimized groundwater drawdown and the primary objective of the purging activities was to reduce the turbidity of the samples, as documented by a stable ($\pm 10\%$) or decreasing trend in turbidity.

Field parameters were measured continuously, and per the approved work plan, groundwater samples were collected after the turbidity had stabilized or after a maximum of 15 minutes of purge time, whichever occurred first. Care was taken to ensure the bladder pump discharge tubing and flow through cell had evacuated several volumes of water before the samples were obtained. Groundwater criteria which were monitored during the purging activities are listed below:

•	Turbidity	Nephelometric Turbidity Unit
•	pH	pH units
 ● 	Specific Conductance	Siemens/meter or milli Siemens/centimeter
•	Dissolved Oxygen	milligrams per liter
2.	ORP	millivolts

The groundwater samples were collected from the temporary wells and placed into the appropriate laboratory provided pre-labeled containers. The groundwater samples were submitted to Pace Analytical Services, LLC located in Indianapolis, Indiana and analyzed for shortlist VOCs using SW-846 Method 8260 using Level IV QA/QC.

To determine the Site-specific groundwater flow direction, the top-of-casing elevations for the temporary wells were surveyed to a common benchmark using transit-stadia techniques and depth to groundwater measurements were obtained from the points at least 24-hours after they were installed. Once the sampling and subsequent groundwater gauging activities were completed, the temporary wells (TW-1 though TW-14S/D) were removed and the boreholes were backfilled with bentonite and the surface was capped with like material (e.g., concrete, gravel, or topsoil) to match existing surface conditions in the area of the borehole. Temporary wells TW-15S/D through TW-31 are still in place awaiting USEPA approval to permanently abandon.

Groundwater Analytical Results

During off-Site temporary monitoring well sampling, forty-nine (49) groundwater samples (including duplicate samples) were collected and submitted for laboratory analysis of select VOCs. Thirty-four (34) groundwater samples were collected from the groundwater at the top of the saturated zone of Unit B and fifteen (15) groundwater samples were collected from the base of Unit B.

The COC concentrations from groundwater samples collected from the top of the saturated zone of Unit B represent the concentrations which may have the potential to volatilize and become soil gas. Groundwater analytical results are summarized in the table below and are shown in full within **Table 4**. Temporary monitoring well locations and a TCE in groundwater iso-concentration contours have

been included on **Figure 14**. Additional isoconcentration maps have not been generated since TCE is the only COC with groundwater concentrations in excess of RCG Residential GVE screening levels.

Shallow Groundwater Samples with COC Concentrations in Excess of RCG Residential Groundwater Vapor Exposure Screening Levels

	Sample Location
Groundwater Samples with COC Concentrations Greater than RCG RGVE SLs	TW-9, TW-10, TW-11, TW-12, TW-13, TW-15, and TW-27

Deeper groundwater concentrations were not evaluated since they do not pose a volatilization risk to soil gas and drinking water is supplied to the area by Indiana-American Water Company. Laboratory analytical reports and third-party data validation reports are included in **Appendix C**.

6.5 Design Approach

6.5.1 Site-Specific Constraints/Considerations

The portions of Hamilton Avenue and North Forsythe Street selected for replacement of the sanitary sewer system are typical conditions along both Hamilton Avenue and North Forsythe Street throughout the Study Area. Hamilton Avenue consists of one east-bound lane and one west-bound lane while North Forsythe Street consists of one north-bound lane and one south-bound lane. Neither street have developed sidewalks or storm sewer systems. Vehicular traffic on Hamilton Avenue and North Forsythe Street are both generally moderate throughout the day, while land uses along the streets are primarily residential, with some light commercial/industrial uses. Limitations on traffic patterns will be required in order to complete this project and developing traffic routes for residences within the construction area will be essential.

The existing sanitary sewer main is located in the center of Hamilton Avenue, west of Forsythe Street, and trends to the north towards the Site, to the east of Forsythe Street. The sanitary sewer main is located generally within the center of North Forsythe Street. Buried gas and water mains are located on the north side of Hamilton Avenue and the west side of Forsythe Street, with numerous private laterals crossing Hamilton Avenue or Forsythe Street to the south and east/west, respectively, to residential homes and commercial properties. A buried telecommunication line is located on the south side of Hamilton Avenue and crosses Forsythe Street. The location of buried utilities on the north side of Hamilton Avenue and crosses Forsythe Street will limit expansion of the excavation in those directions. Additionally, overhead utilities located on both sides of the streets and lateral lines traversing across the streets will add complexity to the excavation process and will limit the radius the excavator can turn.

Private sanitary sewer laterals extending to the sanitary main will be evaluated to determine if they are active laterals, and if so, what condition the laterals are in and of what material type they are constructed. Active sanitary laterals constructed with vitreous clay pipe (VCP) and/or exhibiting cracks, breaks, or root intrusion will require replacement or lining in areas of TCE impacted groundwater. Consideration will need to be taken to gain access to private properties in order to evaluate and potentially replace sanitary sewer laterals. Private access agreements between Amphenol and individual residents will be acquired if inspection of the sanitary lateral determines it needs to be replaced. If the laterals are replaced, then an exterior sewer cleanout will also be installed.

Soils within Unit B consist of clayey sands and sand with gravel and exhibit very high permeabilities and low stabilities. Provisions will need to made regarding dewatering of Unit B during excavation and sewer main replacement activities and the sidewalls will need to be stabilized in order to prevent undermining.

6.6 Plan Design

Based on discussions between the USEPA, Amphenol, and IWM Consulting, the removal of source impacted soil and impacted groundwater during the replacement of the sanitary sewer main (and select sanitary laterals) in portions of Hamilton Avenue and North Forsythe Street will achieve objectives necessary to minimize and/or prevent potential exposure pathways to residents within the Study Area. Proposed areas for excavation and sewer main lining have been depicted on **Figure 15**. Detailed bid specifications for the implementation of the construction portion of the Plan Design have been included as **Appendix A**.

The Plan Design includes:

- Materials management plan.
- Excavation of approximately six (6) feet wide to approximately two (2) feet beyond the bottom of the existing sanitary sewer main in the Project Area. The excavation may expand in width [beyond six (6) feet in some areas (see Figure 16 and 17 for the initial excavation plan)] in select areas based on design soil boring soil analytical results.
- Evaluation via camera inspections of all laterals coming into the sanitary main in the portions of Forsythe Street and Hamilton Avenue in which the sanitary sewer main is being replaced or lined. Replace or line all necessary laterals that appear to be constructed with VCP and/or have breaks/cracks within Project Area. Only active laterals will be replaced or lined. Sewer laterals will remain at their original approximate depth and will not be over-excavated.
- Replacement of the sanitary sewer main and manholes from Manhole 250053 (1st manhole west of Forsythe St) to Manhole 250056 (south end of Site) on Hamilton Avenue.
- Replacement of the sanitary sewer main and manholes from Manhole 250052 (located at intersection of Hamilton Avenue and North Forsythe Street) south to Manhole 250040 (located at intersection of Ross Court and North Forsythe Street) on Forsythe Street.
- Propose extending of the sanitary lateral from 1021 Hamilton Avenue to the newly installed sanitary main on Hamilton Avenue. The sanitary sewer lateral currently leaves the residence and proceeds east to Manhole 250090. Capping the sanitary lateral entering Manhole 250090 from the west. Line the interior of Manhole 250090.

- Lining of the sanitary sewer main from Manhole 250090 (at entrance of Glendale Drive) to Manhole 250080 (within Glendale Drive) and from Manhole 250090 east to Manhole 250100.
- Lining of the sanitary sewer main from Manhole 250040 (located at intersection of Ross Court and North Forsythe Street) south to Manhole 250010 (located just to north of Hurricane Creek) on Forsythe Street.
- Lining of the sanitary sewer main from Manhole 250040 (located at intersection of Ross Court and North Forsythe Street) east to Manhole 250041 (first manhole located east of North Forsythe Street on Ross Court).
- Lining of the sanitary sewer main from Manhole 250050 (located in front of 721 North Forsythe Street) east to Manhole 250060 (located between North Forsythe Street and Glendale Drive).
- Note: The City of Franklin has recently completed lining of the sanitary sewer main located on Glendale Drive from Manhole 250080 to Manhole 250070.
- Confirmatory soil sampling.
- Dewatering of the excavation area for excavation activities and sewer line replacement. Anticipated groundwater treatment system components and drawings are included in **Appendix D**.
- Implementation of a community relations plan. The community relations plan was discussed in Section 2.0.
- Development of a SWP³. The SWP³ identifies all potential sources of pollution which may reasonably be expected to affect the quality of storm water discharges from the construction area and the steps necessary to prevent or reduce pollutants from affecting storm water. A copy of the proposed SWP³ has been included in **Appendix A**. The SWP³ will be submitted to IDEM for review and approval.
- Development of a maintenance of traffic plan. The maintenance of traffic plan has been included in the detailed bid specifications, included in **Appendix A**.
- Development of an AAMP. A copy of the proposed AAMP has been included in Appendix E.
- Addition of off-site permanent monitoring wells to the existing monitoring well network following the completion of Project Area restoration activities. Proposed monitoring wells are shown on **Figure 19**.
- Confirmatory groundwater sampling.

6.6.1 Materials Management Plan

In order to dispose of the impacted soils excavated from Project Area, lined roll-off boxes will be loaded by the contractor selected to implement the OIM Work Plan. The lined roll-off boxes will be tarp covered and transported back to the Site by an IWM Consulting sub-contractor and staged in a secure area. Each roll-off box will be composite soil sampled to determine if the soils can be classified as non-hazardous using the IDEM's Contained-In Determination. Once the hazard classification of the soils has been determined, the lined roll-off boxes will be transported to a landfill for disposal by an IWM Consulting sub-contractor. Once the roll-off boxes are emptied, they will be returned to the Site, re-lined, and the process will be repeated. All IWM Consulting sub-contractors will be supervised by IWM Consulting personnel and will adhere to IWM Consulting's HASP.

Composite soil samples collected from each roll-off box using dedicated sampling equipment. The soil samples will be collected by hand using disposable mini-ice scoops or shovel (decontaminated between samples) from random portions of the soil within the roll-off box or from the excavator bucket prior to placement into the roll-off boxes. IWM Consulting personnel will collect the soil samples while wearing disposable nitrile gloves. New gloves will be worn for each sample set (i.e. roll-off box) in order to minimize cross contamination between soil samples. A portion of the soil sample will be placed into a sealable plastic bag for field screening and another portion of the homogenized soil sample will be placed into laboratory provided containers. Soil samples collected for laboratory analysis of VOCs will be placed into 2 or 4-ounce glass jars and sealed. The soil samples will immediately be placed into an ice filled cooler.

The soil samples collected in the sealed plastic bag will be field screened using a PID in an effort to determine the relative presence of adsorbed VOCs. To ensure accurate VOC screening, the quantity of the soil, temperature, and headspace volume are kept as constant as possible. Prior to field activities, the PID will be calibrated in accordance with manufacturer's directions to minimize error through instrument drift. It should be noted that elevated PID readings are not always a reliable indicator of adsorbed or dissolved chlorinated solvent impacts.

Soil samples will be analyzed for short list VOCs using SW-846 Method 8260 and percent moisture. Additional analysis may be required by IDEM, however, at this time, only short list VOCs and percent moisture are anticipated. The analysis of the samples will be used to verify each load is non-hazardous using IDEM's Contained-In Determination before it is transported to a non-hazardous landfill for disposal. Should any soil sample results not qualify for IDEM's Contained-In Determination, then the soil from that roll-off box will be transported to a hazardous waste landfill for disposal. The appropriate waste manifest (non-hazardous or hazardous) will accompany each load of soil transported to the landfill for disposal.

6.6.2 Confirmatory Soil Sampling

Confirmatory soil samples will be collected following the removal of impacted soils and the sanitary sewer main. Confirmatory soil samples will be collected from the excavation at a rate of one (1) sidewall sample per 20 linear feet and one (1) base sample per 400 square feet in order to document the condition of the soil after the excavation activities are completed. If confirmatory sidewall soil sample analysis indicates soil COC concentrations in excess of CAOs, the excavation will be expanded and additional confirmatory soil samples will be collected based on the above sample collection rates.

In order to obtain soil samples that have minimal contact with the sides of the excavator's bucket, soil samples will be collected by hand from the middle of the bucket. IWM Consulting personnel will collect the soil samples from the excavator bucket while wearing disposable nitrile gloves. New gloves will be worn for each sample in order to minimize cross contamination between soil samples. A portion of the soil sample will be placed into a sealable plastic bag for field screening and another portion of the soil sample will be immediately transferred from the excavator's bucket into laboratory provided containers. Soil samples collected for laboratory analysis of VOCs will be obtained in general accordance with EPA Sampling Method 5035 using bulk TerraCore[™] sampling supplies, including the 5-gram T-handle sampling device (or comparable). If a mobile on-Site NELAC certified

lab is utilized, soil samples may be placed directly into laboratory provided 2 or 4-ounce glass containers with Teflon-lined lids for laboratory analysis. The soil samples will immediately be placed into an ice filled cooler.

The soil samples collected in the sealed plastic bag will be field screened using a PID in an effort to determine the relative presence of adsorbed VOCs. To ensure accurate VOC screening, the quantity of the soil, temperature, and headspace volume are kept as constant as possible. Prior to field activities, the PID will be calibrated in accordance with manufacturer's directions to minimize error through instrument drift. It should be noted that elevated PID readings are not always a reliable indicator of adsorbed or dissolved chlorinated solvent impacts.

Soil samples will be analyzed for short list VOCs using SW-846 Method 8260 and percent moisture.

Sample Identification, Collection, & Analysis

Sample analysis may be performed at either an on-Site mobile laboratory or fixed laboratory. Field sample identification for this project should follow the following format: a sample location identification code (CS-1 SW for Confirmatory Sample No. 1, Sidewall – or Base), a two-letter sample matrix code (SL for soil), and numbers designating the sampling interval of each sampling location. The trip blank, field duplicate, and field blank samples should utilize the identification codes TB, FD, and FB, respectively. Examples of the field sample identification codes for this project are as follows:

- For confirmatory soil samples: CS-1 SW SL (9.5' 10') (Confirmatory soil sampling location No. 1, Sidewall – soil sample, interval 9.5' – 10' bgs)
- For confirmatory soil samples: CS-2 B SL (12') (Confirmatory soil sampling location No. 2, Base – soil sample, interval 12' bgs)
- For waste characterization soil samples: WC-1 BX1359 (Composite waste characterization soil sample No. 1, Box No. 1359)
- For confirmatory soil sample field duplicate samples: FD-1 SL (Soil sample field duplicate No. 1) Note that no sampling location identification is utilized for the field duplicate. The field duplicate location/sampling identification information is to be recorded in the field project notebook.
- For field blank samples: FB-1 WT (Field Blank water sample No. 1)
- For trip blank water samples: TB-1 WT (Trip Blank water sample No. 1)

Standard protocols will be observed for sample collection, sample handling and preservation, and chain-of-custody documentation. Personnel will utilize clean, disposable, nitrile gloves for each sample obtained. Laboratory provided sample containers will be utilized. Prior to use, the sample containers will be inspected for cracks, chips, cleanliness, and preservative (as appropriate). Container threads will be wiped clean before sealing (if applicable) to ensure proper sealing. The sample containers will be labeled with the appropriate project name and/or number, sample identification

designation, date, time, and sampler's name or initials. Samples will be placed in a cooler containing ice and maintained at a temperature of approximately 4° Celsius prior to analysis.

Samples will be analyzed by the laboratory using a 24-hour TAT and Level IV QA/QC procedures. For QA/QC purposes, one (1) field duplicate will be collected at a rate of one (1) sample per every ten (10) samples per sampling media and will be analyzed for the same analytical parameters. In addition, one (1) MS/MSD sample will be collected at a rate of one (1) sample per every twenty (20) confirmatory samples per sampling media and will be analyzed for the same analytical parameters. One (1) trip blank for VOC analysis will accompany each cooler shipment that contains samples for select VOC analyses. One (1) field blank per day will be obtained. Since only dedicated sampling equipment will be utilized for the collection of confirmatory samples, equipment blank samples will not be necessary. A field blank, consisting of analyte-free water poured into a laboratory provided container in the field (in order to assess the potential for sample contamination due to field conditions) will be collected in lieu of an equipment blank.

The Pace chain-of-custody, pertinent information such as laboratory certifications for Pace, and USEPA RSLs for this project were previously submitted as Attachments C, D, and E and conditionally approved by the USEPA during the implementation of the *Off-site Groundwater Investigation Work Plan* dated October 18, 2018. The applicable Standard Operating Procedures (SOPs) which will be followed by IWM Consulting during the soil sampling activities were provided as Attachment B of the *Design-Level Data Soil Investigation Work Plan* dated February 19, 2019. If a separate on-Site mobile laboratory is selected to perform a portion of the soil sample analysis, pertinent laboratory information, including NELAC certifications, for the mobile laboratory will be submitted for review prior to initiating the field work.

6.6.3 Excavation Dewatering

Excavation of impacted soils and replacement of the sanitary sewer main will start on the southern end of the project (at Ross Court) and proceed to the north. A dewatering and groundwater treatment system will be stationed on the south end of the Project Area for the treatment and discharge of groundwater recovered from the excavation trench to the sanitary sewer system south of the Project Area. The exact location of the treatment system will be determined at a later date after discussions with the selected contractor.

Dewatering activities are anticipated to include a groundwater treatment system consisting of four (4) 22,000-gallon frac tanks, a polymer injection system, transfer pumps, four (4) 2,000-pounds liquidphase granular activated carbon (GAC) filter vessels, sediment particulate filter vessels, and a flow totalizer. Groundwater treatment system components and drawings are included in **Appendix D**. Each batch of treated groundwater (approximately 22,000-gallons), or as required by the discharge permit, will be sampled for short-list VOCs. Since there will be no air stripping, there will not be any vapor-phase VOC emissions. If all COC concentrations are below RCG screening levels, then the treated groundwater will be discharge permit will be obtained prior to the start of the project. If they analytical results do not meet discharge requirements, the water will be transferred back through the treatment system and re-tested to document that the water meets discharge limitations.

6.6.4 Backfill

To prevent settling, all soils removed from the excavation will be disposed of at a permitted landfill and the backfill replaced in the excavation will be clean and will meet compaction requirements. The contractor selected to implement the OIM Work Plan will supply all backfill material. The backfill material supplied during the implementation of the OIM Work Plan will consist of Number 8 stone for sanitary sewer bedding, structure backfill (Type 1) for excavation backfilling, and Number 53 stone aggregate for road bedding and will meet INDOT specifications. In order to meet INDOT specifications, these backfill materials will be virgin material sourced from a quarry, therefore, verification sampling for VOCs is not warranted. Topsoil used in surface restoration will be the original topsoil removed from the excavation area by the contractor selected to implement the OIM Work Plan. The top soil removed will be replaced, seeded, and mulched. All roads will be paved after the project is completed. Backfill and pavement specifications have been included within the detailed bid specifications. Detailed bid specifications for the implementation of the construction portion of the Plan Design have been included as **Appendix A**.

6.6.5 Ambient Air Monitoring Program

The AAMP includes the work area and a perimeter monitoring plan that will be implemented during intrusive (excavation) activities. The AAMP describes the approach taken for perimeter air monitoring during intrusive activities to determine if off-Site migration of COCs is occurring, specifically TCE or PCE. The intent of the AAMP is to provide a measure of protection for the community down-wind of the activities that includes, but is not limited to, residences and businesses, as well as on-Site workers not involved in the work activities. The AAMP also provides steps that will be taken to ensure that workers engaged in excavation activities are not exposed to site-related COCs above published exposure limits. Continuous perimeter monitoring will be implemented during excavation activities that may generate or elevate TCE and PCE levels above background concentrations. In addition to VOC monitoring, particulate monitoring will be implemented for visible particulate (dust) during excavation activities. The AAMP will describe the use of direct-reading air monitoring instruments which will be stationed at up-wind and down-wind locations of the excavation as well as a hand-held monitor which will be used to determine work area TCE and PCE levels/worker exposure levels and periodically assess concentrations at the perimeter monitoring stations.

Work area Action Levels (ALs) have been developed for worker exposure protection which were determined based on current published exposure limits established by the OSHA or the ACGIH and instrument response factors to TCE and PCE. Perimeter ALs are based on current IDEM Indoor Air Quality Standards. If ALs are reached at either the work area or the perimeter monitoring stations, the AAMP requires that a direct reading air monitor specific to the VOCs of concern be used to determine the presence or absence of TCE and PCE. If TCE and PCE are confirmed to be present at the location in question, the AAMP describes the actions which must be taken on-Site to lower the measured concentrations of TCE and PCE below the ALs and the actions needed to prevent further exposure to the workers and residents of the area. A copy of the proposed AAMP has been included in **Appendix E**.

6.6.6 Sewer Main and Lateral Lining

From Manhole 250040 to 250010 (along Forsythe Street, south of Ross Court), the sewer line is submerged beneath the water table and groundwater is expected to flow into the sewer line, rather than sewer contents flowing outward. Groundwater contamination in the northern portion of this stretch is believed to have flowed south along the sewer line from leaks in the vicinity of Ross Court. This section of sewer line along Forsythe Street from Ross Court to near Hurricane Creek will be lined. This lining will prevent infiltration of contaminated groundwater into the sewer line, where contaminants could potentially volatilize. VOCs in sewer gas can potentially travel greater distances than they would in soil gas since it is an open pipe. Consequently, the lining of the sewer will extend south beyond the extent of groundwater contamination.

The sewer line will also be lined along the western portion of Ross Court, from Manhole 250040 to 250041. This section of sewer line is not along the flow path from the former Amphenol facility to the wastewater plant and soil beneath this sewer line does not exhibit COC impacts above the CAOs. However, some damage was observed during the City's video inspection and groundwater in a portion of this stretch of sewer line exceeds the 9.1 μ g/L IDEM RCG Residential GVE screening level for TCE. To mitigate the potential for groundwater infiltration, this section of sewer will be lined.

The sewer line in the Glendale Drive area connects to the Forsythe Street sewer line via a connector from Manholes 250070 to 250060 to 250050. The portion of this connector nearer Glendale Drive, between Manholes 250070 and 250060, was observed to be in good condition during the City's video inspection and is east of groundwater contamination that exceeds 9.1 μ g/L of TCE. Little damage was noted in the western portion of this connector between Manholes 250050 and 250060. However, this section of the connector within the groundwater plume will be preemptively lined to mitigate the potential for contaminated groundwater or soil gas entering the sewer.

The sewer line that is being replaced along Hamilton Avenue only extends as far east as the sewer lateral to the former Amphenol facility, which has already been replaced. A separate sewer line flows south along Hurricane Road before jogging left along a small stretch of Hamilton Avenue and then continuing south along Glendale Drive. As noted in US EPA's comment, a north-south portion of the sewer line on Glendale Drive was determined to have multiple condition issues during the City's video inspection. Since the inspection, the City has lined this section of sewer (between Manholes 250080 and 250070) during Spring 2019. Sewer gas concentrations of TCE at Manhole 250070 (which is also the beginning of the connector to the Forsythe Street sewer line) at the southern end of this newly lined section were below screening limits in September 2018, indicating that there is no significant soil gas migration into this lined section of sewer.

Following completion of the work outlined in the original Conceptual Design, all sewer lines within areas of groundwater concentrations exceeding 9.1 μ g/L will have been replaced or lined, with one exception. In the area of Manhole 250090, TCE concentrations in groundwater exceed the screening level. This manhole is located at the intersection of Hamilton Avenue and Glendale Drive. The City video inspection indicates the condition of this line to the south (Manhole 250090 to 250080) is good. To the east (Manhole 250090 to 250100), the City's video inspection noted debris in the line and light and moderate roots. Although these sections of sewer line are mostly outside of the groundwater plume

area, they are in close enough proximity to the plume that contaminants volatilizing from groundwater could theoretically migrate along these lines through sewer gas. To further mitigate the potential for TCE in soil gas to enter sewer lines, lining of these two sections of sewer line (Manhole 250100 to 250090 and 250090 to 250080) will be included in the revised remedial design scope.

Lined pipes have a minimum life expectancy of 50 years. However, manufacturers anticipate the life expectancy will be much longer than 50 years. The sewer lines in the project area that will be or have been rehabilitated will be or were lined using EX Pipe or CIPP material by Miller Pipeline. Pipe liners range in thickness from 4.5 mil to 7.5 mil, depending on the pipe diameter and depth.

EX Pipe is produced from a base of PVC, conforming to ASTM D-1784 cell classification 12334-B, tested to ASTM F 1504-Standard Specifications for folded PVC Pipe for sewer rehabilitation. The EX Pipe delivers chemical, earthquake, and abrasion resistance, which results in a superior pipeline with long-term, proven stability. The jointless EX Pipe stops water infiltration (and exfiltration), root intrusion, and soil loss.

Similarly, CIPP is resin-impregnated flexible tube, which when cured, is continuous and tight fitting throughout the entire length of the original pipe. The flexible tube consists of one or more layers of absorbent non-woven fiberglass fabric which is impregnated with a resin that consists of a corrosion resistant polyester or vinyl ester resin and catalyst system.

The sanitary sewer lining extends the life expectancy of the sanitary sewer lines a minimum of 50 years, and could extend the life expectancy of the lines to the vicinity of 70 to 100 years or more.

6.6.7 Monitoring Well Network Expansion

In order to monitor groundwater conditions following implementation of the OIM Work Plan, IWM Consulting proposes to install five (5) additional permanent monitoring wells (MW-36 through MW-40) within areas evaluated as part of the Off-Site Groundwater Investigation and have exhibited dissolved TCE concentrations at the groundwater-vadose zone interface in excess of RCG Residential GVE screening levels. The monitoring wells will be used to monitor the progress of the OIM following completion. The proposed monitoring wells are displayed on **Figure 19**.

The monitoring wells will be installed using a track-mounted Geoprobe drill rig equipped with 4.25inch inside diameter hollow-stem augers and will be completed to a depth of approximetely 3.5 feet below the observed saturated water surface. The monitoring wells will be constructed with five (5) feet of two-inch diameter 0.010-inch slot schedule 40 PVC screen and enough schedule 40 PVC solid riser pipe casing to reach the surface. Sand will be poured around the screen to approximately twofeet above the screen. Bentonite chips will be poured in the remaining annular space around the well casing and hydrated. A two foot square concrete pad will be constructed for placement of the protective cover. Deeper wells will not be necessary to monitor groundwater impacts since the only potential exposure pathway comes from the surface-water interface, where groundwater impacts have the potential to volatilize to soil gas.

After the monitoring wells are installed, each monitoring well will be developed using a development pump and surging techniques and each TOC elevation will be surveyed into the existing monitoring wells network using transit-stadia surveying techniques.

All development water and soil cuttings will be containerized in properly labeled steel 55-gallon drums and stored on-site until they can be properly disposed of.

6.6.8 Confirmatory Groundwater Sampling

Six (6) months following the completion of OIM Work Plan restoration activities, IWM Consulting personnel will conduct twelve (12) monthly followed by semi-annual low-flow groundwater sampling events for the existing and proposed off-site monitoring wells.

IWM Consulting proposes to obtain depth to groundwater measurements from all on-Site monitoring wells (IT-1A, IT-2, IT-3, MW-3, MW-9, MW-12R, MW-20, MW-21, MW-22, MW-23, MW-24, MW-26, MW-27, MW-28, MW-29, and MW-30), all on-Site recovery wells (RW-1 through RW-5), all existing off-Site monitoring wells (MW-31 through MW-35), and all proposed off-Site monitoring wells (MW-36 through MW-40) as part of monthly and semi-annual gauging activities. The measurements will be obtained with an electronic water meter capable of detecting depth to groundwater measurements to within 0.01 feet. Additionally, the bottom of each well will be gauged with an electronic oil-water interface probe to check for the presence of non-aqueous phase liquid. The measurements will be obtained on the same day and will be utilized to generate a site-specific groundwater elevation map.

The groundwater samples will be collected using low flow sampling techniques and depth to groundwater measurements will be recorded prior to and during the sampling activities. If an insufficient amount of groundwater (<2.5 feet) is present within the well and low flow sampling cannot be completed, then the groundwater sample will be obtained with disposable polyethylene bailer after removing three (3) volumes of groundwater or after the well purges dry, whichever occurs first. If the samples are obtained with a bailer, care will be taken to slowly lower the bailer in and out of the well in order to minimize agitation the water column.

Purge water generated during the groundwater sampling activities will be temporarily containerized within a labeled 55-gallon DOT approved steel drum, transported back to the Site, and then treated by the on-Site groundwater remediation system, prior to discharging to the on-Site sanitary sewer per the approved municipal discharge permit with the City of Franklin.

A portable bladder pump in conjunction with a Horiba[®] U-52 Multi-Probe Field Meter Multi-Probe or equivalent will be used to collect groundwater samples from the monitoring wells. The pump is equipped with a disposable bladder sleeve that is exchanged between wells. Dedicated tubing will be used for each well. The Multi-Probe Field Meter includes probes for temperature, pH, specific conductance, dissolved oxygen (DO), and oxidation-reduction potential (ORP). Purge rates will be established to insure minimal drawdown. Minimal drawdown is defined as being less than 0.33 feet of drawdown during a purge cycle. Water levels will be monitored in each monitoring well during the purging cycle.

Field parameters will be measured during the sampling event, and groundwater samples will be collected after the field parameters have stabilized (for three consecutive readings), after a maximum of 1 hour of purge time, or immediately prior to the wells running dry (if insufficient groundwater recharge occurs). Care will be taken to ensure that the bladder pump discharge tubing and flow through cell have evacuated several volumes of water before the samples are obtained. Groundwater stabilization criteria which will be utilized during the purging activities are listed below:

•	pH	± 0.1 pH units
•	Specific Conductance	\pm 3% of reading
•	DO	\pm 10% of reading or \pm 0.2 mg/L
•	ORP	\pm 10 millivolts

The groundwater samples will then be collected from the monitoring wells and placed into the appropriate laboratory provided pre-labeled containers. The groundwater samples will be submitted to Pace Analytical Services, LLC located in Indianapolis, Indiana and analyzed for shortlist VOCs using SW-846 Method 8260 using Level II QA/QC. The laboratory results of the sampling event are anticipated to be received within 2 weeks from the date the samples are collected in the field and delivered to the laboratory.

A table summarizing the Pace reporting and method detection limits for each compound compared to the MCLs and VISLs is included below:

VOC Compound	Pace Laboratory Reporting Limits (ug/L)	Pace Laboratory Method Detection Limits (ug/L)	MCL (ug/L)	Target Groundwater Concentration for RCG Residential GVE (ug/L)
1,1-DCA	5.0	0.60	NA	130
1,2-DCA	5.0	0.60	5.0	50
cis-1,2- DCE	5.0	0.65	70	NA
trans-1,2-DCE	5.0	0.86	100	NA
Methylene Chloride	5.0	5.0	5.0	7,580
PCE	5.0	0.93	5.0	110
1,1,1-TCA	5.0	0.89	200	13,000
TCE	5.0	0.80	5.0	9.1
Vinyl Chloride	2.0	0.97	2.0	2.1

To determine the Site-specific groundwater flow direction, the top-of-casing elevations for the monitoring wells will be surveyed to a common benchmark using transit-stadia techniques and depth to groundwater measurements will be obtained from the entire well network within the same day.

Sample Identification, Collection, & Analysis

For the monthly confirmatory groundwater sampling events, field sample identification for this project should follow the following format: a sample location identification code (MW-22 for Monitoring Well-22). The trip blank, field duplicate, and equipment blank samples should utilize the identification codes TB, FD, and EB, respectively. Examples of the field sample identification codes for this project are as follows:

- For monitoring well groundwater samples: MW-22 (Monitoring well sampling location No. 22 – groundwater sample)
- For monitoring well groundwater field duplicate samples: FD-1
- (Groundwater sample field duplicate No. 1) Note that no sampling location identification is utilized for the field duplicate. The field duplicate location/sampling identification information is to be recorded in the field project notebook.
- For equipment blank groundwater samples: EB-1 (Equipment Blank groundwater sample No. 1)
- For trip blank groundwater samples: TB-1 (Trip Blank – groundwater sample No. 1)

Standard protocols will be observed for sample collection, sample handling and preservation, and chain-of-custody documentation. Personnel will utilize clean, disposable, nitrile gloves for each sample obtained. Laboratory provided sample containers will be utilized. Prior to use, the sample containers will be inspected for cracks, chips, cleanliness, and preservative (as appropriate). Container threads will be wiped clean before sealing (if applicable) to ensure proper sealing. The sample containers will be labeled with the appropriate project name and/or number, sample identification designation, date, time, and sampler's name or initials. Samples will be placed in a cooler containing ice and maintained at a temperature of approximately 4° Celsius prior to analysis.

Samples will be analyzed by the laboratory using a standard TAT and Level II QA/QC procedures. IWM Consulting anticipates obtaining a total of eleven (11) groundwater samples which will be collected from the off-Site monitoring wells for select VOC analysis on a monthly basis for one year. Following the one-year sampling period, the monitoring well network will be sampled on a semi-annual basis. For QA/QC purposes, one (1) field duplicate and one (1) MS/MSD sample will be collected at a rate of one (1) sample per every twenty (20) confirmatory samples per sampling media and will be analyzed for the same analytical parameters. One (1) trip blank for VOC analysis will accompany each cooler shipment that contains samples for select VOC analyses. One (1) equipment blank per sampling media per day will be obtained. The equipment blank will be collected by pouring laboratory-prepared water or distilled water over or through the field sampling equipment (e.g., bladder pump) and collecting the rinsate in the proper analytical containers. If only disposable or single use sampling equipment is used, then a field blank, consisting of analyte-free water poured into a laboratory provided container in the field (in order to assess the potential for sample contamination due to field conditions) will be collected in lieu of an equipment blank.

A copy of all of the applicable SOPs which will be followed by IWM Consulting during the groundwater sampling activities were provided as Attachment B of the Off-site Groundwater Investigation Work Plan dated October 18, 2018. A copy of the Pace COC and pertinent information such as laboratory certifications for Pace which will be utilized during the work activities were also provided as Attachment C and Attachment D, respectively, of the *Off-site Groundwater Investigation Work Plan* dated October 18, 2018.

6.7 Key Companies and Personnel

This project will encompass many different facets which will require the assistance of multiple parties. IWM Consulting will contract with the selected sub-contractor(s) for implementation of the Off-Site Interim Measure and will focus on the environmental aspects of this project on behalf of the performing respondent, Amphenol. Crossroad will be completing sewer design and bid specification preparation, the Rule 5 Notice of Intent Stormwater Pollution Prevention Plan, the sanitary sewer replacement permit, and will oversee quality assurance inspections relating to the sewer line and road installation on behalf of the City of Franklin. Representatives from IWM Consulting and Crossroad will work closely together during this project to meet City and USEPA expectations. Key companies and personnel associated with this project are currently:

Amphenol Corporation – Performing Respondent Mr. Joseph Bianchi, Group EHS Manager

IWM Consulting Group – Amphenol's Environmental Consultant Mr. Bradley Gentry, LPG, Vice President Mr. Christopher Parks, LPG, Senior Project Manager

Cox-Colvin & Associates, Inc – Supplemental Environmental Services for Amphenol Mr. Nate Wanner, CPG, CP, Senior Scientist Mr. Henry Stahl, Scientist

Groundwater & Environmental Services, Inc. – Amphenol's Ambient Air Monitoring Plan contractor Mr. Mark Motylewski, Vice President Mr. Robert Elliott, Principal Environmental Scientist Mr. Tom Baylis, Certified Industrial Hygienist

City of Franklin – Municipality Mr. Steve Barnett, Mayor Mr. Mark Richards, PE, City Engineer Ms. Sally Brown, Wastewater Superintendent

Crossroad Engineers, PC – City of Franklin's Sanitary Sewer Engineering Firm Mr. Trent Newport, PE, LS, Project Manager Mr. Derek Snyder, PE

Sanitary Sewer Construction and Excavation Firm – to be determined following award of bid for the project.

6.8 Schedule

A schedule for implementation of the Work Plan has been included as Figure 18. The field portion of this project must be initiated by mid-August 2019, at the latest, in order to complete restoration

activities (paving) before asphalt plants are closed for the season. However, at a minimum, the roads will be open to traffic by the end of the 2019 construction season and then the asphalt surface will be installed in the spring of 2020.

7.0 Conclusion

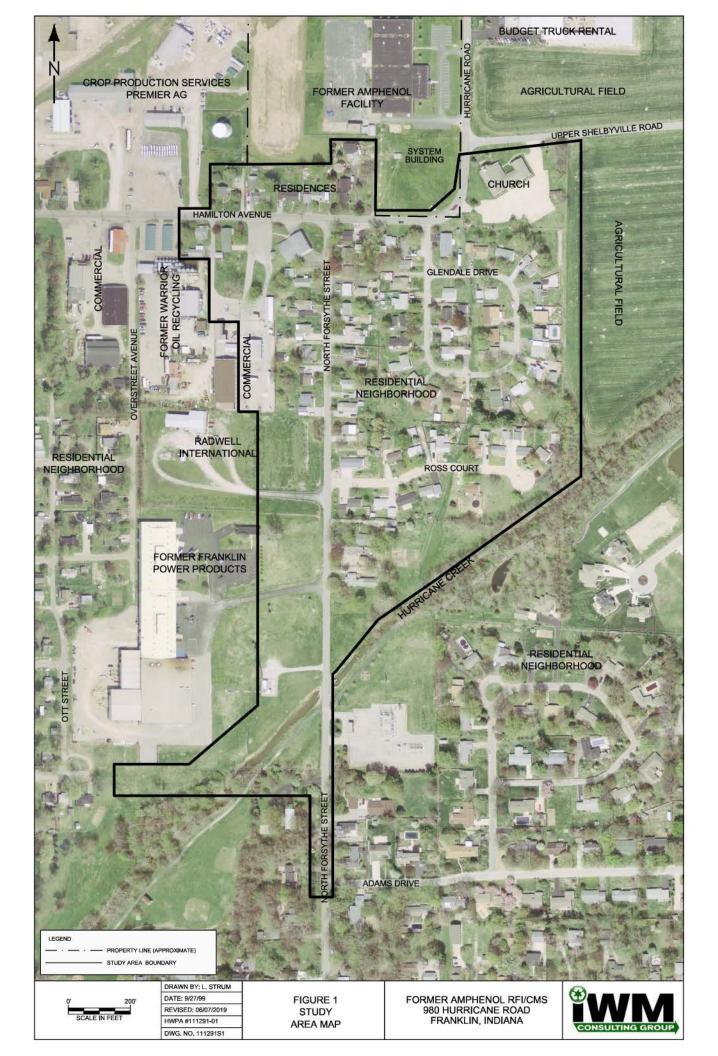
Potentially contaminated vadose-zone soils beneath sewer lines will be excavated and removed from the project area. Furthermore, sewer lines within the areal extent of the groundwater plume will be either replaced or lined to further mitigate the possibility that contaminants in groundwater and soil gas can enter the sewer lines. Amphenol's activities in Franklin serve two objectives: 1) to ensure the health and safety of residents affected by contamination from historical activities at the former Amphenol facility by eliminating exposure pathways, and 2) to perform activities that will lead to future reduction of TCE concentrations in groundwater, thereby eliminating the need to mitigate exposure pathways. Amphenol has conducted extensive soil, groundwater and vapor intrusion investigations throughout the Study Area to identify potentially complete exposure pathways. Only a few residences were found to have indoor air concentrations above screening levels, and appropriate mitigation measures have either already been implemented or are being implemented that effectively prevent exposure of occupants to TCE contamination originating from the former Amphenol facility or potential other off-site sources. Post-mitigation sampling has confirmed that the mitigation measures have effectively reduced indoor air concentrations below screening levels. As such, remedial performance with respect to ensuring the health and safety of residents has already been demonstrated prior to completing the proposed excavation and sewer line replacement or lining activities.

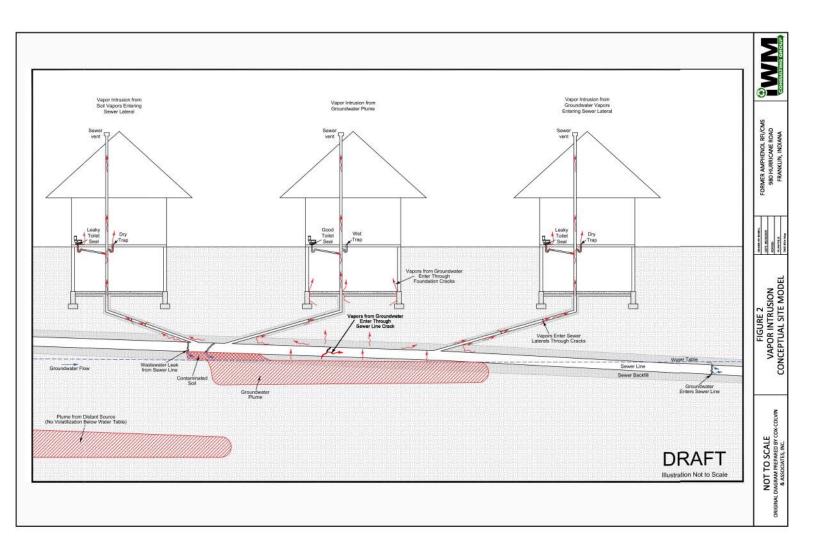
With regards to the second objective (future reduction of TCE concentrations in groundwater), it has been demonstrated in many other remedial projects that the single most effective means to improve groundwater quality is to remove source areas from soil. Without the removal of contaminants in soil source areas, any contaminants removed via groundwater treatment are repeatedly replenished through additional leaching. With removal of source areas in soil, natural attenuation processes can effectively reduce groundwater concentrations. As discussed in the Conceptual Design, the remedial performance of sewer line excavation will be confirmed by collection of vadose zone soil samples to ensure that TCE concentrations in remaining soils are below the adjusted TCE RCG MTG screening level.

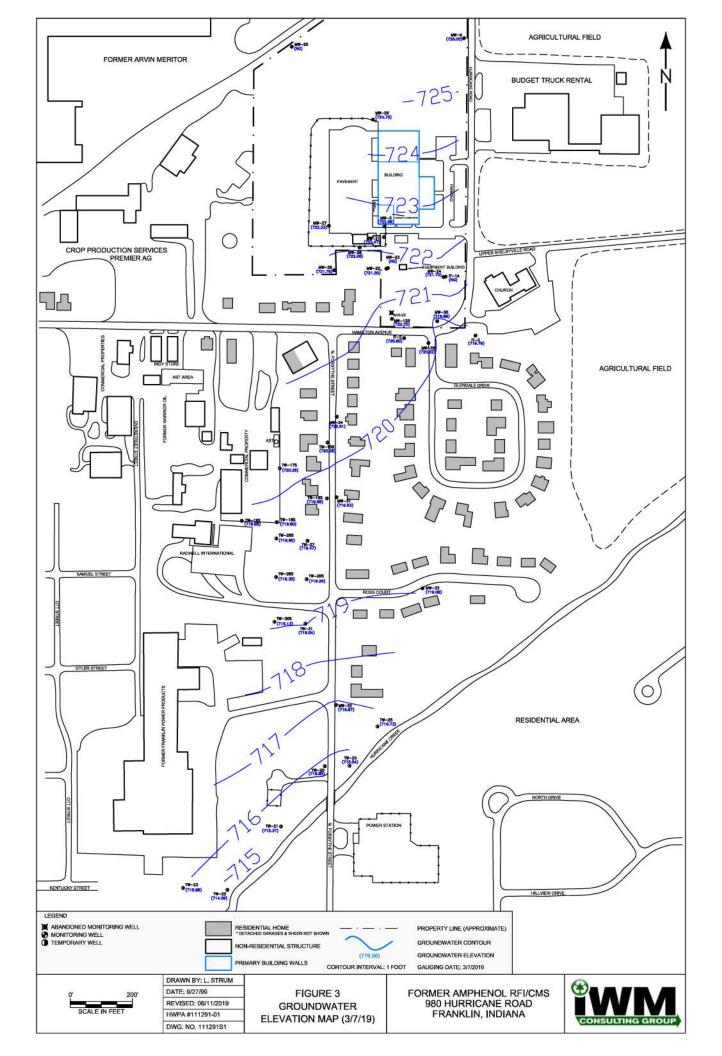
The long-term goal of sewer line excavation is reduction of TCE concentrations in groundwater. Groundwater quality within the plume area will be monitored to demonstrate that COC concentrations are decreasing following source removal activities. Groundwater conditions will be monitored until CAOs are achieved or until a demonstration can be made that the residual dissolved VOCs no longer pose an unacceptable exposure pathway.

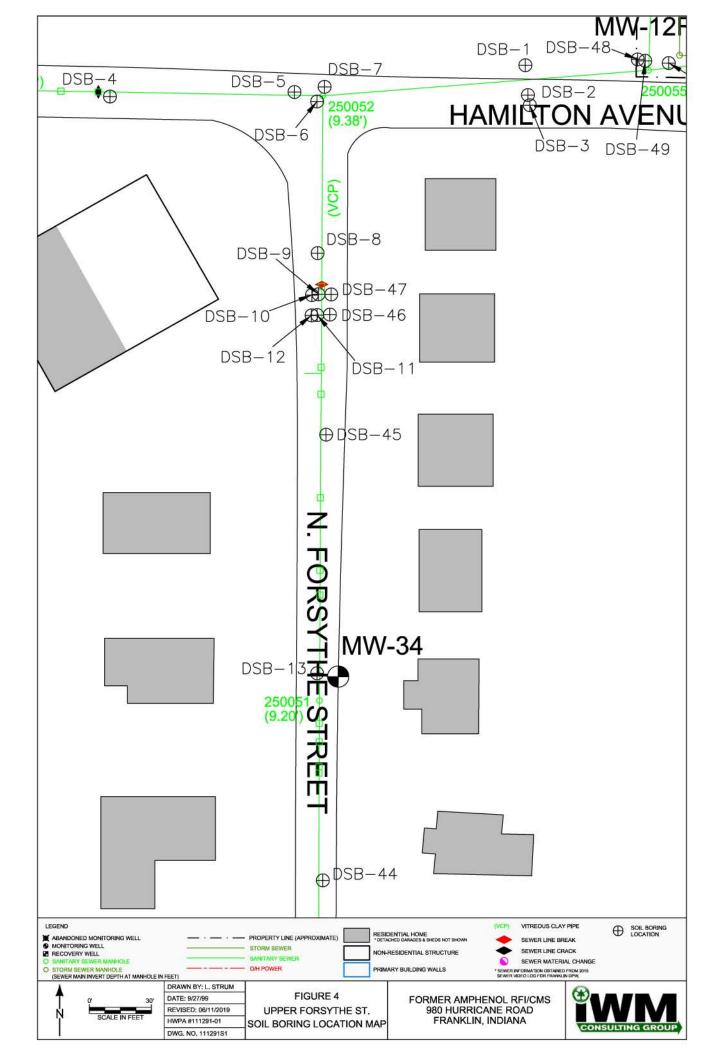
Based upon the results of the recent assessment activities and subsequent mitigation measures already completed to date, lining of sewer lines within the project area is not necessary to meet soil and groundwater remedial objectives. In the few houses where indoor air screening levels were exceeded, plumbing repairs and soil gas mitigation measures have been demonstrated to render exposure pathways incomplete. Lining the sewers while the system is already being disturbed for excavation

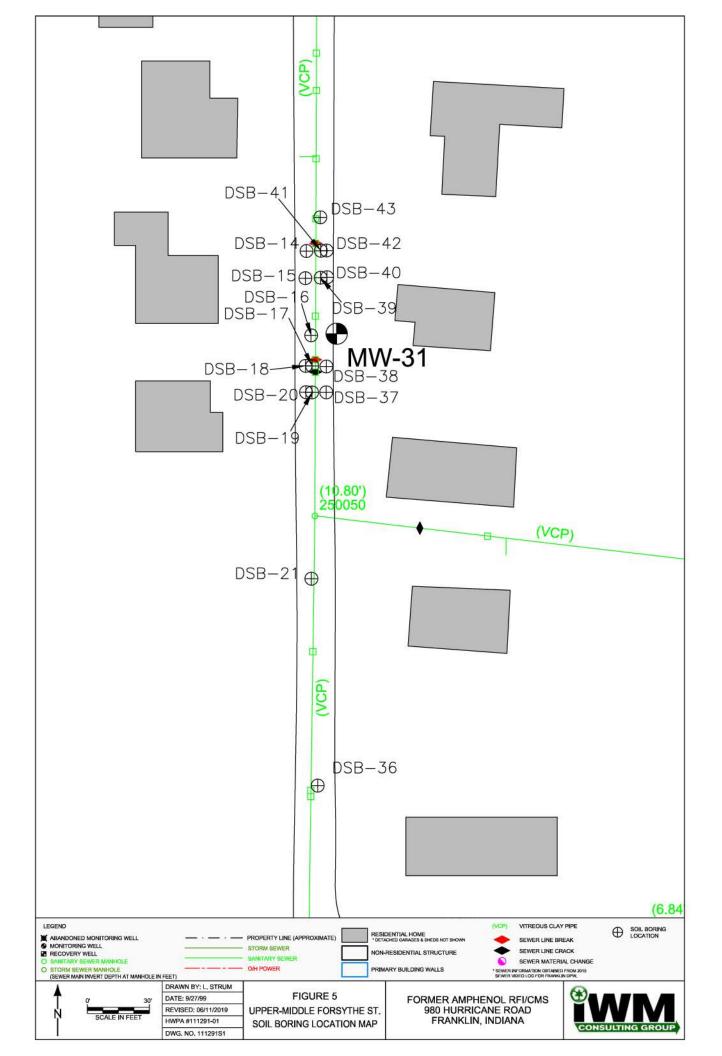
and source removal is considered worthwhile as an additional measure of assurance that exposure pathways will remain incomplete.

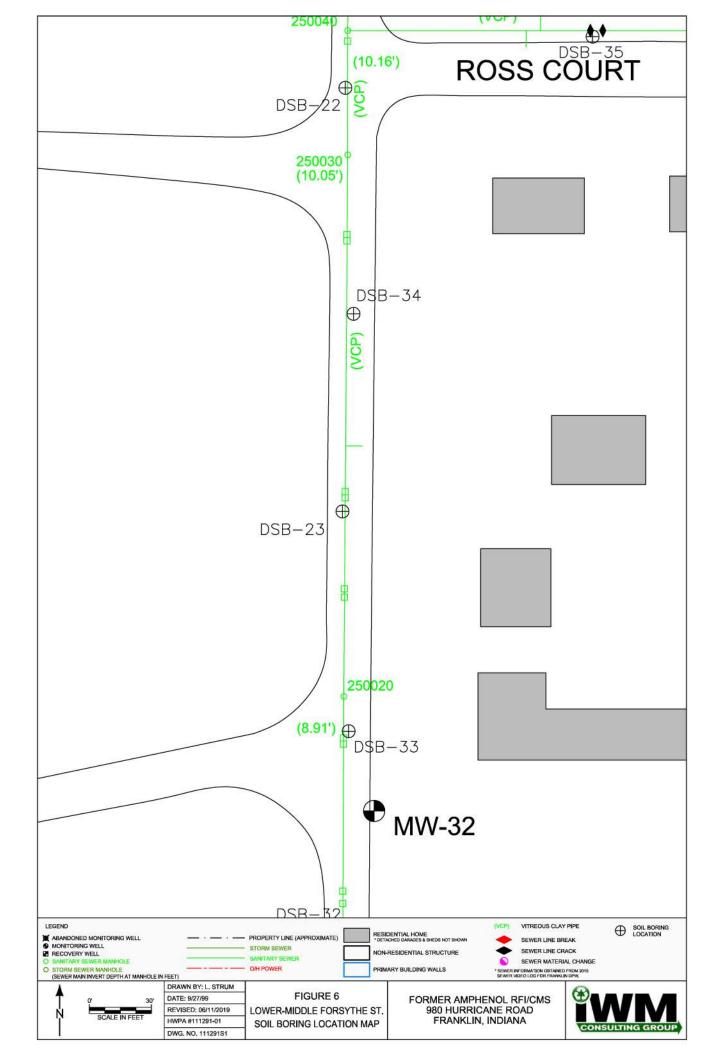

8.0 References

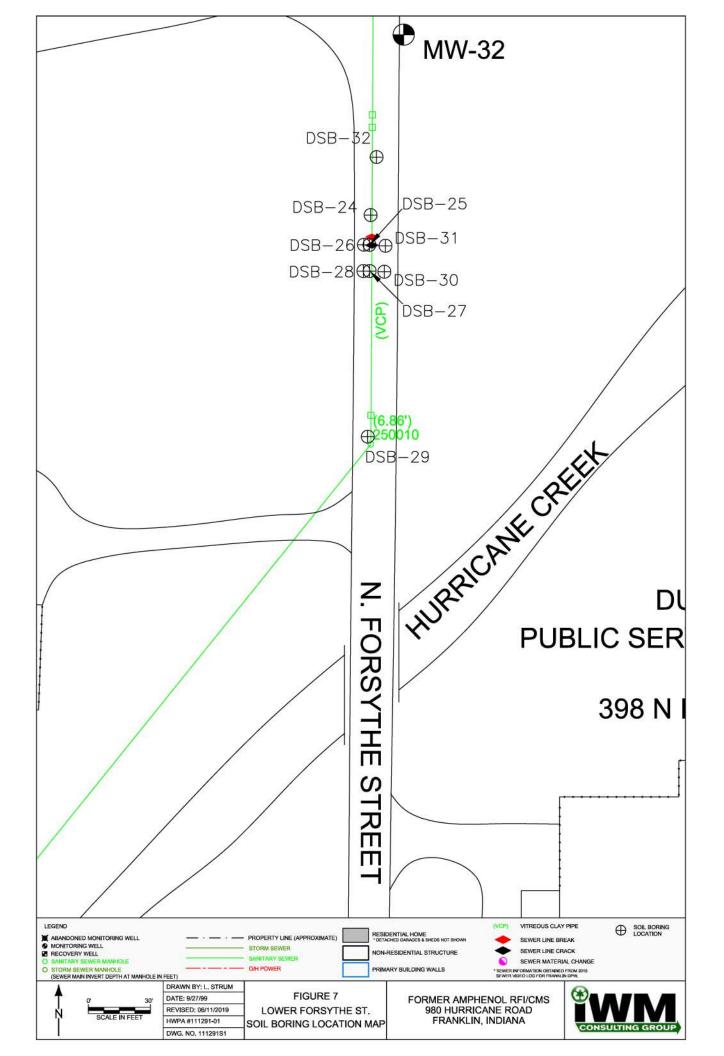

- Lowe, Scott. 2016. "Sewer Ventilation: Factors Affecting Airflow and Modeling Approaches." Journal of Water Management Modeling.
- Parker, W. J. and H. Ryan. 2001. "A Tracer Study of Headspace Ventilation in a Collector Sewer." Journal of the Air & Waste Management Association 51 (4): 582–92.
- Pescod, M. B. and A. C. Price. 1982. "Major Factors in Sewer Ventilation." Journal of the Water Pollution Control Federation 54 (4): 385–97.
- Water Environment Research Foundation (WERF). 2009. "Collection System Ventilation Research Report." Alexandria, VA: Water Environment Research Foundation. Report No. 04-CTS-1A.

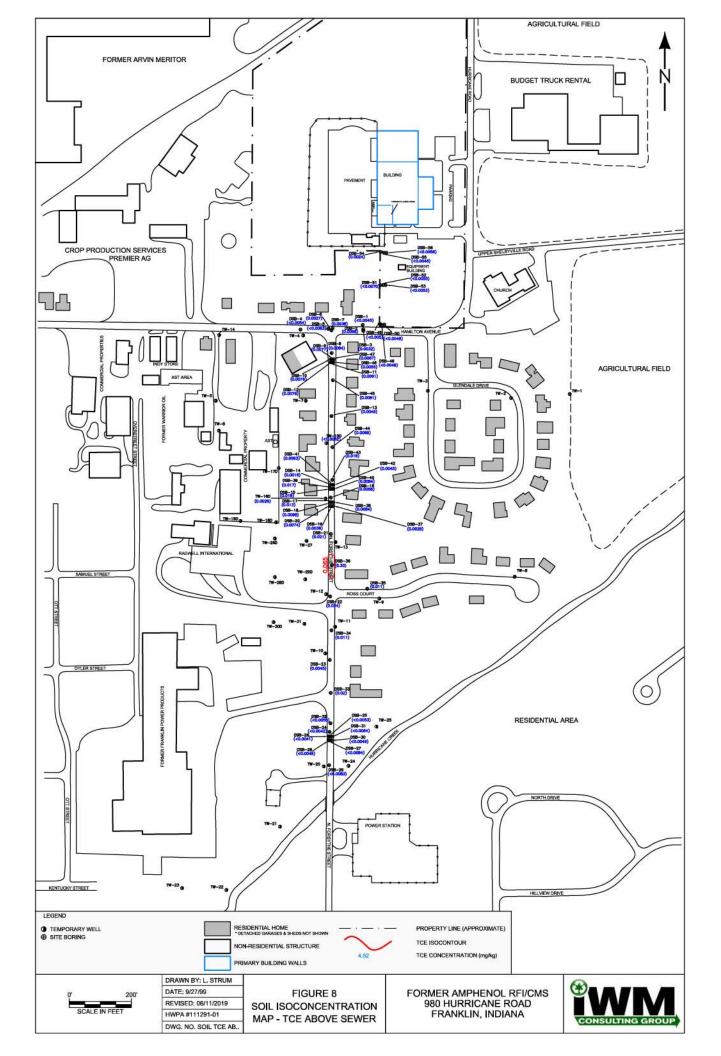


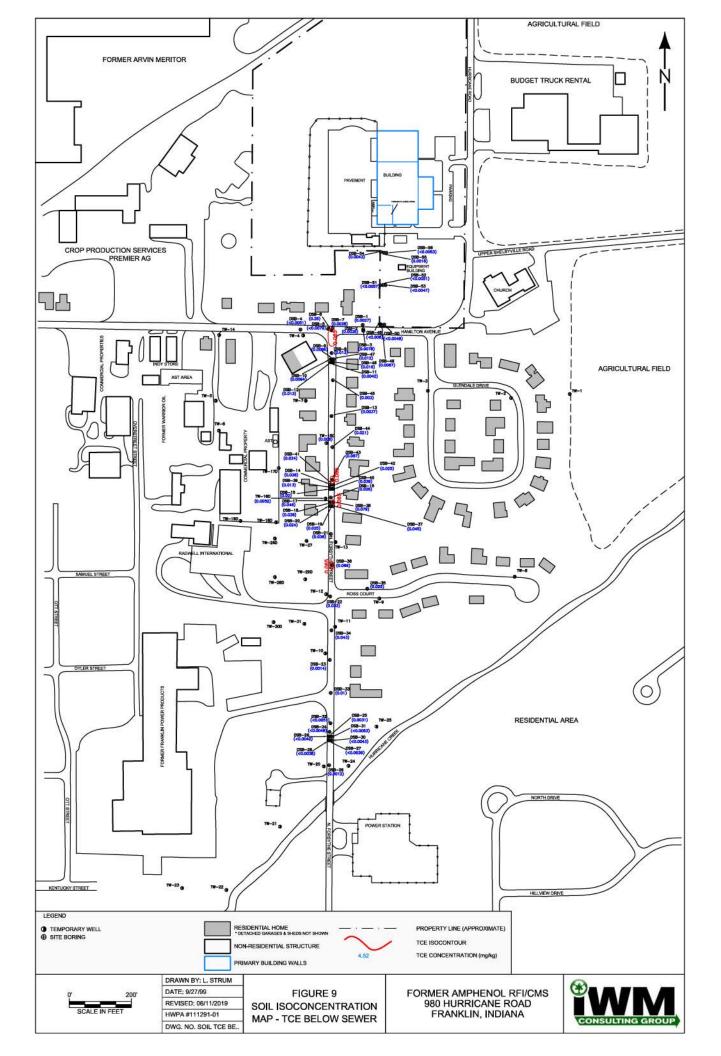

Figures

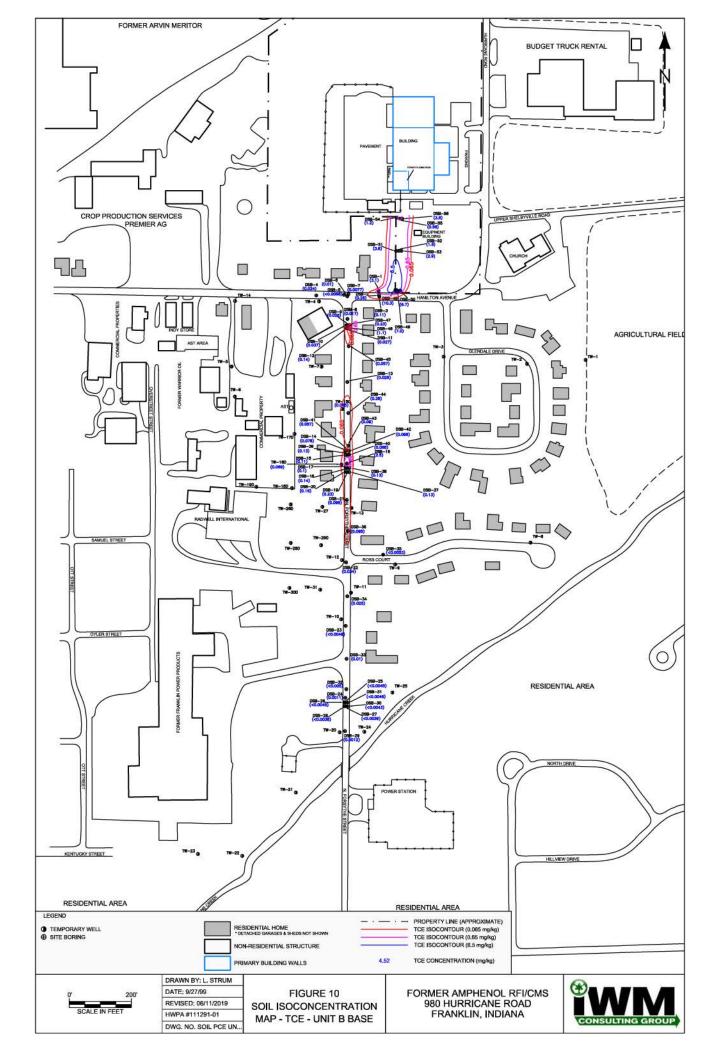


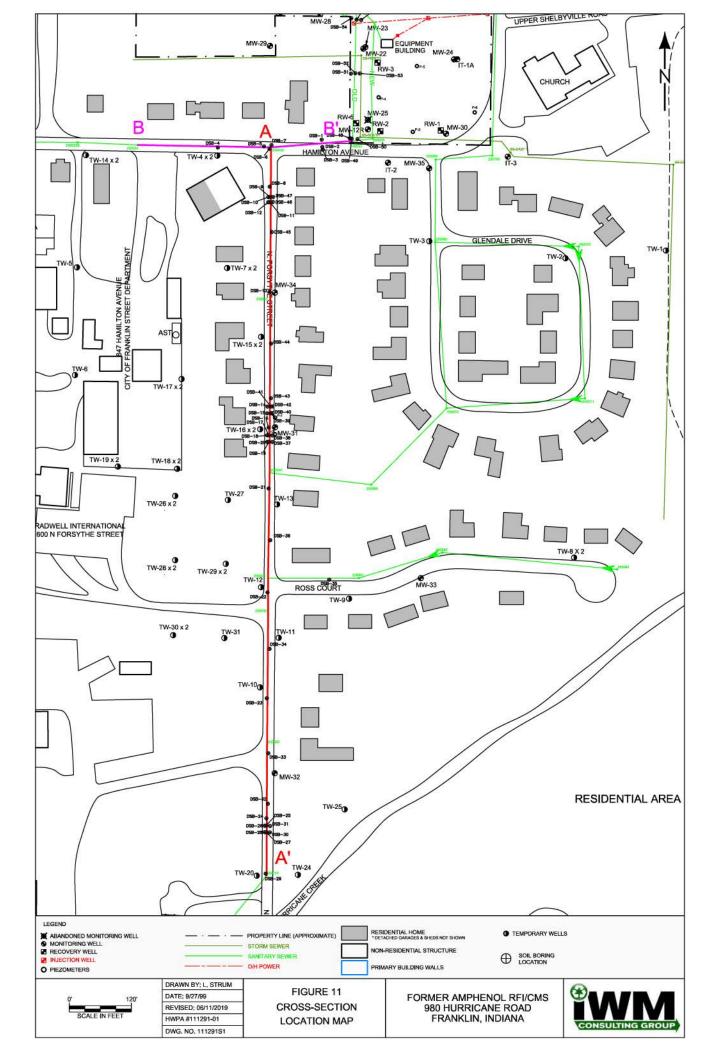


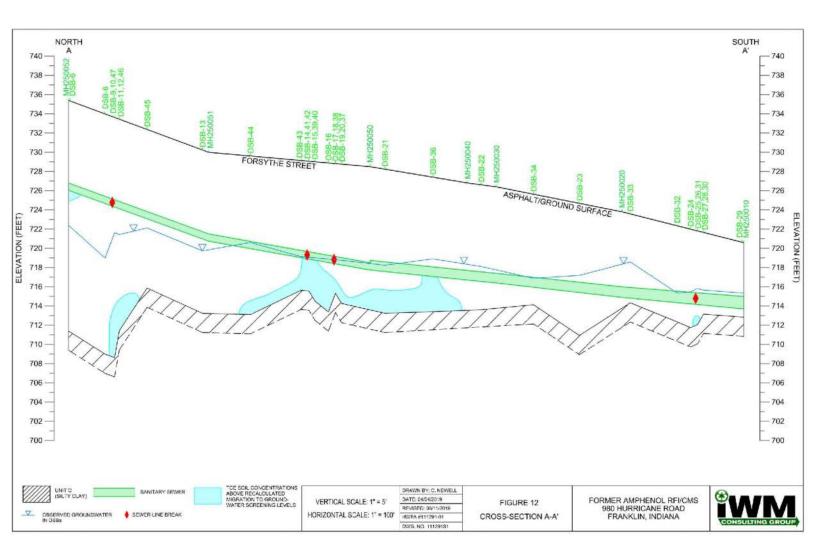


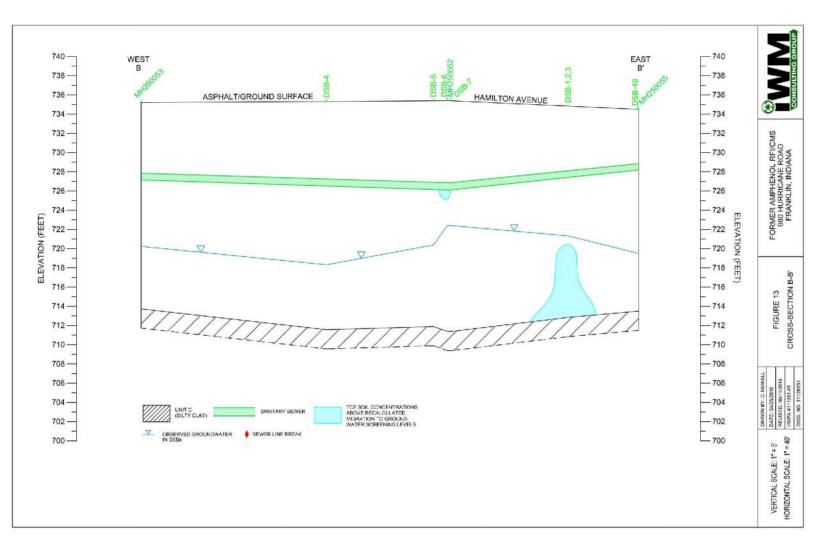


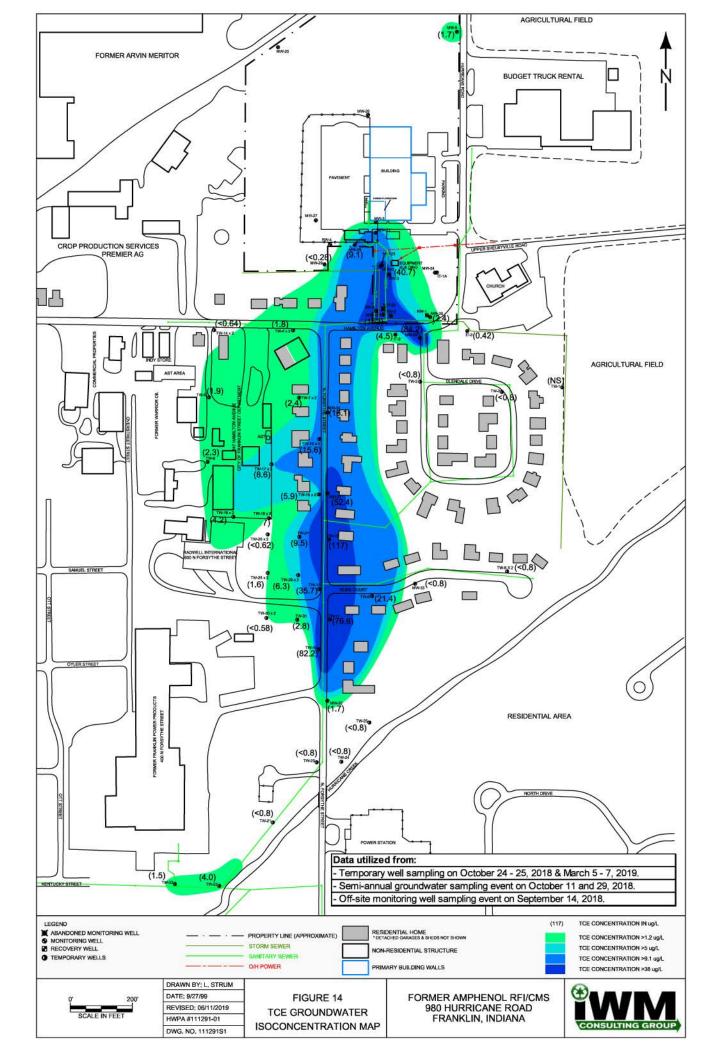


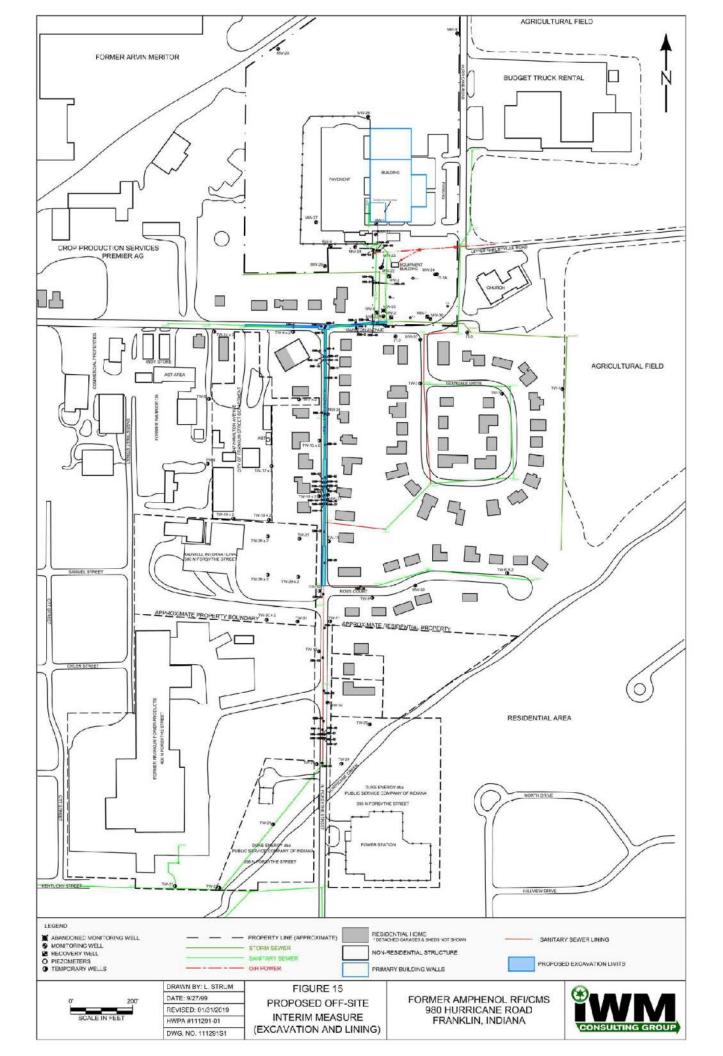




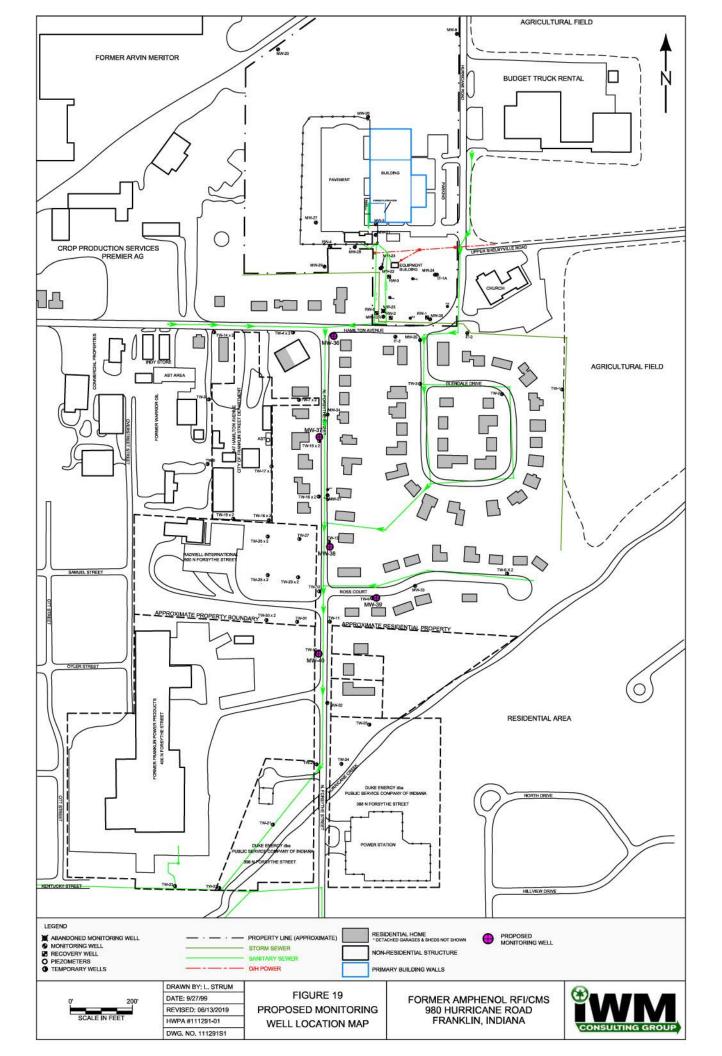












Tables

TABLE 1 Site-Specific Recalcualted Soil Migration to Groundwater Screening Levels Former Amphenol Facility EPA ID # IND 044 587 848 Franklin, Indiana 46131

Chemical of Concern	RCG MTG SL (mg/kg)	SL _{POTABLE} (µg/L)	Groundwater to Indoor Air Screening Level (μg/L)	DAF	Koc (L/kg)	Foc (g/g)	Porosity _{water}	Porosity _{air}	Henry's Law Constant (unitless)	Dry Soil Bulk Density (kg/L)	SL _{MTG} ⁴ (mg/kg)
1,1-Dichloroethane	0.16	28	130	20	31.8	0.002	0.3	0.13	0.2298	1.5	0.737
1,2-Dichloroethane	0.028	5	50	20	39.6	0.002	0.3	0,13	0.0482	1.5	0.283
cis-1,2-Dichloroethene1	0.41	70	-	20	39.6	0.002	0.3	0.13	0.1668	1.5	0.411
trans-1,2-Dichloroethene	0.62	100	-	20	39.6	0.002	0.3	0.13	0.3835	1.5	0.625
Methylene Chloride ³	0.025	5	7,580	20	21.7	0.002	0.3	0.13	0.1329	1.5	38.654
Tetrachloroethylene (PC	0.045	5	110	20	94.9	0.002	0.3	0.13	0.7236	1.5	0.996
1,1,1-Trichloroethane	1.4	200	13,000	20	43.9	0.002	0.3	0.13	0.7032	1.5	90.668
Trichloroethylene (TCE)	0.036	5	9.1	20	60.7	0.002	0.3	0.13	0.4027	1.5	0.065
Vinyl Chloride	0.014	2	2.1	20	21.7	0.002	0.3	0.13	1.1365	1.5	0.014

Notes: Calculation of Screening Levels for Migration of Contaminants in Soil to Ground Water Based Upon Indiana Department of Environmental Management's (IDEM)

Ground Water to Indoor Air Screening Levels RCG: IDEM's Remediation Closure Guide dated March 22, 2012 with corrections through July 9, 2012, and updated March 4, 2019.

MTG: Migration to Groundwater

SL: Screening Level DAF: Dilution attenuation factor

Koc: Chemical-specific organic carbon partition coefficient

Foc: Fraction of organic carbon

¹ Because a groundwater to indoor air screening level is not available for cis-1,2-Dichloroethene, the groundwater potable use screening level was used for calculations.

² Because a groundwater to indoor air screening level is not available for trans-1,2-Dichloroethene, the groundwater potable use screening level was used for calculations.

³ Because IDEM does not have groundwater to indoor air screening level for methylene chloride, the value in table is based on US EPA's VISL calculator at 12.5°C.

⁴ The calculated screening level for migration to ground water is based on Equation A-9 of IDEM's RCG Appendix A: Screening Levels

Table generated by Cox-Colvin & Associates, Inc. and revised by IVVM Consulting Group, LLC.

TABLE 2

Corrective Action Objectives Former Amphenol Facility EPA ID # IND 044 587 848 Franklin, Indiana 46131

Media	Unsaturated Soil	Shallow Groundwater
Chemical of Concern	Recalculated MTG SL (mg/kg)	Groundwater to Indoor Air SL (μg/L)
1,1-Dichloroethane	0.737	130
1,2-Dichloroethane	0.283	50
cis-1,2-Dichloroethene	0.411	NE
trans-1,2-Dichloroethene	0.625	NE
Methylene Chloride	38.654	7,580
Tetrachloroethylene (PCE)	0.996	110
1,1,1-Trichloroethane	90.668	13,000
Trichloroethylene (TCE)	0.065	9.1
Vinyl Chloride	0.014	2.1

Notes:

NE: Not established

MTG: Migration to Groundwater

SL: Screening level

- Groundwater to Indoor Air Screening Level obtained from the Indiana Department of Environmental Management's (IDEM's) Remediation Closure Guide (RCG) dated March 22, 2012 with corrections through July 9, 2012 and updated March 4, 2019.
- Recalculated MTG SLs based on IDEM RCG Groundwater to Indoor Air SLs and regional groundwater temperature of 12.5 degrees Celsius.

Table 3 Design-Level Data Soli Sampling Analytical Resu Former Amphenol Pacility EPA 1D di NID 044 587 668 Franklin, IN 46131

	Screening L	evels (mg/kg)		Parameters				Off-SI	te Soll Sampling Locations (mg/kg)			
	27.552.55			Sample Location	Hamilton - East	Hamilton - East	Hemilton - Eest	Hemiton - West	Hamilton - Center	Hemilton - Center	Hamilton - Center	Forsythe - North	Forsythe - North
	Site-Specific Re-Calculated	NUGNUG	RCG C/IDC	Sample ID	D38-1 SL (5.75-6.75)	DSB-2 SL (5.75-6.75)	D38-3 3L (5.75-6.75)	DSB-4 SL (7.1-8.1)	D3B-5 SL (7.7-8.7)	D3B-6 SL (7.7-8.7)	DSB-7 SL (7.7-8.7)	DSB-8 3L (7.65-8.65)	D3B-9 SL (7.65-6.65)
Screening Level	ROG MTG Screening Lovel	Screening Level	Screening Level	Sampling Interval	5,75 - 6,75	5,75 - 6,75	5,75-6,75	7,1-8,1	7,7 - 8,7	7,7 - 8,7	7,7 - 8,7	7,65 - 8,65	7,65 - 8,65
	cana .			Sample Date	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019
0,16	0,737	50	160	1,1-Dichloroethane	<0,0045	<0,0055	<0,0025	<0,0054	<0,0063	<0,0043	<0,0054	<0.0055 †	<0,0053
0,028	0,283	6.4	20	1,2-Dichloroethane	<0,0045	<0,0055	<0,0025	<0.0054	<0.0063	<0,0043	<0,0064	<0.0056 †	<0.0053
0,41	0,411	220	2,300	cis-1,2-Dichloroethene	<0.0045	<0,0055	<0,0025	<0,0054	<0,0063	<0,0043	<0,0054	<0.0055 +	<0.0053
0,62	0,625	1,900	1,900	trans-1,2-Dichloroethene	<0,0045	<0,0055	<0,0025	<0,0054	<0.0063	<0,0043	<0,0064	<0.0056 †	<0,0053
0,025	38,654	490	3,200	Methylene chioride	<0,018	<0,022	<0,0036	<0.022	<0.025	<0.017 #	<0.026 +	<0.023 +	<0.021
0,045	0,996	110	170	Tetrachloroethylene (PDE)	0.0042 J	0,011	0,0089	0,0010 J	0.097	0,015	0,048	0.049 +	0,053
1.4	90,868	640	640	1,1,1-Trichloroethane	<0,0045	<0,0055	<0,0025	<0,0054	<0.0063	0,000000 J	0,00076 J	<0.0055 +	<0.0053
0,036	0,065	5,7	19	Trichlorethylene (TCE)	<0,0045	0,0068	0.0032	<0,0054	<0.0063	0,0027 J	0,0038 J	0.0054 +	0,0077
0,014	0,014	0,83	17	Vinyl Ohloride	<0.0045	<0,0055	<0,0025	<0,0054	<0,0063	<0,0043	<0,0054	<0.0055 †	<0,0053
NA	NGA	N/A	N/A	Percent Moisture	10,7	4.6	9,5	11.0	11,8	15,3	7.4	9,2	12.2

	Screening L	evels (mg/kg)		Parameters	3			Off-Si	te Soil Sampling Locations	mg/kg)		- C - C - C - C - C - C - C - C - C - C	
	www.co		1 I	Sample Location	Forsythe - North	Forsythe - North	Forsythe - North	Forsythe - North	Forsythe - North	Forsythe - Centrel	Forsythe - Central	Forsythe - Central	Forsythe - Central
	Site-Specific Re-Calculated	ROG RDC	RCG C/IDC	Sample ID	D38-10 SL (7.65-8.65)	DSB-11 SL (7.6-8.6)	D58-12 SL (7.6-8.6)	DSB-13 SL (7.5-8.5)	DSB-14 SL (8.4-9.4)	DSB-15 SL (8.5-9.5)	DSB-16 SL (8.7-9.7)	DSB-17 SL (8.8-9.8)	DSB-18 SL (8.8-9.8)
Screening Level	RCG MTG Screening Level	Screening Level	Screening Lovel	Sampling Interval	7.65 - 6.65	7.6 - 8.6	7.6-8.6	7.5 - 8.5	8.4 - 9.4	8.5 - 9.5	8.7 - 9.7	8.8 - 9.8	8.8 - 9.8
	Contra 1			Sample Date	2/25/2019	2/28/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019	2/29/2019
0.16	0.737	50	160	1,1-Dichloroethane	<0.0058	<0.0074	<0.0070	<0.0051	<0.0047	<0.0073	<0.0051	<0.0050	<0.0053
0.028	0,283	6.4	20	1,2-Dichloroethane	<0.0056	<0.0074	<0.0070	<0.0051	<0.0047	<0.0073	<0.0051	<0.0050	<0.0053
0.41	0,411	220	2,300	cia-1,2-Dichloroethene	<0.0056	<0.0074	<0.0070	<0.0051	<0.0047	<0.0073	<0.0051	<0.0050	<0.0053
0.82	0.625	1,900	1,900	trans-1,2-Dichloroethene	<0.0066	<0.0074	<0.0070	<0.0051	<0.0047	<0.0073	<0.0051	<0.0050	<0.0053
0.025	38.654	490	3,200	Methylene chloride*	<0.022	<0.030	<0.028	<0.020	<0.019	<0.029	<0.020 #	<0.020	<0.021
0.045	0.996	110	170	Tetrachloroethylene (PCE)	0.060	0.040	0.055	0.043	0.011	0.038	0.0065 +	0.048	0.031
1.4	90,668	640	640	1,1,1-Trichloroethane	<0.0058	<0.0074	<0.0070	<0.0051	<0.0047	<0.0073	<0.0051	<0.0050	<0.0053
0.036	0.065	5.7	19	Trichlorethylene (TCE)	0.0076	0.0061 J	0.0076	0.0049 J	0.0016 J	0.018	0.0058	0.013	0.0098
0.014	0.014	0.83	17	Vinyl Chloride	<0.0056	<0.0074	<0.0070	<0.0051	<0.0047	<0.0073	<0.0051	<0.0050	<0.0053
NA	NØA	NA	NØA	Percent Moisture	5.4	8.2	4.6	8.5	7.4	9.2	10.5	11.6	8.4

Table 5 (sontinued) Design-Level Data Soll Sampling Analytical Ress Former Amphenol Pacifity EPA ID # INV Dev Sort Res Franklin, IN 48134

	Screening L	evels (mg/kg)		Parameters	1	(A)		Off-SI	te Soll Sampling Locations (mg/kg)			<i>w</i>
	2005-0000			Sample Location	Forsythe - Central	Forsythe - Central	Forsythe - Central	Forsythe - Central	Forsythe - South	Forsythe - South	Forsythe -	South	Forsythe - South
	Site-Specific Re-Calculated	ROG RDC	RCG C/IDC	Sample ID	DSB-19 SL (8.8-9.8)	D3B-20 3L (8.9-9.9)	D38-21 SL (8.7-9.7)	D3B-22 SL (8.1-9.1)	D3B-23 SL (7.2-8.2)	D38-24 SL (5.5-6.5)	D38-25 SL (5.4-6.4)	FD-9 SL	DSB-26 SL (5.4-6.4)
Boreening Level	ROG MTG Screening Lovel	Screening Level	Screening Level	Sampling Interval	8,8 - 9,8	8,9 - 9,9	8,7 - 9,7	8,1 - 9,1	7.2 - 8,2	5,5 - 6,5	5,4-6,4	5,4-8,4	5.4 - 6,4
	and ,			Sample Date	2/28/2019	2/28/2019	2/26/2019	2/26/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019
0,16	0,737	50	160	1,1-Dichloroethane	<0.0044	<0,0090	<0,0089	<0,0055	<0,0052	<0,0042	<0.0053 Ψ	<0,0055	<0,0041
0,028	0,263	6.4	20	1,2-Dichloroethane	<0.0044	<0,0090	<0,0059	<0.0055	<0.0052	<0,0042	<0.0053 ¥	<0,0055	<0,0041
0,41	0,411	220	2,300	cis-1,2-Dichloroethane	<0.0044	<0,0090	<0,0089	<0.0055	<0.0052	<0,0042	<0.0053 Ψ	<0,0055	<0,0041
0,62	0,625	1,900	1,900	trans-1,2-Dichloroethene	<0,0044	<0,0090	<0,0059	<0,0055	<0.0052	<0,0042	<0.0093 Ψ	<0,0056	<0,0041
0,025	38,654	490	3,200	Nethylene chioride*	×0,017	<0,036	<0,035	<0.022	<0.021	<0,017	<0.021 ¥	<0,022	<0,016
0,045	0,996	110	170	Tetrachioroethylene (PDE)	0,012	0,031	0,040	0.036 ¥	<0.0052	<0,0042	⊲0,0053	<0,0056	<0,0041
1.4	90,868	640	640	1,1,1-Trichloroethane	<0.0044	<0,0090	<0,0059	<0.0055	<0.0052	<0.0042	0.0084 ¥	0,015	<0.0041
0,036	0,055	5,7	19	Trichlarethylene (TCE)	0,0038 J	0,0074 J	0,021	0.024 ¥	0,0046 J	<0,0042	<0.0093 ¥	<0,0055	<0,0041
0,014	0,014	0,83	17	Vinyl Chlaride	<0.0044	<0,0090	<0,0059	<0.0055	<0,0052	<0,0042	<0.0053 Ψ	<0,0055	<0,0041
NA	NA	N/A	N/A	Percent Moisture	8,7	7.5	16,2	9,5	11,6	19,2	12,1	15,0	10,5

	Screening L	evels (mg/kg)		Parameters	ù			Off-SI	te Soil Sumpling Locations (mg/kg)		-	
				Sample Location	Forsythe - South	Foreythe - South	Forsythe - South	Forsythe -	South				
	Site-Specific Re-Calculated ROS MTG	RCG RDC	RCG C/IDC Screening	Sample ID	DSB-27 SL (5.3-6.3)	DSB-28 SL (5,3-6,3)	DSB-29 SL (4,5-5,6)	DSB-30 SL (5.3-6.3)	D9B-31 SL (5,4-6,4)	DSB-32 SL (5.8-6.8)	DSB-33 SL (6,7-7.7)	DSB-34 SL (7.7-8.7)	FD-12 SL
Screening Level	Screening Level	Screening Level	Lovel	Sampling Interval	5.3 - 6.3	5.3 - 6.3	4.8 - 5.6	5.3-6.3	5.4 - 6.4	5.8 - 6.8	8,7 - 7,7	7.7 - 8.7	7.7 - 8.7
				Sample Date	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019
0.18	0.737	50	100	1,1-Dichloroethane	<0.0084	<0.0049	<0.0083	<0.0049	<0.0054	<0.0055	<0.0053	<0.0052	<0.0055
0.028	0,283	6.4	20	1,2-Dichloroethane	<0.0084	<0.0049	-0.0053	<0.0049	<0.0054	<0.0055	<0.0053	<0.0052	<0.0055
0.41	0.411	220	2,300	cis-1,2-Dichloroethene	<0.0084	<0.0049	<0.0083	<0.0049	<0.0054	<0.0055	<0.0053	<0.0052	<0.0055
0.62	0.625	1,900	1,900	trans-1,2-Dictrioroethene	<0.0084	<0.0049	⊲0.0083	<0.0049	<0.0054	<0.0055	<0.0053	<0.0052	<0.0055
0.025	38.654	490	3,200	Netrylene chloride*	<0.034	<0.020	<0.033	<0.020	+0.021	<0.022	-0.021	-0.021	<0.022
0.045	0.996	110	170	Tetrachloroethylane (POE)	<0.0084	<0.0049	⊲0.0083	<0.0049	<0.0054	<0.0055	<0.0053	0.0041 J	0.0055
1.4	90,998	840	840	1,1,1-Trichloroethane	<0.0084	<0.0049	<0.0083	<0.0049	<0.0054	<0.0055	<0.0053	0.0010 J	0.0014 J
0.036	0.065	5.7	19	Trichlorethylene (TOE)	<0.0084	<0.0049	-0.0083	<0.0049	<0.0054	<0.0055	0.020	0.011	0.014
0.014	0.014	0.83	17	Vinyl Chlaride	<0.0084	<0.0049	<0.0083	<0.0049	<0.0054	<0.0055	<0.0053	<0.0052	<0.0055
NGA	NA	N/A	NØA	Percent Moisture	19.6	10.8	25.8	13.6	5.6	6.6	12.1	16.8	19.5

Table 5 (continued) Design-Level Data Solf Sampling Analytical Resul Former Amphanol Facility EPA DD SIND 044 697 646 Franklin, IN 46131

	Screening L	evels (mg/kg)		Parameters	<u>.</u>			Off-SI	te Soil Sampling Locations (mg/kg)			
	and prosed		1	Sample Location	Ross Court - West	Forsythe - Central	Forsythe - Central	Foreythe - Central	Forsythe - Central	Forsythe - Central	Foreythe - Central	Forsythe - Central	Forsythe - Central
	Site-Specific Re-Calculated ROG MTG	RCG RDC	RCG C/IDC	Sample ID	DSB-35 SL (6-7)	D58-36 SL (8.3-9.3)	DSB-37 SL (8.9-9.9)	DSB-38 SL (8.8-9.8)	DSB-39 SL (8.5-9.5)	DS8-40 SL (8.5-9.5)	D58-41 SL (8.4-9.4)	DS8-42 SL (8.4-9.4)	DSB-43 SL (8.4-9.4)
Screening Level	Screening	Screening Level	Screening Lovel	Sampling Interval	6-7	8.3 - 9.3	8.9-9.9	8.8 - 9.8	8.5 - 9.5	8.5 - 9.5	6.4 - 9.4	8.4 - 9.4	8.4 - 9.4
	34640			Sample Date	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019
0.16	0.737	50	160	1,1-Ochicroethane	<0.0044	<0.0077	<0.0063 \$	<0.0058	<0.0050	<0.0045	<0.0084	<0.0047	<0.0050
0.025	0,263	8.4	20	1,2-Dichloroethane	<0.0044	<0.0077	<0.0083 (<0.0058	<0.0060	<0.0045	<0.0084	<0.0047	<0.0050
0.41	0.411	220	2,300	cis-1,2-Dichloroethene	<0.0044	<0.0077	<0.0083 \$	<0.0058	<0.0060	<0.0045	<0.0084	<0.0847	<0.0050
0.62	0.625	1,900	1,900	trans-1,2-Dichloroethene	<0.0044	<0.0077	<0.0083 (<0.0058	<0.0050	<0.0045	<0.0084	<0.0047	<0.0050
0.025	38.654	490	3,200	Nethylene chloride*	<0.017	<0.031	<0.033 \$	<0.023	<0.020	<0.018	<0.034	<0.019	<0.020
0.045	0.996	110	170	Tetrachloroethylene (POE)	<0.0044	0.051	0.023 \$	0.096	0.033	0.026	0.024 #	0.030	0.040
1.4	90.998	640	840	1,1,1-Trichloroethane	0.0016 J	0.048	<0.0083 \$	<0.0055	<0.0060	<0.0045	<0.0084	<0.0047	<0.0050
0.036	0.095	5.7	19	Trichlorethylene (TCE)	0.011	0.33	0.0028 J 6	0.0084	0.017	0.0064	0.00936	0.0045 J	0.016
0.014	0.014	0.63	17	Vinyi Chlaride	<0.0044	<0.0077	<0.0083 \$	<0.0058	<0.0050	<0.0045	<0.0084	<0.0047 (<0.0060 #
NA	NA	N/A	NØA	Percent Moisture	6.7	14.3	9.3	3.7	11.3	6.9	9.1	7.3	9.9

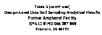
	Screening L	evels (mg/kg)	- 3	Parameters	6		Off-Site Soll Sampl	ing Locations (mg/kg)		
	100000000000000000000000000000000000000			Sample Location	Forsythe - North	Forsythe - North	Forsythe - North	Forsythe - North	Forsythe - North	Forsythe - North
RCG MTG	Site-Specific Re-Calculated ROG MTG	RCG RDC	RCG C/IDC	Sample (D	DSB-44 SL (7.9-8,9)	DSB-45 SL (7.6-8.6)	DSB-46 SL (7.6-8,6)	DSB-47 SL (7,65-8,65)	TW-15 SL (7.8-8.9)	TW-16 SL (8,7-9,7)
Screening Level	Screening Level	Screening Level	Screening Level	Sampling Interval	7.9 - 8.9	7,6 - 8,6	7.6 - 8.9	7.65 - 8.65	7.8 - 8.9	8,7 - 9,7
	cond /			Sample Date	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019
0,19	0.737	50	190	1,1-Dichloroethane	<0.0049	<0.0063	-0.0097	<0.0052	<0.0062	<0.0048
0,028	0.283	6.4	20	1,2-Dichloroethane	+0.0049	<0.0063	<0.0067	<0.0052	<0.0062	<0.0048
0.41	0.411	220	2,300	cia-1,2-Dichloroethene	<0.0049	<0.0063	<0.0067	<0.0052	<0.0062	<0.0048
0.82	0.825	1,900	1,900	trans-1,2-Dichloroethene	<0.0049	<0.0063	<0.0067	<0.0052	<0.0062	<0,0048
0.025	38,854	490	3,200	Nettylene chloride*	<0.020	<0.025	×0.027 *	<0.021	<0.025	≺0.019
0,045	0.996	110	170	Tetrachloroethylene (POE)	0.030	0.056	0.057 +	0.069	0.015	0.012
1.4	90,998	640	640	1,1,1-Trichloroethane	<0.0049	<0.0063	<0.0067	<0.0052	<0.0082	<0.0048
0.036	0.065	5.7	19	Trichlorethylene (TCE)	0.0069	0.0081	0.0055 J	0.0067	<0.0062	0.0026 J
0.014	0.014	0.83	17	Vinyl Chloride	×0,0049 \$	<0,0053 ŧ	<0,0057 +	<0,0052 †	<0.0082	<0.0048
NIA	NIA	N/A	N/A	Percent Moisture	8.3	5.4	5.8	5.2	6.3	11.0

Table 3 (continued) Design-Level Data Soil Sampling Analytical Results Former Amphanol Racility EPA 10 #IND 044 697 648 Franklin, IN 46121

	Screening L	evels (mg/kg)		Parameters	2			Off-Si	te Soil Sampling Locations (mg/kg)			
				Sample Location	Hamilton - East	Hamilton - East	Hamilton - East	Hamilton - West	Hamilton	- Center	Hamilton - Center	Hamilton - Center	Forsythe - North
RCG MTG	Site-Specific Re-Calculated ROG MTG	RCG RDC	RCG C/IDC	Sample ID	DSB-1 SL (7.5-8.5)	D98-2 SL (7.5-8.5)	D98-3 SL (7.5-8.5)	DSB-4 SL (8.8-9.8)	DSB-5 SL (9.4-10.4)	FD-2 SL	D58-6 SL (8.4-10.4)	DSB-7 SL (8.4-10.4)	DSB-8 SL (9.4-10.4)
Screening Level	Screening Level	Screening Level	Screening Level	Screened Interval (feet)	7,5 - 8,5	7.5 - 8.5	7.5-8.5	8.8 - 9,8	9.4 - 10.4	8,4 - 10,4	9.4-10.4	9.4 - 10.4	9,4 - 10,4
		·		Sample Date	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019
0,16	0.737	50	100	1,1-Dichlercethane	<0.0042	<0.0050	<0.0074	<0.0051	<0,0075 ©	<0.0061	<0.28	<0.0059	<0.0054
0.028	0.283	6.4	20	1,2-Dichloroethane	<0.0042	<0.0050	⊲0.0074	<0.0051	<0.0079 ©	<0.0061	<0.26	<0.0059	<0.0054
0.41	0.411	220	2,900	cis-1,2-Dichloroethene	<0.0042	<0.0050	<0.0074	<0.0051	<0,0079 ©	<0.0061	<0.26	<0.0059	<0.0054
0.62	0.625	1,900	1,900	trans-1,2-Dichloroethene	<0.0042	<0.0050	<0.0074	<0.0051	<0.0078 ©	<0.0061	<0.26	<0.0059	<0.0054
0,025	38,654	490	3,200	Nethylene chloride*	<0.017	<0.020	<0,030	<0.020	<0,031 ©	<0.024	<1,0	<0,023 ÷	<0.022
0.045	0.996	110	170	Tetrachloroethylane (POE)	0.011	0.0072	0.019	0.0014 J	0.039 ©	0.075	1.0	0.035	0.096
1.4	90,958	640	640	1,1,1-Trichloroethane	<0.0042	<0.0050	<0.0074	<0.0051	<0.0079 ©	<0.0061	0.12 J	<0.0059	0.00061 J
0.036	0.095	5.7	19	Trichlorethylene (TCE)	0.0027 J	0.0095 J	0.0076	<0.0051	<0.0079 ©	0.0039.)	0,25 J	0.0028 J	0.013
0.014	0.014	0.83	17	Vinyi Chilaride	<0.0042	<0.0050	<0.0074	<0.0051	<0.0079 ©	<0.0061	<0.20	<0.0059	<0.0054
NA	NA	NA	NA	Percent Moisture	15.4	3.7	6,2	10.7	7.1	6.7	0.8	9.3	4.6

	Screening L	evels (mg/kg)		Parameters				Off-S	ite Soil Sampling Locations (mg/kg)			
	l		Ĩ	Sample Location	Foreythe - North	Forsythe - North	Forsythe - North	Forsythe - North	Fonsythe - North	Forsythe - North	Fonsythe - Central	Forsythe - Central	Forsythe - Central
RCG MTG	Site-Specific Re-Calculated RCG MTG	RCG RDC	RCG C/IDC	Sample ID	DSB-5 SL (9.4-10.4)	DSB-10 SL (9.4-10.4)	DSB-11 SL (5.4-10.4)	DSB-12 SL (9.4-10.4)	DSB-13 SL (9.25-10.25)	DSB-14 SL (10.1-11.1)	DSB-15 SL (10.2-11.2)	DSB-16 SL (10.4-11.4)	DSB-17 SL (10.5-11.5)
Screening Level	Screening Level	Screening Level	Screening Level	Sampling Interval	9.4 - 10.4	9,45 - 10,4	9.4-10.4	9.4-10.4	9.25 - 10.25	10.1 - 15.1	10.2 - 11.2	10.4 - 11.4	10.5 - 11.5
				Sample Date	2/25/2019	2/26/2019	2/26/2019	2/26/2019	2/20/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019
0,16	0,737	50	160	1,1-Dichloroethane	×0.0055	40,0061	<0.0051	<0.0099	<0.0044	<0.0050	<0.0041	<0.0040	40,0048
0,028	0,283	6.4	20	1.2-Dichloroethane	<0.0055	-0,0061	⊲0,0051	<0.0099	+0.0044	<0,0050	+0,0041	-0,0040	+0.0046
0.41	0,411	220	2,300	cis-1,2-Dichloroethene	<0.0065	40,0061	<0.0051	<0.0099	<0.0044	<0.0050	<0.0041	<0.0040	<0.0048
0,82	0,625	1,900	1,900	trans-1.2-Dichioroethene	<0.0055	-0,0061	⊲0,0051	<0.0099	<0.0044	<0,0050	+0,0041	-0.0040	+0.0046
0.025	38,854	490	3,200	Methylene chloride*	+0.022	+0.024	=0,020	-0.040	<0.017	×0,020	+0.017	<0.016 #	<0.018
0,045	0,996	110	170	Tetrachloroethylene (POE)	0.077	0,090	0,035	0,11	0.043	0.11	0.10	0,11	0,18
1.4	90,668	640	640	1,1,1-Trichloroethane	<0.0055	-0,0061	<0.0051	<0.0099	<0.0044	0.0032 J	<0.0041	<0.0040	0.0042 J
0,036	0,065	5,7	19	Trichlorethylene (TCE)	0,0086	0.0094	0.0042 J	0.013	0,0037 J	0,036	0.02	0.026	0.046
0.014	0.014	0.83	17	Vinyl Chloride	<0.0055	<0,0061	<0.0051	<0.0099	<0.0044	<0.0050	<0.0041	<0.0040	-0.0046
N/A	NA	NA	N/A	Percent Moisture	6.4	7.2	5,7	6.2	10.9	14.6	9,1	8,7	7,6

Table 3 (continued) sign-Level Data Solf Sampling Analytical Resul Former Amphenol Pacility EPA 10 \$1ND 044 697 648 Franklin, IN 46131


De

	Screening Levels (mg/kg)				Off-Site Soil Sampling Locations (mg/kg)									
RCG MTG Screening Level	Site-Specific Re-Calculated ROG MTG Screening Level	RCG RDC Screening Level		Sample Location	Forsythe - Central 038-18 SL (10,5-11.5) 10,5 - 11.5 2/25/2019	Farsythe - Central D38-19 5L (10.6-11.6) 10.6 - 11.6 2/25/2019	Forsythe - Central DSB-29 SL (10.6-11.6) 10.6 - 11.6 2/26/2019	Forrythe - Central OSE-21 SL (10.7-11.7) 10.7 - 11.7 205(2015	Foreythe - Central 058-22 SL (10.1-11.1) 10.1 - 11.1 2/25/2019	Fansythe - South OSB-23 SL (9.2-10.2) 9.2 - 10.2 2/27/2019	Famythe - South D58-24 SL (7.9-8.9) 7.9 - 8.9 2/27/2019	Forsythe - South D58-25 SL (7.5-8.6) 7.5 - 8.6 2/27/2019	Forsythe - South	
			RCG C/IDC	Sample ID									D38-26 (7.6-8.6)	
			Screening Lovel	Sampling Interval									7.6 - 8.6	
				Sample Date									2/27/2019	
0.16	0.737	50	160	1,1-Dichloroethane	<0.0050	<0.0043	<0.0049	<0.0053	<0.0060	<0.0064	<0.0048	0.027	0.19	
0.028	0,263	8.4	20	1,2-Dichloroethane	<0,0060	<0.0043	<0.0049	<0.0053	<0.0060	<0.0084	<0.0048	<0.0035	<0.0042	
0.41	0.411	220	2,300	cis-1,2-Dichloroethene	<0.0050	<0.0043	<0.0049	<0.0053	<0.0060	<0.0084	<0.0048	<0.0036	<0.0042	
0.62	0.625	1,900	1,900	trans-1,2-Dichloroethene	<0,0050	<0.0043	<0.0049	<0.0053	<0.0050	<0.0084	<0.0048	<0.0035	<0.0042	
0.025	38.654	490	3,200	Nethylene chloride*	<0.020	<0.017	<0.020	<0.021	<0.020	<0.026	<0.019	<0.014	<0.017	
0.045	0.996	110	170	Tetrachioroethylene (POE)	0.12	0.063	0.076	0.13	0.048	<0.0064	<0.0048	<0.0035	<0.0042	
1.4	90.098	640	840	1,1,1-Trichforoethane	0.0036 J	0.0023 J	0.0018 J	0.0034 J	<0.0060	<0.0084	<0.0048	0.19	0.077	
0.036	0.095	5.7	19	Trichlorethylene (TCE)	0.098	0.025	0.024	0.036	0.000	0.0014 J	<0.0048	0.0031 J	<0.0042	
0.014	0.014	0.63	17	Vinyi Chiloride	<0.0050	<0.0043	<0.0049	<0.0053	<0.0060	<0.0084	<0.0048	<0.0035	<0.0042	
NA	NIA	NA	NØA	Percent Moisture	11.2	8.9	8.0	11.7	9.9	16.0	11.0	8.8	10.2	

	Screening L	evels (mg/kg)		Parameters	Off-Site Soil Sampling Locations (mg/kg)									
RCG MTG Screening Level	Site-Specific Re-Calculated ROG MTG Screening Lovel	ROG RDC Screening Level		Sample Location	Foreythe - South DSB-31 SL (7.5 -8,5)	Fonsythe - South DSB-32 SL (7,9-8,9) 7,9-8,9 2/27/2019	Forsythe - South DSB-S4 SL (9.7-10.7) 9.7 - 10.7 2/27/2019	Ross Court - West DSB-36 SL (7.7-8.7) 7.7-8.7 2/27/2019	Forsythe - Central DSB-36 SL (10.3-11.3) 10.3-11.3 2/27/2019	Forsythe - Central DSB-37 SL (10,6-11,6) 10,6 - 11,8 2/27/2019	Forsythe - Central D3B-38 SL (10.5-11.5) 10.5-11.5 2/27/2019	Forsythe - Central		
			RCG C/IDC	Sample ID								DSB-39 SL (10,2-11,2) 10,2-11,2 2/26/2019	FD-13 SL 10.2 - 11.2 2/28/2019	
			Screening Level	Sampling Interval	7,6 - 8,8									
				Sample Date	2/27/2019									
0,19	0.737	50	100	1,1-Dichloroethane	<0.0053	×0.0051	<0,0050	<0.0048	<0.0053	<0.0049	<0,0048	<0.0058	<0.0049	
0.028	0.283	6.4	20	1.2-Dichloroethane	<0.0053	<0.0051	<0.0050	<0.0648	+0.0053	<0.0049	<0.0046	<0.0058	<0.0049	
0.41	0.411	220	2,300	cia-1,2-Dichloroethene	<0.0053	<0.0051	<0.0050	<0.0046	<0.0053	<0.0049	×0.0048	<0.0058	<0.0049	
0.82	0.625	1,900	1,900	trans-1,2-Dichloroethene	<0.0053	<0.0051	<0.0050	<0.0048	+0.0053	<0.0049	<0.0046	<0.0058	<0.0049	
0.025	38.854	490	3,200	Methylene chloride	×0.021	<0.021	<0.020	=0.019	<0.021	<0.019	-0.019	<0.023	<0.020	
0.045	0.996	110	170	Tetrachloroethylene (POE)	<0.0053	<0.0051	0,030	<0.0048	0.073	0,093	0.26	0.051	0.074	
1.4	90,958	640	640	1,1,1-Trichloroethane	<0.0053	<0.0051	0.0057	0.0042 J	0,0072	0.0049	0.0085	<0.0058	0,0018 J	
0.036	0.065	5.7	19	Trichlarethylene (TCE)	<0.0053	<0.0051	0.043	0.025	0.066	0.045	0.079	0.013	0.020	
0,014	0,014	0.83	17	Vinyl Chloride	<0.0053	<0.0051	<0,0050	<0.0048	<0.0053	<0.0049	<0.0048	<0,0058	×0.0049 #	
NA	NA	N/A.	N/A	Percent Moisture	9.1	13,1	18.9	14.5	17.2	12.9	- 12.4	11.3	9.7	

Table 3 (continued) Design-Level Deta Soil Sampling Anslytical Results Formar Amphanel Facility EPA 10 SINO 404 697 646 Pranklin, IN 46134

	Screening L	evels (mg/kg)	_	Parameters	Off-Site Soli Sampling Locations (mg/kg)									
				Sample Location	Forsythe - Central	Forsythe - Central	Forsythe - Central	Forsythe - Central	Forsythe - North	Forsythe - North	Forsythe - North	Foreythe - North	Forsythe - North	Forsythe - North
RCG MTG Screening	Site-Specific Re-Calculated	000000	RCG C/IDC	Sample ID	DS8-40 SL (10.2-11.2)	DSB-41 SL (10.1-11.1)	DSB-42 SL (10.1-11.1)	DSB-43 SL (10.1-11.1)	DSB-44 SL (9.5-10.5)	DSB-45 SL (9.3-10.3)	D58-46 SL (9.3-10.3)	DSB-47 SL (9.4-10.4)	TW-15 SL (9,5-10.5)	TW-16 SL (10.4-11.4)
Level	ROG MTG Screening Level		Screening Lovel	Sampling Interval	10.2 + 11.2	10.1 - 11.1	10.1 - 11.1	10.1 - 11.1	9.6 - 10.5	9.3 - 10.3	83-103	9.4 - 10.4	9.5 - 10.5	10.4 - 11.4
	- Cirici			Sample Date	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019
0.16	0.737	50	160	1,1-Octiloroethane	<0.0043	<0.0061	<0.0047	<0.0047	<0.0075	<0.0051	<0.0050	<0.0075	<0.0045	<0.0039
0.028	0,263	6.4	20	1,2-Dichloroethane	<0.0043	<0.0051	<0.0047	<0.0047	<0.0075	<0.0051	<0.0050	<0.0076	<0.0049	<0.0039
0.41	0.411	220	2,300	cis-1,2-Dichloroethene	<0.0043	<0.0051	<0.0047	<0.0047	<0.0075	<0.0051	0.020	<0.0075	<0.0049	<0.0039
0.62	0.625	1,900	1,900	trans-1,2-Dichloroethene	<0.0043	<0.0051	<0.0047	<0.0047	<0.0075	<0.0051	<0.0050	<0.0075	<0.0049	<0.0039
0.025	38.654	490	3,200	Methylene chloride	<0.017	<0.020	<0.019	<0.019	<0.030	<0.020	<0.020	<0.030 *	<0.018	-0.016
0.045	0.996	110	170	Tetrachloroethylene (PCE)	0.13	0.076	0.097	0.72	0.13	0.051	0.073	0.17	0.040	0.017 ¢
1.4	90.008	640	840	1,1,1-Trichforoethane	0.0036 J	0.0026 J	0.0023 J	0.0082	0.0023 J	<0.0051	<0.0050	<0.0075	<0.0049	<0.0039
0.036	0.065	5.7	19	Trichlorethylene (TCE)	0.039	0.024	0.025	0.067	0.021	0.0030 J	0.016	0.012	0.0000	0.0052
0.014	0.014	0.63	17	Vinyi Chiaride	<0.0043	<0.0051 #	<0.0047 #	<0.0047	<0.0075 4	<0.0051 4	<0.0050 ¥	<0.0075 	<0.0046	<0.0039
N/A	NIA	NA	NØA	Percent Moisture	11.0	11.7	11.7	7.6	7.3	5.3	4.7	5.8	8.4	7.7

	Screening L	avels (merka)		Paramatara				01-3)	a Sali Bempling Locations	markaj			
		-		Aumpie Location	Pamillon Last	Familian Lest	amilio- Lesi	'ismilar West	latifon Center	(La-i)ta-	- Oenter	Familion Center	'staythe North
RCC MTC Screening	Site Specific Re-Caleulated ROG MTG	acto anto	RCS CADO Screening	đurnjile (D	Daib-1 SL (15-16)	D88-2 3L (15.5-18.5)	088-3 SL (15-18)	038-4 aL (15-17)	D8B-5 8L (16.5-17_5)	D8B-4 SL (17.5-18.5)	FD-1 3L	088-7 SL (17-18)	038-8 aL (18-19)
_evel	Scieening	Gaterning Level	_evel	Sampling Interval	19-18	15.5 - 16.5	15-16	16 - 11	18-5-11.5	17.5 - 18.5	17.5 - 15.5	1 K = 18	19-18
				Sample Data	2/25/2019	2/25/2019	225-2915	201/2015	2/25/2019	2/25/2019	2/20/2015	205/2015	2/25/2019
L.18	0.57	*	.e.	1 "HAthlane"ane	AC 0048	PC.3044	44.00%	<100M	AC 0048	PL.3048	-4.00 %	ALIXANS	×30645
9.025	0.250	8.4	20	1 2-LAchiersePierre	40.0048	PC.0044	-410091	×30684	×0.0048	PU.3048	-4100 %	-44.00046	<30645
L.11	0.41	24	2 %0	da-12-0 utiloroethere	AC 0049	PC.3044	-4100 9 1	<0.000M	×0.0048	PU.3KM8	~4100%	ALCOME	×30645
6.62	0.625	• 400	· •••	irane-1.2-Cisticice#ene	AC 40-19	PC.0044	-41008	<3.0084	AC 0048	*6.00M8	~4100%	ALCONE	×30645
0.025	38.854	જન	3 23.	Vensiere allande"	×0 020	×0.017	+6.024		K01018	-6,016 j	-0,023 -	•0,016 •	with"?
Q.045	0.946	11L	·	retractionaethylene (PCA)	3 08 6	0.058	6.12	×30649	30.2	0.0067	L.014	0,0084 •	no.4
1,4	96.998	846		1,1-1-1-chloroetrane	6.002 / a	0.015	6.090	43.0644	×0.0048	*6.00H8	-4.00 %	ALCOME	×30645
u.c.ss	0.965	27	14	inorlarettylene (102)	3574	0.990	0.10		×0.0048	a.0085.	องมาม	0,00087-1)	~3.0645
0.014	0.314	0.40		Viryl (>korde	AC ODAR	PU.0044	~40.00%L	- 	×0.0048	*6.00M8	-4100 %	ALCOME	×30645
68	N9A	NW	Roll.	Percent Morsture	Tx7	8.2	5	8.7	45	'1.2	9.8	5.9	1.2

	Screening L	evels (mg/kg)		Perameters				06-55	• Noil Sampling Locations	ma/kg)			
				Sample Location	Feaglie - Neith	Furnythe - North	Fanythe - No T	Foregoine - North	Feagler - Neith	Foreythe - Centred	Foreign - Central	Fungthe - South	Pues Sourt - West
ROG NING Screening	Sis-Specific Re Cascilated RCC VTC	403 400	recs cyluc: Sovering	Sample ID	05949 3L (19419)	D36-10 SL (10.5-17.5)	DaB-11 ar (13-10)	C98-12 9L (16.3-17.9)	D98-13 9L (13-14)	D3840 SL (13413.5)	D58-21 SL (12,3-13.5)	D98-23 SL (11-12)	D98-35 9L (8.5-10.5)
	Sevening	Screening Level	entering Fred	Sampling interval	18 - 15	·E.S 17.5	'5-1 5	186-175	13-14	13-130	17.5 - 13.0	11 - 17	9.5 - 10.5
				Sample Dete	2052010	2265019	2.96/2019	206/2016	2/04/2010	3/280019	2962019	267/2319	207.9 : 315
C.15	E.737	×	·67	1 - Dishicroethar e	<0.0064	«C.3%?	-0.0396	<10224	<c-0048< td=""><td><c.3043< td=""><td>C.657</td><td><0.6350</td><td>E.309E J</td></c.3043<></td></c-0048<>	<c.3043< td=""><td>C.657</td><td><0.6350</td><td>E.309E J</td></c.3043<>	C.657	<0.6350	E.309E J
C.E26	E.263	6.4	73	1 7-Dishikroetvarie	<0.0064	<0.3977	<0.0396	<10044	<0-0048	<c.3043< td=""><td><0.0345</td><td><0.035C</td><td><10077</td></c.3043<>	<0.0345	<0.035C	<10077
C.41	E.41'	77C	7 300	es-17-3 chiaracthers	<c-0064< td=""><td><0.3977</td><td>~0.E3%</td><td><10044</td><td><5-0048</td><td><c.2043< td=""><td>0-00°1 J</td><td><0.6350</td><td><10077</td></c.2043<></td></c-0064<>	<0.3977	~0.E3%	<10044	<5-0048	<c.2043< td=""><td>0-00°1 J</td><td><0.6350</td><td><10077</td></c.2043<>	0-00°1 J	<0.6350	<10077
C.67	0.624	· 900	1 9X	trans-1,7-Cloneraettione	<0.0064	<0.3007	×0.03%	<10024	<c-0048< td=""><td><c.3043< td=""><td><0.0349</td><td><0.6350</td><td><10277</td></c.3043<></td></c-0048<>	<c.3043< td=""><td><0.0349</td><td><0.6350</td><td><10277</td></c.3043<>	<0.0349	<0.6350	<10277
C.E25	38.554	49C	3.700	Votugione shiolide*	<3.02,	<c.371< td=""><td>«C.894</td><td>×30*7</td><td><30'5</td><td><0.017 ÷</td><td><c.220< td=""><td>043.0%</td><td>~2.C31</td></c.220<></td></c.371<>	«C.894	×30*7	<30'5	<0.017 ÷	<c.220< td=""><td>043.0%</td><td>~2.C31</td></c.220<>	043.0%	~2.C31
C.045	C.996	110	170	Tetraenisisethylend (PDF)	1 OCT	E.224	C.79	0.645	3 17C	1.9	0.0051	<0.0063 #	<10077
1,4	5C.058	64C	640	1,1.1-Tronkerbettane	C.0315 .	<0.3977	£ 00097 J	C.3017 J	C.D321 .	E.127	C.11	<0.035C	4037
C.E35	C.392	57	19	Therioretrylene (TOP)	3 -077	a.ce34.	C.674	ac*1	00'B	0.19	1.4	 ∞case 	0.07% v
0.014	G.314	3.67	17	Viryi Chiance	<0.0064	<0.3007	~0.03%	<10544	<0-0048	<c.3043< td=""><td>N.6345</td><td> ∞case </td><td><0.0077 a</td></c.3043<>	N.6345	 ∞case 	<0.0077 a
hА	N/A.	- 110-	N/A.	Forcent Moisture	57	70	7,4	- 7.5	10.8	7.1	'74	7.3	е. т

ĩWM

Table 3 (contruent) Des ge-Level Usis Soll Semping Ansiytical Kesults Forma Amphana Facility BPA (3 41 (10 det 37) 649 Francia, IN 4413)

	Screening L	avaba (monto)		Paramatara				Off-Site Soll Sumplin	g Localiana (mg/kg)			
				Annote Location	Longthe Central	onythe Central	omytre Not	'anytre Nath	i creșt he fearth	Longthe North	I crakte	- Foculii
RCC MTC Sorrenns	See Specific Re-Cole, lates -KCG M154	16. A. 16. K.	RCS CADO Survering	Sumple ID	DSB-39 SL (12-13)	D88-40 8L (12-13)	DaB-44 al (12.5-13.5)	D98-45 SL (12.5-13.5)	088-48 BL (15.5-15.5)	038-47 SL (15.5-18.5)	TW-15 SL (13-14)	FD-1 aL
_evel	Streening	Screening Level	Level	Jevretni gnilqma#	12 - 13	12 - 13	12.5 - 1755	12.5 - 13 0	194-18,5	16.5 - 16.5	13 - 14	13-14
				Sample Data	2/25/2019	2/20/2019	2/20/2015	208/2019	2/28/2019	2/20/2019	2/20/2015	228-2015
6.18	0.57	×	·10	1 '-LAuhiersetteine	AC 4048	чс.жи /	-44.03042	<1005	(0,9064 a	*6.3058	-40.00452	-400950
6.025	0.2%	8.4	20	12-LAuhiersethere	×C 40/18	нс.жи /	-44.0342	<30005	(0,0054 a	46,3058	-410068	-40090
6.41	0.41	24	2 90.	carl 2-J chloroethere	AC 40418	нсцжи и	-44.03042	<30085	(0,5064 a	46.3058	-40.00458	-410050
1.82	0.825	• ••••	· 90.	Irane-1.2-Disficice#ene	KC QL/18	есрои и	-44.0342	~auors	(0,5054 a	46.3058	-ALCONS	-40050
6.025	38 854	જન,	3 2.L	Verigiere stilonde"	×0.0.8	×0.015	40.017	~1025	(0.05.1	<0.322	-6.027	+0.021
4.045	0.946	111.		' etrachbroethylene (PCA)	a.e	0.97e	6.17	a.m	3121	C 24	6.677	6.045
1.6	SC.958	84L	840	1.1 1-1 chloroetrane	L.0048 .	avers.	0.008	- 	(0,0054 a	QUC14 J	a acay a	a.ac.ea
L.098	0.965		14	inorlaretrylene (i CL)	3.068	0.352	6.042	at '2	C.(2037	0.027	ແຫ	6,015
6.014	0.014	340	17	Viryl Chloride	KC QU18	×10047.6	<0.042.)	<0.0063	×0,0054 ×	+C,0956	-40.0068	-44.00%0
HeV.	NYA	NN	RW.	Percent Monsture	8.1	81	8.1	s.'	1.3	126	20.5	.e.

ĩWM

Table 3 (continued) sign-Level Data Solf Sampling Analytical Resu Former Amphenol Facility EPA 10 21 NO 044 597 545 Franklin, IN 45131

Der

	Screening L	evels (mg/kg)		Parameters	14			017-5	ite Soil Sampling Locations (mg/kg)			
				Sample Location	Hamilton	- East	Hamilton - East	Hamilton - East	Hamilton - West	Hamilton - Center	Hamilton - Center	Hamilton - Center	Forsythe - North
RCG MTG	Site-Specific Re-Calculated	RCG RDC	RCG C/IDC	Sample ID	DSB-1 SL (20.5-21.5)	FD-1 SL	D58-2 SL (21-22)	DSB-3 SL (21.5-22.5)	D58-4 SL (22.25-23.25)	DSB-5 SL (22.5-23.5)	OSB-6 SL (23-24)	DSB-7 SL (23-24)	DSB-8 SL (24-25)
Screening Level	ROG MTG Screening Level	Screening Level	Screening Lovel	Sampling Interval	20.5 - 21.5	20.5 - 21.5	21 - 22	21.5 - 22.5	22.25 - 23.25	22.5 - 23.5	23 - 24	23-24	24 - 25
	34640			Sample Date	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019	2/25/2019
0.18	0.737	50	160	1,1-Dichloroethane	<0.0047	<0.0053	<0.0051	<0.0049	<0.0040	<0.0068	<0.0044	<0.0056	<0.0044
0.025	0,263	8.4	20	1,2-Dichloroethane	<0,0047	<0.0053	<0.0051	<0.0049	<0.0040	<0.0066	<0.0044	<0.0056	<0.0044
0.41	0.411	220	2,900	cis-1,2-Olchloroethene	<0.0047	<0.0053	<0.0051	<0.0049	<0.0040	<0.0068	<0.0044	<0.0056	<0.0044
0.62	0.625	1,900	1,900	trans-1,2-Dichloroethene	<0,0047	<0.0053	<0.0051	<0.0049	<0.0040	<0.0066	<0.0044	<0.0056	<0.0044
0.025	38.654	490	3,200	Nethylene chloride*	<0.019	<0.021	<0.020	<0.020	<0.016	<0.026	<0.018 #	<0.022	<0.018
0.045	0.996	110	170	Tetrachloroethylene (PCE)	0.0058	<0.0053	<0.0051	0.047	<0.0040	0.0026 J	0.0082	0.0051	0.042
1.4	90.058	640	840	1,1,1-Trichforoethane	0.063	0.020	0.029	0.011	<0.0040	<0.0000	0.0019 J	0.0015 J	<0.0044
0.036	0.095	5.7	19	Trichlorethylene (TCE)	3.1	0.29	0.26	0.11	0.024	<0.0066	0.010	0.0077	0.017
0.014	0.014	0.63	17	Vinyl Chloride	<0.0047	<0.0053	<0.0051	<0.0049	<0.0040	<0.0008	<0.0044	<0.0056	<0.0044
NA	NA	NA	NOA	Percent Moisture	7.4	7.3	7.9	6.7	9.2	52	8.5	7.6	7.8

	Screening L	evels (mg/kg)		Parameters			2.00	Off-Si	te Soil Sampling Locations (m	g/kg)	<u></u>		
	1505000000			Sample Location	Forsythe	- North	Forsythe - North	Forsythe - North	Forsythe	North	Foreythe - North	Forsythe - 0	Central
CG MTG	Site-Specific Re-Calculated	ROS RDC	RCG C/IDC	Sample (D	DSB-5 SL (24-25)	FD-4 SL	DSB-10 SL (21,5-22,5)	D\$8-11 SL (29-22)	DSB-12 SL (22-23)	FD-5 SL	DSB-13 SL (16-17)	DSB-14 SL (12,5-13,5)	FD-6 SL
Level	ROS MTG Screening Level	Screening Level	Screening Level	Sampling Interval	24-25	24-25	21.5-22.5	20 - 22	22 - 23	22 - 23	16 - 17	12.5-13.5	12.5 - 13.5
	cond /			Sample Date	2/25/2019	2/28/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019
0,18	0.737	50	100	1,1-Dichloroethane	<0.0052	<0.0038	<0,0053	<0.0054	40.0044	<0.0046	×0.0051	<0.0090 ÷	<0.0044
0.028	0.283	6.4	20	1.2-Dichloroethane	<0.0052	<0.0038	<0.0053	<0.0054	+0.0044	<0.0046	<0.0051	<0,0060 +	<0.0044
0.41	0.411	220	2,300	cia-1,2-Dichloroethene	+0.0052	<0,0038	<0.0053	<0.0054	-0.0044	<0.0046	40.0051	<0.0090 ÷	<0.0044
0,62	0.625	1,900	1,900	trans-1,2-Dichlaroethene	<0.0052	<0.0038	<0.0053	<0.0054	+0.0044	<0.0046	<0,0051	<0,0060 +	<0.0044
0.025	38.854	490	3,200	Methylene chloride*	×0.021	<0,015	<0.021	<0.022	×0.017	<0.018 \$	<0.020	<0,024 +	<0.018 +
0,045	0.996	110	170	Tetrachloroethylene (POE)	0.0082	0.0087	0.010	0.017	990.0	0.097	0.032	0,20 +	1.2
1.4	90,938	640	640	1,1,1-Trichloroethane	0.0011.4	<0,0038	0.0020 J	0.0015 J	0.0085	0,0056	0.0044 J	<0.0000 +	0.017
0,036	0.065	5.7	19	Trichlorethylene (TCE)	0.026	0.018	0,037	0.027	0.14	0.12	0.026	0.078 +	0.17
0.014	0,014	0.83	17	Vinyl Chloride	<0.0052	40,0038	<0,0053	<0.0054	<0.0044	<0.0046	<0.0051	<0.0090 +	<0.0044
N/A	NIA	N/A	N/A	Percent Moisture	12.5	7.5	4.8	13.9	11.8	11.2	10.1	6.0	6.0

Table 3 (continued) Design-Level Data Solf Samphing Analytical Resul Former Amphanol Facility EPA ID 21ND 044 697 646 Franklin, IN 46131

	Screening L	evels (mg/kg)		Parameters	14		12	Off-	Site Soil Sampling Locations (mg/kg)			
			1	Sample Location	Forsythe - Central	Foreythe - Central	Forsythe -	Central	Forsythe - Central	Forsythe - Central	Forsythe - Central	Forsythe -	Central
RCG MTG	Site-Specific Re-Calculated	RCG RDC	RCG C/IDC	Sample ID	D58-15 SL (12.25-13.25)	DSB-16 SL (14.5-15.5)	DSB-17 SL (12.75 - 13.75)	FD-7 SL	D58-18 SL (12.5-13.5)	DSB-19 SL (13.5-14.5)	DSB-20 SL (13-14)	DSB-21 SL (14-15)	FD-8 SL
Screening Level	ROG MTG Screening Level	Screening Level	Screening Lovel	Sampling Interval	12.25-13.25	14.5 - 15.5	12.75 - 13.75	12.75 - 13.75	12.5 - 13.5	13.5 - 14.5	13 - 14	14-15	14 - 15
				Sample Date	2/25/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019	2/26/2019
0.18	0.737	50	160	1,1-Dichloroethane	<0.0046	0.062	<0.0053	<0.0062	<0.0066	<0.0049	<0.0051	<0.0046	<0.0050
0.025	0,263	6.4	20	1,2-Dichloroethane	<0,0046	<0.0045	<0.0053	<0.0062	<0.0066	<0.0049	<0.0051	<0.0046	<0.0090
0.41	0.411	220	2,900	cis-1,2-Cichloroethene	<0.0048	0.0027 J	<0.0053	<0.0002	<0.0066	<0.0049	<0.0051	<0.0046	<0.0050
0.62	0.625	1,900	1,900	trans-1,2-Dichloroethene	<0,0046	<0.0045	<0.0053	<0.0062	<0.0096	<0.0049	<0.0051	<0.0046	<0.0090
0.025	38.854	490	3,200	Nethylene chloride*	<0.18	<0.018 ş	<0.021	<0.025	<0.022	<0.020	<0.020	<0.019	<0.020
0.045	0.996	110	170	Tetrachioroethylene (POE)	0.60	<0.0045	0.25	0.14	0.28	3.2	0.21	0.13	0.082
1.4	90.998	640	840	1,1,1-Trichforoethane	0.011	<0.0045	0.013	0.011	0.018	0.028	0.020	0.010	0.0059
0.036	0.095	5.7	19	Trichlorethylene (TCE)	0.11	2.5	9.10	0.000	0.14	0.23	0.16	860.0	0.067
0.014	0.014	0.63	17	Vinyi Chioride	<0.0046	<0.0045	<0.0053	<0.0062	<0.0066	<0.0049	<0.0051	<0.0046	<0.0050
NA	NA	NA	NØA	Percent Moisture	8.9	14.5	15.5	14.0	14.1	12.2	15.0	12.4	9.7

	Screening L	evels (mg/kg)		Parameters				Off-Si	te Soil Sampling Locations (mg/kg)	<u>.</u>		124
	- 0681 Saury 800			Sample Location	Forsythe - Central	Forsythe - South	Forsythe - South	Foreythe - South	Forsythe - South	Forsythe - South	Forsythe -	South	Forsythe - South
	Site-Specific Re-Calculated ROS MTG	ROG RDC	RCG C/IDC	Sample (D	DSB-22 SL (12-13)	DSB-23 SL (12,75-13,75)	DSB-24 SL (9.25-10,25)	D3B-25 SL (6.5-7,5)	DSB-26 SL (6.5-7.5)	D98-27 SL (7.5-8.5)	D98-28 SL (7,5-8,5)	FD-10 SL	DSB-29 SL (6.8-7.8)
Screening Level	Screening Lovel	Screening Level	Screening Level	Sampling Interval	12 - 13	12,75 - 13,75	9.25 - 10.25	8.5-7.5	6.5 - 7,5	7.5-8.9	7.5-8.5	7.5-8.5	6.8 - 7.8
				Sample Date	2/26/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019
0,19	0.737	50	100	1,1-Dichloroethane	<0.0048	<0.0049	0.054	<0.0045 W	<0.0045	0.61	<0.0038	<0,0043	<0.0036
0.028	0.283	6.4	20	1.2-Dichloroethane	-0.0048	<0.0049	<0.0056	<0.0045 ¥	+0.0045	<0.0039	<0,0036	<0.0043	<0.0036
0.41	0.411	220	2,300	cia-1,2-Dichloroethene	<0.0048	<0.0049	<0.0055	<0.0045 ¥	<0.0045	×0.0039	<0.0038	<0.0043	<0.0096
0.82	0.825	1,900	1,900	trans-1,2-Dichloroethene	-0.0048	<0.0049	<0.0056	≺0,0045 ¥	+0.0045	<0.0039	<0,0036	<0.0043	<0.0036
0.025	38.854	490	3,200	Methylene chloride*	<0.019	<0.020	<0.022	<0,018 ¥	<0.018	<0.016	-0.015	<0.017	-0.014
0.045	0.996	110	170	Tetrachloroethylene (POE)	0.049	<0.0049	<0.0056	<0,0045 ¥	+0.0045	≪0.0039 Ψ	<0.0036	<0,0043	<0.0036 ₩
1.4	90,998	640	640	1,1,1-Trichloroethane	<0.0048	+0.0049	0,17	<0,0045 ¥	<0.0045	0.018	0.11	0.017	<0.0036
0.036	0.065	5.7	19	Trichlarethylene (TCE)	0.034	<0.0049	0.0011 J	<0,0045 ¥	+0.0045	<0.0039	<0.0036	<0,0043	0.0012 J
0.014	0,014	0.83	17	Vinyl Chloride	<0.0048	<0.0049	<0,0055	<0,0045 ¥	<0.0045	<0.0039	<0.0038	<0,0043	<0.0036
N/A	NA	N/A.	N/A	Percent Moisture	11.5	147	9.5	10.9	9.9	9.4	6.3	8.1	6.6

Table 3 (continued) Design-Level Data Soll Sampling Anslytical Resu Former Amphenol Facility BPA 10 \$100 44 597 546 Franklin, IN 45131

	Screening L	evels (mg/kg)		Parameters	le			05	Site Soil Sampling Locations (mg/kg)		·	
	2.00.000		1	Sample Location	Fareythe - South	Fansythe - South	Forsythe	- South	Forsythe - South	Farsythe - South	Ross Court - West	Foreythe - Central	Forsythe - Central
RCG MTG	Site-Specific Re-Calculated	RCG RDC	RCG C/IDC	Sample ID	DSB-30 SL (7.5-8.5)	D58-31 SL (8.75-9.75)	D58-32 SL (9-10)	FD-11 SL	DSB-33 SL (8.7-9.7)	DSB-34 SL (11-11,5)	DSB-35 SL (11.25-12.25)	DSB-36 SL (13-14)	D58-37 5L (13-14)
Screening Level	ROG MTG Screening Level	Screening Level	Screening Lovel	Sampling Interval	7.5 - 8.5	8.75 - 9.75	9 ~ 10	9 - 10	8.7 - 9.7	11+11.5	11.25 - 12.25	13 - 14	13 - 14
				Sample Date	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019
0.16	0.737	50	160	1,1-Dichloroethane	<0.0043	2.1	<0.0050	<0.0047	<0.0049	<0.0063	<0.0053	<0.0044	<0.0054
0.025	0,263	8.4	20	1,2-Dichloroethane	<0,0045	<0.0048	<0.0050	<0.0047	<0.0049	<0.0053	<0.0053	<0.0044	<0.0054
0.41	0.411	220	2,300	cis-1,2-Olchloroethene	<0.0043	<0.0048	<0.0050	<0.0047	<0.0049	<0.0053	<0.0053	<0.0044	<0.0054
0.62	0.625	1,900	1,900	trans-1,2-Dichloroethene	<0,0043	<0.0048	<0.0050	<0.0047	<0.0049	<0.0053	<0.0053	<0.0044	<0.0054
0.025	38.654	490	3,200	Nethylene chloride*	<0.017	<0.018	<0.020	<0.019	<0.020	<0.021	<0.021	<0.018	<0.021
0.045	0.996	110	170	Tetrachloroethylene (PCE)	<0,0043	<0.0048	<0.0050	<0.0047	<0.0049	0.016	<0.0053	0.13	0.20
1.4	90.098	640	840	1,1,1-Trichforoethane	<0.0043	<0.0048	<0.0050	<0.0047	0.0014 J	0.0032 J	<0.0053	0.011	0.018
0.036	0.095	5.7	19	Trichlorethylene (TCE)	<0.0043	<0.0048	<0.0050	<0.0047	0.010	0.025	<0.0053	0.095	0.13
0.014	0.014	0.63	17	Vinyi Chiaride	<0.0043	<0.0048	<0.0050	<0.0047	<0.0049	<0.0053	<0.0053	<0.0044	<0.0054
NA	NOA	NIA	NOA	Percent Moisture	11.8	10.9	8.0	6.5	10.8	7.8	10.4	6.9	11.1

	Screening L	evels (mg/kg)		Parameters	6	11		Off-Site	e Soil Sampling Locations (n	ng/kg)			
	1.74711.200			Sample Location	Forsythe - Central	Forsythe - Central	Foreythe - Central	Foreythe - Central	Forsythe -	Central	Foreythe - Central	Forsythe -	North
	Site-Specific Re-Calculated	ROG RDC	RCG C/IDC	Sample (D	038-38 SL (12.25-13.25)	D3B-39 SL (13,5-14.5)	DSB-40 SL (13.5-14.5)	D3B-41 SL (12,5-13,5)	DSB-42 SL (13-14)	FD-14 3L	DSB-43 SL (12,5-13,5)	DSB-44 SL (15,5-16,5)	FD-15 SL
Screening Level	ROG MTG Screening Level	Screening Level	Screening Level	Sampling Interval	12,25 - 13,25	13.5 - 14.5	13.5-14.5	12.5 - 13.5	15-14	13-14	12.5 - 13.5	15.5 - 18,5	15.5 - 18.5
	source -			Sample Date	2/27/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/26/2019	2/28/2019
0,18	0.737	50	100	1,1-Dichlorcethane	<0.0044	<0.0060	<0,0041	<0.0043	<0.0049	<0.0049	<0.0048	<0.0058	<0.0049
0.028	0.283	6.4	20	1,2-Dichloroethane	<0.0044	<0.0060	+0.0041	<0.0643	+0.0049	<0.0049	<0,0046	<0.0058	<0.0049
0.41	0,411	220	2,300	cia-1,2-Dichloroethene	<0.0044	<0.0060	<0.0041	-0.0043	+0.0049	<0.0049	+0.0048	<0.0058	<0.0049
0,62	0.825	1,900	1,900	trans-1,2-Dichloroethene	<0.0044	<0.0060	<0.0041	<0.0043	×6.0049	<0.0049	<0,0046	<0.0058	<0.0049
0.025	38.854	490	3,200	Methylene chloride*	<0.018	<0.024	<0.016	+0.017	×0.020	<0.020	-0.019	<0.023	<0.020
0.045	0.996	110	170	Tetrachioroethylene (POE)	0.24	0.75	0,14	0,14	0.11	Q.11	0,19	0.21	0.14
1.4	90,958	640	640	1,1,1-Trichloroethane	0.017	0,015	0,0093	0.0077	0.015	0.016	0.013	0,057	0.028
0,038	0.065	5.7	19	Trichlorethylene (TCE)	0.13	0.13	0.068	0.057	0.096	0.097	0.090	0.26	0.14
0.014	0,014	0.83	17	Vinyl Chloride	<0.0044	<0,0060	<0.0041 #	×0,0043 t	<0.0049 (<0.0049 \$	<0.0048 #	<0.0058 #	<0.0049 \$
NA	NA	N/A.	N/A	Percent Moisture	11.8	8.5	11.1	7.8	82	9.6	8.3	11.9	13.8

Table 3 (continued) Design-Level Data Soll Sampling Analyti Former Ansphanol Facility EPA 102 HINO 044 587 584 Franklin, IN 46131 al Results

	Screening L	evels (mg/kg)		Parameters	14 N	b	Off-Site Soil Sam	pling Locations (mg/kg)		
	and prosed		1	Sample Location	Faniythe - North	Forsythe	North	Farsythe - North	Forsythe - North	Fonsythe - North
RCG MTG	Site-Specific Re-Calculated ROG MTG	RCG RDC	RCG C/IDC	Sample ID	DSB-45 SL (15.5-16.5)	DSB-46 SL (21-22)	FD-16 SL	DSB-47 SL (20.5-21.5)	TW-15 SL (15.25-16.25)	TW-16 SL (13-14)
Screening Level	Screening	Screening Level	Screening Lovel	Sampling Interval	15.5 - 16.5	21 - 22	21 - 22	20.5 - 21.5	16.25 - 16.25	13 - 14
	34640			Sample Date	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019	2/28/2019
0.18	0.737	50	160	1,1-Dichloroethane	<0.0048	<0.0051	<0.0043	<0.0000	<0.0044	<0.0047
0.025	0,263	6.4	20	1,2-Dichloroethane	<0.0048	<0.0051	<0.0043	<0.0000	<0.0044	<0.0047
0.41	0.411	220	2,900	cis-1,2-Dichloroethene	<0.0048	<0.0061	<0.0043	<0.0000	<0.0044	<0.0047
0.62	0.625	1,900	1,900	trans-1,2-Dichloroethene	<0,0048	<0.0051	<0.0043	<0.0000	<0.0044	<0.0047
0.025	38.654	490	3,200	Nethylene chloride*	<0.019	<0.020	<0.017	<0.024	<0.018	<0.019
0.045	0.996	110	170	Tetrachloroethylene (POE)	0.012	0.10	0.093	0.10	0.086	0.11
1.4	90.098	640	840	1,1,1-Trichforoethane	0.0087	0.037	0.021	0.018	0.011	0.0053
0.036	0.095	5.7	19	Trichlorethylene (TCE)	0.067	1,1	1.8	0.23	0.085	0.069
0.014	0.014	0.63	17	Vinyi Chioride	<0.0048 +	<0.0051 +	<0.0043 #	<0.0060 +	<0.0044	<0.0047
NGA	NØA	NIA	N/A	Percent Moisture	8.0	8.7	8.2	8.5	6.1	11.0

Next

Next an resport dated either March 25, 2019 or March 29, 2019.

Table 5 (cominued) Design-Level Data GA/GC Sample Analytical Results Former Amphanal Facility EPA ID # INC 044 597 68 Franklin, IX 44131

Screening Levela (ug/L)	Parameters				Quality Assurance - 9	Quality Control (jmg/L)			
	Sample Location	Equprent Blank	Equipment Blank	Equipment Blank	Equipment Blank	Trp Blank	Trip Blank	Trip Blank	Trip Blank
RCG Residential	Sample ID	EB-1 WT	EÐ-2 WT	EB-3 WT	EB-4 WT	T9-1 WT	TB-2 WT	TB-\$WT	T8-4 WT
Groundwater Tap Screening Level	Sampling Interval	· ·	-	-	-	-	- '	-	-
	Sample Date	2/25/2019	2/06/019	2/2//2019	2/78/7019	2050019	2/26/2019	207/0019	2/08/2019
28	* 1-Dichloroethare	×5.C	<5.0	~5.0	<5.0	<5.0	<5.0	<5.0	<5.0
5	1,2-Dichlaraethane*	<0.2*	<0.21	<0.27	<0.32	-0.21	<0.21	≪C.27	<0.32
70	en-1 2-Dichloraethere	<5.0	<5.0	<5.0	<pc< td=""><td><5.0</td><td><5.0</td><td><5.0</td><td>4.0</td></pc<>	<5.0	<5.0	<5.0	4.0
100	Irans-" 2-Dictioncelhere	<5.0	≪5.0	<5.D	<5.C	<5.0	<5.D	<5.0	≪5.0
Þ	Methylere enlende	<5.0 C	<5.0	<5.0	<Þ.0	<5.0 B	<5.0	<5.0	<5.0
5	Tetrachkroethylene (PCE)*	<0.42	<0.42	<0.89	<0.6*	⊲0.42	<0.42	<0.83	×0.61
200	1,1-"nchjoroethane	<b,¢< td=""><td><2,0</td><td><5,0</td><td><72</td><td><5,0</td><td><5,0</td><td><5,0</td><td>40,0</td></b,¢<>	<2,0	<5,0	<72	<5,0	<5,0	<5,0	40,0
5	"richlarethylene ("CE)"	<0.53	<0.53	×0.84	<0.8D	<0.53	×0.53	≪C.64	<0.60
z	Vinyi Chiorde"	<0.47	*0.47	<0.97	<0.27	~0.47	<0.47	≪0, 9 7	<0.27
N/A	Total VCCs	0.0	0.0	0.0	C.0	0.0	ac	C.0	0.D

Noza 1. All varples otherined by IVAM Consulting personnel and analyzed at Pece Analytical Services L.-C localed in Indianapole, IN. 2. All VCCs unalyzed and pL SEPA Multiul 895C. 3. All scalar p.gf. 4. NOX: to sealarce (fails-allocated stranding largels have not local developed). 5. NAX: Not explosible. 5. NAX: Not explosible. 6. RCCs: I data Dependment of Environmentel Management (JDEM) flammation of Circuite Guide dated March 22. 2012 (with corrections through July 9. 2012) and sciencing levely updated samuelly. 7. Bolded concounters a scores PCG Headmain less than the adjusted method dates: on limit are adjusted repairing limit.

Tapia 4 DH-31La Grour deadar Sempling Analytical Kanuba Former Amphanol (1531)ty EPA ID # NC 544 567 648 Franklin, NC 544 5131

Son	aning Lanaja	(mp ^{RL})	Parameters.				Off-She G	roundwater Sampling Locat	lane (الرومين).			
		श्चत	Sumple Location	Temporary Well	ier porary Web	Temporary Wel	Comporting Well	Temporary Well	lemporary Weal	Temporary Wel	ler poi	ary Wel
WC.		Firmither (al	Sample ED	"W' 1	"W 2	40 Y	19/2	"M' 4	° 69 4	100.5	1W/6	FD 2
W62.	VISU	FeVE Sereering	Screened Internal (feat)	6.5-125	9,5-11.5	10.25-12.25	5.25-11.25	15.25-17.25	'5-21	14/5-16/5	12.75-14.75	12. (5-14. (5
		1 878	Semple Date	10757019	117400°B	054/7018	10/24/2018	10/75/7019	,72800,6	10/5/2016	10/25/2018	10/75/7019
116	75	. 33	1,14Tikh croetrane	NS	< <u>6</u> D	<50	<sc< th=""><th><50</th><th><<u>6</u> 0</th><th>~5C</th><th><50</th><th><50</th></sc<>	<50	< <u>6</u> 0	~5C	<50	<50
-5	>;	sc	12-Dot broether ef	NS	+C 32	-0.92	<0.32	(6.27	·C ?*	-0.27	×0.27	-0.27
72	NIA	NA	ca-19-Dic±kasePara	NS	-5,0	-5.0	×5,0	-50	-5,0	- 5.0	~5.C	C 554
- P.C.	N9A	NA	(rene-1 2-0 or locaethere	NS	-t.0		*50	450	et.0		*50	45.0
5	സര	١/٨	Nelhylene chionde	NS	et.a	~5.6	*10	-50	et.a	~5.6	*10	-50
5	15	1'C	Letteral crossinglene (PCE)*	NS	<c.01< td=""><td>«ac)</td><td><2.5°</td><td><0.93</td><td><c.sd< td=""><td>2.4</td><td>24</td><td>2.5*</td></c.sd<></td></c.01<>	«ac)	<2.5°	<0.93	<c.sd< td=""><td>2.4</td><td>24</td><td>2.5*</td></c.sd<>	2.4	24	2.5*
×x	7,430	13,003	1.1,1-That is settione	NS	<c.a< td=""><td><5.0</td><td><2C</td><td><50</td><td>0.0Z4</td><td><5.C</td><td><50</td><td><5.3</td></c.a<>	<5.0	<2C	<50	0.0Z4	<5.C	<50	<5.3
5	12	£ *	Trich crohylane (TCF)*	N9	<c 80<="" td=""><td>38.0%</td><td><3.50</td><td>·</td><td>C 9</td><td>1.5+</td><td>234</td><td>2.4+</td></c>	38.0%	<3.50	·	C 9	1.5+	23 4	2.4+
;	C 19	· 1-	Ving Churide*	NS	×C 7*	-0.97	×8.77	·C 97	۰C RT	-0.97	×3 97	×C 97 ~
404	NIA	N/A	Tute VOCs	NS	0,0	QC.	ac	1,6	6,52	4,6	47	5,16

3cr =	ening Levels	(mo ⁿ .)	Parameters				Qff-She û	roundwater Sempling Locat	(البون) kama			
		809	Sample Location	Гетровау Укен	Lempshary Well	Lemporary Wel	Temporary «Vell	Temporary Well	ienporary Wol	Lemporary Wel	Temporary «Yell	Temporary Well
wa.	VISL	Fiender 1 al 1975	Sampia ED	590 I	1997 I	1970	1940	-W-5	° W 10	197.1	"W 12	12 W
*~	viau	Screening	Screened Interval (Pest)	145 ME	18.05 23.00	/ 25 5.25	10.75 12.75	7.25 8.25	13.25 12.25	0751075	5.5 11.5	11.25 13.25
		1 878	Semple Date	10757019	, 12200.8	1674/2016	10/74/2016	10/74/7019	12747018	16/25/2018	10/74/2018	10755019
N(6	75	· 20	1,1478ch croetrane	<50	د <u>ع</u>	<5 C	<sc< th=""><th>2.2•</th><th><£ C</th><th><5C</th><th><50</th><th>2.7•</th></sc<>	2.2•	<£ C	<5C	<50	2.7•
- 5	2;	5 C	12-Det larget har et	·C 27	·C 77	-0.92	×0 32	-0.32	+C 32	•0 <i>2</i> 7	×9.32	-C 27
70	NIA.	.w	as-19-Dichara-Nerve	-50	-6,0	-5,0	~5.C	-50	+6,0	-5,0	~5,C	(5,5
1.1	N9A	. va	have figure to be been	~50	+6.0	~10	*26	45.0	-5.0		<5U	45.0
[>]	സ	. va	Neihylere chionde	<50	-6.0	~5.0	****	450	-e.0	~5.0	*50	450
5	15	116	Tetracolloroethylene (PCE)*	<0.93	<0.93	«ae"	<3.01	<c.61< th=""><th>72.5</th><th>52.7</th><th>23.0</th><th>50.0</th></c.61<>	72.5	52.7	23.0	50.0
233	7,430	13,009	1,1,1-Incriprocthane	0,744	'.4t	<5.C	-50	4.1+	11.5	8C	3:04	211
5	12	¥.	Trich crohylene (TGF)*	2,4+	4.54	<1eC	<0.5C	21.4	57.2	75.8	35.7	117
;	E 15	21	Vitry Chicride*	<c 37<="" th=""><th><c 57<="" th=""><th>×3.7T</th><th><0.77</th><th><c 27<="" th=""><th><c 27<="" th=""><th>72<i>0</i>2</th><th><9.27</th><th><c 37<="" th=""></c></th></c></th></c></th></c></th></c>	<c 57<="" th=""><th>×3.7T</th><th><0.77</th><th><c 27<="" th=""><th><c 27<="" th=""><th>72<i>0</i>2</th><th><9.27</th><th><c 37<="" th=""></c></th></c></th></c></th></c>	×3.7T	<0.77	<c 27<="" th=""><th><c 27<="" th=""><th>72<i>0</i>2</th><th><9.27</th><th><c 37<="" th=""></c></th></c></th></c>	<c 27<="" th=""><th>72<i>0</i>2</th><th><9.27</th><th><c 37<="" th=""></c></th></c>	72 <i>0</i> 2	<9.27	<c 37<="" th=""></c>
404	NIA.	N/A	Tutel VCCa	2 14	69	96	90	277	125 7	137.3	R7.9	· 29.4

Table 4 (consued) DH-Bile Groundwater Sampling Analyscal Kanada Former Amphero (1931) 1974 DI X NC 344 367 648 Frenklin, in 4413'

ŝœ	ening Levels	(mo ⁿ .)	Parametera			Off-Sile Groundwater Sa	mpilog Locations (ygfL)		
		3 26	Sumple Location	Temporary Well	Lemporary Wial	Sackground Womleting Well	Ecuament Blank	"na Blank	ing Stark
WC.		Fenderital Residental	Sample ID	TW 14	° (V 14	M#V 3	EB 1	-91	18 Z
1622	VISL	Bereening Leve	Screened interval (feat)	14/5-16/5	16.25-21.25	17-22	Nr.	NA	64
		1 878	Sampia Date	10757019	, 12200, S	· E01/7018	10747019	115400-B	1000/0016
AU/	75	. 30	1,1-Fich croemane	<50	< <u>6</u> 0	<50	<50	<50	< <u>s</u> 3
-	>;	sc.	12-Dationethere1	-0.27	·C ?*	-0.27	×0.32	(0.35	·C ?*
70	NIA.	МА	i: e-1 9-Fäc±kase⊭ere	-50	-5,0	•	×5,C	-50	•6,0
- 10C	NºA.	NA	Dem-12-Distlorgethere	~50			*50	450	
>	സര	×/۸	Velhylene chionde	<5.0	rt.0	<5.6	*%C	450	et.a
>	15	c	Tetracolorset (Jene (PCE)*	1.94	1.14	<151	<3.5'	<c.61< td=""><td><0.53</td></c.61<>	<0.53
×x	7,430	13,000	1 1,1-Trieflarsethane	<\$0	<c.a< td=""><td>2.2)</td><td><50</td><td><5 3</td><td><c.3< td=""></c.3<></td></c.a<>	2.2)	<50	<5 3	<c.3< td=""></c.3<>
5	12	٤,	Trich crohylane (TCF)*	<0.54	1.5-	1./#	<0.5C	(e 3)	<c b4<="" td=""></c>
;	C 19	· 1-	Ving Churide*	· C 97	×C 97	1987	<0.77	(C 27	<397¥
404	NG	N/A	Tute) VOCa	1,5	5,9	3,9	96	ea	6,9

30.0	ening Leveja	(sq%)	विद्यालंगर				Off-She O	noundwater Sampling Locat	koma (ug/L)			
			Sumple Location	Temponery Well	Lemporary Well	Lemporary Wel	Тетера	ary We	iemporary Wei	Lemporary Wei	Temporary «Veli	Temporary (Vel)
wa.		ROS Residental	Semple ID	W R	° 19 15	199-16	1W18	1.3.1 / W	149.17	199.17	.w. o	51 W.
*~	VIAL	GVL Sotecning Lave	Screened interval (Next)	9./511./5	14.25 16.25	0751075	12 14	'2 14	8751175	165105	(.759./5	16.18
		1 878	Semple Date	352775	3/5/2019	3/5/2019	3/52019	35/2915	3/5/2019	3/5/2619	3/5/2019	3592715
116	75	· 30	1,4-Fich croemane	<50	<ć.0	~5.C	<ac< td=""><td><50</td><td><2.0</td><td>~5.C</td><td><2C</td><td><50</td></ac<>	<50	<2.0	~5.C	<2C	<50
5	27	90	1 2-Derlevenhare1	<c 27<="" td=""><td>«C 27</td><td>71 Co</td><td><3 ;7</td><td><c 27<="" td=""><td><c 27<="" td=""><td>۳۵۶۳</td><td><0.77</td><td>«C 27</td></c></td></c></td></c>	«C 27	71 Co	<3 ;7	<c 27<="" td=""><td><c 27<="" td=""><td>۳۵۶۳</td><td><0.77</td><td>«C 27</td></c></td></c>	<c 27<="" td=""><td>۳۵۶۳</td><td><0.77</td><td>«C 27</td></c>	۳۵۶۳	<0.77	«C 27
π	NIA	N/A	c art 9-Dichtarantere	-50	-60	-50	×5C	(50	-60	- 2584	×50	-50
100	NA	NA	here-12-O ontonoethere	~50	-6.0	-50	-50	~50	-6.0	50	-50	-5.0
	(9) (9)	· 🗤	Velhylere chicade	-50			*50	*50	-0.0	- ~5.0	*20	<50
5	15		Terrechloroetrylene (PCE)*	45.0	50.6	10.2	<i>16.1</i>	150	<0.27	-0.21	46.27	6.25*
230	7,400	13,009	1,1,1-institutethate	1.25	C.5	a 6.4	üо	5.9	1,04	10	~>0	2.5*
5	12	5.1	Trich crothylene (TGF)*	15.5	\$7.2	5.5	77.0	76.9	e.c	20.8	<0 17	8 9
;	C 12	24	Vity Chicride*	<c 22<="" td=""><td>«C 22</td><td>×3.77</td><td><0.27</td><td><c 22<="" td=""><td><c 22<="" td=""><td>×3.77</td><td><0.27</td><td><c 22<="" td=""></c></td></c></td></c></td></c>	«C 22	×3.77	<0.27	<c 22<="" td=""><td><c 22<="" td=""><td>×3.77</td><td><0.27</td><td><c 22<="" td=""></c></td></c></td></c>	<c 22<="" td=""><td>×3.77</td><td><0.27</td><td><c 22<="" td=""></c></td></c>	×3.77	<0.27	<c 22<="" td=""></c>
404	NIA	N/A	Tutel VCCs	629	122 1	1981	1997	- 59 9	S R	31 * 9	36	·· 4

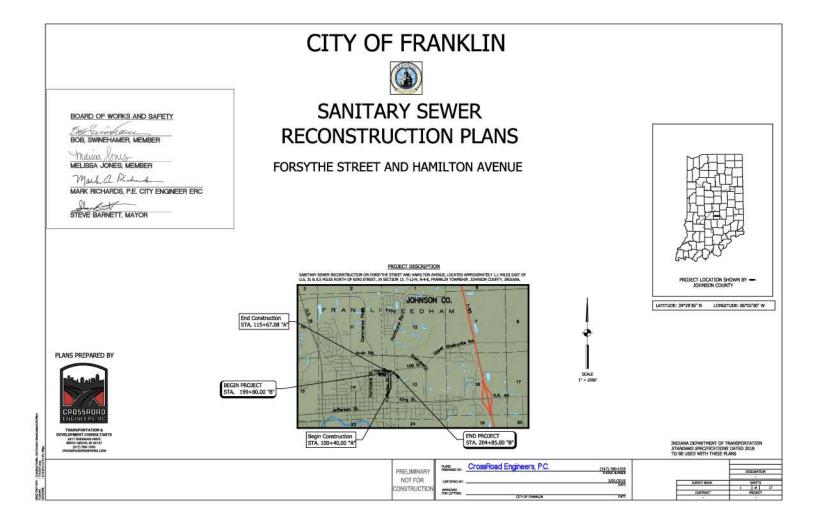
Table 4 (commund) DH-Bla Grou-deader Sampling Analytical Kenelos Former Anghero (Patity EFA ID X NC 34 Sta 7648 Franklin, in 4413'

\$cm	aning Lampa	(mp%)	Parameters				Off-She G	noundwater Sampling Locat	(Lipul)			
		806	Sumple Location	Temporary Well	Lemporary Well	Temporary Wel	Temporary Well	Temporary Well	lemporary Well	Temporary Wel	ler adı	ary Wel
WC.,		Firmither (al	Semple ID	TW 15	° (V 19	199 20	19/21	"W 22	* eV 23	199-24	FW 25	FD 3 GW
W-2-	VISL	feVL Screening Lieve	Ecreened Interval (feat)	9.75411.75	20-22	475675	2./54./5	7.5-8.5	5/58/5	4-6	2.75-4.75	2.754.75
		1 874	Sample Date	3500-5	35/7019	20/2019	3/7/0119	370015	3/6/7019	27/7819	27/2018	3700-5
116	76		1,1-Tich croemane	<50	< <u>6</u> 0	<5C	<sc< th=""><th><50</th><th><<u>6</u> 0</th><th><5C</th><th><50</th><th><50</th></sc<>	<50	< <u>6</u> 0	<5C	<50	<50
-5	>;	sc.	12-Dotlocethere1	(0.27	-6.97	-0.92	<0.32	(0.35	+C 59	-0.82	<0.52	×C 30
73	NA	NA	ce-19-Dict-karaeltere	-60	3.6+	-5.0	<50	-50	-6,0	-5.0	~5.C	(5.0
[nc]	N9A	M	bara-15-0 orloro -there	*50	0,93.	~5.0	*50	45.0	et.0	~5.0	*50	450
\$	സര	ν,«	Velhylere chicade	<5.0	et.a	~5.6	*10	<50	rt.0	<5.6	*10	<50
>	15	c	Letteral process (lene (PCE)*	<0.27	×C.27	«at"	<3.5°	<c.61< td=""><td><0.56</td><td>1.24</td><td><8.0°</td><td><0.61</td></c.61<>	<0.56	1.24	<8.0°	<0.61
×x	7,430	13,003	1 1,1-Trientstsethane	6.31+	¢.6	<\$E	<50	<5.3	<t.c< td=""><td><5.0</td><td><50</td><td><5.3</td></t.c<>	<5.0	<50	<5.3
5	12	٤٠	Trich crohylane (TCF)*	4.2•	5 8.7	28 C>	<3.50	4.3×	· 51	<pre>>>> ec</pre>	<3.8C	(e 3>
;	C 19	3-	Ving Churida*	(e 22	•C 77	-0.97	×8.77	·C 27	•C 79	-0.27	×0.77	×C 27
406	NG	Nia	Tate) VCCa	4,51	76,25	9,6	nc.	40	1,5	1,2	ac.	60

3cr =	ening Levels	(eqf.)	Personations				Qff-She G	noundwater Sempling Locat	koms (ug/L)			
		805	Semple Location	emponery Well	Lemporary Wei	Lemporary Wel	emporary «Vell	emporary Well	Lemporary Well	Lemporary Wel	emporary +Yell	emporary Well
WC.	VISU	Residental ISVL	Semple ID	'w at	W 25	199.27	1W-20	W 28	°49 29	199 29	1W/20	W SC
W62.	VIAL	Screening Leve	Screened interval (feet)	3/511/5	15.17	19 25 12 25	\$511.5	2.5 14.5	9,5 11 5	12.5 14 5	(.759./5	'1 13
		1 878	Semple Date	30/2015	3422315	3/5/2019	3/5/2019	30/2015	202315	345/2619	3/5/2019	30/2015
411/	75	· 30	1,4-Fich croemane	<50	۰ <u>۲.</u> ۵	~5.C	<ac></ac>	<50	<2.0	~5.C	<2C	<5.0
5	27	9E	1 2-Derlevenhare1	<2.59	<c 55<="" td=""><td><0.68</td><td><3 26</td><td><0.25</td><td><c 50<="" td=""><td>~0.58</td><td><0.26</td><td><c 39<="" td=""></c></td></c></td></c>	<0.68	<3 26	<0.25	<c 50<="" td=""><td>~0.58</td><td><0.26</td><td><c 39<="" td=""></c></td></c>	~0.58	<0.26	<c 39<="" td=""></c>
π	NIA	N/A	c art 9-Dichtaranterer	-50	-60	-50	×50	-50	-60	-50	<5C	-50
100	NA	NA	here-12-O ontonoethere	~50	-6.0	-50	-50	~50	-6.0	50	-50	×5.0
	യ	· 🗤	Velhylere chicade	<50	·		*50	<50	- 1 .0		*20	<#0
>	15		Techeonicroscrytene (PCE)*	<6.55	- <0.56	10.1	<3.50	<0.95	2.50	1.2	<6.50	<0.95
230	7,4 0 0	13,000	1,1 instatethere	<1J	2.25	<5.0	<\$C	2.5*	<t.3< td=""><td>2.2†</td><td><5C</td><td>2.0*</td></t.3<>	2.2†	<5C	2.0*
>	12	5.1	Trich crethylene (TCE)*	<6.62	с. <i>г</i>	9.7	101	3.3*	c.u	23.4	<0.58	2 97
2	0.15	2.1	Viry Chicade"	<c.29< td=""><td><0.29</td><td><3.25</td><td><0.25</td><td><c.29< td=""><td><0.29</td><td><3.25</td><td><0 X8</td><td><c.29< td=""></c.29<></td></c.29<></td></c.29<>	<0.29	<3.25	<0.25	<c.29< td=""><td><0.29</td><td><3.25</td><td><0 X8</td><td><c.29< td=""></c.29<></td></c.29<>	<0.29	<3.25	<0 X8	<c.29< td=""></c.29<>
411°	NA	NA.	Total VCCs	Ea	5.1	15.G	1.6	5.5	°C.3	75.8	10	45

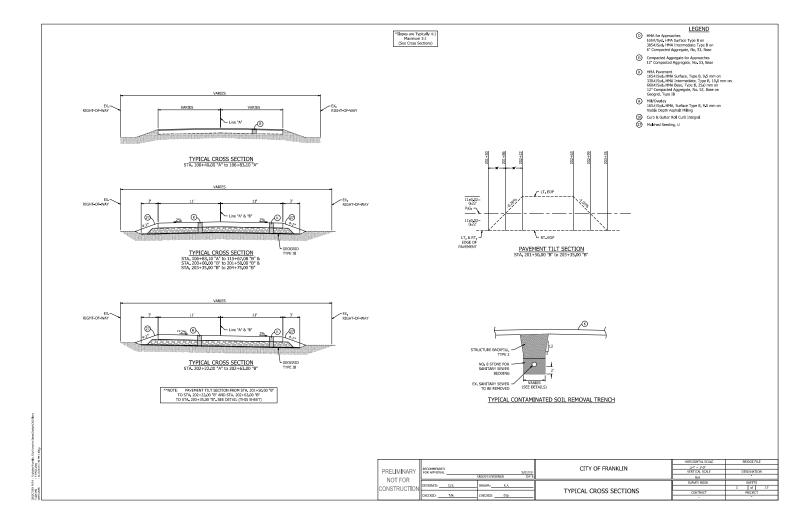
Table 4 (continued) DH-31Le Grour dester Sempling Analysical Kanada Former Amphren (Tablity BPA D X NC 344 587 648 Franklin, in 64131

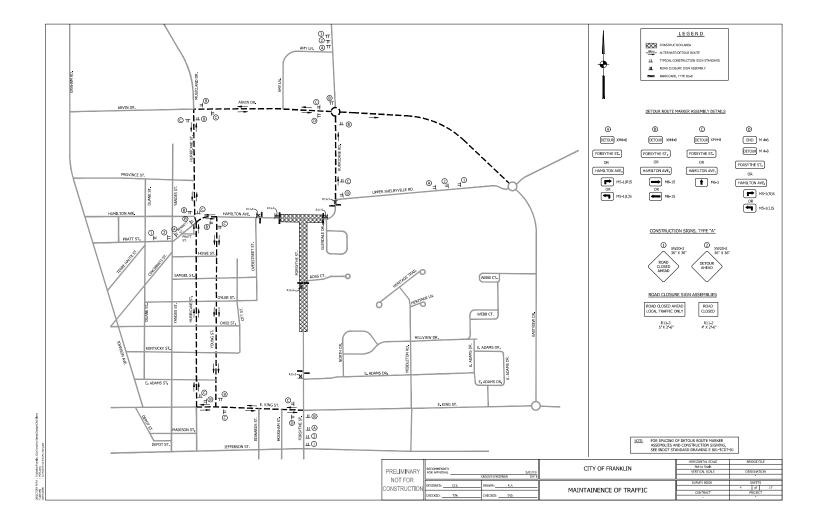
Son	aning Lamaja	(aqfL)	Perameters	04-Site Geourchenier Se	mpiling Locations (Jugila)			Quality Actur ances	ua∥ty Control (µg/L)		
		श्चत	Sumple Location	Temporary (Vell TW-30	i emporary Weal	Egy procest Black	Eculoment Blank	Eq. ID=ett. Blank	"na Blank	Ino Stark	ing Slark
WC.		Firmither (al	Sample ED	FD 2 GW	° W 01	FR , 2M	E8.2 GW	ES 3 GA	15 1 GAV	18 Z G4V	.H 3 2M
W62.	VISL	feVL Sereering	Ecreened interval (feet)	11-13	925-102t	Ś	` IA	NA	M	Ś	40.
		1 878	Semple Date	362015	3/6/7019	3/5/7019	3/5/7019	3700-5	35/7019	3/57019	27/7018
116	76	. 33	1,14Tikh croetrane	<50	<6 3	<sc< td=""><td><sc< td=""><td><50</td><td><<u>6</u> 0</td><td><sc< td=""><td><50</td></sc<></td></sc<></td></sc<>	<sc< td=""><td><50</td><td><<u>6</u> 0</td><td><sc< td=""><td><50</td></sc<></td></sc<>	<50	< <u>6</u> 0	<sc< td=""><td><50</td></sc<>	<50
-5	>;	sc	12-Dot broether ef	(0.92	-C 62	-0.27	182	(6.32	·C ?*	•0.62	<0.32
7.	NiA	N/A	ca-19-Dic±kasePara	-50	-6,0	-50	~5.C	-50	+6,0	-5.0	√5,C
[ex]	N9A	NA	(rene-1 S-C) or locaethere	-50	+t.0	-5.0	*10	~\$ U	et.0	45.0	450
\$	(19D	74	Velhylene chickide	-5.0	et.a	<5.6	*10	-90	et.0	<5.6	*%C
\$	15	c	Letteral cross rylene (PCE)*	<0./9	<c.79< td=""><td>×121</td><td>40 /S</td><td><c.61< td=""><td><0.27</td><td><3.75</td><td><15</td></c.61<></td></c.79<>	×121	40 /S	<c.61< td=""><td><0.27</td><td><3.75</td><td><15</td></c.61<>	<0.27	<3.75	<15
×x	7,430	13,003	1,1-Trieflarsethane	1.04	<c.c< td=""><td><5.0</td><td>-2C</td><td><5-3</td><td><t.0< td=""><td><5.0</td><td><2C</td></t.0<></td></c.c<>	<5.0	-2C	<5-3	<t.0< td=""><td><5.0</td><td><2C</td></t.0<>	<5.0	<2C
5	12	٤٠	Trich crohylane (TCF)*	2 1z	7 9 ×	T : C>	<a se<="" td=""><td>CE 3></td><td>«C *7</td><td>\$2.0%</td><td><0.5C</td>	CE 3>	«C *7	\$2.0%	<0.5C
;	C 19	3-	Ving Churide*	·C 35	×C 39	+3.27	×3 32	·C 27	×C 77	-0.5A	×9.77
406	NGA	N/A	Tute VCCs	45	2,A	0,6	QC.	60	C,0	0,6	3,6


Appendix A

Detailed Bid Specifications

and


Preliminary Construction Plans



9	UTILITIES		GENERAL NOTES		SHEET NO.	IND	DEX RAWENGS INDEX
WITTES INCLAMA, VARELLAGA WATTER COMMANY ISS N. PRESIGN AKA Solar Gar Solar Gar Sol	HIGE BORTURY UNK T PRIVATION OF THE STATE PRIVATION OF THE STATE STA	15 n	The exact hostion of all cliffles shall be field welffield by the contractor prior to starting any work. Short signs and source pash shall not be ordered until the exact number of signs and length of each post have ditermined upon field investigation.		1 2 3 4 5-6 9-12 13-15 15-15 15 1-520	TITLE SHEET INDEX SHEET AND GENERAL NOT TYPICLE, CROSS SECTIONS MAINTENNEEL OF TRAFFIC ROAD PLAN AND FORFILES DESIGN CONTRACTION DEFAULTS DESIGN CONTRACT AND DEF DESIGN CONTRACT AND DEF DES DES DES DES DES DES DES DES DES DES	MWATER POLLUTION PREVENTIO
	REVISIONS	IS					
SHEET NO	DATE	REVISED					
						Ka	mailana ow what's below. 811be
				-			HORZONTAL SOLE
			PRELIMINARY NOT FOR NOT AND A CONTRACT AND A CONTRA	11/29 Cars	CITY	Y OF FRANKLIN	

Γ

EROSION CONTROL PLAN INDEX PLAN BLEMENTS

** Ros. 1778/2020 UNI 2005 1978 Autoritation and Code for the september adaptives of the project in 1979 Autoritation and Code for the september adaptives of the project in 1979 Autor adaptives and the second adaptive adap The second seco A15 Diamana di
 Diamana d A22 A33 Mediation Control of the Control of

Head of the second second

Dotter 1: A list of the skills of the the skills of the skills of the skills of the the skills of the skills of the skills of the the skills Constructions Optimized Construction Structure Construction Constructi

Solution of the local division of the local

10 10 10 10 10 unch machines of Part construction economics canality manages understation economic guilty nearest on being imperiated with the

AUXILIZERO AND JANY TENANCE OLIDELLINES Departmention and the second se Control and an and and and in the start is start for segment of reality of the state.
 Control and an and an and an and the start is start for segment of reality and an reality, and an extension of the state of the sta Add & John
 Construction of any state to their installates between MCC Specification EULE
 Excelling specific and any state to mark on a way your statement days
 The mark to be add to be statement, at is any way seems statement days
 Eventsee to be added to be adde

Section 2 and a status of the 3 section are then by the section are status of the section and then are status of the section and the section are set of the section and section are set on the status of the theor and section are to prove and section.

CONSTRUCTION SEQUENCE & SCHEDULE OF EROSION CONTROL IMPLEMENTATION

en an Dariel South (10-10-2011) at least 10 lane and Linuta a Bar I for Controller similary dir ter Sty of health (SI-128-365) of hart to have per-le data of the set of the Control File series are jurit directing within length.
 Media Bir spectra understite extreme area frequential. A set fragilitar ten. The series are stated on a direct set series in proceedings of the control of the Site set fragilitary ten. The balance with the complete of a distance weeks. The same week of the distance weeks the same week of the same week of the same weeks o The point is officing complet input the next a sector, and the positive for record is it increases as a sector of tectors in point with regardles is uncomplete.

- GENERAL EROSION CONTROL REQUIREMENTS FOR COMPLIANCE WITH IDEM GENERAL PERMIT RULES FOR STORM WATER RUNOFF FROM CONSTRUCTION SITES Al Cruice Central practices shall be it accordings with the indext within all the NOVAA STORE WITH GALITY MANAL
 - The Strategy Castral Imaginate Modules In this plan and be installed prior to tritte land distributions collection or as ando on practical. Subtrant shall be presented trans distributions that the practical data by installing or all strategy and the strategy deviates of Strategy Castral at the archite of the strate, severe styleton shall be installed of the first of the constractions of the castral.
- At an site stam their black dust to prototol optical admonstration with all each that fact, the fact, or expedient comes to show in this plan.
- Eaugh se generated by indexemit matcher conditions at other introductions larged the central of the contributing-finalizing appropriate Strainto Control produces will be interfael within (2) seeking, and they into condition of the other condition of the setting interfaced by seeking, and they, controls, or by other explorition Control contentions.
- The Dravit Cortod you shall be impairanted on all diructed once within the constructors site. All measures hadring Dravits Corton processos and he balance under the gatalese of a gatified passes reperformed to Dravits Control and Malaning the store of a spatified pass.
- Bying the justical of constituation webling, all mathematical isoches and other threaders and to mathematical by the contractor. At the compaction of construction, the contractor and construction the transfer of respired mathematical regordatilities with the mathematical isoches.
- The controlling and control wards, gatego, dards, workworks, mel other sizetances or like allo its such a way that allow and ward is proported them the allo by the willing of which elever wards receils, or other known fragme daped of an experiment of all wards and establish matching gatefore to the nations of the wards of models to wardst building matching appropriates to the nations of the wards of
- tent in reports. Dani Brastie Carleti menaziw may be reactived by statis or casety operates.
- Fully, or priority receiving with the task cleared of assumption andment, that assump of assumptional andment which not include fundation that prior. Whit surface, descent andment and the reducerable in the priority of their priority fundation. Institute

- Satisfies and sectors that by Edging
 Satisfies and sectors that by Edging
 Satisfies and sectors and
- (initialized) + Orabis ender and explorent being should any be used when it is important to any white and explorent offshill for fulling.

Insertion and Maintanana Writing on a compared should be important and day of use for loads. Loads at world be regarded insertidiater or pathene variation or supported should be resurred from the payort sha. • These results and shall change metalogie world. • Insertidiate and use galas and property discover of unstandardiat ands.

Incidently data us gifts and proving theore of unitambide ands. Local Relativity Interactional Description of Reposed Description of Reposed The Analysis of Indiance and Unitational and us address to provide the Analysis of Indiance and unitation and used or address to provide regulational and address and the Continuous Revealed for major Segment, and address of Indiance and Unitation Segment of Continuous Revealed for major Segment, and Segment and used to Other Segment of Continuous Revealed for major Segment, and Segment and used to Other Segment of Continuous Revealed for the Segment Segment Segment and Segment Segment and Segment and Segment and Segment and Segment and Segment Segment and Segment

- Hervier unexclusion service setup. Units and lateral holes worked or of two and works, and hole a solution of postal or integral is present for all manufacted to capital holes, which a complete of termines, the or is a complete to capital holes are solution and a solution or control show that the other solution of the solution of the other holes and the other solution of the solution and the other holes and the solution.

- THE FOLLOWING PROCEDURES AND PRACTICES WILL HELP PREVENT UNRECESSARY SPLLS
- в,

ADDITIONAL MATERIAL HANDLING AND SPILL PREVENTION PLAN

PUPORE To service a field or a to high of has work at the set in the C and point. The service and the set of high or the set of the set in the C and point. The service and the set of th

Reserved and the second second

SPEL RESPONSE War - Smit with their raisely involve of quadra, point, hydropic faile and, when politi-rais in antibular ity the first requester of the descenty of the spit. - Constances in the present excluded them aniseting alone or ground water, to not that with wher ar large the downey's natural to over-up spill included and any aslaws and and depend of property

Inter-spectrum 5 plan - Appointeday for palme in lines of patched with an inter-spectrum spectrum and the spectrum of the particular operation of the particular of the spectrum for palls adding and addy addressed. All the denotes to date to make such the palls adding and addy addressed. All the denotes to date to make such the palls adding and addy addressed. All the denotes the spectrum memory addresses addresses and the data addresses addresses

Total and a second related from attempt there is proved with an on-second of the second sec

Solida Applications The Ref & solidate for construction also where the following works are presented or comes desting and the second second second second second second and any method is and any second second second second and any second second second second second second any second second second second second second second any second secon

ingérmedicteu The folgeding stage will beigt leage a clean with ond reduce elementies polisites: - Salah designable excite sollwaites mans sealls. - Inform tour-handry manimations that you will accept only estimitight durpoises for andle and impact dereption for ledin and report my dereption fort in test waterlight. Fromits an obligation number of contrainmen with fails or some minut our be planni some for problem to begin ratio out or to prevent lease of waters when it is which. The for endocrean consistence and more trangent plants when it is which.

Figs. for middlend conditions and more tragging plates during the densities place of conditional Calcular the trans infigs expectely during volvy and white conditions. Researe this while white pumping share makes and landment public services land in which the

control loss. The same part of the same and sector and the same that the same of the same barr with the same barr with a same barr with the same b

conserved provide the state of the state of

Impetite and Kathemanne • Inset for derift for goody-based MMT and is being play to the compensated of weeks to any could be impetentiate a being with one way have • Inset MMT waight in ten storages debugg did with considered • Subject Conference and being the • Analysis conference and being the • Analysis conference and beingts:

The following stage will help realize advantage publican from concerning weakers • Denous the monomic monogrammit landrogues described in the INP (such on handling of percents weaks and maximal) with the radio mis concrete supplier before any defenden

• on or the sense arrests to its despit ands, sough 5 delayed area. To make sense: • cade sense: • cade sense: of any 15 bet has stars durin, gas differs, or whe point, due to the last sense the rest presentating a temporary of a learned area when all sense to be sensered as the sense area of a learned area. • Delay during such to the sensere to any sense area of a learned area. • Delay during such by setting sense to any sense area of a learned area.

An Allen Antonion Ser.
 The Allen Antonion Ser.
 The Allen Antonion Ser.
 The Allen Alle

Popular - Dy name (gli dang la su and dango di ka solani September - Septembe

International control of the point into a particle of detailing control on the second seco

5/1/22

CRANN: K.F.

OROED D.S.

PRELIMINARY ROOMNON

ESISNED 0.5

CHERCE I TA.

NOT FOR

CONSTRUCTIO

Their depend property
 A delit enabling world by athling white is a bernait or load area abore cancels to resource the particles and expends accesses bits the street or store cancels to resource the particles and expends accesses bits the street or store cancel and index exception is suggraphic toor should be or depose is the tools.

percent were die deskung with the ready-tim concrete support element dy an biotectories unpercent by treasure were memorywert the network apply abcomparity and percents. Totale approximations and an even many heir advanger anna. A weld reading ensume many of their accords. Totales approximation of their accords to the treasure accords to the despet means and to be determined and the second total and the order of the treasure accords to the despet means, sampling a despet areas. I do no date arease cannot be to despet means, sampling and the despet areas.

8 1 18

on County, Indiana (INOS1)

1

SLOPE ONCIENT A TE

BLOPIL DAVIENT OF A

 BIAL INTUNION:

 INTER STATE

 INTE

The Filler

CITY OF FRANKLIN

STORMWATER POLLUTION PREVENTION PLAN

Districted states

EXTERNAL CONTINUES THE The next time of it is ubpity dependent speak of bried subsets paths and it set qualit disbapancys and bits inste-Steps and C is 3 parallel. Novi is very size or parall. Mitmas is the next installat.

啊

SOL MAP AND DESCRIPTION

T

HORODONTAL SCALE

VERTICAL SCALE

SURVEY BOOK

CONTRACT

120

PROJECT LOCATION

WEINTY MAP

ł

.

HOTPHA GREEN CHORD. MEDITER MAY BE ROUTED FOR STATE OF COMPY AVENUE sauge

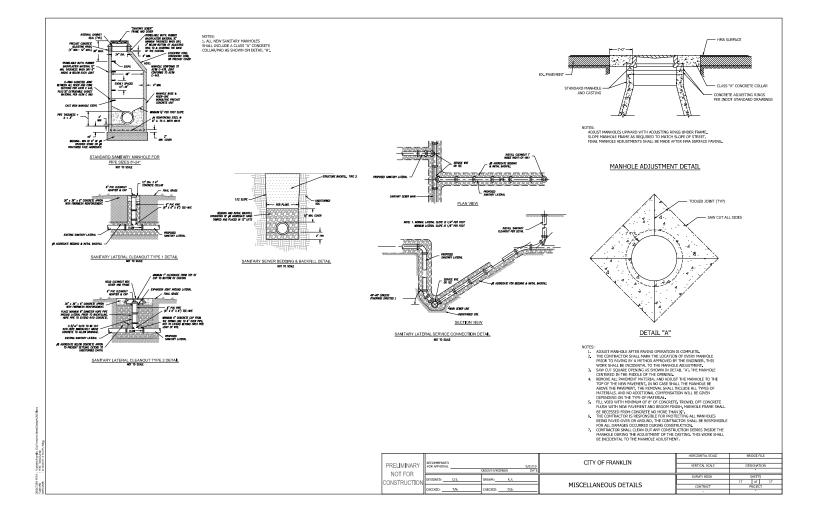
盘

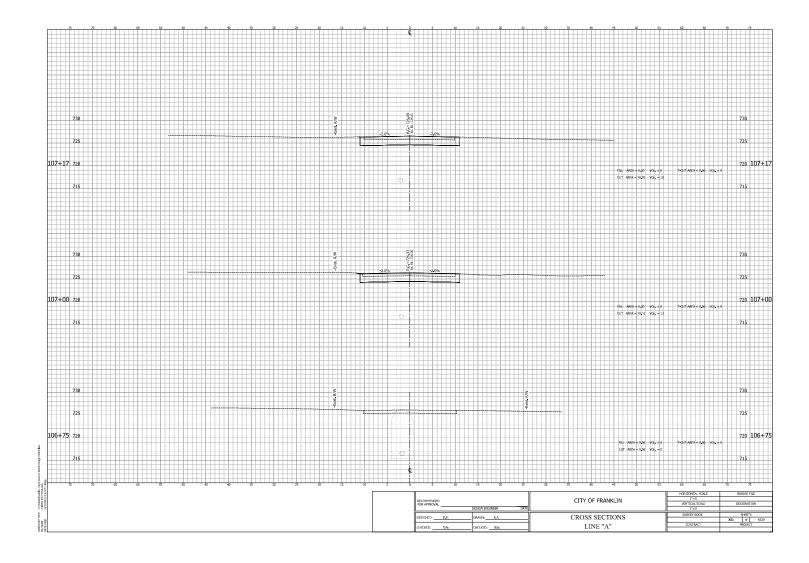
DESIGNATION

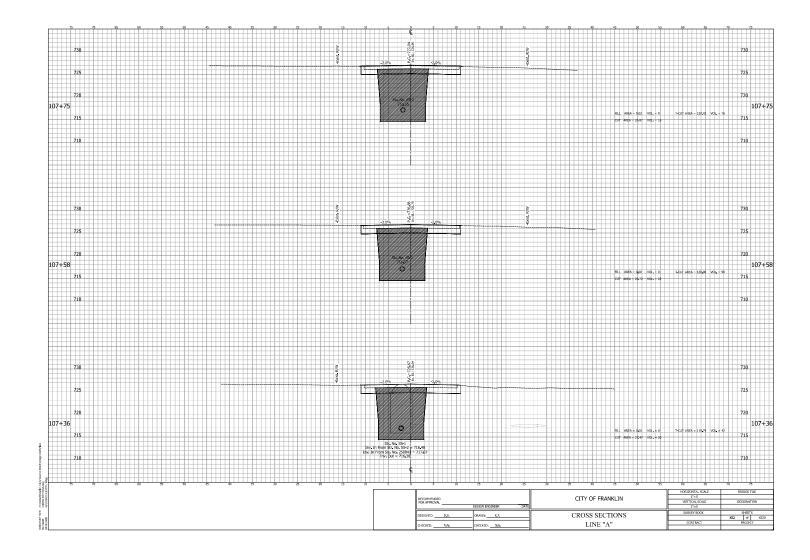
15 SHETTS df 17 PIKOBET

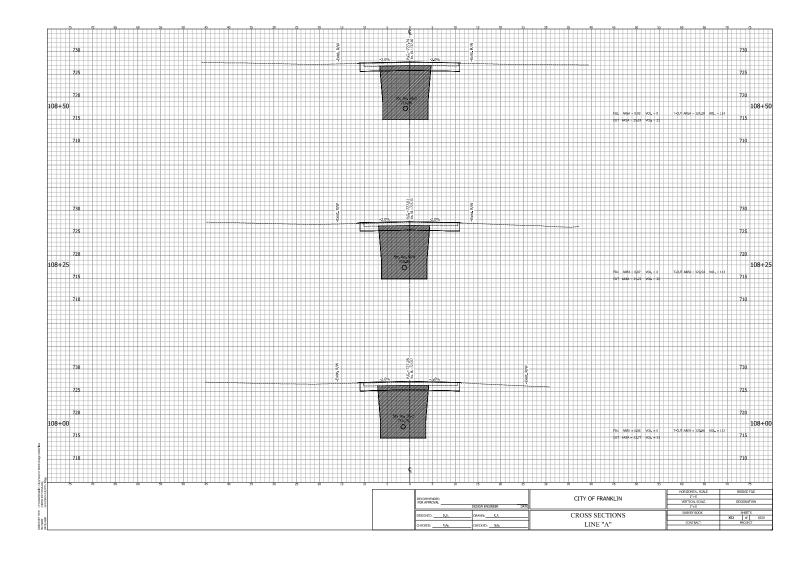
- a. Solution that solution is addressed and addressed and addressed and addressed ad

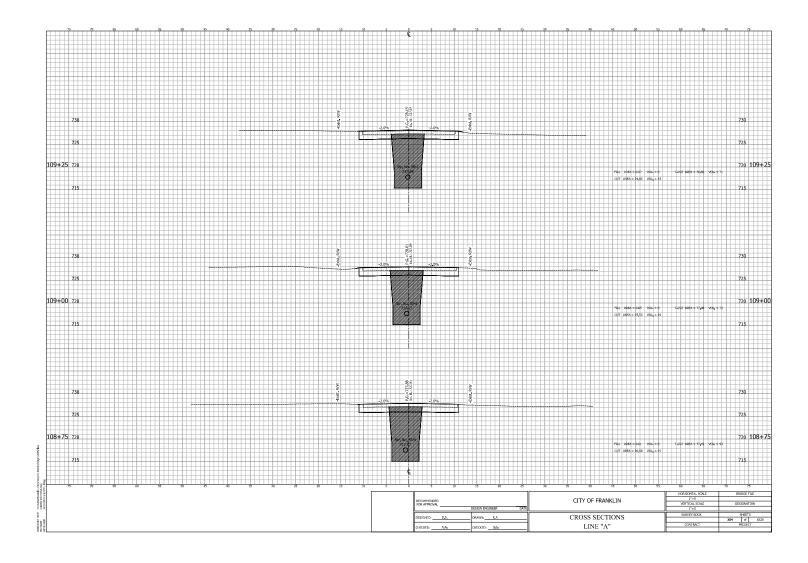
							S	STR	UC	TURE	DAT/	A TA	BL	E		
. 1	LOCATIO	ŵ.		_	1	Contraction of the second		1	-	ROWLD	Æ	1				
STRUCTURE NUMBER	STATION	111	RIGHT	215	PIFE TYPE	MANHOLE, INLET, CATCH BASIN, OR SPECIALTY STRUCTURE	LENGTH	MDG	CONER	UP STREAM	DOWN STREAM	AD STORE	DOUTLAND IN THE OLD	-	INCOME.	HEMARICH
		11		29.		1	UT		17	ELEV.	BIEV.	CYD	1.1.1	TYPE	CYD.	
-		-	-				FC	IRSY	THE ST	SEWER &	ROAD RE	CONSE	UCTIO	IN		
	LINE 'A'					Place I I Control Control of State		-	1	1		T		T	1	
E(-1	101+62	X			÷.;	Enabrg Sentery Menhole				714.13	713.64				1.4	Formah veitertight casting and adjust to grade
£1-2	104+14	TXI.				Ensing Sastary Manhole				714.65	714.18		1	1.	1.1	Furnish violentight casting and edjust to grade
Et-3	106+76	TXL				Existing Sentary Manhole		_	1.1	715.94	714.65			1.	1.1	Furnish watertight casting and adjust to grade
15-1	107+38	TXL				Similary Manipule				716.38	716.06	1.0				Connect to ex. 12" and 6" santary seven mans. Watertight casting require
15.2	109+39		K I	12	S08-35	Sondary Manifold	254			717.34	717.48		1	1	_	Connect to ex. 12" santory sever man
\$5-3	112+76		K 🗌	10	S0R-35	Sonitary Nanhole	336	1		720.42	717.51		1	1		
EX 2 EX 3 39-1 39-2 39-3 39-4			X	10	S0R-35	Sondary Manhole	292	-	-	725.61	720.52	-	1	1	-	
	LINE 'B'	++	+			·	100	-	-	10000		-			-	
\$5-5 \$5-6 \$5-7	200+09		x	- 8	SDR-15	Sankary Masticle	257	1		726.94	725.78		1	1	-	Connect to ex. If usetany sever man
\$5-6	204+22	X	1	. 8	S06-35	Savitary Mashcle	157			727.48	- 726.77		1	1		
\$5-7	204+53	X		8	\$08-35	Sanitary Mashcie	-40			727.75	727.58		1	1		Connect to ex. if sankery sever main

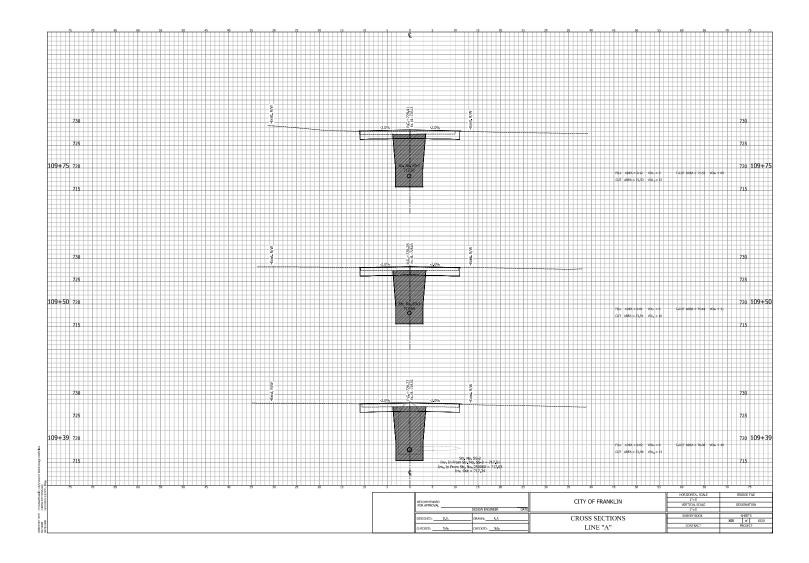

					1				H054 M	ATERIALS					100	
LOCATION	DESCRIPTION (APPROAD) TYPE OR CLASS)	HUDDH	HISADI	RADEL	GR	ADE	01 02 00 00 00 00 00 00 00 00 00 00 00 00	ALL DIVISION OF A	THRE TO, (540 mm)	60 BM2, THE 'C. 25.01	MUNEDOR RUSAR.	NT FIRE THOUGH	ARTICL' NULLING	COMPACTED ADDREGATE FOR BASE NO: 53	GEOGRID, TYPE IB	REMARKS
					-		-			-	-	- R -		DEPTH	0	
		PT	17	PT	1.	4	105 TONS	330 TONS	385 TONS	000 TONS	165 TONS	TONS	212	12" TONS	313	
		1.01			ORSYTHE	T. SPW					1010	10110		150163		
Line "A"	-				10 0 000		1.000		1111111			·				
100+65 to 306+83	Hill and Overlay, R	Valles	618				119.6					0.36	140.4			
106+63 to 115+56	Local Road, K	22	-873				186.0	386.8		805.7		1.20		1752.8	2013.9	
107+17	Public Road Approach	25.5	16.3	20 8.20	_	-	5.5	11.0	_	24,3	_	0.04	_	45.9	66.5	
Line "8"	 	1221	1221		-		1.2.3				-		19.2			
199+60 to 200+00	Hill and Overlay, R.	22 22 22	20				4,0			10.00		C. 7.	24.0	1	10.000	
200+00 to 201+75	Local Read, K	22	475				95.8	200.3		0.51P		0.62	23.5	915.3	1477.8	
204+75 to 204+85	Hill and Overlay, R	22	10				2.0			1.53.83		102.23	24.4	128,36724	0.2003.00	
	TOTALS	11/01/1	1000				912.9	59	.t :	1248.0		2.22	1.98.2	2714.8	4058.2	

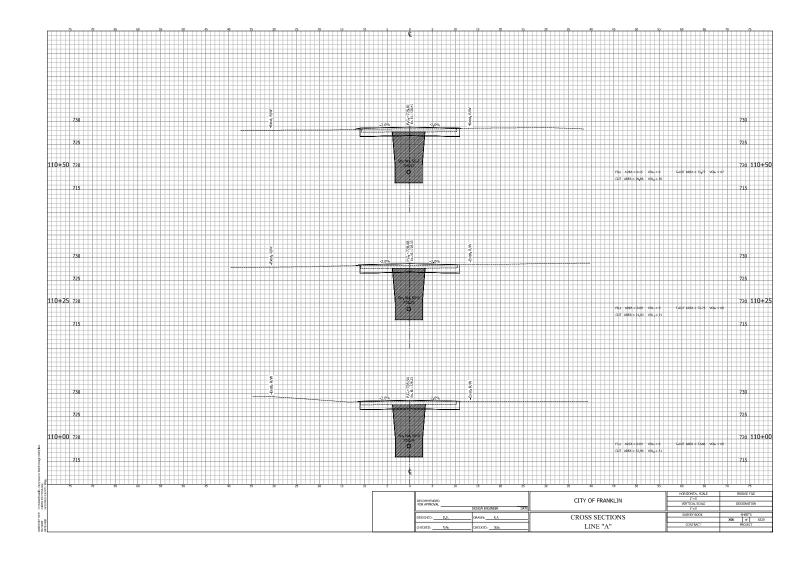

		SI	GN					POST	
PLAN SHEET NO. / LINE	SIGN LOCATION (STA.)	SIGN	SIGN SIZE		DUND - MO EIGN AREA		8	X 2 1/4" - 12 GA. (TYPE 1) EINFORCED ANCHOR	Remarks
) LINE	(DIA.)	CODE	(Live is They	0.080*	0.100*	0.125*		POST LENGTH (FT.) TOTAL	
		-		FOR	SYTHE ST.	SEWER & RO	AD RECONS		
LINE "A"	113+35 LT	R2-1	24 × 30	5.00	-	-	8.5	8.5	30 MPH
LINE "A"	115+22 LT	R5-2	24 8 24	4.00			8	8	
LINE "A"	115+95 RT	R1-1	30 10 30	6.25			8.5	8.5	and the state of the second second second
	0.0000000	D1	COANCE				12204	0.00	Relocate ex. street sign on new post
LINE 'B*	202+5917	D1	[Control	200			8.5	8.5	Relocate es. street sign on new post
		W1+7	48 X 24		8.00				1 24 = 10
			TOTALS =	15.25	8.00	0.00	2000	33.5	

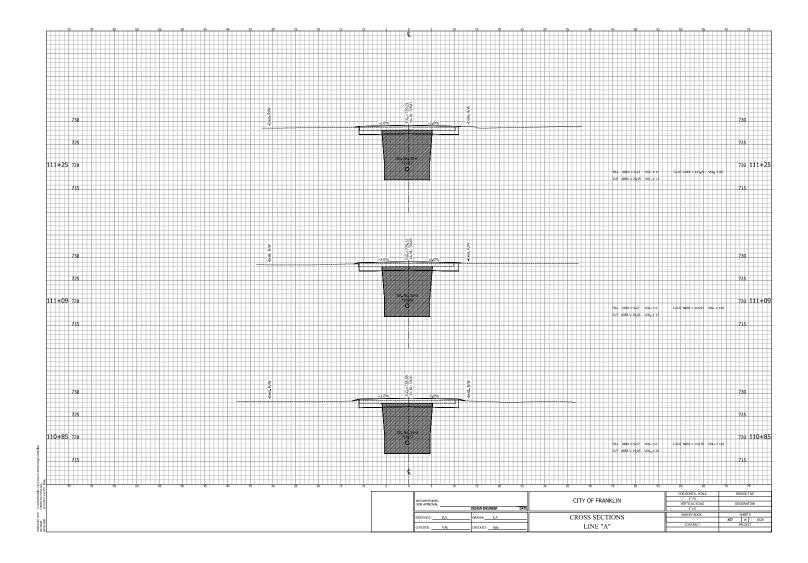

0000100 HOI : Extendingly, Division PUDANE : Extendingly, Division PUDANE : Extending to Art Juny

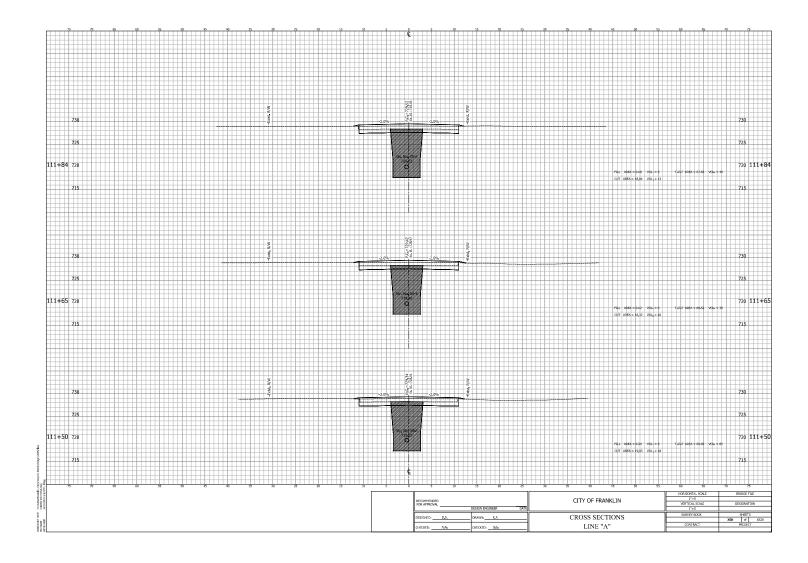

		SI	NPP CO	ONTROL	MEASU	IRES				
ALCONT C	1769	TEMPORARY	-	MPORMR CHEO		TEMPORARY	TEMPORARY 88ED (150	TEMPORARY MUCH 2.5	CONSTRUCT DONSTRUCT ENTRAN	HC/IT
LOCATON	15,739357.1	BUT PENCE	REVENUENT SEPRAD	PUBRAICHE	TEMP (ECTENTINE	- NLET PROTECTION	189AD	TONS/4CI	TENFORMER GEOTEODLE	ND 2 810KE
	-	UPT .	TON	101	\$12	- TA	LRS	7011	SYS.	TON
	Si	FC	RESYTHE ST.	SEWER & ROAL	D RECONSTRU	CTION			10 10 10	
CS 2046TRUCTION ENTRANCES DATEST ONTURIED AREA							28.0	18	48.0	739.0
1998.25		-				-				-
107+02 70 109+30	67									-
54+838 CF 82+739	HT.	- 95		-						-
168+70 KD 938+33	H?-	- 63								
209+66 TO 309+90	HT.	4								
112-00 TO 112-TO	11	TD								
112+11 30 312+62	385	71								
110+07 10 111+50	145	62								
515-23 83 111-68	: Hf.	- 25								
111+10 10 112+18	79	- 10								-
112+00 90 112+54	34	. 54								
112455/30 113412	AT.	10				-				-
LIVE T		-		-		-	-		-	-
200+58 30 201+15	nr	26								-
203+26 10 203+46	187	25								
204-53 TO 204-15	RT	- 32 -								
TOTAL	-	. 821		-			23.0	1.0	457 D	208.0

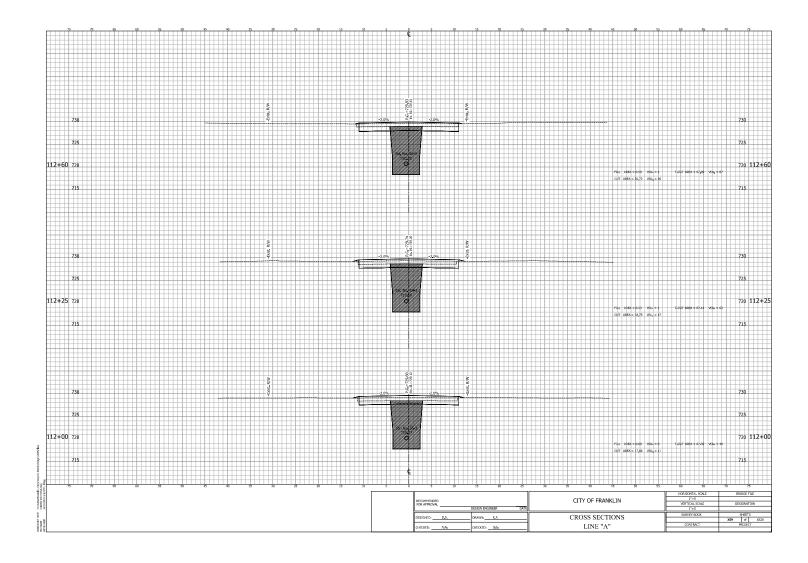

NOISE FILE	HOREZONTAL SOLLE				
DESCINATION	VERTICAL SCALE	CITY OF FRANKLIN	S/01/22 DESIGN ENGINEER	POR APPROVAL	PRELIMINARY
9675	SURVEY BOOK		ceanth: KJ.	DESIGNED D.S.	NOT FOR
PIKOECT	CONTINCT	MISCELLANEOUS TABLES	GROED D.S.	ORDED: TA.	CONSTRUCTION

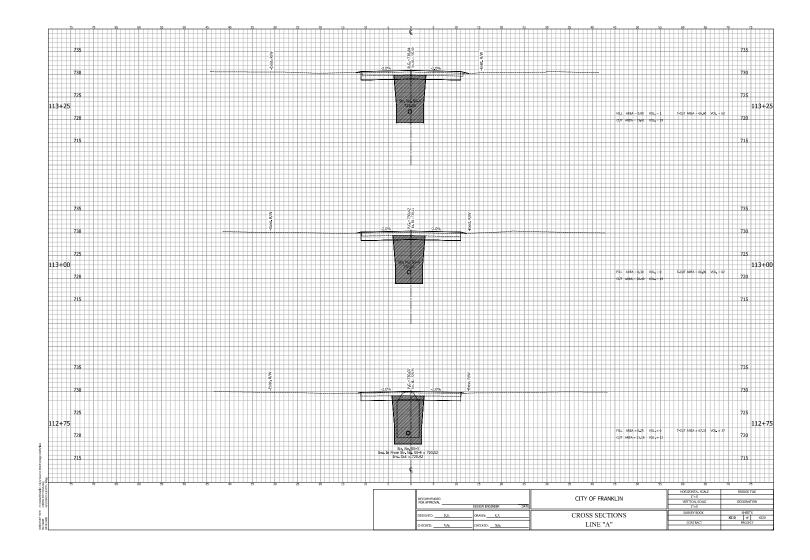


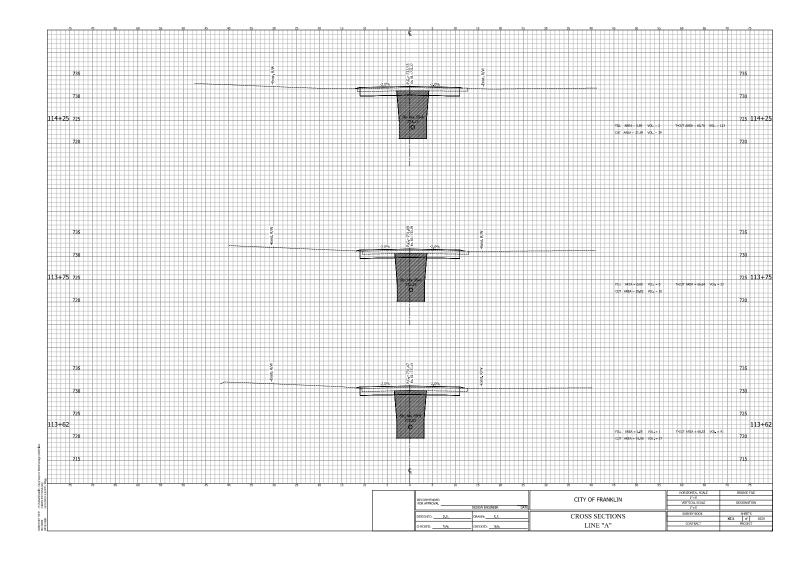


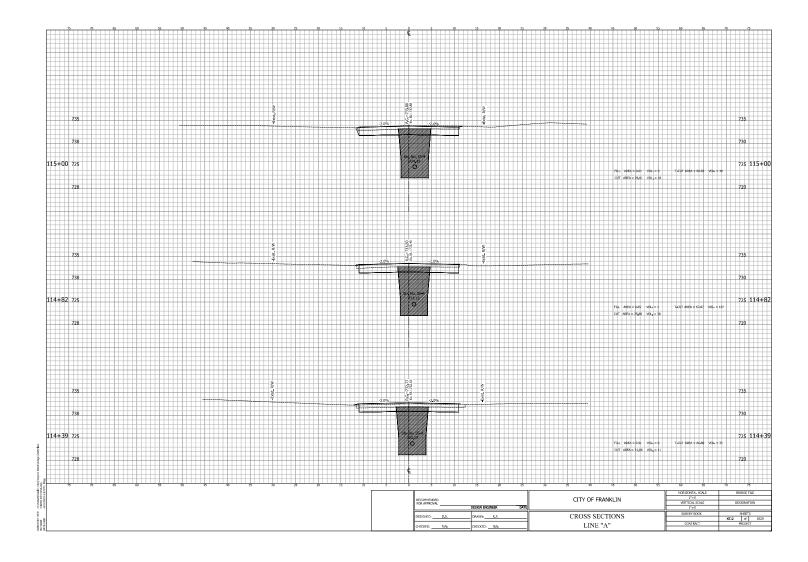


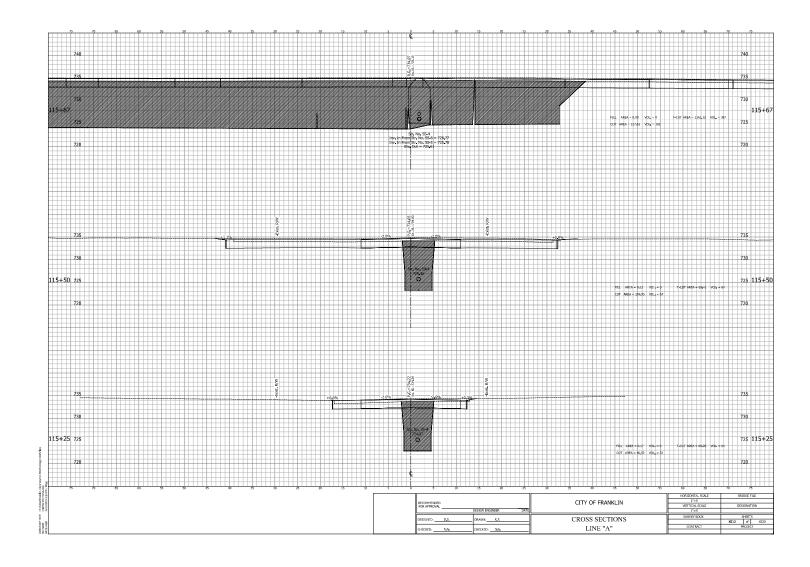


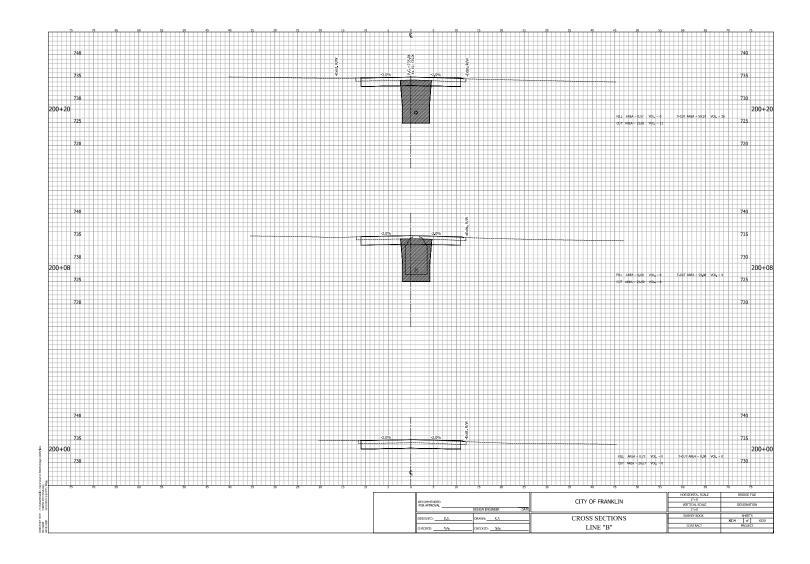


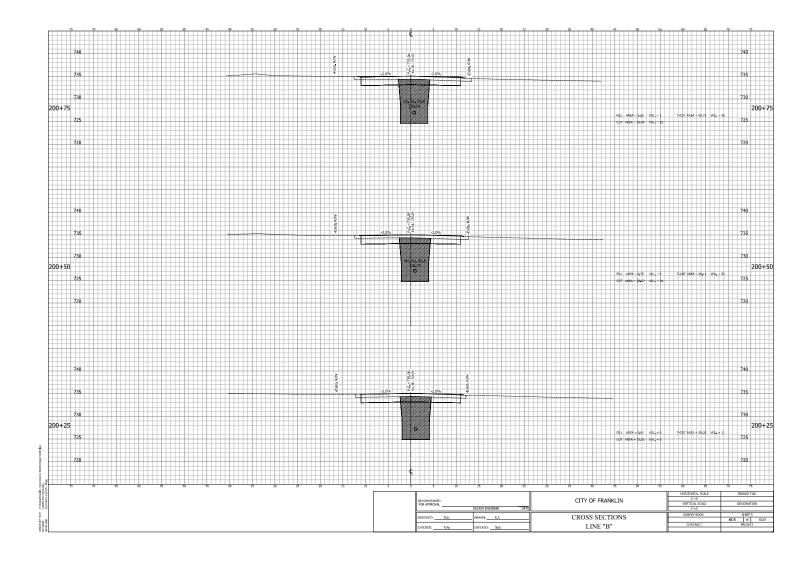


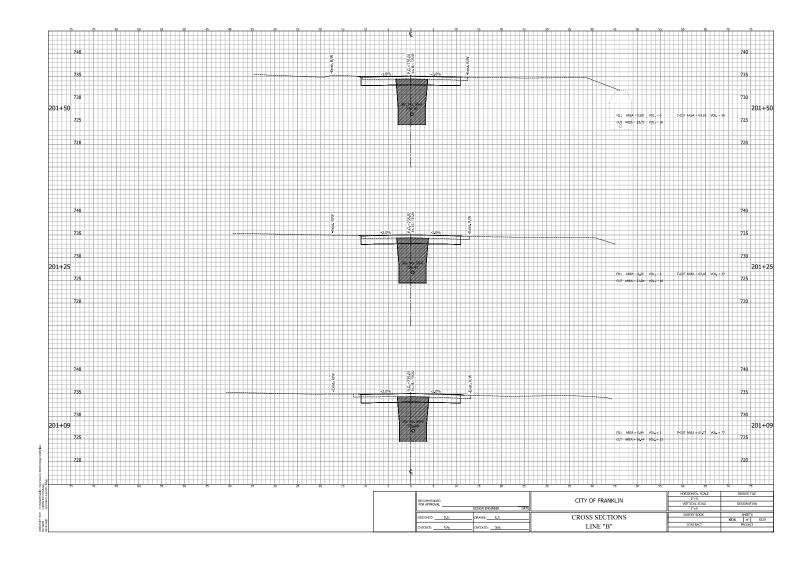


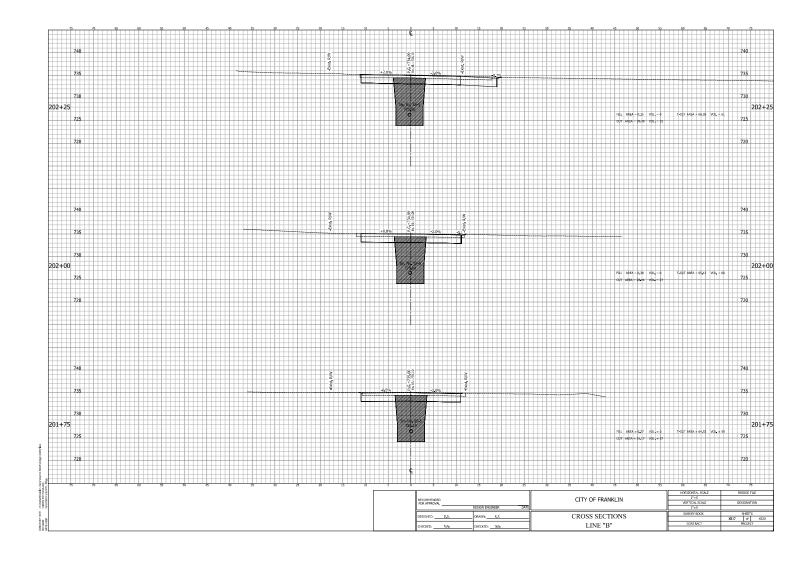


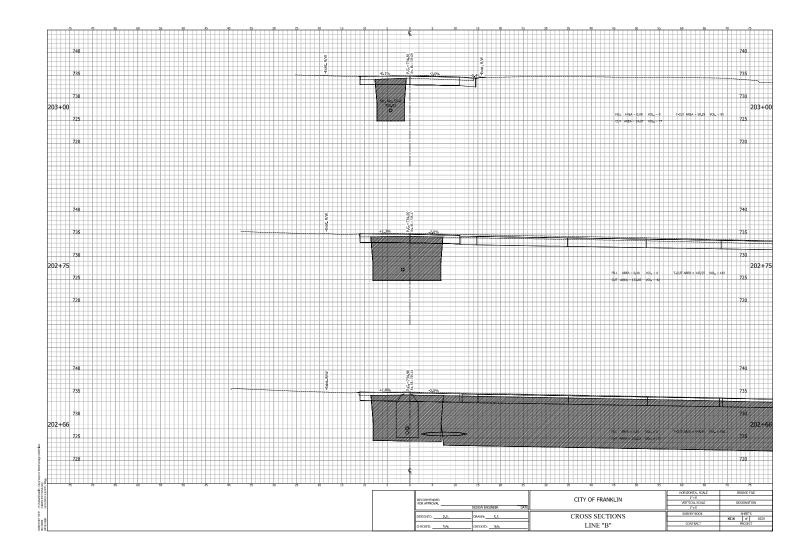


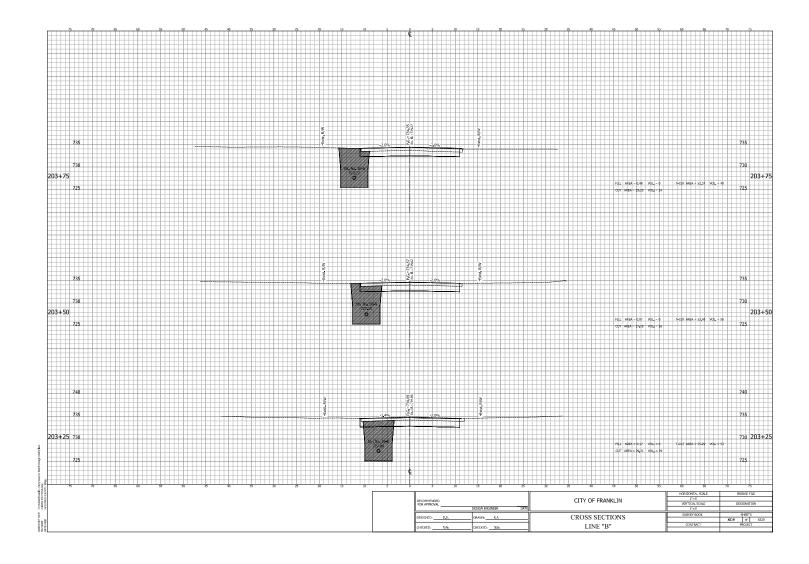


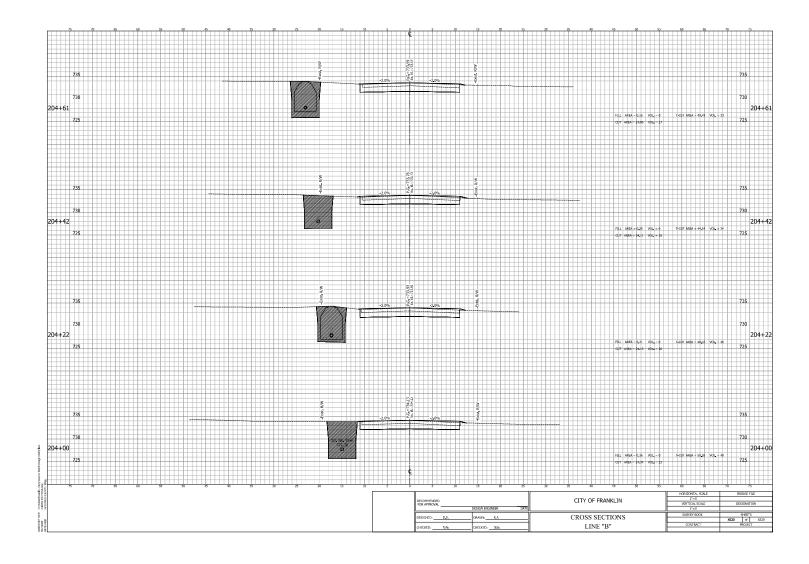












Forsythe Street Sewer & Road Reconstruction Project

FRANKLIN, INDIANA

TECHNICAL SPECIFICATIONS

<u>1</u> DEFINITIONS

The following terms are used herein and defined as follows:

- 1) The term "CONTRACTOR" shall refer to the general contractor awarded the project, as well as, any subcontractors.
- 2) The term "OWNER" shall refer to Amphenol Corporation.
- 3) The term "OWNER's Representative" shall refer to IWM Consulting.
- 4) The term "CITY" shall refer to the City of Franklin.
- 5) The term "INSPECTOR" shall refer to CrossRoad Engineers (acting as the City of Franklin's representative.

2 GOVERNING DOCUMENTS

The applicable sections of the following documents shall apply except as modified elsewhere herein:

- 1) Indiana Department of Transportation (INDOT) Standard Drawings and Standard Specifications 2018
- 2) INDOT Supplemental Specifications
- 3) City of Franklin Engineering Department Standards
- 4) City of Franklin Department of Public Works Standards

Unless otherwise specified within the Contract Documents, whenever any specification, standard, reference material, manual or other similar document is incorporated by reference into any of the contract documents, it shall be deemed to be the latest edition of said item including any and all supplemental addendum, which was in effect on the date of the bid opening for this project.

<u>3</u> COMPLETION DATE AND LIQUIDATED DAMAGES

Proposed Project Schedule

Earliest Date to Begin Work: August 19, 2019

Final Project Completion:November 19, 2019

The Final Project Completion Date of November 19, 2019, is based on a Notice to Proceed by the OWNER given on or before August 5, 2019.

The entire project and all pay items shall be complete including HMA Surface, permanent pavement markings, and sanitary sewer work by the Final Project Completion Date of November 19, 2019.

The failure to meet the substantial completion date or the final completion date, as defined herein, shall result in liquidated damages in the amount of \$1,000.00 per each day that the project remains incomplete. These damages shall be assessed to the CONTRACTOR not as penalty for incompletion but as damages incurred by the OWNER for failure to meet substantial completion and final completion dates by the CONTRACTOR.

Project Acceptance

Upon Completion of a Pre-Final Acceptance Meeting and receipt of the Punchlist by the CONTRACTOR, the CONTRACTOR shall have 5 work days to complete the Punchlist.

The failure to meet the Punchlist in 5 work days shall result in liquidated damages in the amount of \$1,000.00 per each day that the Punchlist items remain incomplete. These damages shall be assessed to the CONTRACTOR not as penalty for incompletion but as damages incurred by the OWNER for failure to meet Punchlist completion dates by the CONTRACTOR.

4 HOLIDAYS WHEN WORK IS NOT PERMITTED

The CONTRACTOR may not perform work on the following days:

- Sundays (unless otherwise approved by City Engineer)
- New Years Day
- Memorial Day
- Independence Day
- Labor Day
- Thanksgiving Day
- Christmas Day

5 WORK SCHEDULE SUBMITTAL

The CONTRACTOR shall provide a critical path work schedule for the entire project with the Post-Bid documents. This schedule shall be submitted to and approved by the OWNER and CITY prior to the start of construction and shall be updated as necessary. No work will be allowed until this schedule is submitted and approved; however, the CONTRACTOR will not be granted any time extension due to this delay.

6 CONSTRUCTION WORK HOURS

The CONTRACTOR shall perform all construction activities between the hours of 7:00 am and 7:00 pm unless receiving prior approval from the CITY.

7 LIMITATIONS OF OPERATIONS

When in the judgment of the CITY, the CONTRACTOR has obstructed or closed a greater portion of the work than is necessary for proper construction or is carrying on operations to the prejudice of the work already started, the CITY may require the CONTRACTOR to finish that portion of the work which is in progress before any additional portions are started. Except as hereafter specified, no loads of material for any construction shall be dispatched from cars or plants so late in the day that it cannot be placed, finished and protected within the Specification limits and provisions in the daylight hours of that same day.

8 HEALTH AND SAFETY PROGRAM SUBMITTAL

Description

This work shall consist of the preparation and implementation of the CONTRACTOR's health and safety program.

Submittal Requirements

CONTRACTOR shall prepare and submit a health and safety program for review and approval prior to construction. CONTRACTOR's health and safety program shall be compatible with IWM Consulting's program with regards to personal protection equipment, action levels, etc. The CONTRACTOR shall be responsible for preparing, implementing and enforcing said program in accordance with these specifications and AASHTO requirements.

Method of Measurement

No measurement will be made.

Basis of Payment

This work will not be paid for directly but shall be included in the cost of other items.

<u>9 COOPERATION WITH UTILITIES</u>

It shall be the CONTRACTOR'S responsibility to have all utilities located before construction in a particular area. The CONTRACTOR shall coordinate with all utilities in the adjustment of these facilities and in order to avoid damage to any facilities. Damage to any utility, shown or not shown on the construction documents, during the project caused by the CONTRACTOR'S operations or equipment, shall be repaired by the CONTRACTOR or UTILITY at no expense to the Contract. This includes sewer, water, gas, electric, telephone, cable, etc. and includes facilities within proposed storm sewer trenches. However, if any utilities are exposed and *must be* relocated for construction to continue, this work shall be performed by the utility, or the CONTRACTOR shall be reimbursed at an agreed upon price to perform such work. If the utility performs the work, the CONTRACTOR shall coordinate with the utility in order to expedite said work.

The facilities of <u>CenturyLink</u> exist within the project limits including 1) aerial cables along the east side of Forsythe Street, 2) aerial cables along the south side of Hamilton Avenue and 3) utility manholes and underground ducts/conduits along the south side of Hamilton Avenue. Contractor shall contact <u>Eddie Fields</u> of the utility at <u>(317)-736-4863</u> when the duct/conduit along Hamilton Avenue is exposed during sewer installation to determine if the utility must support is during excavation.

The facilities of Comcast exist within the project limits. If questions arise, Steve McArtor of the utility may be contacted at (317)-885-2405.

The facilities of <u>Metronet</u> exist within the project limits. If questions arise, <u>Mark Deckard</u> of the utility may be contacted at <u>(812)-253-2169</u>.

The facilities of <u>Indiana American Water Company</u> exist within the project limits. The utility is requesting bids for a water main relocation project along Forsythe Street and Hamilton Avenue. The water main relocation is anticipated to begin in July 2019 with some work occurring concurrent with the Forsythe sewer and road reconstruction. The utility shall be contacted regarding any necessary adjustments that are not identified in the technical specifications or plans. If questions arise, <u>Joshua Guy</u> of the utility may be contacted at <u>(317)-807-2462</u>.

The facilities of **<u>Duke Energy</u>** *exist within the project limits. If questions arise,* <u>**Gabe Gibson**</u> *of the utility may be contacted at* <u>(317)-416-1313</u>.

The facilities of <u>Vectren Energy</u> exist within the project limits. If questions arise, <u>Jonathan Eastham</u> of the utility may be contacted at <u>(765) 287-2119</u>.

10 EROSION CONTROL

Forsythe Street Sewer & Road Reconstruction Project City of Franklin, Indiana The CONTRACTOR shall implement erosion control measures and the stormwater pollution prevention plan (SWPPP) as shown and described on the plans. In the event the CONTRACTOR desires not to perform erosion control in accordance with the plans, CONTRACTOR shall submit his alternate plan in writing to the INSPECTOR and obtain acceptance at least 1 week prior to commencement of any construction activities. Alternate erosion control plans submitted for approval shall contain, at a minimum, the following items:

- 1. Locations of proposed disposal area.
- 2. Locations of all proposed vehicle and equipment parking areas, vehicle and equipment fueling locations, placement of the site construction trailers, location of all on-site batch plants, and designated concrete truck washout areas.
- 3. Proposed construction sequence and phasing of erosion control measures.
- 4. Location of all construction entrances where vehicles and equipment will enter and exit the site.
- 5. Material handling and spill prevention plan, which shall include a list of expected materials that may be present on the site during construction operations, as well as a written description of how these materials will be handled to minimize the potential that the materials may enter storm water runoff from the site.
- 6. Statement that the erosion control measures for the project will be inspected, at a minimum, on a weekly basis and within 24 hours of every ½ inch rain event.

Ground disturbing activities shall not commence until the INSPECTOR has been provided, reviewed and approved the alternate erosion control plan.

Temporary erosion control measures will be paid for with the pay items included in the itemized bid. No direct payment will be made for notifications or preparation of amendments to the SWPPP, but such cost shall be included in the cost of other pay items.

11 EXISTING CONDITIONS

The CONTRACTOR shall verify the elevations and measurements of all points where new construction is to match existing conditions prior to the commencement of any construction activities. No direct payment shall be made for this work but the cost thereof shall be included in the costs of the other items of the contract. Data from this operation shall be provided to the CITY prior to the start of construction operations.

12 ADJUST VALVE BOX TO GRADE

This item shall include all labor, material, equipment, and services necessary to adjust existing valve boxes to grade. All valve boxes shall be installed plumb and clear of debris. The cost for this work shall be included in the pay item Water Valve Box, Adjust to Grade.

13 PROTECTION OF EXISTING STRUCTURES, PIPE, AND YARD TILE

On this project, there are existing storm drainage and sanitary sewer structures and ditches that are to remain in place. The CONTRACTOR shall take care that these structures are not damaged. If any of these structures are damaged, the CONTRACTOR shall be required to repair them at his own expense.

Yard tile encountered and affected by the scope of work specified within the Contract Documents shall be given a positive outlet. Any tile damaged by the CONTRACTOR's operations shall be replaced by the CONTRACTOR at his own expense.

14 RIGHT-OF-WAY CLEARING

Clearing Right-of-Way shall be in accordance with the requirements of Section 201 of the INDOT Standard

Specifications. Cavities formed by the removal of shrubs, trees and/or stumps shall be backfilled and compacted with structure backfill. Such compaction shall comply with Section 211.04. No direct payment shall be made for this work, but the cost thereof shall be included in the costs of the other items.

The cost of tree and stump removal, trimming, removal of fences, and other items within the right-of-way to be removed or as directed by the CITY, not listed separately, will not be paid for, but shall be included in the lump sum price for Clearing of Right-of-Way.

15 MAINTAINING TRAFFIC

Maintenance of traffic shall be the sole responsibility of the CONTRACTOR. Access and traffic to all businesses, residences, for all postal deliveries and all emergency traffic such as police, fire, medical, etc. within the project limits, shall be maintained at all times.

Unless otherwise directed, or permitted, the work specified shall be arranged and prosecuted in accordance with all applicable provisions of Sections 104.04, 107, 801 and as set out in INDOT Standard Specifications.

The names and telephone numbers of the CONTRACTOR's superintendent and one other responsible employee shall be furnished at the pre-construction conference. These employees shall be on call and available at nights, weekends, or during other non-working periods to repair or replace all traffic control devices, which may become damaged or inoperative.

In the event the CONTRACTOR desires not to perform traffic maintenance in accordance with the sequence of operations as called for within the Contract Documents, the CONTRACTOR shall submit his alternate plan in writing to the CITY and obtain acceptance at least 1 week prior to the commencement of any construction activities.

Forsythe Street and Hamilton Avenue will be closed to thru traffic for the work to be completed. The CONTRACTOR shall coordinate with the City Engineer on all matters related to the road closures and the coordination with residents and businesses.

Open trenches, if permitted by the CITY shall be spanned per current OSHA requirements and with the concurrence of the CITY.

Any trenching areas adjacent to a sidewalk shall be barricaded.

The CONTRACTOR shall be prepared to have all construction signs erected for the project as specified by the CITY.

All temporary traffic control devices not listed separately or adjustments, labor, materials, etc., necessary for the maintenance of traffic as called for within the Contract Documents, or as permitted by the CITY shall be included in the lump sum price for 'Maintenance of Traffic', as set out in the itemized proposal.

16 ROAD CLOSURE NOTIFICATION

The CONTRACTOR shall post an advance closure construction sign that notifies the traveling public of a road closure and the duration of the closure at least <u>7 days</u> in advance of the road closure, unless otherwise approved by the CITY. The advance closure construction sign legend shall generally state that the named road or street will be closed on or after a specific date. The signs shall be placed as shown on the plans or as directed by the CITY.

The advance closure construction signs shall be in accordance with Section 801 of the INDOT Standard Specifications and paid for at the contract unit price per each for Construction Sign, A.

<u>17</u> STREET CLEANING

The CONTRACTOR shall provide effective dust control throughout the project. Loader-mounted pick-up, power sweepers, or other types of pull type models shall be used for street cleaning. Street cleaning shall also be performed prior to the pre-final meeting as directed by the CITY.

Street cleaning will not be paid directly but shall be included in the cost of various items of the contract regardless of the amount of times this operation is reasonably requested. Naturally occurring conditions, out of the control of the CITY, that cause more dust control than normal shall not be a valid reason for request of payment for dust control.

18 TRANSPORTATION OF SALVAGEABLE ITEMS

Existing signs, castings and manhole covers, etc. specified to be removed will be salvaged and stockpiled at the job site by the CONTRACTOR. The CONTRACTOR shall deliver all designated items by the INSPECTOR, to the CITY as directed. The remainder of the items shall become the property of the CONTRACTOR.

Transportation of Salvageable Items will not be paid directly, but shall be included in the cost of various items of the contract.

19 SAW CUTTING

In all areas where proposed construction matches existing conditions, full depth saw cutting shall be required. No direct payment will be made for saw cutting but the cost thereof shall be included in the costs of the other items.

20 REGULATED MATERIAL REMOVAL

Description

This work shall consist of removing regulated materials as part of the sanitary sewer trench excavation as shown on the plans and in accordance with INDOT Standard Specifications Section 105.03.

Materials

Per the testing results provided by IWM Consulting, the "Chemical of Concern Short List" contains the following regulated materials which are being removed during construction:

- 1) vinyl chloride
- 2) trans-1,2-dichloroethene
- 3) 1,1-dichloroethane
- 4) cis-1,2-dichloroethene
- 5) 1,2-dichloroethane
- 6) methylene chloride
- 7) 1,1,1-trichloroethane
- 8) Trichloroethylene (TCE)
- 9) Tetrachloroethylene (PCE)

As part of their onsite operations, IWM Consulting will implement an ambient air monitoring program.

Construction Requirements

Regulated materials shall be removed in accordance with INDOT Standard Specifications Sections 202.02. Regulated materials excavated from the site shall be loaded into the roll-off boxes/containers provided by IWM Consulting. Transport and disposal of regulated materials excavated during construction shall be the responsibility of IWM Consulting.

Soil sampling and testing will be completed by IWM Consulting during excavation to determine if additional excavation, beyond the trench limits shown on the plans, will be required. The CONTRACTOR shall coordinate with IWM Consulting for soil sampling requirements.

CONTRACTOR shall properly secure any excavation area left open overnight with orange snow/construction fence, barricades and the onsite equipment (excavator).

Method of Measurement

Excavation associated with "Regulated Material, Remove" shall be completed in accordance with the trench limits shown on the plans and measured on a per cubic yard (CYS) basis. The total removal depth and width shall be field checked and shall be constructed to reasonably close conformance as specified in Contract Documents.

If test results provided by IWM Consulting indicate that additional regulated materials must be removed, the work associated with the additional removal shall be completed as an undistributed item and measured for on a per cubic yard (CYS) basis. There shall be no adjustment in the contract unit price if quantities are less than those shown on the itemized proposal and the item can be deleted entirely without impact to the contract amount. All work involving undistributed items shall be performed only at the direction of the CITY or INSPECTOR.

Basis of Payment

The accepted quantities of regulated material removal will be paid for at the contract unit price per cubic yard.

Payment will be made under:

Pay Items	Pay Unit Symbol
Regulated Material, Remove	CYS
Regulated Material, Remove, Undistributed	CYS

The cost of all labor, equipment, and materials necessary to remove the regulated materials to the dimensions shown on the plans shall be included in the cost of "Regulated Material, Remove". The cost of properly securing excavation areas left open overnight in accordance with these specifications will not be paid for separately but shall be included in the cost of "Regulated Material, Remove". The cost of coordinating with IWM Consulting for soil sampling and roll-off box/container delivery and hauling shall be included in the cost of this item. IWM Consulting will be responsible for the cost of the roll-off box/container rental, delivery and hauling.

The cost of all labor, equipment, and materials necessary to remove additional regulated materials outside the dimensions shown on the plans shall be included in the cost of "Regulated Material, Remove, Undistributed". The cost of properly securing excavation areas left open overnight in accordance with these specifications will not be paid for separately but shall be included in the cost of "Regulated Material, Remove". The cost of coordinating with IWM Consulting for soil sampling and roll-off box/container delivery and hauling shall be included in the cost of the roll-off box/container rental, delivery and hauling.

21 COMMON EXCAVATION

Description

This work shall consist of excavation, hauling and disposal of all excavation including asphalt materials which are not included as regulated material removal or excavation which is otherwise classified and paid for in accordance with INDOT Standard Specifications Section 105.03.

Construction Requirements

Excavation and disposal shall be in accordance with INDOT Standard Specifications Sections 203.08, 203.09 and 203.10.

Method of Measurement

Common Excavation shall be paid per the plan quantity as indicated in the itemized proposal in the Proposal section of the Contract Documents. The total removal depth and width shall be field checked and shall be constructed to reasonably close conformance as specified in Contract Documents. In the event of additional work requiring common excavation, an agreed upon quantity for Common Excavation or an agreed upon new pay item will be added to the Contract via change order for this additional work prior to the work taking place.

The CONTRACTOR shall coordinate with the INSPECTOR on all measured quantities as the project proceeds and all items shall be agreed to prior to submittal for payment.

Basis of Payment

The accepted quantities of common excavation will be paid for at the contract unit price per cubic yard.

Payment will be made under:

Pay Items	Pay Unit Symbol
Common Excavation	CYS

The cost of all labor and equipment necessary for excavating, hauling and disposal of materials removed from the site, which are not classified or paid for under another excavation or removal item, shall be included in the cost of the item. No payment will be made for the construction, restoration, inspection or permitting of offsite disposal sites.

22 MATERIAL TESTING AND ACCEPTANCE

All aggregate, concrete, geogrid and bituminous materials used for the project shall be produced from an INDOT approved source. The CONTRACTOR shall submit the names and addresses of the suppliers of these materials for the project to the CITY at the pre-construction conference. Prior to delivery, the CONTRACTOR shall submit to the CITY a copy of the certification for each material supplier.

The INSPECTOR will be responsible for compaction testing of the structure backfill and compacted aggregate under the HMA section for the project. Asphalt materials shall be provided as shown on the plans; certifications and acceptance shall be in accordance with Section 402 of the INDOT Standard Specifications.

23 FINAL CLEANUP

The CONTRACTOR shall clean up all areas, including inlets, storm pipes, and streets, within the construction area as well as areas disturbed outside the construction areas at the completion of the project. This work shall be done at the satisfaction of the CITY. The areas disturbed outside of the construction area shall be seeded or sodded at no cost to this project.

24 UNDISTRIBUTED ITEMS

Quantities of undistributed items needed in addition to those shown on the itemized proposal and approved by the INSPECTOR will be paid for at the contract unit price for the quantity used on the project. There shall be no adjustment in the contract unit price if quantities are less than those shown on the itemized proposal and the item can be deleted entirely without impact to the contract amount. All work involving undistributed items shall be performed only at the direction of the INSPECTOR.

25 EXCESS MATERIAL - DISPOSAL

All excess material (waste) shall be removed from the project site. Whether a private or public waste site is utilized, such disposal shall comply with all Federal, State and local ordinances and permit requirements. A copy of all permits obtained or applied for shall be submitted to the CITY prior to the commencement of any construction activities.

26 AS-BUILT PLANS

Any deviations from the plans shall be documented in as-built drawings provided by the CONTRACTOR to the CITY once all work is completed and prior to final payment being provided. Red line drawings on the plan sheets are acceptable and shall include, but not be limited to, all key information including structure data deviations such as elevation, inverts, location with station and distance offset. The as-built drawing shall also include any underground encountered structures or facilities that remain in place. No payment will be made for this work but shall be considered within the other items.

27 RESTORATION OF DISTURBED AREAS

Cavities formed by the removal of shrubs, trees and/or stumps shall be backfilled and compacted with structure backfill. Such compaction shall comply with Section 211.04.

Any roots remaining after all the removal of any designated item shall be removed to a depth of 6 inches below the surface of the surrounding ground area.

Backfilled areas and the surrounding ground areas are to be raked to the satisfaction of the INSPECTOR and seeded. All work shall be in accordance with Section 621.

No direct payment shall be made for this work, but the cost thereof shall be included in the costs of the other items.

28 EROSION CONTROL GUARANTEE AND WARRANTY PERIOD

Prevailing Specifications: INDOT 621

Warranty Bond: Upon completion of the installation and initial inspection of the landscape material, a properly executed Warranty Bond with a surety shall be supplied in the amount of the material being warranted. The intent of the Warranty Bond shall be to permit the final acceptance of the contract and payment of the retainage.

Additions: The CONTRACTOR shall guarantee a stand of grass; and if through the actions of the elements, the seasons, animals, or man the seed does not grow; shall reseed, re-fertilize, and do that which is required to produce an abundant and uniform growth of grass on the areas requiring seeding in this contract. Final acceptance of the project will not be made until the requirements of this special provision have been attained.

Final Acceptance will not be achieved until the IDEM Rule 5 Notice of Termination has been completed.

29 GEOGRID

Description

This work shall consist of furnishing and installing geogrid as directed by the INSPECTOR and in accordance with INDOT Standard Specifications Section 105.03.

Materials

Materials shall be in accordance with INDOT Standard Specifications Section 918.05.

Construction Requirements

Shall be in accordance with INDOT Standard Specifications Sections 214.03, 214.04, and 214.05

Method of Measurement

Geogrid will be measured by the square yard. The quantity will be computed based on the total area of geogrid placed, exclusive of the area of overlaps.

Basis of Payment

The accepted quantities of geogrid will be paid for at the contract unit price per square yard of geogrid.

Payment will be made under:

Pay Items	Pay Unit Symbol
Geogrid, Type IB	SYS

The cost of furnishing materials, manufacturer's representative, all labor and equipment required for furnishing and placing the geogrid, all work necessary to establish grades, geogrid splices, overlaps, stakes or pins, supplemental product test data, and patching or replacement of geogrid shall be included in the cost of this work

<u>30 PROJECT PERMITS</u>

The CONTRACTOR shall complete all work in accordance with the terms and conditions of the approved Indiana Department of Environmental Management (IDEM) Rule 5 Notice of Intent. The CONTRACTOR shall post copies of all permits at the project site until final project completion.

31 TEMPORARY BYPASS PUMPING SYSTEMS FOR SANITARY SEWER

Description

This work shall consist of the design, implementation, installation and maintenance of temporary bypass pumping systems for the purpose of diverting the existing sanitary sewer flows around the work area for the duration of sanitary sewer work in accordance with 105.03.

Pre-Construction Submittal

The design, installation and operation of the temporary pumping system shall be the CONTRACTOR's responsibility. The CONTRACTOR shall employ the services of a vendor who can demonstrate that he specializes in the design and operation of temporary bypass pumping systems. The vendor shall provide at least five references of projects of a similar size and complexity as this project performed by the vendor within the past three years.

The CONTRACTOR shall submit to the INSPECTOR detailed bypass pumping plans outlining all provisions and precautions to be taken by the CONTRACTOR regarding the handling of existing wastewater flows. The bypass pumping plans shall be specific and complete, including such items as schedules, locations, elevations, capacities of equipment, materials and all other incidental items required to ensure proper protection of the facilities, including protection of the access and bypass pumping locations from damage due to the discharge flows. No construction shall begin until all provisions and requirements have been reviewed and approved by the INSPECTOR.

The bypass pumping plans shall include; but not be limited to, details of the following:

- A. Staging areas for pumps;
- B. Sewer plugging method and types of plugs;

- C. Number, size, material, location and method of installation of suction piping;
- D. Number, size, material, method of installation and location of installation of discharge piping;
- E. Bypass pump sizes, capacity, number of each size to be on site and power requirements;
- F. Calculations of static lift, friction losses, and flow velocity (pump curves showing pump operating range shall be submitted);
- G. Standby power generator size, location;
- H. Downstream discharge plan;
- I. Method of protecting discharge manholes or structures from erosion and damage;
- J. Thrust and restraint block sizes and locations;
- K. Sections showing suction and discharge pipe depth, embedment, select fill and special backfill;
- L. Method of noise control for each pump and/or generator;
- M. All temporary pipe supports and anchoring required;
- N. Design plans and computation for access to bypass pumping locations indicated on the drawings;
- O. Calculations for selection of bypass pumping pipe size;
- P. Schedule for installation of and maintenance of bypass pumping lines;
- Q. Plan indicating selection location of bypass pumping line locations;
- R. Off-site maintenance of traffic plans for installation, maintenance, and continual operation of temporary bypass pumping systems.

Design Requirements

- A. Bypass pumping systems shall have sufficient capacity to pump peak flows as provided by the City of Franklin. The CONTRACTOR shall provide all pipeline plugs, pumps of adequate size to handle peak flow, and temporary discharge piping to ensure that the total flow of the main can be safely diverted around the section to be repaired. Bypass pumping system shall be required to be operated 24 hours per day.
- B. The CONTRACTOR shall have adequate standby equipment available and ready for immediate operation and use in the event of an emergency or breakdown. One standby pump for each size pump utilized shall be installed at the mainline flow bypassing locations, ready for use in the event of primary pump failure.
- C. Bypass pumping system shall be capable of bypassing the flow around the work area and of releasing any amount of flow up to full available flow into the work area as necessary for satisfactory performances of work.

D. The CONTRACTOR shall make all arrangements for bypass pumping during the time when the main is shut down for any reason. System shall overcome any existing force main pressure on discharge.

Performance Requirements

- A. Due to the sewer service provided to adjacent property owners, no interruption in the flow of sewage throughout the duration of the project will be allowed. To this end, the CONTRACTOR shall provide, maintain and operate all temporary facilities such as dams, plugs, pumping equipment; both primary and back-up units as required, conduits, all necessary power, and all other labor and equipment necessary to intercept the sewage flow before it reaches the point where it would interfere with the work area, carry it past the work area and return it to the existing sewer downstream of the work area.
- B. The design, installation and operation of the temporary pumping system shall be the CONTRACTOR's responsibility.
- C. The CONTRACTOR shall provide all necessary means to safely convey the sewage past the work area. The CONTRACTOR will not be allowed to stop or impede the main flows under any circumstances.
- D. The CONTRACTOR shall maintain sewer flow around the work area in a manner that will not cause surcharging of sewers, damage to sewers and that will protect public and private property from damage and flooding.
- E. The CONTRACTOR shall protect water resources, wetlands and other natural resources.

Construction Requirements

EQUIPMENT:

- A. All pumps used shall be fully automatic self-priming units that do not require the use of foot-valves or vacuum pumps in the priming system. The pumps may be electric or diesel powered. All pumps used shall be constructed to allow dry running for long periods of time to accommodate the cyclical nature of effluent flows.
- B. The CONTRACTOR shall provide the necessary stop and start controls for each pump.
- C. The CONTRACTOR shall include one stand-by pump of each size to be maintained on site. Back-up pumps shall be on-line, isolated from the primary system by a valve.
- D. Discharge Piping In order to prevent the accidental spillage of flows all discharge systems shall be temporarily constructed of rigid pipe with positive, restrained joints. Under no circumstances will aluminum "irrigation" type piping or glued PVC pipe be allowed. Discharge hose will only be allowed in short sections and by specific permission from the INSPECTOR.

FIELD QUALITY CONTROL AND MAINTENANCE:

- A. Tests: The CONTRACTOR shall perform leakage and pressure tests of the bypass pumping discharge piping using clean water prior to actual operation. The INSPECTOR will be given 24 hours notice prior to testing.
- B. Inspection: The CONTRACTOR shall inspect bypass pumping system every two hours to ensure that the system is working correctly.
- C. Maintenance Service: The CONTRACTOR shall ensure that the temporary pumping system is properly

maintained and a responsible operator shall be on hand at all times when pumps are operating.

D. Extra Materials: Spare parts for pumps and piping shall be kept on site as required. Adequate hoisting equipment for each pump and accessories shall be maintained on the site.

PREPARATION:

- A. The CONTRACTOR is responsible for locating any existing utilities in the area the CONTRACTOR selects to locate the bypass pipelines. The CONTRACTOR shall locate his bypass pipelines to minimize any disturbance to existing utilities and shall obtain approval of the pipeline locations from the CITY and the INSPECTOR. Relocating utilities and obtaining all approvals shall be at no additional cost.
- B. During all bypass pumping operation, the CONTRACTOR shall protect the Pumping Station and main and all local sewer lines from damage inflicted by any equipment. The CONTRACTOR shall be responsible for all physical damage to the Pumping Station and main and all local sewer lines caused by human or mechanical failure.

INSTALLATION AND REMOVAL:

- A. The CONTRACTOR shall remove manhole sections or make connections to the existing sewer and construct temporary bypass pumping structures only at the access location indicated on the Drawings and as may be required to provide adequate suction conduit.
- B. Plugging or blocking of sewage flows shall incorporate a primary and secondary plugging device. When plugging or blocking is no longer needed for performance and acceptance of work, it is to be removed in a manner that allows the sewage flow to slowly return to normal without surge, to prevent surcharging or causing other major disturbances downstream.
- C. When working inside manhole or force main, the CONTRACTOR shall exercise caution and comply with OSHA requirements when working in the presence of sewer gases, combustible or oxygen-deficient atmospheres, and confined spaces.
- D. The installation of the bypass pipelines is prohibited in all saltmarsh and wetland areas. The pipeline shall be located off streets and sidewalks and on shoulders of the roads. When the bypass pipeline crosses local streets and private driveways, the CONTRACTOR shall place the bypass pipelines in trenches and cover with temporary pavement. Upon completion of the bypass pumping operations, and after the receipt of written permission from the INSPECTOR, the CONTRACTOR shall remove all the piping, restore all property to preconstruction condition and restore all pavement.
- E. No groundwater from dewatering operations shall be pumped into the sanitary sewer as part of the bypass pumping operations. Discharge lines from dewatering operations shall be pumped to the frac tanks provided onsite by IWM Consulting in accordance with the technical specifications contained herein.

Method of Measurement

No measurement will be made.

Basis of Payment

This work will be paid for at the contract lump sum price for temporary bypass pumping.

Payment will be made under:

Forsythe Street Sewer & Road Reconstruction Project City of Franklin, Indiana Pay itemPay Unit SymbolBypass Pumping, TemporaryLS

The cost of all equipment, labor, materials, design, mobilization, demobilization, installation, maintenance, operation, and all necessary incidentals not specified as a pay item shall be included in the cost of the temporary bypass pumping systems.

No additional payment will be made for repair, remediation, or replacement of sanitary sewer pipes or manholes associated with failure of the temporary bypass pumping system.

No additional payment will be made for off-site maintenance of traffic operations associated with the installation and operation of the temporary bypass pumping system.

32 TRENCH DEWATERING

Description

This work shall consist of the design, implementation, installation and maintenance of temporary dewatering systems for the purpose of removing groundwater from the excavation area during construction of the sanitary sewer.

Construction Requirements

CONTRACTOR shall pump all groundwater from the dewatering operations to the frac tank(s) provided, operated, and maintained by IWM Consulting. CONTRACTOR shall confirm frac tank location, intake connection point, hose diameter requirements and all other operational requirements with IWM Consulting prior to construction.

Sewer effluent from the temporary bypass pumping operations shall not be pumped into the frac tank(s) as part of the dewatering operations. Discharge lines from the temporary bypass pumping shall be pumped to the sanitary sewer in accordance with the technical specifications contained herein.

Method of Measurement

No measurement will be made.

Basis of Payment

This work will not be paid for directly but shall be included in the cost of other items.

33 SANITARY MANHOLES

Description

This work shall consist of the construction of standard sanitary manholes and sanitary doghouse manholes in accordance with 105.03.

Materials

1. Concrete Pad/Collar

All manhole castings shall have a class 'A' concrete pad/collar per the construction plans.

2. <u>Precast Concrete Manholes</u>

Manholes shall be constructed in accordance with ASTM Specifications for "Precast Reinforced Concrete Manhole Risers and Tops", Designation C 478. The minimum wall thickness shall be five (5) inches for manholes four (4) feet in diameter. When the depth of the manhole exceeds twelve (12) feet, then the depth in excess of twelve (12) feet shall be reinforced with two cages of reinforcement the same as required for reinforced concrete sewer pipe of same diameter as the riser of the manhole per ASTM Specification Designation C 76 for Class III Pipe. The precast tops shall be of the eccentric cone type. Precast flat covers shall be not less than eight (8) inches thick and reinforced with two layers of steel with a minimum area of 0.39 square inches per linear foot in both directions in each layer. Precast flat bottoms of manholes shall also be reinforced the same as specified herein for precast flat top. Hoisting lugs or hooks shall be cast in place for handling and setting of the rings. Openings of proper sizes and suitable design shall be cast in place for receiving the sewer and/or drop pipes and connections. Adjusting riser rings shall be provided as approved by the CITY.

All manhole joints shall be tongue and groove and they shall be sealed with an O-ring and joint sealer conforming to Federal Specifications SS-S-00210 and similar to "Kent-Seal No. 2" as manufactured by the Hamilton Kent Manufacturing Co., of Kent, Ohio; "RAM-NEK" as manufactured by the K.T. Snyder Co. of Houston, Texas, or equal. Cracked or damaged barrel joints shall be rejected.

3. <u>Manhole Steps</u>

The steps provided shall be manufactured of reinforced plastic and shall be twelve (12) inches wide and one (1) inch square.

4. <u>Manhole Bases</u>

Manhole bases shall be of cast-in-place monolithic concrete or precast concrete. Where sewer lines pass through or enter manholes, the invert channels shall be smooth and semi-circular in cross section and may be formed directly in the concrete of the manhole base, may be half tile laid in the concrete, or may be constructed by laying the sewer lines continuously through the manhole and break-hardened and neatly trimming the edges. Changes of direction of flow within the manholes shall be made with a smooth curve with as long as a radius as possible. The floor of the manhole outside the channels shall be smooth and slope toward the channel not less than one (1) inch per foot.

No mortar or concrete shall be placed in water, and no water shall be allowed to flow over or against the concrete before it has set for a period of time deemed sufficient by the DPW to prevent damage to the structure. The invert channel through manholes should be made to conform in shape and slope to that of the sewer. All invert channels are to have a properly mortared apron on either side, sloped to prevent solids deposition.

5. Frame Chimney Seal

An internal or external rubber seal shall be installed on all sanitary manholes. A rubber seal extension, to cover any additional heights of chimney not covered by the seal itself, shall be used when required. The internal and external rubber seal and seal extensions shall be as manufactured by Cretex Specialty Products, or equal. The sleeves shall be extruded from a high-grade rubber compound conforming to the applicable requirements of ASTM C 923. The bands used for compressing the sleeve and extension against the manhole shall be fabricated from 16-gauge stainless steel conforming to ASTM A 240 type 304, any screws, bolts or nuts used on this band shall be stainless steel conforming to ASTM F 593 and 594, type 304.

The joint between the manhole frame and chimney or cone shall be 3/4" thick and made using cement mortar. Any sealant used between the adjustment or grade rings of the chimney shall not be used in this joint. Installation of these rubber seals shall be in accordance with the manufacturer's recommendation.

6. Pipe Connectors

Pipe connections to sanitary manholes shall be made with one of the following or approved equal:

Kor-N-Seal, Type I or II as manufactured by Trelleborg Sealing Solutions Dura-Seal gasket as manufactured by Blackthorn, Inc. Z-Lok or Quik-Lok as manufactured by A-Lok Products, Inc.

7. <u>Sanitary Manhole Castings</u>

In addition to the requirements of INDOT Standard Specifications Section 910.05, all sanitary manhole covers shall be stamped as follows: "City of Franklin Sanitary Sewer".

Standard sanitary manholes shall have a R-1772 CVH frame and lid as manufactured by Neenah Foundry or 1875-3 as manufactured by East Jordan Iron Works. Watertight sanitary manhole castings shall have a R-1916F frame and lid as manufactured by Neenah Foundry or 1045 HD as manufactured by East Jordan Iron Works. Per City of Franklin requirements, the frame for watertight castings shall be anchored through the riser rings (if provided) to the manhole cone section with four galvanized rods.

8. Adjusting Rings

Where one (1) solid riser or barrel section cannot be used, final adjustments in elevation of the frame and cover shall only be accomplished by the use of precast concrete adjusting rings conforming to ASTM C 478.

Rings shall be of a nominal thickness of not less than four (4) inches and not more than twelve (12) inches total of adjusting rings shall be allowed for adjustment of the manhole frame and cover to required elevation.

9. <u>Structure Backfill</u>

Sanitary sewer manholes shall be backfilled with Type 1 materials in accordance with the INDOT Standard Specifications Section 211.03.1. The material shall be deposited in lifts not to exceed 6 in. (150 mm) loose measurement, and shall be placed in accordance with the neat line limits shown on the plans. Each lift shall be mechanically compacted using a hand-held vibratory plate compactor, and shall be compacted to the requirements as specified on the backfill details of these plans.

Construction Requirements

Construction and installation requirements shall be in accordance with the plan details and Standard Specifications.

The CONTRACTOR shall check sanitary manholes by performing air tests in accordance with ASTM C1244-93, Standard Test Method for Concrete Sewer Manholes by Negative Air Pressure (Vacuum) Test.

Method of Measurement

Sanitary manholes will be measured per each unit, complete in place.

Basis of Payment

The accepted quantities of sanitary manholes and sanitary doghouse manholes will be paid for at the contract unit price per each for the manhole, complete in place.

Payment will be made under:

Pay item Sanitary Manhole **Pay Unit Symbol** EA

The cost of excavation, installation, structural backfill, vacuum testing, and all necessary incidentals not specified as a pay item shall be included in the cost of the manhole.

The cost of all flexible boot connectors, cast-in-place gasket connections, rubber chimney seals, joint sealer, precast or cast-in-place concrete bases, class 'A' concrete for benchwalls, reinforcing steel, non-shrink grout, neoprene gasket, and all necessary incidentals not specified as a pay item shall be included in the cost of the manhole.

No additional payment will be made for repair, remediation, or replacement of manholes, backfill, or replaced pipe, and all other work associated with the repair, remediation, or replacement of manholes which do not pass vacuum testing.

34 SANITARY MANHOLE – FURNISH & ADJUST CASTING TO GRADE

Description

This work shall consist of furnishing new sanitary manhole castings and adjusting the rim elevation to grade in accordance with 105.03.

Materials

1. Concrete Pad/Collar

All manhole castings shall have a class 'A' concrete pad/collar per the construction plans.

2. <u>Sanitary Manhole Castings</u>

In addition to the requirements of INDOT Standard Specifications Section 910.05, all sanitary manhole covers shall be stamped as follows: "City of Franklin Sanitary Sewer".

Standard sanitary manholes shall have a R-1772 CVH frame and lid as manufactured by Neenah Foundry or 1875-3 as manufactured by East Jordan Iron Works. Watertight sanitary manhole castings shall have a R-1916F frame and lid as manufactured by Neenah Foundry or 1045 HD as manufactured by East Jordan Iron Works. Per City of Franklin requirements, the frame for watertight castings shall be anchored through the riser rings (if provided) to the manhole cone section with four galvanized rods.

Construction Requirements

Construction and installation requirements shall be in accordance with the plan details and Standard Specifications.

Method of Measurement

Sanitary manhole casting adjustments will be measured per each unit, complete in place.

Basis of Payment

The accepted quantities of sanitary manholes adjusted to grade will be paid for at the contract unit price per each for the manhole, complete in place.

Payment will be made under:

Pay itemPaySanitary Manhole, Furnish & Adjust Casting to GradeEA

Pay Unit Symbol

The cost of excavation, installation, structural backfill, vacuum testing, and all necessary incidentals not specified as a pay item shall be included in the cost of the manhole.

The cost of equipment, labor and materials necessary to complete this work including all frames, lids, adjusting rings, concrete pad/collar, and all necessary incidentals not specified as a pay item shall be included in the cost of the item.

35 SANITARY SEWER AND LATERALS

Description

This work shall consist of the construction of sanitary sewers, sanitary lateral connections and sanitary lateral cleanouts in accordance with 105.03.

Materials

All sanitary sewer pipe and fitting materials shall be provided by a manufacturer from the INDOT approved list of thermoplastic pipe manufacturers. The list will specify the manufacturer and thermoplastic pipe designation. All of these materials shall comply with the applicable AASHTO or ASTM requirements listed below and will only be accepted from qualified manufacturers. The manufacturer is defined as the plant which produces the thermoplastic pipe. The manufacturer shall become qualified by establishing a history of satisfactory quality control of these materials as evidenced by the test results performed by the manufacturer's testing laboratory. Sanitary sewer pipe materials shall conform to the following requirements:

1. <u>Polyvinyl Chloride Pipe (PVC)</u>

A. <u>Smooth Wall PVC</u>

All PVC pipe 15 inches or less in diameter shall meet the requirements of ASTM Designation D 3034. All PVC pipe greater than 15 inches in diameter shall meet or exceed the requirement of ASTM F 679. For diameters 15 inches or less, the pipe shall have a minimum cell classification of 12454-B and for diameters greater than 15 inches, the pipe shall have a minimum cell classification of 12454-C with all pipe having a minimum tensile strength of 7000 psi as defined in ASTM D 1784.

All PVC pipe shall be tested in accordance with Standard Method of Test for External Loading Properties of Plastic Pipe by Parallel - Plate Loading, ASTM Designation 2412. Minimum pipe stiffness shall be 46 psi.

2. Sanitary Service Laterals & Cleanouts

Sanitary sewer service laterals and cleanouts shall be SDR 35 PVC pipe conforming to ASTM D 3034. Joints shall be gasket push-on, compression type conforming to ASTM D 3212. Gaskets shall conform to ASTM F 477. Cleanout risers shall be HDPE meeting the requirements of ASTM Designation D 3034.

Lateral connections to the sanitary sewer main shall only be made using manufactured wyes, tees or adapters of the bell and spigot type. No saddle connections shall be permitted.

Connections between new and existing laterals shall be made using rubber couplings.

Concrete for type 2 sanitary lateral cleanouts shall be Class 'A'. A solid cleanout box frame cover shall be furnished and installed with each type 2 cleanout.

Construction Requirements

Contractor shall maintain sanitary sewer service to adjacent properties utilizing temporary bypass pumping in accordance with these specifications. Contractor shall field locate the active, existing sanitary laterals prior to construction to ensure reconnection to the sewer main. Abandoned sanitary laterals shall not be reconnected. Contractor shall confirm limits of the sewer lateral reconstruction with the INSPECTOR and IWM Consulting during construction. Construction and installation requirements shall be in accordance with the plan details and Standard Specifications.

The CONTRACTOR shall check pipe deflection by performing a mandrel test in accordance with 715.09 except that no pipe shall exceed a deflection of five percent (5%) or greater. The mandrel shall be pulled through the sewer by one person, by hand and without the aid of a mechanical pulling device. All pipe exceeding the maximum deflection shall be relaid or replaced.

The CONTRACTOR shall check pipe leakage by performing one of the following leakage tests:

- a) A hydrostatic test with a minimum of two feet of positive head. The rate of exfiltration or infiltration shall not exceed two hundred gallons per inch of pipe diameter per linear mile per day.
- b) An air test in accordance with ASTM F1417-92, Standard Test Method for Installation Acceptance of Plastic Gravity Sewer Lines Using Low-Pressure Air, for plastic pipe.

Method of Measurement

The accepted quantities of sanitary sewer pipe and sanitary lateral connections will be measured by the linear foot, complete in place.

Basis of Payment

The accepted quantities of sanitary sewer pipe and sanitary lateral connections will be paid for at the contract unit price per linear foot for pipe of the type, shape, and size specified, complete in place. The accepted quantities of sanitary lateral reconnections will be paid for at the contract unit price per each repair and/or reconnection, complete in place. The accepted quantities of sanitary lateral cleanouts will be paid for at the contract unit price per each for the cleanout type specified, complete in place.

Payment will be made under:

Pay item	Pay Unit Symbol
Pipe, Sanitary Sewer, 8 in. SDR-35 PVC	LFT
Pipe, Sanitary Sewer, 10 in. SDR-35 PVC	LFT
Pipe, Sanitary Sewer, 12 in. SDR-35 PVC	LFT
Sewer, Sanitary Lateral, Connections	LFT
Sewer, Sanitary Lateral, Reconnect	EA
Sewer, Sanitary Lateral, Cleanout, Type 1	EA
Sewer, Sanitary Lateral, Cleanout, Type 2 (Undistributed)	EA

The cost of excavation, installation, deflection testing, leakage testing, and all necessary incidentals not specified as a pay item shall be included in the cost of the pipe.

The cost of all fittings, wyes, tees, and bends shall be included in the cost of the sanitary lateral connections.

The cost of all solid covers, casting frames, concrete, aggregate for bedding and backfill, fibermesh

reinforcement, cleanout caps, wyes and bends shall be included in the cost of the sanitary lateral cleanouts of the type specified.

No additional payment will be made for repair, remediation, or replacement of pipes, backfill, video inspection of the repaired, remediated, or replaced pipe, and all other work associated with the repair, remediation, or replacement of unacceptable pipes.

36 FIELD OFFICE EQUIPMENT

The CONTRACTOR shall supply the following items and install them for the duration of the contract for use by the INSPECTOR and OWNER's representative. Each item of the following items shall be installed at both the current field office utilized by the INSPECTOR (located at 351 E. Jefferson Street); as well as, the field office to be supplied by the CONTRACTOR for use by the OWNER's Representative.

1. Computer System

- a. Laptop computer
- b. Processor Intel or AMD compatible, 2.0 GHz
- c. Memory 8.0 GB, 1333 MHz
- d. Hard Drive 500 GB, 5,400 rpm or 128 GB SSD (Solid State Drive)
- e. Ports Two USB 2.0 compliant ports

f. Network/Wireless – Ethernet or wireless card to be compatible with the selected internet and office network connections

- g. Graphics Integrated graphics card
- h. Display 15 in. WX GA LCD panel
- i. Battery Nine cell Lithium ion

j. Miscellaneous - One compatible port replicator with AC adapter, one additional AC adapter, one DC adapter and one padded carrying case.

The initial condition of the computer system shall be nearly pristine. All owner installed e-mail accounts, games, spyware, online services, applications, network or other profiles previously set up on the system shall be removed prior to placement in the field office. If the system was provided for a previous contract, all software not specified shall be removed prior to placement in the current field office.

The CONTRACTOR shall provide a minimum 900 J, six-outlet surge protector for each computer system specified in the contract.

2. Computer System Equipment

- a. Monitor 22 in. widescreen digital flat panel with VGA and DVI connections
- b. Keyboard USB enhanced multimedia keyboard
- c. Mouse Optical USB 2-button scroll mouse

d. Miscellaneous - One port replicator with AC adapter, one additional AC adapter, one DC adapter that is compatible with the INSPECTOR and OWNER's representative's provided laptop or mobile device.

3. Computer Software

The CONTRACTOR shall provide software for the computer system in accordance with the minimum requirements listed below.

a. Operating System Software – Windows 10 Professional.

b. Productivity Software – Microsoft Office 2013 Small Business and Adobe Acrobat Professional XI. c. Security Software – McAfee Virus Scan Plus.

All software shall include the most current updates and patches at the time the computer system is provided to the INSPECTOR and OWNER's representative. The CONTRACTOR shall provide for installation of updates and patches for the operating system, productivity and security software during the term of use of the computer system by the INSPECTOR and OWNER's representative.

Updates and patches shall be provided by an automatic update method.

The INSPECTOR and OWNER's representative may install and maintain proprietary software on the computer in order to run the construction management programs.

4. Miscellaneous Computer Requirements

The CONTRACTOR shall provide all cables, connections and software required to connect the computer system provided by the CONTRACTOR or by the OWNER's representative to the printer and the scanner.

The CONTRACTOR shall provide an Ethernet and a wireless office network to enable all computer systems in the field office to access the field office internet service, the printer and the scanner.

The CONTRACTOR shall provide all manuals necessary for operation of the computer system, computer system equipment and software with the system and shall include all documentation normally furnished with the equipment and software when purchased.

5. Field Office Machines

The CONTRACTOR shall provide a fully operational copier, printer, and document scanner for the OWNER's representative's exclusive use in the field office in accordance with the minimum requirements listed herein.

In lieu of separate copier, printer, and scanner, the CONTRACTOR may provide an all-in-one unit that meets all the requirements for any combination of the individual machines being provided. Separate machines shall be provided for those machine functions that are not included in an all-in-one type machine.

1. Copier

The copier shall be compatible with, and shall be connected to, the computer system provided by the CONTRACTOR or the OWNER's representative for use by the OWNER's representative in the field office. The copier shall be capable of using plain paper and of making full size, black and white copies of letter, legal and ledger US paper size original documents. The copier shall be capable of reducing and increasing copy sizes. The copier shall have a self-feeding paper tray, an automatic document feeder and be capable of producing at least 20 copies per minute.

2. Printer

The printer shall be compatible with, and shall be connected to, the computer system provided by the CONTRACTOR or by the OWNER's representative for use by the OWNER's representative in the field office. The printer shall be capable of printing single-sided, black and white letter, legal and ledger US paper size documents at a rate of 20 pages per minute and capable of automatic duplex printing. More than one printer may be used to meet this requirement.

All printers shall be set to accommodate wireless printing from the OWNER's representative's provided laptop or mobile device.

3. Document Scanner

The document scanner shall be compatible with, and shall be connected to, the computer system provided by the CONTRACTOR or the OWNER's representative for use by the OWNER's representative in the field office. The scanner shall be capable of scanning letter and legal-size documents and shall have an automatic document feeder and be capable of 200 to 600 dpi black and white resolution, preset to 200 dpi.

4. Miscellaneous Office Machine Requirements

The CONTRACTOR shall provide letter, legal and ledger size paper, ink cartridges and toner as required by the Engineer for the operation of each piece of equipment provided. If any office machine becomes defective, inoperable, damaged, or stolen, that machine shall be repaired or replaced within five business days after the CONTRACTOR is notified by the Engineer. If any of the office machines are not maintained by the CONTRACTOR as required, the Engineer may withhold partial payments until the machine is operational to the OWNER's representative's satisfaction.

6. Office Furniture

The CONTRACTOR shall provide the furniture pieces for the OWNER's representative's exclusive use in the field office in accordance with the minimum requirements listed herein.

- a. 1 office desk and office chair
- b. 4 File cabinet drawers

Field Office Computer System Equipment

c. First-aid Kit

If any furniture becomes defective, inoperable, damaged, or stolen, that furniture shall be repaired or replaced within five business days after the CONTRACTOR is notified by the OWNER's representative.

Pay Items

Pay Unit Symbol EA

The cost necessary to provide, setup and maintain the computer system equipment and miscellaneous field office machines shall be included in the cost of the computer system equipment.

37 FIELD OFFICE

Description

This work shall consist of providing the specified facilities and supplies in accordance with 105.03.

Construction Requirements

The CONTRACTOR shall provide the OWNER's Representative with a Type 'C' Field Office in accordance with INDOT Standard Specifications Section 628. CONTRACTOR shall coordinate with the OWNER's Representative for the exact field office location, toilet facilities location and additional computer systems equipment required by the OWNER's Representative. In addition to the facilities, supplies and equipment required in accordance with these specifications and INDOT Standard Specifications, the CONTRACTOR shall provide a new, clean 21.9 cu. ft. Whirlpool (or equivalent) bottom freezer refrigerator for test sample storage.

Method of Measurement

No measurement will be made.

Basis of Payment

This work will be paid for at the contract unit price per each month that the field office in utilized.

Payment will be made under:

Pay item	Pay Unit Symbol
Field Office, Type C	MOS

The cost of all equipment, labor and materials necessary to setup, secure, maintain and remove the field office shall be included in the cost of the field office.

The cost of all heating, cooling, electrical service, internet service, telephone service and other miscellaneous utility bills required for the field office shall be included in the cost of the field office.

Appendix B

Design-Level Data Soil Boring Logs

and

Temporary Monitoring Well Soil Boring Logs and Construction Diagrams

0		DNS		L	OG (ΟF	BO	RIN	g ds	SB-1	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 02/25/20 Drilling Method : Direct Particular Sampling Method Sampling Method : Dual Tutter Field/Office Logged : CN/LL Hole Diameter : 2.25"	ush			Ini Fii Se	asing Size tial Water nal Water elected fo illing Con	r Level Level r Analysis	: NA : 11' : NA : * : EnviroDynamics
Depth		HIC	Water Levels ▼ During Drilling - 11' ▼ After Completion - Not Appl	cable		es		otal ID	Tetal	Comple	Temp Well: DSB-1 Ground Elev.: 734.70
in feet	nscs	GRAPHIC	DESC	CRIPTION		Samples	(pp	5 30	Total PID (ppm)	Sample Recovery (%)	
0-1-2-	CL		SILTY CLAY, medium stiff, br	own, moist, trace gravel & sand	1	1			0.0	100	
3-						2	e		0.0	100	
5	SC		CLAYEY SAND, medium den grained	se - loose, brown, moist, mediu	m	3	6		0.0*	100	
7-	00					4	ø		0.0*	100	
8- 9- 10-	46		SAND, brown, medium dense	, with gravel & fines		5	6		0.0	100	
			Wet, traces of gravel & silt @	11 feet		6	¢		0.0	100	.
) 13– 14–	SM		Brown-grey, medium to coars	e grained @ 14 feet		7	¢		0.0	100	
15						8	6		0.0*	100	
17-			Gravelly, brown @ 17 feet			9	ø		0.0	100	
19-			Coarse, brown-grey, with grav	el @ 18.5 feet	2	10	ø		0.0	100	
9 10 11 12 13 14 14 15 16 17 18 19 19 20 21 22 23 24 25	ML SP		CLAYEY SILT, moist, brown-g SAND, coarse, brown-grey, w	et, traces of gravel & silt		11	•		0.0*	100	
22	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of		12	6		0.0	100	
24											
25-			Boring completed at 25.0 feet	BGS.							

0	3	DNS		L	LOG OF BORING DSB-2							
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 02/25/20 Drilling Method : Direct P Sampling Method : Dual Tul Field/Office Logged : CN/LL Hole Diameter : 2.25"	ush		-	Casing Siz Initial Wate Final Wate Selected for Drilling Co	er Level r Level or Analysis	: NA : 15' : NA : * : EnviroDynamics		
Depth in feet	USCS	GRAPHIC	Water Levels ▼ During Drilling - 15' ▼ After Completion - Not Appl			Samples	Total PID (ppm)	Total PID	Sample Recovery	Temp Well: DSB-2 Ground Elev.: 734.60		
0-	รั AR	GF	ASPHALT/GRAVEL		ة 	ກັ _			(%)			
2			SANDY CLAY, moist, brown,	traces of gravel		* 		0.0	100			
3-	CL		Very Sandy @ 4 feet			2	¢	0.0	100			
5			SAND, medium grained, mois	t, brown	*	3	ø	0.0*	100			
7-						4	ø	0.0*	100			
9-			SAND, dense, brown, with gra	vel & fines, varying colors	-	5	ø	0.0	100			
						6	ø	0.0	100			
12– 13–	SM		Very moist, brown-grey @ 12.	5 feet		7	ø	0.0	100			
14			Wet, very coarse, with silt @ 1	5 feet		8	ø	0.0*	100	▼		
16- 17-			Reddish from 16 - 16.75 feet Saturated, brown, gravelly, sil	ty @ 16.75 feet		9	φ	0.0	100			
18- 19-	SP		SAND, grey, with clays @ 18.	5 feet		10	ø	0.0	100			
20-			SAND, dense, very coarse, w	ət, with silt	1	1	o	0.0*	100			
9	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of	1	12	Ø	0.0	100			
24	-	111	Boring completed at 24.5 feet	BGS.						l		

0		DNS			LOG	OF	BC	RIN	G DS	SB-3	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method : Di Sampling Method : Du	2/25/2019 irect Push ual Tube N/LL 25"			In Fi Se	asing Size itial Water inal Water elected fo rilling Con	r Level ⁻ Level r Analysis	: NA : 13.5' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels ▼ During Drilling - 13.5' ▼ After Completion - Not Appl DESC			Samples		otal PID ppm) 15 30	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-3 Ground Elev.: 734.60
0	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, moist, brown,			1	6		0.0	100	
2 3 4						2	Ø		0.0	100	
5			Very sandy @ 5 feet			3	¢		0.0*	100	
7-	SP	2/1	SAND, medium grained, brow	n, moist		4	စ		0.0*	100	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24			SAND, slightly moist, dense, b	prown, with gravel & fines	:	5	¢		0.0	100	
11-			Moist @ 11 feet			6	•		0.0	100	
13 14	SM		Brown-grey, wet, gravelly with	silt @ 13.5 feet		7	ø		0.0	100	⊥
15-			Brown @ 14.5 feet			8	•		0.0*	100	
16 17						9	•		0.0	100	
18 19						10	•		0.0	100	
20	SP		SAND, coarse, brown-grey, w Very coarse, with gravel @ 21	feet		11	6		0.0*	100	
22		7/12	Medium to coarse grained, po SILTY CLAY, hard/very stiff, s	R 276	of	10				100	
23-	CL		gravel & sand			12	•		0.0	100	
			Boring completed at 24.0 feet	BGS.							

0		DNS		LOG OF BORING DSB-4								
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/25/201Drilling Method: Direct PusSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"	sh			Casing Siz Initial Wate Final Wate Selected for Drilling Co	er Level r Level or Analysis	: NA : 17' : NA : * : EnviroDynamics		
Depth in feet	uscs	GRAPHIC	Water Levels ✓ During Drilling - 17' ✓ After Completion - Not Appl DESC	cable CRIPTION	Samples		Total PID (ppm) 0 15	Total PID 30 (ppm)	Sample Recovery (%)	Temp Well: DSB-4 Ground Elev.: 735.30		
0 1- 2-	AR CL	/// ///	ASPHALT/GRAVEL sub-base SANDY CLAY, very soft No Recovery	NDY CLAY, very soft				0.0	50			
3					2		Ø	-	O			
5 5 6	0		SANDY CLAY, very soft		3	5	0	0.0	50			
8	CL		Medium stiff @ 8 feet SAND, dense, slightly moist, b	prown, with gravel & fines	4	2	•	0.0*	100			
9					5		0	0.0*	100			
9 10 11 12 13 14 14 15 16 17 18 19 20 21 22 23 24 25					7		0	0.0	100			
14	SM		Moist @ 14.5 feet Very moist, brown-grey, with f	ines @ 15 feet	8	5	6	0.0	100			
16 17 18			Wet, brown @ 17 feet		9	8	0	0.0*	100	≖		
19-			SAND doppo cooreo brown	arev wet	10		ø	0.0	100			
21	SP		SAND, dense, coarse, brown-	yıcy, wet	11		0	0.0	100			
23					12		¢	0.0*	100			
24 25	CL		SILTY CLAY, hard/very stiff, s gravel & sand		13	8	8	0.0	100			
20			Boring completed at 25.0 feet	BGS.								

(DNS		LOG OF BORING DSB-5							
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/25/20Drilling Method: Direct PuSampling Method: Dual TubField/Office Logged: CN/LLHole Diameter: 2.25"	ush		l F S	Casing Size nitial Wate Final Water Selected fo Drilling Cor	r Level ⁻ Level r Analysis	: NA : 15' : NA : * : EnviroDynamics	
Depth in feet	nscs	GRAPHIC	Water Levels ▼ During Drilling - 15' ▼ After Completion - Not Appl DESC	cable CRIPTION		Samples	Total PID (ppm) 0 15 3	Total PID 0 (ppm)	Sample Recovery (%)	Temp Well: DSB-5 Ground Elev.: 735.40	
0-	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, soft to medium			1	۶.	4.2	100		
2 3 4			SANDY CLAY, sort to medium	stin, drown, moist		2	0	0.7	100		
5	CL		Very Sandy @ 5 feet			3	6	0.2	100		
7-			SAND, medium dense/dense, poorly-sorted, with gravel & fir	, slightly moist, brown, nes			Ø	0.1*	100		
-						5	ø	0.0*	100		
	SP					6	φ	0.0	100		
						7	ø	0.0	100		
			SILTY SAND, very coarse, bro	own, wet, traces of gravel		8	ø	0.0	100	≖	
9 10 11 12 13 14 14 15 16 17 18 19 10 10 10 11 12 12 13 14 11 12 13 14 11 12 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14 11 12 12 13 14 15 16 16 16 17 10 10 10 10 10 10 10 10 10 10	SM					9	ø	0.0*	100		
18						10	•	0.0	100		
20	SP		SAND, medium to coarse grain to very coarse with depth	ned, brown-grey, wet, coarsens		11	0	0.0	100		
22						12	ø	0.0*	100		
24	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of		13	•	0.0	100		
25-			Boring completed at 24.5 feet	BGS.							

0		DNS		LOG OF BORING DSB-6							
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/25/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"	_		Ini Fii Se	asing Size itial Wate nal Water elected fo illing Cor	r Level ⁻ Level r Analysis	: NA : 13' : NA : * : EnviroDynamics	
Depth in feet	nscs	GRAPHIC	Water Levels ✓ During Drilling - 13' ✓ After Completion - Not Appl DESC	cable CRIPTION	Samples	P (pp	otal ID om) 15 30	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-6 Ground Elev.: 735.40	
	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, medium stiff, b		1	ø		0.0	100		
2 3 4	CL		Very sandy @ 4 feet		2	ø		0.0	100		
5					3	٩		0.0	100		
7			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, es	4	¢		0.0*	100		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25					5	¢		0.0*	100		
11-	SP		Moist @ 12 feet		6	¢		0.0	100		
13			Wet, dense @ 13 feet		7	ø		0.0	100	_	
15 16			SILTY SAND, coarse, brown- of gravel	grey, wet, poorly-sorted, traces	8	¢		0.0	100		
17	SM				9			0.1*	100		
19- 20-			SAND, coarse, brown-grey, w	et, poorly-sorted	10			7.0	100		
21-	SP				11	ð		0.1	100		
23	CL		SILTY CLAY, hard/very stiff, s	lightly moist, grey, traces of	12			0.0* 0.0	100		
25	J.	1.14	gravel & sand Boring completed at 25.0 feet		ت ال	I		0.0	100		

	0		DNS		LOG OF BORING DSB-7							
Depth in feet Orgentiation - Not Applicable Total PID (ppm)			980	Hurricane Road Franklin, IN	Drilling Method Sampling Method Field/Office Logged	: Direct Push : Dual Tube : CN/LL		Initial Water Level Final Water Level Selected for Analysi				: 13' : NA : *
AR ASPHAL I/GRAVEL sub-base 1 9 2 4.5 3 9 4 0 4 0 7 SAND, medium dense/dense, slightly moist, brown, poorly-sorted, with gravel & fines	in	nscs	GRAPHIC	 ✓ During Drilling - 13' ✓ After Completion - Not Appl 		Samples	PID (ppm)	PID	Recovery	Temp Well: DSB-7 Ground Elev.: 735.30	
3- 2 1.4 100 4- CL Very sandy @ 4 feet 3 0 0.1 100 6- 3 0 0.1 100 7- SAND, medium dense/dense, slightly moist, brown, poorly-sorted, with gravel & fines 4 0 0.1* 100	1-	AR				1	ĵ		4.5	100		
5- 3 0.1 100 6- - - - - 7- - SAND, medium dense/dense, slightly moist, brown, poorly-sorted, with gravel & fines 0.1* 100	3-	CL		Very sandy @ 4 feet		2	P		1.4	100		
8 SAND, medium dense/dense, slightly moist, brown, 8 Sand Sand Sand Sand Sand Sand Sand Sand	5					3	0		0.1	100		
9- 5 0 0.3* 100 10- SP 6 0 0.2 100 11- 6 0 0.2 100 12- SAND, medium grained, wet, brown-grey, with silt 7 0 0.0 100 13- SAND, medium grained, wet, brown-grey, with silt 7 0 0.0 100 Image: second s	8-			SAND, medium dense/dense, poorly-sorted, with gravel & fir	, slightly moist, brown, nes			ø		0.1*	100	
12 Image: state in the s		SP					5	0		0,3*	100	
10 SAND, medium grained, wet, brown-grey, with silt 1 1 10 14 15 SILTY, coarse, poorly-sorted, traces of gravel @ 15 feet 8 0 0.0 100 16 SM 9 0 0.0* 100 17 18 10 10 0.0 100 18 10 0.0 100 100 20 SAND, coarse, brown-grey, wet, poorly-sorted 11 0 0.0 100 21 SP SAND, coarse, brown-grey, wet, poorly-sorted 11 0 0.0 100	12-						22523	¢			170.69625	•
16 SM 0.0* 100 17 10 9 0.0* 100 18 10 0.0 100 19 0 0.0* 100 20 SAND, coarse, brown-grey, wet, poorly-sorted 11 0.0 100 21 SP 12 0.1* 100	13-					feet						-
19 10 0.0 100 20 SAND, coarse, brown-grey, wet, poorly-sorted 11 0.0 100 21 SP 0.0 100	16-	SM						ø			17,22,3745	
20 SAND, coarse, brown-grey, wet, poorly-sorted 11 0.0 100 21 SP 12 0 0.1* 100	18 19						10	Ø		0.0	100	
	21	C		SAND, coarse, brown-grey, w	et, poorly-sorted		11	ø		0.0	100	
	23-	SP					12	ø		0.1*	100	
24 SILTY CLAY, hard/very stiff, slightly moist, grey, traces of 13 0.1 100	24	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, tra	ices of	13	6		0.1	100	

		DNS		LOG OF BORING DSB-8						
	Former Amphenol Corporation 980 Hurricane Road Franklin, IN EPA ID # IND 044 587 848			Date Completed: 02/25/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"		lı F S	Casing Size Initial Water Level Final Water Level Selected for Analysis Drilling Contractor		: NA : 15' : NA : * : EnviroDynamics	
Depth in feet	nscs	GRAPHIC	Water Levels ✓ During Drilling - 15' ✓ After Completion - Not Appl DESC	CRIPTION	Samples	Total PID (ppm) 0 15 3	Total PID 0 (ppm)	Sample Recovery (%)	Temp Well: DSB-8 Ground Elev.: 733.90	
0 1 2	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, medium stiff, b		1	ſ	6.3	100		
3	CL		Very sandy @ 4 feet		2		4.8	100		
5 6 7					3	•	0.3	100		
8	SP		SAND, medium dense/dense, poorly-sorted, with gravel & fir		5	8	0.3*	100		
10 11 12					6	0	0.1	100		
13-			SAND, medium grained, very Brown @ 14.5 feet	moist, brown-grey, traces of silt	7	8	0.1	100		
14 15 16 17			SILTY, brown-grey, saturated coarse, with gravel @ 15 feet	coarsens with depth to very	8		0.1	100	⊻.	
18- 19-	SM				10	•	0.1*	100		
20 21 22					11	•	0.1	100		
23 24					12	8	0.1	100		
25 26 27	ML		Fine SILT, clayey with depth SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of	13		0.0*	100		
27 28 29	CL				14	6	0.0	100		
30-		11/1	Boring completed at 30.0 feet	BGS.				NA 4		

		DNS		LOG OF BORING DSB-9							
Former Amphenol Corporation 980 Hurricane Road Franklin, IN EPA ID # IND 044 587 848			Hurricane Road Franklin, IN	Date Completed: 02/25/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Initial Water Level : 10 Final Water Level : NA Selected for Analysis : *			: NA : 10' : NA : * : EnviroDynamics	
Depth in feet	nscs	GRAPHIC	Water Levels			Samples	83 12	Fotal PID opm) 15 30	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-9 Ground Elev. : 733.
0 1	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, medium stiff, b			1	9		3.0	100	
2 3 4						2	8		0.8	100	
5	CL		Very sandy @ 6 feet			3			0.1	100	
7			SAND, medium dense/dense,	mojet brown poorly-sort	d	4	¢		0.0*	100	
9 10	SP		SILTY SAND, coarse, brown,	23 25	.u,	5	ŀ		0.0*	100	×
11 12			SILT SAND, COalse, Drown,	wet		6	•		0.0	100	
13 14						7	•		0.0	100	
15 16						8	¢		0.0	100	
17 18	SM		Very coarse @ 17 feet			9	•		0.0	100	
19 20			Coarse @ 20 feet			10	•		0.0*	100	
21 22						11	•		0.1	100	
23 24			Very coarse @ 23 feet			12	•		0.0	100	
25 26			No Recovery from 20 - 25 fee slightly moist, grey, traces of g	t (SILTY CLAY, hard/very gravel & sand in cutting sh	stiff, oe)	- 13	•		0.0*	100	
27 28	CL					14	•		-	0	
29- 30-			Boring completed at 30.0 feet			15	6		-	0	

0		DNS			LOG	ΟF	BORI	NG DS	B-10	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method : Sampling Method : Field/Office Logged :	02/26/2019 Direct Push Dual Tube CN/LL 2.25"			Casing Size Initial Wate Final Water Selected fo Drilling Cor	r Level ⁻ Level r Analysis	: NA : 12' : NA : * : EnviroDynamics
Depth	uscs	GRAPHIC	Water Levels ▼ During Drilling - 12' ▼ After Completion - Not Appl			Samples	Total PID (ppm	Total	Sample	Temp Well: DSB-10 Ground Elev.: 733.30
feet	ns	В В	DESC	CRIPTION	7	Sal	0 15	30 (ppm)	(%)	
0-	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, medium stiff, b			1	6	0.1	100	
2-						2	6	0.0	100	
4-	CL		Very sandy @ 4 feet			3	•	0.0	100	
6										
8			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, nes		4	0	0.0*	100	
9	SP					5	ø	0.0*	100	
11-						6	ø	0.0	100	.
13			SILTY SAND, coarse, brown-	grey, wet, traces of grav	vel	7	0	0.0	100	
14			Very coarse, less silt @ 15 fee	et		8	ø	0.0	100	
16 17-	SM					9	6	0.0*	100	
18-	111125								100	
19			Medium to coarse grained @ Coarse @ 20.5 feet	20 feet		10	Ø	0.0	100	
21-			20.0 1001			11	0	0.0*	100	
23-	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, trace	es of	12	6	0.0	100	
24-		11	Boring completed at 24 feet B	GS.				11		

(D			LOG	OF	BORIN	IG DS	B-11	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/26/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Casing Siz Initial Wate Final Wate Selected fo Drilling Cor	r Level r Level or Analysis	: NA : 12' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels ✓ During Drilling - 12' ✓ After Completion - Not Appl DESC		Samples	Total PID (ppm) 0 15	Total PID 30 (ppm)	Sample Recovery (%)	Temp Well: DSB-11 Ground Elev.: 733.30
0	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, medium stiff, b		1	Ø	0.1	100	
2 3 4					2	Ø	0.0	100	
5	CL		Very sandy @ 6 feet		3	Ø	0.0	100	
7					4	ø	0.0*	100	
9 10	SP		SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, nes	5	φ	0.0*	100	
11-					6	Φ	0.0	100	¥
13			SILTY SAND, brown, wet, gra	velly	7	Φ	0.0	100	_
14 15 16					8	Φ	0.0*	100	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	SM		Medium grained @ 16.5 feet Coarse to very coarse @ 17.5	feet	9	φ	0.0	100	
19 19 20			Less silt, medium grained, bro	wn-grey @ 19.5 feet	10	φ	0.0	100	
21-					11	ø	0.0*	100	
23	CL		SILTY CLAY, hard/very stiff, s gravel & silt	lightly moist, grey, traces of	12	φ	0.0	100	
24-		11	Boring completed at 24 feet B	GS.			1		l

	æ	DNS			LOG	DF	BORI	NG DS	SB-12	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method : D Sampling Method : D Field/Office Logged : C	2/26/2019 Direct Push Dual Tube :N/LL .25"			Casing S Initial Wa Final Wat Selected Drilling C	ter Level er Level for Analysis	: NA : 15' : NA : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels ▼ During Drilling - 15' ▼ After Completion - Not Appl DESC			Samples	Total PID (ppm) 0 15	Tota	Recovery	Temp Well: DSB-12 Ground Elev.: 733.20
0-	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, medium stiff, r			1	0	0.6	100	
2- 3- 4-	CL					2	0	0.1	100	
5-			Very sandy @ 5 feet			3	•	0.0	100	
7-			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, les		4	ø	0.0*	100	
8- 9- 10- 10- 11-	SP					5	ø	0.0*	100	
бол бицори.	-					6	ø	0.0	100	
12- 13-	-		SILTY SAND, rocky, very moi	st, with fines		7	ø	0.0	100	
14- 15- 15- 16-			Very coarse, brown, wet, with	gravel @ 15 feet		8	ø	0.0	100	⊻.
10- 17-			Modium to soome surjeted O	19 fact		9	ø	0.0*	100	
18- 19-	-		Medium to coarse grained @	io leet		10	ø	0.0	100	
12 - 13 - 13 - 14 - 15 - 14 - 15 - 16 - 17 - 16 - 17 - 16 - 17 - 16 - 17 - 16 - 17 - 18 - 17 - 18 - 17 - 18 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 - 24 - 24 - 24 - 24	SP		SAND, medium to fine grained Coarse @ 21 feet Medium grained @ 21.5 feet Medium fine to medium grained		ilt	11	Ø	0.0	100	
23-	CL		SILTY CLAY, hard/very stiff, s	lightly moist, grey, traces	of	12	•	0.0*	100	
24-	1		Boring completed at 23.5 feet	BGS.	/					

(e c	DNS			LOG	DF	BORI	NG DS	B-13	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method : Dire				Casing Size Initial Wate Final Water Selected fo Drilling Cor	r Level Level r Analysis	: NA : 10.5' : NA : * : EnviroDynamics
			Water Levels ▼ During Drilling - 10.5' ▼ After Completion - Not Appl	icable			Total			Temp Well: DSB-13
Depth in feet	uscs	GRAPHIC	DES	CRIPTION		Samples	Total PID (ppm) 0 15	Total PID 30 (ppm)	Sample Recovery (%)	Ground Elev.: 733.20
0-	AR		ASPHALT/GRAVEL sub-base			1		4.3	100	
2-			SANDY CLAY, moist, medium	n stiff, brown				4.5	100	
3-						2	•	3.7	100	
4-	CL					3	•	0.3	100	
6-			Very sandy @ 6 feet							
						4	ø	0.1*	100	
	SP		SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, nes		5	ø	0.1*	100	
10-	CL	72	SANDY CLAY, brown, stiff, m SILTY SAND, medium grained	PAGES7C	t				100	_
						6	φ 	0.0	100	
13-						7	ø	0.0*	100	
	SM		x w x x						13220	
15-			Less silt, grades to very coars	e @ 15 feet		8	Φ	0.1	100	
fill 17-	CL		SILTY CLAY, hard/very stiff, s	lightly moist, traces of grav	el &	9	0	0.0*	100	
18-		1	Boring completed at 18.0 feet	BGS.						

	C	Ð	DNS			LOG	OF	BO	RIN	G DS	B-14	
			980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	: 02/26/2019 : Direct Push : Dual Tube : CN/LL : 2.25"			In F S	asing Size hitial Wate inal Water elected fo rilling Cor	r Level ⁻ Level r Analysis	: NA : 10.5' : NA : * : EnviroDynamics	
D	epth		HIC	Water Levels ▼ During Drilling - 10.5' ▼ After Completion - Not Appl	icable		es		Γotal PID	Total	Sample	Temp Well: DSB-14 Ground Elev.: 728.70
1.1	in feet	nscs	GRAPHIC	DESC	CRIPTION		Samples		opm) 15 30	PID	Recovery (%)	
	0	AR		ASPHALT/GRAVEL sub-base	1							
	1			SANDY CLAY, moist, medium	n stiff, brown		1	ø		0.0	100	
	2	CL					2	ø		0.0	100	
	4- - -			Very sandy @ 3.5 feet				2				
B-14.BUK	5			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, nes		3	ø		0.1	100	
SUIVERAINE LOGSIUS	6- - 7- -	SP					4	Ø		0.0	100	
U4-13-2019 1:VINDY EnVIRONMENTAIN-YOJECT FILESVAMPHENOL/WORK Plans_2018/SOIL INVESTIGATION DOING LOGS/USB-14.EUK	8 - 9 -			Moist @ 9 feet			5	o		0.0*	100	
	10-			SAND, coarse to medium grai gravel and silt	ned, brown-grey, wet,	traces of	6	Ø		0.0*	100	*
roject Filesvar	12-	SM										
rironmentalv	13-					no Sorte - P	7	Ø		0.0*	100	
9 I:VINDY ENV	14-	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, trad	ces of	8	¢.		0.1	100	
107-01-40	15—		11.8	Boring completed at 15.0 feet	BGS.						[]	

	E CC				LOG	OF	B	ORII	١G	DS	B-15	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 02/26/2019 Drilling Method : Direct Push Sampling Method : Dual Tube Field/Office Logged : CN/LL Hole Diameter : 2.25"					Initia Fina Sele	ing Size al Water I Water ected fo ng Con	r Level Level r Analysis	: NA : 10' : NA : * : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels During Drilling - 10' After Completion - Not Appl DESC	icable CRIPTION		Samples	0	Total PID (ppm)		Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-15 Ground Elev.: 728.7
0	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, moist, brown,			- 1	6	5. 		0.1	100	
2- 	CL					2	•			0.0	100	
5- - 6-			SAND, medium dense/dense,	slightly moist, brown,		3	•	17		0.0	100	
- 7- - 8-	SP		poorly-sorted, with gravel & fir	nes		4	•			0.0	100	
						5	•			0.0*	100	.
11-	SM		SILTY SAND, coarse, wet, bro	own, traces of gravel		6	•			0.0*	100	
12- - - 13- -	CL		SILTY CLAY, stiff, moist, brow SILTY SAND, dense, coarse, SILTY CLAY, hard/very stiff, s gravel & sand	brown, wet, traces of	gravel	7	•			0.0*	100	
14-	CL		gravel & sand			8	6			0.0	100	

(3	DNS		LO	g of	=	BORII	NG	G DS	B-16	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 02/26/2019 Drilling Method : Direct Pus Sampling Method : Dual Tube Field/Office Logged : CN/LL Hole Diameter : 2.25"	h			Init Fir Se	ising Size tial Water al Water lected fo illing Con	r Level ⁻ Level r Analysis	: NA : 8' : NA : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels During Drilling - 8' After Completion - Not Appl		Samples		Total PID (ppm) 0 15		Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-16 Ground Elev.: 728.60
0-			ASPHALT/GRAVEL sub-base			T			(ppm)	(70)	
1-	AR		SANDY CLAY, moist, mediun		1		ø		0.1	100	
2					2	5167A	ø		0.0	100	
4-	CL		Very sandy @ 4 feet			0		************	0.0	100	
5					3		O		0.0	100	
					4		6	************	0.0	100	
8-			SILTY SAND, medium graine	d, brown-grey, wet							.
9-					5	24	ø		0.0*	100	
10-	SМ		Coarse to medium grained @	10 feet							
11-					6		Φ		0.0*	100	
	CL		SILTY CLAY, brown, stiff								
13-	sм		SILTY SAND, coarse to medi	um grained, brown-grey, wet	7	×	0		0.0*	100	
	CL SM		SILTY CLAY, stiff, brown SILTY SAND, fine grained, gr	ey, saturated		8	ø		0.0*	100	
16-	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of	9		•		0.0	100	
	<u> </u>	221	Boring completed at 16.5 feet	BGS.		1	u i	i			

C		DNS			LOG	OF	E	BORI	NG	G DS	B-17	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 02/26/2019 Drilling Method : Direct Push Sampling Method : Dual Tube Field/Office Logged : CN/LL Hole Diameter : 2.25"					Casing Size Initial Water Level Final Water Level Selected for Analysis Drilling Contractor			: NA : 8.75' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 8.75' After Completion - Not Appl DESC	icable CRIPTION		Samples	c	Total PID (ppm)		Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-17 Ground Elev.: 728.6
0	AR		ASPHALT/GRAVEL sub-base SANDY CLAY FILL MATERIA			1				0.7	100	
						2				0.1	100	
5	CL					3				0.0	100	
- 7- - 8- -						4		,		0.0	100	
9 9 10 10	÷		Asphalt @ 8.5 - 8.75 feet SILTY SAND, coarse to media traces of gravel	um grained, medium d	iense, wet,	5	•	>	*********	0.0*	100	⊻.
11- 11- 12-	SM		- 2 inch silky alow coord @ 12	5 fact		6	•	>		0.0*	100	
13- - - 14-	CL		~ 2-inch silty clay seam @ 12. SILTY CLAY, hard/very stiff, s gravel & sand		ces of	7				0.0*	100	
15-			Boring completed at 15.0 feet	BGS.		8				0.0	100	6

	C	Ð	DNS			LOG	OF	B	ORIN	G DS	B-18	
			980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method Sampling Method Field/Office Logged	: 02/26/2019 : Direct Push : Dual Tube : CN/LL : 2.25"			lı F S	asing Size nitial Wate inal Water elected fo prilling Cor	r Level r Level or Analysis	: NA : 10' : NA : * : EnviroDynamics
				Water Levels								
				After Completion - Not Appl	icable							T
	Depth		HIC				es		Total PID	Total	Sample	Temp Well: DSB-18 Ground Elev.: 728.40
	in feet	nscs	GRAPHIC	DESC	CRIPTION		Samples	0	(ppm) 15 3	PID	Recovery (%)	
F	0-		888	ASPHALT/GRAVEL sub-base								
		AR	*									
	1-			SANDY CLAY, moist, medium	a stiff, brown		1	P		0.1	100	
	2-							c				
	-						64			202.723	22523-2	
	3-	CL					2	¢		0.0	100	
	4-											
ж	5			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown,		3	¢		0.0	100	
3-18.B(6-			poony-soned, with graver & in	les							
oring Logs/DSB-18.BOR												
oring Lo	7_						4	•		0.0	100	
ationB		SP						e				
Investig	-			Very moist @ 8.5 feet								
8/201	9_						5	•		0.0*	100	
ans_zu												.
Nork H	10			SILTY SAND, coarse, wet, tra	ces of gravel							2 <u>1111</u>
ENOL	11						6	•		0.0*	100	
MPH	1	SM										
ct Files	12-											
alvProje	13-			Medium grained @ 12.75 feet			7	•		0.0*	100	
onment				SILTY CLAY, brown, stiff, moi	st							
iy Envir	14-	CL		Hard/very stiff, slightly moist, g 14.25 feet	grey, traces of gravel 8	sand @	8			0.0	100	
04-15-2019 1:\Indy Environmental\Project Files\AMPHENOL\Work Plans_2018\Soil Investigation\B	15—		22	Boring completed at 15.0 feet	BGS	1		I				
-15-201	-			Sonny completed at 15.0 leet	500.							
5	16—											

(3	DNS			LOG	OF	E	BOF	RIN	g ds	B-19	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter	: 02/26/2019 : Direct Push : Dual Tube : CN/LL : 2.25"				In Fi Se	asing Size itial Wate nal Water elected fo rilling Cor	r Level ⁻ Level r Analysis	: NA : 8.5' : NA : * : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels During Drilling - 8.5' After Completion - Not Appl DESC			Samples		P (pr	otal ID om)	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-19 Ground Elev.: 728.30
0	AR CL		ASPHALT/GRAVEL sub-base			- 1		ĵ		4.4	50	
2			No Recovery (soft material, ro	ock pushed)		2				-	0	
4			SANDY CLAY FILL MATERIA	sL.		- 3		8		0.0	50	
	CL					4		Þ		0.0	100	
8			SILTY SAND, coarse, brown-	grey, wet, traces of gra	avel,	5		Þ		0.0*	100	⊻
10	SM					6		¢		0.0*	100	
12-			medium grained @ 13.75 feet			7		•		0.0*	100	
14- 	CL CL		SILTY CLAY, brown, moist, st SILTY CLAY, hard/very stiff, s	iff	ces of	8		¢		0.0	100	
16-			gravel & sand Boring completed at 15.0 feet	BGS.								

C		DNS		LOG	OF	E	BORING	g ds	B-20	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/26/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Ini Fii Se	asing Size itial Water nal Water elected fo rilling Con	r Level Level r Analysis	: NA : 10' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 10' After Completion - Not Appl DESC		Samples	0	Total PID (ppm) 15 30	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-20 Ground Elev.: 728.5
0- - 1- 2-	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, moist, medium		- 1			0.0	100	
3-	CL				2			0.1	100	
5	SP		SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, nes	4		>	0.0	100 100	
8 9 10			Moist @ 8 feet		5		>	0.2*	100	¥
- 11- - 12-	SP		SILTY SAND, coarse, brown- of gravel	grey, wet, poorly-sorted, traces	6			0.0*	100	
13 13 14			Medium grained @ 13.5 feet SILTY CLAY, brown, moist, st	iff	7			0.0*	100	
15 15 16	CL		Hard/very stiff, slightly moist, g 15 feet	grey, traces of gravel & sand @	8			0.0	100	
- 17-		14	Boring completed at 16.5 feet	BGS.	9	Ш¢		0.0	100	

((Contraction)	DNS		LOG	6 OF	E	BORING	g ds	B-21	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/26/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Ini Fii Se	asing Size itial Wate nal Water elected fo illing Cor	r Level Level r Analysis	: NA : 10' : NA : * : EnviroDynamics
			Water Levels During Drilling - 10' After Completion - Not Appl	icable						Temp Well: DSB-21
Depth in feet	nscs	GRAPHIC	DESC	CRIPTION	Samples	. (Total PID (ppm) 0 15 30	Total PID (ppm)	Sample Recovery (%)	Ground Elev.: 728.20
0-	AR		ASPHALT/GRAVEL sub-base		1	1000 COLOR COLOR COLOR	φ	5.1	100	
2-			SANDY CLAY FILL MATERIA	1		-		Philad T	and the Control of Sec.	
3-	CL				2	0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0	0.9	100	
5-			SANDY CLAY, moist, medium	ı stiff, brown	3			0.0	100	
8 7- 1	CL		Very moist, very sandy, some	coarse sand @ 7.5 feet	4		•	0.0	100	
					5		•	0.0*	100	
	SM		SILTY SAND, coarse, wet, so		6			0.0*	100	.▼.
	SM		SILTY CLAY, brown, moist, st SILTY SAND, coarse, brown, Grey, medium grained @ 11.	wet	1			0.0		
	CL SP CL		Very SILTY CLAY, grey, mois SAND, fine to medium grained SILTY CLAY, brown, moist, st	d, brown, wet iff			•	0.0*	100	
	SP	7773	SILTY CLAY, hard/very stiff, s	d, brown-grey, wet, poorly sorted	8		Þ	0.0*	100	
fille 16-	CL		gravel & sand	na mana mangana kata manga mangangkatan kata kata sa	9		•	0.0	100	
17-			Boring completed at 16.5 feet	BGS.						

(e co	DNS		LOG	6 OF	BORI	NG DS	B-22	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/26/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Casing Si Initial Wat Final Wate Selected f Drilling Co	er Level er Level or Analysis	: NA : 8.5' : NA : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels ▼ During Drilling - 8.5' ∇ After Completion - Not Appl DESC	cable CRIPTION	Samples	Total PID (ppm 0 15	Total	Sample Recovery (%)	Temp Well: DSB-22 Ground Elev.: 726.70
0	AR CL		ASPHALT/GRAVEL sub-base SANDY CLAY FILL MATERIA		_ 1	Ŷ	5.2	100	
2- 			SANDY CLAY, brown, moist,	nedium stiff	2	6	0.0	100	
4- 	CL		Very sandy @ 4 feet		3	φ	0.1	100	
	-		Very moist, very silty @ 7.5 fe	et	4	6	0.0	100	
8- - - 9-			Piece of asphalt @ 8 feet SAND, coarse, brown, wet, tra	ices of gravel & silt	5	¢	0.0*	100	⊻.
10- 11-	SМ				6	φ	0.0*	100	
12-			Medium to fine grained , brow SILTY CLAY, hard/very stiff, s		7		0.0*	100	
14-	CL		gravel & sand	ignay molet, grey, traces of	8		0.0	100	
15-			Boring completed at 14.5 feet	BGS.					

() C				LOG (DF	BOI	RIN	G DS	B-23	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 02/27 Drilling Method : Direction Sampling Method : Dual Field/Office Logged : CN/L Hole Diameter : 2.25"	t Push Tube L			lr F S	asing Size intial Wate inal Water elected fo prilling Cor	r Level ⁻ Level r Analysis	: NA : 7.5' : NA : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels During Drilling - 7.5' After Completion - Not Appl DESC	cable CRIPTION		Samples	F (p	otal ขD pm) 15 30	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-23 Ground Elev.: 724.60
0-	AR		ASPHALT/GRAVEL sub-base			1		8	20.3	100	
2-				ι					Banned		
3- 	CL					2			8.0	100	
5-			SANDY CLAY, moist, brown,	medium stiff		3	6		2.6	100	
	CL					4	0		0.0*	100	.
	sc		CLAYEY SAND, coarse, brow	n, soft, wet		5	Ø		0.0*	100	
10- 10- 10-	SM		SILTY SAND, coarse, brown-								
11-	CL		gravel & sand			6	ø		0.0*	100	
	SM		SILTY SAND, fine grained, gr	ey, wet		7	6		0.0*	100	
	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of		8	ę		0.0	100	
15-			Boring completed at 11.0 feet	BGS.		1				· · · ·	

(LOG	DF	BORI	NG DS	B-24	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848		LL		_	Casing Size Initial Wate Final Wate Selected for Drilling Cor	r Level - Level r Analysis	: NA : 6.5' : NA : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels During Drilling - 6.5' After Completion - Not Appl DESC			Samples	Total PID (ppm) 0 15	Total PID 30 (ppm)	Sample Recovery (%)	Temp Well: DSB-24 Ground Elev.: 722.20
0-	AR		ASPHALT/GRAVEL sub-base			1	6	0.1	100	
2-	CL		SANDY CLAY FILL MATERIA	L				0.1	100	
3-			SANDY CLAY, soft to medium	n stiff, moist, brown		2	Ø	0.0	100	
4-	CL									
5- - 6-			Very moist, very sandy, soft @) 5.5 feet		3	¢	0.0*	100	
7-			SILTY SAND, coarse, wet, tra	ces of gravel & clay		4	8	0.0*	100	▼.
8-	SM		Gravelly @ 8 feet							
4	-		Less silt, medium grained @ 9	9.5 feet		5	0	0.0*	100	
10-	CL		SILTY CLAY, brown, moist, st Hard, slightly moist, grey, tra		5 feet	6	•	0.0	100	
11-		111.	Boring completed at 11.0 feet		ando matanga kata					

	0		DNS		LOG	OF	BORIN	G DS	B-25	
			980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/27/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"		1	Casing Siz nitial Wate Final Wate Selected fo Drilling Cor	r Level r Level or Analysis	: NA : 6' : NA : * : EnviroDynamics
Dept in feet	th	NSCS	GRAPHIC	Water Levels During Drilling - 6' After Completion - Not Appl DESC	CRIPTION	Samples	Total PID (ppm) 0 15 3	Total PID 0 (ppm)	Sample Recovery (%)	Temp Well: DSB-25 Ground Elev.: 722.30
	0 - - 1 - -	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, dark brown, so		- 1	, ,	23.1	100	
3	2	CL				2		5.4	100	
soung Logs/US	4			Very moist @ 5 feet Asphalt @ 6 feet		3	- •	0.0*	100	
	5 - - 7 - -	SM		SILTY SAND, coarse, wet, bro		4	 	0.0*	100	⊻.
	- B - - - 9 -	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of	5		0.0*	100	
ADUN:1 6107-01-40	- - - -			Boring completed at 10.0 feet	BGS.					5

	For	mer A 980	ULTING GROUP mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 02/27/20 Drilling Method : Direct Pu Sampling Method : Dual Tub Field/Office Logged : CN/LL	lsh			In Fi S		r Level Level r Analysis	: NA : 6' : NA : *
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 6' After Completion - Not App DES	Hole Diameter : 2.25" licable		Samples	0	Total PID (ppm) 15 30	Total PID (ppm)	Sample Recovery (%)	: EnviroDynamics Temp Well: DSB-20 Ground Elev.: 722.3
0 - 1 -			No Recovery (Rock pushed, s	soft material)		1	•		-	0	
2 - 3 -						2	8		-	0	
4	CL		SANDY CLAY, dark brown, s Asphalt @ 6 feet	oft, very moist		3			0.4*	50	
6 - - 7 -	SM		SILTY SAND, coarse, wet, br clay Gravelly @ 6.75 feet SILTY CLAY, hard/very stiff, s			4	8		0.0*	100	.
8— - -	CL		gravel & sand			5			0.0	100	

(DNS		LOG	OF	BORI	NG DS	B-27	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/27/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Casing Siz Initial Wate Final Wate Selected fo Drilling Col	r Level r Level or Analysis	: NA : 6.5' : NA : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels During Drilling - 6.5' After Completion - Not Appl DESC	CRIPTION	Samples	Total PID (ppm) 0 15) Total	Sample Recovery (%)	Temp Well: DSB-27 Ground Elev.: 722.00
0- - - 1- - -	AR		ASPHALT/GRAVEL sub-base		- 1	Ŷ	9.1	100	
2	CL				2	φ	5.5	100	
4 –					3	0	0.0*	100	
	SC SM CL		CLAYEY SAND, fine grained, SILTY SAND, coarse, brown, SANDY CLAY, soft, wet, brow	wet	- 4	ø	0.0*	100	▼.
	sc		CLAYEY SAND, coarse, soft, Grades to fine soft sandy clay SILTY CLAY, hard/very stiff, s						
- 9 -	CL		gravel & sand		5	ø	0.0	100	
10-		1h	Boring completed at 10.0 feet	BGS.					5

C	3	DNS		LOG	OF	BO	RIN	g ds	B-28	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/27/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			In Fi Se	asing Size itial Wate nal Water elected fo rilling Cor	r Level ⁻ Level r Analysis	: NA : 5.5' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels _ During Drilling - 5.5' _ After Completion - Not Appl _ DESC	CRIPTION	Samples	F (p	otal 기D pm) 15 30	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-28 Ground Elev. : 722.00
0 - - 1 -	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, moist, brown,		- 1	P		4.9	100	
- 2- - - 3-					2	B		1.1	100	
- - 4_ - 5_	CL				3	8		0.0*	100	
- - - 6-	SM		SILTY SAND, medium graine	d, wet, brown				0.0	100	⊻.
- - 7_ -	sc		SILTY CLAYEY SAND, coars	e, wet, traces of gravel, brown	4	Ø		0.0*	100	
- -8 -	CL SM		SILTY CLAY, brown, moist, st SILTY SAND, very coarse, gr	ey, wet						
9-	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of	5	0		0.0	100	
10-		11	Boring completed at 10.0 feet	BGS.				Į	[

(Ð	DNS		LOG	OF	BOI	RIN	g ds	B-29	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/27/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			In Fi Se	asing Size itial Wate nal Water elected fo rilling Cor	r Level - Level r Analysis	: NA : 5.25' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels ▼ During Drilling - 5.25' ▼ After Completion - Not Appl DESC	cable CRIPTION	Samples	F (p	otal PID pm) 15 30	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-29 Ground Elev. : 721.30
0	AR		ASPHALT/GRAVEL sub-base			φ		4.9	100	
2-	SP		SANDY FILL MATERIAL							
3-			Brick @ 2.25 Feet SANDY CLAY, medium stiff to	o soft, dark brown, moist	2	0		1.0	100	
4	CL									
5-			CLAYEY SAND, coarse to me	dium grained, brown, wet	3	ø		0.0*	100	T
6-	SC		Very SANDY CLAY, fine grain	ed, soft, wet, brown-grey						
7-	CL				4	6		0.0*	100	
8-			SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of						
9	CL				5	6		0.0	100	
10-		14	Boring completed at 10.0 feet	BGS.						5

(e co	DNS		LOG	OF	BORIN	G DS	B-30	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/27/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"		lr F S	asing Size nitial Wate inal Wate elected fo prilling Cor	r Level Level r Analysis	: NA : 6' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels ▼ During Drilling - 6' ▼ After Completion - Not Appl DESC	CRIPTION	Samples	Total PID (ppm) 0 15 30	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-30 Ground Elev.: 721.90
0- - - 1-	AR		ASPHALT/GRAVEL sub-base SANDY CLAY FILL MATERIA		- 1	, P	22.2	100	
2-	CL								
3-	sc		odor	ned, dark brown, moist, petroleum	2	20	1.7	100	
	SP		SAND, medium dense/dense, with gravel	moist, brown, poorly-sorted,	3	8	0.0*	100	
	SM		SILTY SAND, medium dense,	coarse, wet, brown-grey					
	sc		Very CLAYEY SAND, soft, we		4	ø	0.0*	100	
	CL SP		SILTY CLAY, brown, moist, st SAND, gravelly, grey, wet, de SILTY CLAY, hard/very stiff, s gravel & sand	nse	5	ø	0.0	100	
9 - 9 	CL		Boring completed at 10.0 feet	BGS) 		0.0	100	
5			Bonny completed at 10.0 Bet						

¢	3	DNS		LOG	OF	BOR	INC	g ds	B-31	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 02/27/2019 Drilling Method : Direct Push Sampling Method : Dual Tube Field/Office Logged : CN/LL Hole Diameter : 2.25"			In Fi Se	asing Size itial Wate nal Water elected fo rilling Cor	r Level Level r Analysis	: NA : 9.5' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 9.5' After Completion - Not Appl DES	icable CRIPTION	Samples	Tota PIE (ppn 0 10) n)	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-31 Ground Elev.: 721.90
0 - - 1-	AR		ASPHALT/GRAVEL sub-base		- 1	φ		5.4	100	
- - 2-	CL		SANDY CLAY FILL MATERIA	AL.	32 				132.51	
- - 3-			CLAYEY SAND, medium grai odor	ned, dark brown, moist, petroleum	2			1.3	100	
- 4 -	SC									
5— - -			SAND, medium dense/dense, with gravel	moist, brown, poorly-sorted,	3	0		0.0*	100	
6 - - 7	SP		Very moist (possible fill) @ 6.	25 feet	4	8		0.0*	100	.
- 8 -	SM		SILTY SAND, dense, brown-g	rey, grades to silty grey clay						
- 9– -	SP		SAND, medium to coarse gra	ined, grey, wet, dense	5	6		0.0*	100	
- 10—	CL	11	SILTY CLAY, hard/very stiff, s gravel & sand Boring completed at 10.0 feet	lightly moist, grey, traces of	1			ļ		

04-15-2019 I:\Indy Environmental\Project Files\AMPHENOL\Work Plans_2018\Soll Investigation\Boring Logs\DSB-31.BOR

(e co			LOG	OF	BORIN	IG DS	B-32	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/27/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Casing Size Initial Wate Final Wate Selected for Drilling Cor	r Level - Level r Analysis	: NA : 7' : NA : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels ▼ During Drilling - 7' ▼ After Completion - Not Appl DESC		Samples	Total PID (ppm) 0 10 1	Total PID 20 (ppm)	Sample Recovery (%)	Temp Well: DSB-32 Ground Elev.: 722.20
0	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, grey, very stiff		- 1	9	4.1	100	
2-	CL	U)	No Recovery						
3- 3- -	-				2	0	-	0	
			SANDY CLAY, soft dork brow	m arou maiat	3	Φ	0.0*	50	
	SP		SANDY CLAY, soft, dark brow SAND, medium dense/dense, with gravel & fines						
			SILTY SAND, medium grained	d, wet, poorly sorted, brown-grey	- 4	Ø	0.0*	100	┸
	SM								
9- 9- - - - - - - 0-					5	ο	0.0*	100	
	CL		10.5 feet	grey, traces of gravel & sand @	6	Ø	0.0	100	
5			Boring completed at 11.0 feet	860.					

C		DNS		LC	OG (DF	BORI	NG DS	B-33	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 02/27/20 Drilling Method : Direct Pl Sampling Method : Dual Tul Field/Office Logged : CN/LL Hole Diameter : 2.25"	ush			Casing Siz Initial Wate Final Wate Selected for Drilling Con	r Level r Level or Analysis	: NA : 5' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 5' After Completion - Not Appl DESC	icable CRIPTION		Samples	Total PID (ppm) 0 10	Total PID 20 (ppm)	Sample Recovery (%)	Temp Well: DSB-33 Ground Elev.: 723.6
0 - 1 -	AR CL		ASPHALT/GRAVEL sub-base			1	ſ	7.6	50	
2	2		No Recovery (rock pushed)			2	6	-	O	
- - 5 - - - -			SILTY SAND, coarse to media traces of gravel	um grained, wet, brown-grey,		3	0	0.0	50	.
- - 7_ - 8_	SM				8	4	0	0.0*	100	
- 9_ - 10_			SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of		5	0	0.0*	100	
- - 11- -	CL					6	Ø	0.0	100	
- 12-			Boring completed at 11.5 feet	BGS.				-11	-	1

2	CC	DNS			LOG	OF	B	ORING	g ds	B-34	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter	: 02/27/2019 : Direct Push : Dual Tube : CN/LL : 2.25"			Ini Fii Se	asing Size itial Wate nal Water elected fo rilling Cor	r Level · Level r Analysis	: NA : 8.75' : NA : * : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels During Drilling - 8.75' After Completion - Not Apple DESC			Samples	0	Total PID (ppm) 10 20	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-34 Ground Elev. : 725.
0- - 1- - 2-	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, medium stiff, o		t	1			0.1	100	
2 - 3 4						2			0.1	100	
- 5_ - 6_	CL		Stiff, brown @ 5 feet			3	0		0.0	100	
- 7- - 8-			Very moist, soft, brown @ 8 fe	et		4	ø		0.0*	100	
- 9_ - 10_	SP		SAND, coarse, wet, brown Silty, gravelly, with traces of Less silt, coarse @ 10 feet	clay @ 9 feet		5	•		0.0*	100	┸
- - 11- -	SP		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, tra	ices of	6	•		0.0*	100	
12- - - 13- -	CL		gravel & sand Boring completed at 13.5 feet			7	0		0.0	100	

(e ce				LOG	OF	BORI	NG DS	B-35	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter	: 02/27/2019 : Direct Push : Dual Tube : CN/LL : 2.25"			Casing Siz Initial Wate Final Wate Selected fo Drilling Co	er Level er Level or Analysis	: NA : 8.5' : NA : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels During Drilling - 8.5' After Completion - Not Appl DESC			Samples	Total PID (ppm 0 10	Total	Sample Recovery (%)	Temp Well: DSB-35 Ground Elev.: 725.10
0-			SILTY CLAY, medium stiff, br	own, moist		1	0	2.2	100	
2- - 3-	CL					2	6	0.6	100	
4- - - 5-			SILTY SAND, coarse, wet, bro	nwn-arev		3	Ø	0.0	100	
6- 6- 7-	SM		Less silt @ 7 feet	Jwirgiey		4	Ø	0.0*	100	
8- 8- - - - - - -			SILTY CLAY, hard/very stiff, s gravel & sand	slightly moist, brown, tr	aces of	5	ø	0.0*	100	⊻.
5- 5- 6- 7- 8- 9- 10- 11- 11- 11- 11- 11- 11- 11- 11- 11	CL		Grey @10.5 feet Soft, very moist @11.25 feet			6	ø	0.0*	100	
12-	SM CL		SILTY SAND, medium grained SILTY CLAY, hard/very stiff, s		ces of	7	ø	0.0	100	
13-			gravel & sand Boring completed at 12.5 feet	BGS.	/	7				

04-15-2019 I:\Indy Environmental\Project Files\AMPHENOL\Work Plans_2018\Soil Investigation\Boring Logs\DSB-35.BOR

(Ð			LOG	OF	BC	ORIN	g ds	B-36	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/27/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			In Fi S	asing Size itial Wate nal Water elected fo rilling Cor	r Level r Level or Analysis	: NA : 8.5' : NA : * : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels During Drilling - 8.5' After Completion - Not Appl DESC	icable CRIPTION	Samples		Total PID (ppm) 10 20	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-36 Ground Elev.: 727.40
0	AR		ASPHALT/GRAVEL, SANDY FILL MATERIAL	sub-base	- 1		p	15.0	100	
2- 2- - - - - - - - -	CL		No Recovery (rock pushed)		2			4.7	100	
4			SANDY CLAY, brown, moist,	medium stiff	- 3			0.2	100	
	CL				4			0.2	100	
8-			Soft, very moist @ 7.5 feet					0.2		.
9-			SILTY SAND, coarse, wet, bro		5	0		0.1*	100	
10- 	SM				6	0		0.3*	100	
12-			Silty, coarse @ 12 feet							
			2" silty clay seam @ 13.5 feet SILTY CLAY, hard/very stiff, s		7	•		0.1*	100	
15-	CL		Boring completed at 15.0 feet		8	P		0.0	100	

8		DNS		LOG	OF	В	ORIN	g ds	B-37	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/27/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			lr F S	asing Size itial Wate inal Water elected fo rilling Cor	r Level Level r Analysis	: NA : 10' : NA : * : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels During Drilling - 10' After Completion - Not Apple DESC	cable CRIPTION	Samples	0	Total PID (ppm) 5 10	Total PID (pprn)	Sample Recovery (%)	Temp Well: DSB-37 Ground Elev. : 728.50
0-	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, stiff, moist, bro		- 1		,	0.6	100	
3-	CL				2	······································	2	0.5	100	
4-	sc		CLAYEY SAND, medium to fin	ne grained, brown, moist						
5- 5- 6-			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, les	3	0		0.1	100	
gauontooning Logsu-	SP				4	8		0.0	100	
	-		Moist @ 9 feet		5	Ø	0	0.0*	100	
	-		SILTY SAND, coarse to very o brown-grey	coarse, wet, traces of gravel,	6	•	0	0.0*	100	⊻.
Maail 12-	SM									
13-	-				7	•		0.0*	100	
14-	CL		SILTY CLAY, hard/very stiff, s gravel & silt	lightly moist, grey, traces of	8			0.0	100	
15-		er an air	Boring completed at 15.0 feet	BGS.		111		J		

	00	DNS			LOG	OF	Б	Ur		3 03	D-30	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method Sampling Method Field/Office Logged	: 02/27/2019 : Direct Push : Dual Tube : CN/LL : 2.25"				Ini Fir Se	asing Size tial Wate nal Water lected fo illing Cor	r Level ⁻ Level r Analysis	: NA : 10' : NA : * : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels During Drilling - 10' After Completion - Not Appl DESC	icable CRIPTION		Samples	0			Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-38 Ground Elev. : 728.0
0	AR		ASPHALT/GRAVEL sub-base	1								
1- - 2-			SANDY CLAY, stiff, moist, bro	own		- 1		2		0.8	100	
3- 3- 4-	CL					2		•		1.0	100	
			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, nes		- 3	0			0.1	100	
- - 7_ - -	SP					4	6	×		0.0	100	
8- - 9- -			No Recovery			5		5		0.0*	100	
10- 11- 12-	SM		SILTY SAND, coarse, wet, tra	ces of gravel, brown-g	jrey	6	•	5		0.0*	100	.
13-	CL SM		SILTY CLAY, brown, moist, st SILTY SAND, coarse, wet, tra SILTY CLAY, hard/very stiff, s gravel & sand	ces of gravel	ces of	7	0			0.0*	100	
14	CL		3 / of a balle			8	•	0		0.0	100	

	CCO	DNS		LOG	OF	BORI	NG	6 DS	B-39	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/28/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"	_		Initi Fina Sel	sing Size ial Water al Water lected fo lling Con	r Level ⁻ Level r Analysis	: NA : 8' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels ▼ During Drilling - 8' ∇ After Completion - Not Appl DESC		Samples	Tota PID (ppm 0 5		Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-39 Ground Elev. : 728.60
0_ - 1_ -	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, moist, brown,		1	P		0.9	100	
2- - - 3- -	CL				2	6		0.0	100	
4					3	0		0.1	100	
6			No Recovery (rock pushed)		4	ø		0.0	100	_
8 - - 9 - -			SILTY SAND, coarse, wet, tra brown-grey	ces of gravel & clay,	5	Ø		0.0*	100	*
6	SM				6	ø		0.0*	100	
12- 					7	Ø		0.1*	100	
14- 	CL SM CL		SILTY CLAY, brown, moist, st SILTY SAND, coarse, wet, tra brown-grey SILTY CLAY, hard/very stiff, s	ces of gravel & clay,	8	6		0.0*	100	

0					LOG	ΟF	B	ORIN	G DS	B-40	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method : Dire				lr F S	asing Size hitial Wate inal Water selected fo prilling Cor	r Level ⁻ Level r Analysis	: NA : 10' : NA : * : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels ▼ During Drilling - 10' ▼ After Completion - Not Appl DESC			Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-40 Ground Elev. : 728.60
0	AR		ASPHALT/GRAVEL sub-base	i		0			0.0	100	
2			Very SANDY CLAY, moist, bro	own, meaium stiff		2	ø		0.0	100	
4-	CL										
5- 			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, nes		3	Î		0.0	100	
	SP					4	•		0.0	100	
8- 9-			Very moist @ 8.5 feet			5	8		0.0*	100	
			SILTY SAND, coarse, wet, tra brown-grey	ces of gravel & clay,		6	0		0.0*	100	.▼.
12-	SM					7			0.0*	100	
13– 14–	CL		SILTY CLAY, brown, moist, st SILTY SAND, coarse, wet, tra				ľ		0.0*	100	
15-	CL		SILTY SAND, coarse, wet, tra brown-grey SILTY CLAY, hard/very stiff, s gravel & sand		of	8	6		0.0	100	
16-			Boring completed at 16.0 feet	BGS.		<u> </u>	<u> </u>				

(LOG	OF	BORI	NG DS	B-41	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/27/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Casing Size Initial Wate Final Wate Selected for Drilling Cor	r Level r Level or Analysis	: NA : 10' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 10' After Completion - Not Appl DESC	CRIPTION	Samples	Total PID (ppm) 0 5	Total	Sample Recovery (%)	Temp Well: DSB-41 Ground Elev.: 728.70
0	AR		ASPHALT/GRAVEL sub-base No Recovery (rock pushed)		- 1	8	×	50	
2					2	0	-	0	
4					3		0.8	50	
	CL		SANDY CLAY FILL MATERIA	L	4	.	0.4	100	
8-	CL		SANDY CLAY, moist, brown, SAND, medium dense/dense,						
9- 9- - - - 10-	SP		poorly-sorted, with gravel & fir	ies	5	6	0.0*	100	.
10	SM		SAND, coarse to medium grai gravel & silt	ned, brown-grey, wet, traces of	6	Ø	0.0*	100	
12- - - 13-	3171				7	ø	0.0*	100	
	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of	8	6	0.0	100	
15-		1158	Boring completed at 15.0 feet	BGS.	Ш		1	<u> </u>	l

(LOG	OF	BC	RIN	g ds	B-42	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/27/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			ln F S	asing Size iitial Wate inal Water elected fo rilling Cor	r Level Level r Analysis	: NA : 9' : NA : * : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels During Drilling - 9' After Completion - Not Appl DESC		Samples	1	Fotal PID opm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-42 Ground Elev. : 728.7
0- - - 1-	AR		ASPHALT/GRAVEL sub-base SANDY CLAY, stiff, moist, bro		1	•		0.0	100	
2			GANUT CLAT, Suit, MOISE, Dr	YWY 1 1	2	8		0.0	100	
4- - 5-	CL				3	ø		0.0	100	
6			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, les	4	ø		0.0	100	
8— 9— 	SP		Moist @ 8.5 feet Wet @ 9 feet		5	Ø		0.0*	100	┸
6- 6- 7- 8- 9- 10- 11- 11- 12- 13- 13- 15-			SILTY SAND, coarse, wet, tra	ces of gravel & clay, brown	6	8		0.0*	100	
12- 13-	SM				7	ø		0.0*	100	
14-	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of	8	0		0.0	100	
15-			Boring completed at 15.0 feet	BGS.				170	ė	

C				L	OG C	DF	BORIN	IG DS	B-43	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/27/2Drilling Method: Direct FSampling Method: Dual ToField/Office Logged: CN/LLHole Diameter: 2.25"	Push			Casing Size Initial Wate Final Water Selected fo Drilling Cor	r Level r Level or Analysis	: NA : 10' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 10' After Completion - Not Apple DESC	cable CRIPTION		Samples	Total PID (ppm) 0 5	Total PID 10 (ppm)	Sample Recovery (%)	Temp Well: DSB-43 Ground Elev. : 728.8
0	AR		ASPHALT/GRAVEL sub-base			1	Ø	-	50	
2			ਸ਼ਾਲ ਨੇ ਪੱਛੋ			2	0	-	O	
4	CL	11	SANDY CLAY FILL MATERIA	L		3	φ	1.4	50	
6 			SAND, medium dense/dense, poorly-sorted, with gravel & fir	very moist, brown, les		4	6	0.0	100	
8	SP					5	ø	0.0*	100	
10-	SM		SILTY SAND, dense, medium & clay, brown	to coarse, wet, traces of grave	el	6	Ø	0.0*	100	_
12— - - 13—						7	Φ	0.0*	100	
14	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of		8	φ	0.0	100	
15—		14.4	Boring completed at 15.0 feet	BGS.			11 1	11		

04-15-2019 I:\Indy Environmental\Project Files\AMPHENOL\Work Plans_2018\Soil Investigation\Boring Logs\DSB-43.BOR

C				LOG	6 OF	BC	DRIN	G DS	B-44	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/28/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			lr F S	asing Size iitial Wate inal Water elected fo rilling Cor	r Level Level r Analysis	: NA : 9' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 9' After Completion - Not Appl DESC		Samples	0	Total PID (ppm)	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-44 Ground Elev. : 729.30
0	AR		ASPHALT/GRAVEL sub-base No Recovery (rock pushed)	3	1	0		-	50	
2					2	8		-	0	
4-		123		- 4165 hannen	3	P		0.0	50	
6-	CL		SANDY CLAY, moist, medium	i stiff, brown	4			0.0*	100	
8 8	SP		SAND, medium dense/dense, poorly-sorted, with gravel & fir Very Moist @ 8 feet	slightly moist, brown, nes	_			0.0	100	
9 9 10	Gr		Wet @ 9 feet SILTY SAND, coarse, dense,	wet brown traces of group	5	æ		0.0*	100	⊻.
11-			ULT UNIT, Walse, Uellse,	no, brown, dates of glaver	6	ø		0.0	100	
12- 13-	SM		Medium to fine grained @ 13	feet	7	0		0.0*	100	
			Medium to coarse grained @	15 feet	8	6		0.0*	100	
16	C		SILTY CLAY, hard/very stiff, s	lightly mojet grey traces of	9	ę		0.0	100	
17-	CL	23	gravel & sand Boring completed at 17.0 feet		لر					J

04-15-2019 1: Indy Environmental/Project Files/AMPHENOL/Work Plans_2018/Soil Investigation/Boring Logs/DSB-44.BOR

		DNS		LOG	OF	BORI	ING DS	6B-45	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/27/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Casing Siz Initial Wate Final Wate Selected fi Drilling Co	er Level er Level or Analysis	: NA : 10.25' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 10.25' After Completion - Not Appl DESC	CRIPTION	Samples	Tota PID (ppm 0 5	Total	Sample Recovery (%)	Temp Well: DSB-45 Ground Elev. : 732.20
0-	AR		ASPHALT/GRAVEL sub-base No Recovery (rock pushed)		- 1	φ		50	
3-					2	¢	-	0	
4		5/4	SANDY CLAY, moist, medium	a stiff, brown	- 3	0	0.0	50	
	CL		Very sandy @ 7.5 feet		4	0	0.0*	100	
	SP		SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, les	5	Ø	0.0*	100	
			SILTY SAND, coarse - medium brown	n grained, poorly sorted, wet,	6	ø	0.0	100	T
	SM				7	6	0.0*	100	
					8	0	0.0*	100	
16- 16- 17- 17-	CL		Gravelly @ 16 feet SILTY CLAY, hard/very stiff, s gravel & sand Boring completed at 17.0 feet		9	0	0.0	100	

C				L	.OG (DF	BORI	NG DS	B-46	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/28/2Drilling Method: Direct ISampling Method: Dual TField/Office Logged: CN/LLHole Diameter: 2.25"	Push			Casing Siz Initial Wate Final Wate Selected for Drilling Con	er Level r Level or Analysis	: NA : 15' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels ▼ During Drilling - 15' ▼ After Completion - Not Appl DESC	cable CRIPTION		Samples	Total PID (ppm) 0 5	Total PID 10 (ppm)	Sample Recovery (%)	Temp Well: DSB-46 Ground Elev. : 733.20
0- 1- 2-	AR	***	ASPHALT/GRAVEL sub-base No Recovery (rock pushed)			1	φ	-	50	
3						2	ø	-	0	
5	CL		SANDY CLAY, moist, medium Very sandy @ 6 feet	a stiff, brown		3	0	0.8	50	
7-			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, nes		4		0.4*	100	
9 10 11 11 11 11 11 11 11 11 11 11 11 11	SP				i.	5	0	0.3*	100	
11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -			SAND, coarse, silty, gravelly,	voru moist	3	6	ø	0.0	100	
13 13 14 14 14 14 14 14 14 14 14 14 14 14 14			Less gravel @ 14.5 feet		2	7	Φ	0.0*	100	y
15 16 17	104.55		Wet, brown, gravelly @ 15 fee Very coarse @ 17 feet	24		8		0.0*	100	
18	SM				2	10	ø	0.0	100	
20			brown-grey, traces of gravel, o	coarse @ 20 feet	,	11	e	0.0*	100	
$\begin{array}{c} 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 11 \\ 17 \\ 18 \\ 20 \\ 11 \\ 10 \\ 21 \\ 11 \\ 10 \\ 21 \\ 11 \\ 1$	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of		12	ø	0.0	100	
24		Un.	Boring completed at 24.5 feet	BGS.		13	 	0.0	100	

	E) CC	INS		LO	G O	F	BC	ORIN	g ds	B-47	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 02/28/201 Drilling Method : Direct Pus Sampling Method : Dual Tube Field/Office Logged : CN/LL Hole Diameter : 2.25"	sh			In Fi S	asing Size itial Wate inal Wate elected fo rilling Cor	r Level Level r Analysis	: NA : 15' : NA : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 15' After Completion - Not Appl DESC			Samples		Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: DSB-47 Ground Elev. : 733.4
0	AR		ASPHALT/GRAVEL sub-base Very SANDY CLAY, moist, mo			1	8		0.4	100	
2 3 4	CL					2	6		0.1	100	
5			Sandy @ 5 feet			3	8		0.0	100	
7			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, ies		4	¢		0.0*	100	
9 10	SP					5	6		0.0*	100	
11 - 12 -			No Recovery (rock pushed)			6	¢		-	100	
13 14						7	ø			100	
15 16			SAND, SILTY, very coarse, br	own-grey, with gravel		8	8		0.0*	100	.▼.
17 18	SM					9	6		0.0	100	
19- 20-			Gravelly @ 20 feet			10	¢		0.0	100	
21-			Fine-grained, grey @ 21 feet SILTY CLAY, hard/very stiff, s	lightly moist, grey, traces of	2	11	•		0.0*	100	
23	CL		gravel & sand		8	12	ø		0.0	100	
25		14	Boring completed at 25.0 feet	200		13	•		0.0	100	

(LOG	G OF	- BOF	RING T\	<i>N</i> -1	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 10/23/2018 Drilling Method : Direct Push Sampling Method : Dual Tube Field/Office Logged : CN/LL Hole Diameter : 2.25"			Casing Size Initial Wate Final Water Selected fo Drilling Cor	r Level Level r Analysis	: 2" : NA : NA : * : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels During Drilling - NA After Completion - NA DESC	CRIPTION	Samples	Tota PID (ppm 0 5	Total	Sample Recovery (%)	Temp Well: TW-1 TOC Elev.: 728.71'
0-			SILTY CLAY, brown, with trac stiff, moist	es of gravel and silt, medium	1	•	0.1	100	
2- 2- 3- 3- 4-	CL		SANDY CLAY		2	ð	0.1	100	- Bentonite
			SAND with clay Sand with traces of gravel, co grading to dense with depth, c	parse to medium grained, loose coarse, slightly moist	3	0	0.2	100	PVC Pipe
7	SM		SAND with finon and traces of	gravel, dense, moist @ 8 feet	4	0	0.2	100	
9			SAND with lines and traces of	gravel, dense, moist @ 6 leet	5	0	0.3	100	Screen —Sand Pack
5- 			SILTY CLAY, grey, with traces stiff to stiff, slightly moist	s of sand and gravel, medium	6	0	0.1	100	
12	CL				7	Ø	0.1	100	
14- 			Poring completed at 45 0 fact	PCS	8	ø	0.1	100	s
			Boring completed at 15.0 feet	BGS.					

C		DNS		LOG	9 OI	FI	BORIN	IG T\	N-2	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 10/23/2018Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Ini Fi Se	asing Size itial Wate nal Water elected fo rilling Cor	r Level ⁻ Level r Analysis	: 2" - ~10' : 8.53' : * : EnviroDynamics
Depth	s	GRAPHIC	Water Levels ▼ During Drilling - ~10' ▼ After Completion - 8.53'		ples		Total PID	Total	Sample	Temp Well: TW-2 TOC Elev.: 727.70'
feet	nscs	GRA	DESC	CRIPTION	Samples	0	(ppm) 5 10	PID (ppm)	Recovery (%)	п
0-	CL	1)	TOPSOIL							
- 1- - 2-			SILTY CLAY with traces of gra stiff, moist	avel and silt, brown, medium	1	8		0.1	100	
3	CL									
4-			SANDY CLAY, soft, moist to v	very moist	2	•		0.1	100	
	CL									- Bentonite Seal
6 			SAND with fines and traces of dense	gravel, poorly sorted, coarse,	3	0		0.0	100	PVC Pipe
7	sw									
8- - -										
9-					4	•		0.1	100	· · · · · · · · · · · · · · · · · · ·
10-	GW		GRAVEL with silt, wet							Screen
- 11- -	SP		SILTY SAND, brown, well-sor	ted, coarse to medium, wet	5	6		0.0	100	- Sand Pack
12-		12	SILTY CLAY, grey, with traces	s of gravel and sand, hard,						
13-	CL		slightly moist		6			0.0	100	
14			No Recovery (crumpled liner)							
15-			Boring completed at 15.0 feet	BGS.	11				<u> </u>	

C				LOG	G OF	F BOR	RING T	W-3	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 10/23/2018Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Casing Siz Initial Wate Final Wate Selected fi Drilling Co	er Level er Level or Analysis	: 2" : ~9.5-10' : 9.16 : * : EnviroDynamics
		~	Water Levels ▼ During Drilling - 9.5 - 10' ▼ After Completion - 9.16'						Temp Well: TW-3
Depth in feet	nscs	GRAPHIC	DES	CRIPTION	Samples	Total PID (ppm	Total	Sample Recovery (%)	TOC Elev.: 728.39
0-		0	N227 II				1 41-57	N-57	
			Topsoil SILTY CLAY with traces of gra stiff, moist	avel and sand, brown, medium	1	6	0.0	20	Bentonite Seal PVC Pipe
2	CL		SANDY CLAY, medium stiff to	soft					
4 - 5					2	φ	0.0		-Bentonite Seal
6_ - 7_			SAND with gravel and fines, p very dense	oorly sorted, coarse, dense to	3	ø	0.0	50	
8	SP		very moist @ 9.5'		4	ø	0.0		_▼Screen
10- 			wet @ 10'						-Sand Pack
- - 12					5	Φ	0.0	50	
13- 	CL		SILTY CLAY, grey, hard, sligh	ntly moist	6	6	0.0		
14- - - 15-			Boring completed at 15.0 feet	BGS.	to former of				

					3 OF	· E	BORIN			
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 10/24/2018 Drilling Method : Direct Push Sampling Method : Dual Tube Field/Office Logged : CN/LL Hole Diameter : 2.25"			Ini Fi Se	asing Size itial Wate nal Water elected fo rilling Cor	r Level Level r Analysis	: 2" : 15.5' : 15.29' : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels _ During Drilling - 15.5' _ After Completion - 15.29' DES	CRIPTION	Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-4[TOC Elev.: 734.72
0 1 1 2	CL		TOPSOIL SANDY CLAY with traces of g stiff, moist	gravel and silt, brown, medium	1	¢	,	0.0	55	
3 4 5			CLAYEY SAND, medium grai brown	ned, well sorted, medium dense,	2	-		0.0		
6 7 7 8	SC		SAND with gravel and fines, b grained, medium dense	prown, coarse to medium	3	-		0.0	40	— Bentonit Seal
9 9 10 11					4	-		0.0		PVC Pipe
12 13	SP		brown-grey @ 11.5 feet Brown @ 12 feet		6	- -		0.0	45	
14 15 16			wet @15.5' SILTY SAND with gravel and poorly sorted, wet	fines, brown-grey, coarse,	7	-		0.0	50	▼
17 - 18 - 19 -	SM				8	-		0.0		Screen
20-	CL		20.25	ained, moderately well sorted @ avel and silt, hard, slightly moist,	9			0.0	100	-Sand Pack

3			ULTING GROUP	Date Completed :	10/24/2018			Ca	asing Size	2	: 2"	
		980	Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method : Sampling Method : Field/Office Logged :	Direct Push Dual Tube CN/LL 2.25"			Ini Fir Se	tial Wate nal Water	r Level ⁻ Level r Analysis	: 15.5' : 15.26' : * : EnviroDy	namics
Depth in feet	uscs	GRAPHIC	Water Levels ▼ During Drilling - 15.5' ▽ After Completion - 15.26' DES	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	1.50	Well: TW-45 lev.: 734.72
0- 1- 2-	CL		TOPSOIL SANDY CLAY with traces of g stiff, moist	ravel and silt, brown, m	edium	1	0		0.0	100		
3- 3- 4- 5- 6-	SC		CLAYEY SAND, medium grai brown	ned, well sorted, mediur	n dense,	2	0		0.0	100		—Bentonit Seal
7- 8- 9- 10-			SAND with gravel and fines, b grained, medium dense	rown, coarse to medium	1	4	0		0.0	100		— PVC Pipe
11- 	SP		brown-grey @ 11.5 feet Brown @ 12 feet			5	ø		0.0	100		
13- 						6	0		0.0	100		
13- 	SM		wet @15.5' SILTY SAND with gravel and poorly sorted, wet	fines, brown-grey, coars	e,	7	0		0.0	100		— Screen — Sand Pack

C) C	DNS		LOC	g oi	= BC	ORIN	IG T\	N-5	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 10/24/2018Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Ini Fii Se	asing Size itial Wate nal Water elected fo illing Cor	r Level ⁻ Level r Analysis	: 2" : 15.0' : 13.61' : * : EnviroDynamics
			Water Levels ▼ During Drilling - 15.0' ∇ After Completion - 13.61'							
Depth in	s	GRAPHIC			ples		otal PID	Total	Sample	Temp Well: TW-5 TOC Elev.: 732.65
feet	nscs	GRA	DESC	CRIPTION	Samples	0 1	pm) 5 10	PID (ppm)	Recovery (%)	п
0-			ASPHALT/GRAVEL sub-base	i de la constante de						
1-	AR				1	¢		0.0	100	
2-			SANDY CLAY, brown, mediur	n stiff, moist						
3-								ouste	2025-5-5	
4-					2	e		0.0	100	
5-	CL		very sandy @ 5'							- Bentonite
6-					3	0		0.0	100	Seal
7_										
8-	-	10	SAND with gravel and fines, p grained, slightly moist, mediur	oorly sorted, coarse to medium						
9-			grained, signuy moist, mediur	n dense/dense	4	ø		0.0	100	PVC Pipe
10-										Ріре
11-					5	ø		0.0	100	
12	1									
13-	SP		very moist @ 13 feet							<u> </u>
14-					6	ø		0.0	100	
15-			wet @ 15 feet							Screen
16-					7	 		0.0	100	-Sand Pack
17-			gravelly @ 17 feet					1541.R	100040	
- - 18-	CL		moist	avel and silt, grey, hard, slightly	8	¢		0.0	100	
			Boring completed at 18 feet B	GS.						

(LOG	O	F BOF	RING	G TV	W-6	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 10/24/2018Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Initia Fina Sele	ing Size al Water al Water ected fo ing Con	r Level · Level r Analysis	: 2" : 13.0' : 13.20' : * : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels ▼ During Drilling - 13.0' ∇ After Completion - 13.20' DESC	CRIPTION	Samples	Tota PID (ppn 0 5) 1)	Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-6 TOC Elev.: 731.76'
0- 1- 2-	AR		ASPHALT SANDY CLAY,brown, medium	n stiff, moist	1	Φ	*****	0.0	100	
3- 4- 5-			CLAYEY SAND, medium grai	ned, well sorted, brown, moist	2	Ø		0.0	100	— Bentonite Seal
	sc				3	Ø		0.0	100	
	-		SAND with gravel and fines, p grained, slightly moist	oorly sorted, coarse to medium	4	8		0.0	100	PVC Pipe
10- 10- 11- 11- 12-	SP				5	¢		0.0	100	
			Wet @ 13'		6	6		0.0	100	Screen Sand Pack
	ML CL		SILT, grey, wet SILTY CLAY, grey, hard, sligh Boring completed at 16 feet B		7	0		0.0	100	

	CO	NS				OF	E	ORIN			alest e l	
		980	Imphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method Sampling Method Field/Office Logged	: 10/24/2018 : Direct Push : Dual Tube : CN/LL : 2.25"			Ini Fir Se	asing Size tial Wate nal Water elected fo illing Cor	r Level ⁻ Level r Analysis	: 2" : 14.75' : 12.68' : * : EnviroDyn	amics
Depth in feet	uscs	GRAPHIC	Water Levels ▼ During Drilling - 14.75' ▽ After Completion - 12.68' DESC	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	1.545	/ell: TW-7[ev.: 731.52
0 1 1 2	CL		TOPSOIL SANDY CLAY, brown, mediur	n stiff		1	0		0.0	100		
3 4 5	UL			E fact		2	Ø		0.0	100		
6 7	SC		grades to CLAYEY SAND @			3	Ø		0.0	100		-Bentonit Seal
8 9 10			SAND with gravel and fines, b grained, poorly sorted, dense,	rown, coarse to mediu slightly moist	m	4	ø		0.0	100		
11 12 13	SP					5	0		0.0	100	▼.	-PVC Pipe
14 14 15			Wet @ 14.75'			6	0		0.0	100	_	
16 17 17						7	Ø		0.0	100		
19-	SM		SILTY SAND, brown-grey, por saturated Moderately well-sorted, coarse		ained,	8	6		0.0	100		-Screen -Sand Pack
21	CL	11	Well sorted, very coarse @ 21 SILTY CLAY, grey, hard, sligh	feet		9	•		0.0	100		1 don

(3	DNS		LOG	OF	BORI	NG TV	V-7S	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 10/24/2018 Drilling Method : Direct Push Sampling Method : Dual Tube Field/Office Logged : CN/LL Hole Diameter : 2.25"			Casing Siz Initial Wate Final Wate Selected for Drilling Cor	r Level r Level or Analysis	: 2" : 14.75' : 12.74' : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels ▼ During Drilling - 14.75' ∇ After Completion - 12.74' DESC	CRIPTION	Samples	Total PID (ppm) 0 5	Total PID 10 (ppm)	Sample Recovery (%)	Temp Well: TW-7S TOC Elev.: 731.59
0-	CL		TOPSOIL						
1- 1- 2-			SANDY CLAY, brown, mediur	n stiff	1	¢	0.0	100	
3-	CL				2		0.0	100	
4					-		0.0	100	
5-			grades to CLAYEY SAND @	5 feet					Bentonite
4	sc				3	ø	0.0	100	Seal
			SAND with gravel and fines, b	rown, coarse to medium					
8- - - 9-			grained, poorly sorted, dense,	slightly moist	4	•	0.0	100	PVC Pipe
10-									
- - 12-	SP				5	P	0.0	100	
13-									▼
- - 14-					6	•	0.0	100	
- - 15-			Wet @ 14.75'						-▼Screen
- - 16-					7	¢	0.0	100	-Sand Pack
- - 17-			Boring completed at 16.5 feet	BGS.					

(DNS		LOG	OF	В	BORI	N	G TV	/-8D	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 10/24/2018Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"				Ini Fir Se	asing Size tial Water nal Water elected fo illing Con	r Level ⁻ Level r Analysis	: 2" : 7.5' : 7.26' : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels ▼ During Drilling - 7.5' ▼ After Completion - 7.26' DESC	CRIPTION	Samples	0	Total PID (ppm) 5		Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-8D TOC Elev.: 723.69'
0- 	GW		GRAVEL SILTY CLAY with traces of grastiff, moist, sandy with depth	avel and sand, brown, medium	1	θ			0.0	100	
3- 4- 5-	CL				2	8			0.0	100	-Bentonite Seal
6- 			SAND with trace gravel, medi medium dense grading to den Wet @7.5 feet	um grained, poorly sorted, se	3	8			0.0	100	▼ ▼ Pipe
8- 9-	SP				4	8			0.0	100	
5	зм		SANDY CLAY with trace grav SILTY SAND, grey, poorly so	el and sand, medium stiff, moist ted, medium dense, wet	5	8			0.0	100	Screen Sand Pack
13-	CL		SILTY CLAY with trace grave	s and silt, grey, stiff	6	8			0.0	100	
15-		112	Boring completed at 15 feet B	GS.				1		<u> </u>	l
17-											

C		DNS		LOG	OF	BORI	NG TV	V-8S	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 10/24/2018Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Casing Size Initial Wate Final Wate Selected for Drilling Cor	r Level r Level or Analysis	: 2" : 7.5' : 7.29' : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels ▼ During Drilling - 7.5' ▼ After Completion - 7.29' DESC	CRIPTION	Samples	Total PID (ppm) 0 5	Total PID 10 (ppm)	Sample Recovery (%)	Temp Well: TW-8S TOC Elev.: 723.64'
0-	GW		GRAVEL						
- 1 -			SILTY CLAY with traces of gr stiff, moist, sandy with depth	avel and sand, brown, medium	1	φ	0.0	100	—Bentonite Seal
2-									- Bentonite
- 3– -	CL								Seal
4-					2	ø	0.0	100	
									PVC Pipe
6-			SAND with trace gravel, medi	um grained poorly sorted					
-			medium dense grading to der	ise	3	Ø	0.0	100	
7-			W/H 07.51						<u>▼</u>
- 8–	SP		Wet @7.5'		4	¢	0.0	100	Screen
9-									
			Boring completed at 9.25 feet	BGS.			-11	1	

C		DNS		L	OG	OF	BOF	RIN	G T\	W-9	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 10/23/20 Drilling Method : Direct Pu Sampling Method : Dual Tuk Field/Office Logged : CN/LL Hole Diameter : 2.25"	ush			Ini Fir Se	sing Size tial Water al Water lected fo Iling Con	r Level ⁻ Level r Analysis	: 2" : 7.5' : 7.19' : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 7.5' After Completion - 7.19' DESC	CRIPTION		Samples	Tota PID (ppm 0 5		Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-9 TOC Elev.: 724.68'
0-	CL	111	TOPSOIL								
	AR		CONCRETE/GRAVEL SILTY CLAY with traces of gra medium stiff	avel and sand, mottled brown,		1	φ		0.0	100	
3-	CL					2	φ		0.0	100	Bentonite
											Seal
6	SP		SAND with fines, brown, poor	y sorted, dense, coarse		3	Ð		0.0	100	Pipe
- - 8- -			Wet @7.5'								_
9-	CL		SILTY CLAY, brown-grey, stif	, moist		4	0		0.0	100	
10-	SP	111	SAND with traces of gravel, g	rey, coarse, wet, poorly sorted		\neg					
11-			SILTY CLAY with traces of gra slightly moist to moist	avel and sand, stiff to hard,		5	e	*************	0.0	100	
12-	CL								, na st	- 1997.2 ⁴ 0	-Sand Pack
13-		111	Boring completed at 13 feet B	GS.							

04-15-2019 I:\Indy Environmental\Project Files\AMPHENOL\Work Plans_2018\Off-Site Groundwater Investigation\Boring Logs\TW-9.BOR

	CO	DNS		LOG	G OF	-	BORI	NG TV	V-10	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 10/23/2018Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"				Casing Siz Initial Wate Final Wate Selected for Drilling Co	er Level r Level or Analysis	: 2" : 11.5' : 7.19' : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels During Drilling - 11.5' After Completion - 7.19' DES	CRIPTION	Samples		Total PID (ppm) 5 5	Total PID 10 (ppm)	Sample Recovery (%)	Temp Well: TW-10 TOC Elev.: 724.13
0 1 2	CL		TOPSOIL SILTY CLAY , brown, moist, r	nedium stiff	1		Þ	0.0	100	
3			SAND with trace gravel, well t	sorted, brown, medium grained	2		P	0.0	100	— Bentonit Seal
6 - 7 - 7	SW				3		P	0.0	100	PVC Pipe
8	SP			boorly sorted, very moist, dense	4			0.0	100	
	CL SM		SILTY CLAY with traces of gr stiff, moist SAND with silt and traces of g	94 B.J.B.H	5		Þ	0.0	100	Screen Sand Pack
12- - - 13- -	CL		SILTY CLAY with traces of gr		6		9	0.0	100	
14-	CH	11	Boring completed at 14 feet B	5 - S				1]

(DNS		LOG	OF	BOR	ING TV	V-11	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 10/23/2018Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Casing Siz Initial Wate Final Wate Selected fo Drilling Con	r Level r Level or Analysis	: 2" : 9' : 8.30' : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels ▼ During Drilling - 9' ▼ After Completion - 8.30' DESC	CRIPTION	Samples	Total PID (ppm 0 5	Total	Sample Recovery (%)	Temp Well: TW-11 TOC Elev.: 725.51'
0- - 1- - 2-	CL		TOPSOIL SANDY CLAY, brown, mediur	n stiff, moist	1	6	0.0	100	
	CL				2	8	0.0	100	— Bentonite Seal
	SC		CLAYEY SAND, brown, media SAND with gravel, poorly sort	um dense, moist ed, coarse, dense, slightly moist	3	ø	0.0	100	PVC Pipe
					4	0	0.0	100	
9-	SP		Wet @ 9'						Screen Sand Pack
11-					5	ø	0.0	100	
13-	CL		SILTY CLAY, grey-brown, har Boring completed at 13 feet B		6	ø	0.0	100	

04-15-2019 I:\Indy Environmental\Project Files\AMPHENOL\Work Plans_2018\Off-Site Groundwater Investigation\Boring Logs\TVV-11.BOR

						OF	E	BORIN			entrand	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method Sampling Method Field/Office Logged	: 10/23/2018 : Direct Push : Dual Tube : CN/LL : 2.25"			Ini [:] Fir Se	tial Wate nal Wate lected fo illing Cor	r Level ⁻ Level r Analysis	: 2" : 9.5' : 8.56' : * : EnviroDyr	amics
Depth in feet	uscs	GRAPHIC	Water Levels ✓ During Drilling - 9.5' ✓ After Completion - 8.56' DES	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)		/ell: TW-12 ev.: 726.09
0 	CL		TOPSOIL SILTY CLAY with trace grave brown	l and sand, medium stif	ff, moist,	1	0		0.0	100		
3 3 4 4 5			SAND with gravel, brown, poor moist, medium dense	orly sorted, coarse, sligi	htly	2	0		0.0	100		– Bentonita Seal
- 6 - 7 - 7						3	0		0.0	100		- PVC Pipe
8 - - 9 - - 10 -	SP		Wet @ 9.5'			4	0		0.0	100	⊻	-Screen
- 11 - 12 - -						5	0		0.0	100		– Sand Pack
13- - - 14-	CL		SILTY CLAY, grey, hard, mois CLAYEY SILT, very dense, gr			6	0		0.0	100		
			Boring completed at 14.5 feet							ļ,		

(B) C	DNS		LOG	OF	BOR	ING TV	V-13	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 10/23/2018Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Casing Siz Initial Wate Final Wate Selected fo Drilling Con	er Level r Level or Analysis	: 2" : 11.5' : 9.89' : * : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels ▼ During Drilling - 11.5' ∇ After Completion - 9.89' DESC	CRIPTION	Samples	Tota PID (ppm 0 5	Total	Sample Recovery (%)	Temp Well: TW-13 TOC Elev.: 727.75'
0	CL		TOPSOIL/GRAVEL		1	φ	0.0	100	
2-			SANDY CLAY, brown, moist,	medium stiff					
4-	CL				2	Ø	0.0	100	— Bentonite Seal
5			SAND with fines and gravel, p slightly moist	oorly sorted, coarse, brown,	3	0	0.0	100	-Bentonite Seal
					·				Pipe
9-					4	ø	0.0	100	-▼
10-	SP		very moist @ 10.5'		5	0	0.0	100	
12-			Wet @ 11.5'				0.0		Screen Sand Pack
13-					6	o	0.0	100	
15-	CL		SILTY CLAY with traces of gra moist, brown-grey Grey @ 15.5'	avel and sand, very stiff, slightly	7	6	0.0	100	
16-			Boring completed at 16 feet B	GS.				<u> </u>	

				Data Completed	: 10/23/2018				Ising Size		: 2"
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter	: Direct Push : Dual Tube : CN/LL : 2.25"			Ini Fir Se	tial Water nal Water	r Level · Level r Analysis	: 2 : 15' : 15.15' : * : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 15' After Completion - 15.15' DESC	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-14 TOC Elev.: 734.71
0	CL		TOPSOIL/GRAVEL	ravel medium stiff n	poist						
1- 2- 3-			SANDY CLAY with traces of g brown	graver, meulum sum, m	10151,	1	¢		0.0	100	
4	CL					2	ø		0.0	100	
6 7 7			SAND with traces of gravel, p	oorly sorted, coarse to	o medium	3	ø		0.0	100	Bentonit Seal
9 9 10			grained, medium dense, sligh	tly moist		4	0		0.0	100	
11 12	SP		fines, very moist @ 12.5'			5	ø		0.0	100	PVC Pipe
13 14 14			Wet @ 15'			6	ø		0.0	100	<u>₹</u>
15 16 17			Wet @ 15' SILTY SAND with gravel, brow	wn-grey, wet dense		7	•		0.0	100	
18 18 19	SM		giaro, bio	<u></u>		8	0		0.0	100	Screen Sand Pack
20	CL	11	SILTY CLAY with trace grave moist	I and sand, grey, hard	l, slightly	9			0.0	100	Fach

(LOG	OF	BORI	NG TW	-14S	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 10/23/2018Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Casing Size Initial Wate Final Water Selected fo Drilling Cor	r Level ⁻ Level r Analysis	: 2" : 15' : 15.23' : * : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels ▼ During Drilling - 15' ▼ After Completion - 15.23' DESC	CRIPTION	Samples	Total PID (ppm) 0 5	Total	Sample Recovery (%)	Temp Well: TW-14S TOC Elev.: 734.77'
0	CL		TOPSOIL/GRAVEL SANDY CLAY with traces of g brown	ravel, medium stiff, moist,	1	6	0.0	100	
3- 3- 4- 5-	CL				2	0	0.0	100	-Bentonite Seal
6					3	Ø	0.0	100	— Bentonite Seal
6 7 8 9 10 11 12 13 14 15 16 17 17 17			SAND with traces of gravel, p grained, medium dense, sligh	oorly sorted, coarse to medium tly moist	4	0	0.0	100	PVC Pipe
10	SP				5	ø	0.0	100	PVC Pipe
13-			fines, very moist @12.5'		6	0	0.0	100	
15- 			Wet @ 15'		7	Ø	0.0	100	Screen -Sand Pack
17-			Boring completed at 17 feet B	GS.					

04-08-2019 I:\Indy Environmental/Project Files\AMPHENOL\Work Plans_2018\Off-Site Groundwater Investigation\TVV-14S.BOR

(DNS		LOG	OF	B	ORING	G TW	-15D		
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/28/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			In Fi Se	asing Size itial Wate nal Water elected fo rilling Cor	r Level Level r Analysis	: 2" : 10' : 8.73' : * : EnviroDyr	namics
Depth in feet	USCS	GRAPHIC	Water Levels During Drilling - 10' After Completion - 8.73' DESC	CRIPTION	Samples		Total PID (ppm)	Total PID	Sample Recovery		Vell: TW-15D ev.: 729.15'
0-		G			ő	0	5 10	(ppm)	(%)		
1-	AR		GRAVEL SANDY CLAY, brown, stiff, m	oist	1	6		0.0	100		
2- 	CL										
4-					2	0		0.0	100		
5-											 Bentonite Seal
5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, nes	3	ø		0.0	100		
8- 8- - - - 9-	SP		Moist @ 9 feet		4	•		0.0	100	_	- PVC Pipe
10-			SILTY SAND, coarse, wet, wit	h traces of gravel and clay						≖	
11-			Less silt, medium		5	•		0.0	100		
12-	614										
14-	SM				6	6		0.0	100	202 332 =	
15-			silty, coarse, with traces of gra Less silt, medium	avel and clay @ 14.75 feet							−Screen −Sand Pack
16-			Coarse @ 15.75 feet		7			0.0	100		
17-	CL		SILTY CLAY, hard/very stiff, s of gravel and sand	lightly moist, grey, with traces				0.0	100		
18-			Boring completed at 17.5 feet	BGS.							

		DNS		LOG	OF	BORI	NG T	ΓW	-15S	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/28/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Final \ Select	Wate Water ted fo	r Level	: 2" : 10' : 8.76' : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels	CRIPTION	Samples	Tota PID (ppm 0 5) T) F	otal PID opm)	Sample Recovery (%)	Temp Well: TW-15S TOC Elev.: 729.23'
0-	5	0			_ v			ipini)	(70)	
1-	- AR		GRAVEL SANDY CLAY, brown, stiff, m	oist	1	6	(0.0	100	
04-15-2019 1:\Indy Environmental/Project FilesVM/PHENOL/Work Plans_2018/Off-Site Groundwater Investigation/Boring Logs/TW-15S.BOR - 1	-				2	8	(D.O	100	Bentonite
Ins_2018/Off-Site Groundwater Investi-	-		SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, nes	3	8	(0.0	100	
estaMPHENOLWork Plan	- SP - -		Moist @ 9 feet		4	0	(0.0	100	
lindy Environmental/Project Fill - 11 - 11	- - - - - SM		SILTY SAND, coarse, wet, wit	h traces of gravel and clay	5	Ð		0.0	100	Screen Sand Pack
107-01-40	-		Less silt, medium							

((C) CC			LOG	OF	BC	ORING	G TW	-16D	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 02/28/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			In Fi Se	asing Size itial Wate nal Water elected fo rilling Cor	r Level Level r Analysis	: 2" : 9' : 8.43' : * : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels During Drilling - 9' After Completion - 8.43' DESC	CRIPTION	Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-16D TOC Elev.: 728.08
0-	<u> </u>	8112	SANDY CLAY, dark brown, m	oist, medium stiff		П				
1-					1	8		0.0	100	
2	CL				2	ø		0.0	100	
4	-				3			0.0	100	-Bentonite Seal
4- 5- 6- 7- 10- 11- 11- 12- 13- 13- 15-			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, les	4	8		0.0	100	PVC Pipe
8	SP		Moist @ 8 feet Coarse , wet, dense @ 9 feet		5			0.1	100	<u>▼</u>
10- 	-		SILTY SAND with traces of gr dense @ 10 feet	avel and clay, brown, wet,	6	6		0.0*	100	
12- 13-	SM				7			0.0*	100	Screen —Sand Pack
	CL		SILTY CLAY, hard/very stiff, s of gravel & sand	lightly moist, grey, with traces	8			0.0	100	
15-			Boring completed at 15 feet B	GS.	.noni	no harri	ali nak			5

	CCC	DNS			LOG	OF	BC	RINC	G TW	-16S	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method Sampling Method Field/Office Logged	02/28/2019 Direct Push Dual Tube CN/LL 2.25"			Ini Fii Se	asing Size itial Wate nal Water elected fo rilling Cor	r Level ⁻ Level r Analysis	: 2" : 9' : 8.48' : * : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels During Drilling - 9' After Completion - 8.48' DESC	CRIPTION		Samples		Total PID ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-16 TOC Elev.: 728.10
0— - 1— -			SANDY CLAY, dark brown, m	noist, medium stiff		1	8		0.0	100	
2	CL					2	0		0.0	100	—Bentonita Seal
4 - 5						3	6		0.0	100	PVC Pipe
6— - 7— -			SAND, medium dense/dense, poorly-sorted, with gravel & fi	, slightly moist, brown, nes		4	0		0.0	100	
8-	SP		Moist @ 8 feet Coarse, wet, dense @ 9 feet			5	0		0.1*	100	⊥
- 9- - - 10-											Pack

(DNS		LOG	OF	BOI	RING	G TW	-17D	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 03/01/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			In Fi Se	asing Size itial Wate nal Water elected fo rilling Cor	r Level ⁻ Level r Analysis	: 2" : 10' : 8.32' : NA : EnviroDynamics
			Water Levels							
			During Drilling - 10'							
										Temp Well: TW-17D
Depth		GRAPHIC			es		otal PID	Total	Sample	TOC Elev.: 728.61
in feet	uscs	SAP	DEC		Samples		pm)	PID	Recovery	
leet	1 S	ß	DESC	CRIPTION	Sa	0	5 10	(ppm)	(%)	-
0-	AR	888	GRAVEL							1
	-	11	SANDY CLAY, moist, medium	a stiff, brown					100	離畿
1-	1	$\langle j \rangle$			1	I		0.0	100	
2-										
-	1	12								
3-	1				2	•		0.0	100	
	CL	\mathcal{D}								鐵 鐵
4-		1)	Very sandy @ 4 feet							
	1					2.4.5		50100	1316309	離議
5-		a.			3	¢.		0.0	100	
6-]				,					- Bentonite
										Seal
7-	1	11.	0.000		4	 		0.0	100	
	1		SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, nes				20090		
8-]									
	SP		Moist @ 8.75 feet							PVC
9-	1		0		5	P		0.0	100	Pipe
10-	1									_
	1		SILTY SAND, coarse, wet, bro gravel & clay	own to brown-grey, traces of						
5 - 5 11-	1		giavei a day		6	•		0.0	100	
	3									鐵鐵
12-]									
	SM							5200	10100074	
13-	1				7	 		0.0	100	
	3									
14-	1									麗 麗
15-	1				- 8	•		0.0	100	
	1		SAND, coarse, brown-grey, w gravel & silt	et, poorly-sorted, traces of				100035915	1 () - 2 ()	
16-	3									
	SP									Screen
17-	1				9	•		0.0	100	-Sand
	1		Medium to fine @ 17.75 to 18	.25 feet						Pack
18-	1		~~		10			0.0	100	
19-	CL	115	SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of	لتطر	1		0.0		
			Boring completed at 19 feet B	GS.						
			Πής IV							

04-08-2019 I:\Indy Environmental/Project Files/AMPHENOL\Work Plans_2018\Off-Site Groundwater Investigation/1Q19 Investigation/TVH-17D.BOR

	For	mer A 980	Might and the second se	Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter	: 03/01/2019 : Direct Push : Dual Tube : CN/LL : 2.25"		Casing Size Initial Water Level Final Water Level Selected for Analysis Drilling Contractor			r Level · Level r Analysis	: 2" : 10' : 8.47' : NA : EnviroDynamics	
Depth in feet	uscs	GRAPHIC	Water Levels During Drilling - 10' After Completion - 8.47' DESC	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp V TOC EI	Vell: TW-17 ev.:
0_ - 1_ - 2_	AR		GRAVEL SANDY CLAY			1	ø		0.0	100		
	CL		Very sandy @ 4 feet			2	o		0.0	100		– Bentoniti Seal
5 5 6 7 7			SAND, medium dense/dense,	slightly moist, brown,	6	3	Ø		0.0	100		– PVC Pipe
8 8	SP		poorly-sorted, with gravel & fir	ies and an and an and an		5	ø		0.0	100		
10- - - 11-	SM		SILTY SAND, coarse, wet, bro gravel & clay	own to brown-grey, tra	aces of	6	0		0.0	100		– Screen – Sand Pack

	CO	NS						ORING	17% 56276		
		980	mphenol Corporation Hurricane Road Franklin, IN I# IND 044 587 848	Drilling Method : Di				Ini Fir Se	asing Size itial Water nal Water elected fo illing Con	r Level · Level r Analysis	: 2" : 10.25' : 8.35' : NA : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels During Drilling - 10.25' After Completion - 8.35' DES	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-18 TOC Elev.: 728.11
0 1 2	AR		GRAVEL SANDY CLAY, stiff, moist, br	own	/	1	0		0.0	100	
3	CL					2	ø		0.0	100	
5			SAND, medium dense/dense poorly-sorted, with gravel & fi	, slightly moist, brown, nes		3	•		0.0	100	— Bentonita Seal
7 8	SP		Moist @ 6.75 feet Coarse, brown-grey, very mo			4	6	0	0.0	100	
9 10			Medium to fine grained @ 8.	9999 L.J.A.		5	ø		0.0	100	PVC Pipe
11_ 11_ 12_	6		SILTY SAND, wet, coarse, w brown-grey, dense	ith trace gravel and clay,		6	ø		0.0	100	
13 - 13 - 14 -	SM					7	•		0.0	100	
15 15 16			SAND, dense, brown-grey, c	oarse, wet		8	ø		0.0	100	Screen
17-	SP		Silty and gravelly @ 17.75 fe			9	•		0.0	100	-Sand Pack
18-	CL		SILTY CLAY, hard/very stiff, gravel & sand	slightly moist, grey, traces	of	10			0.0	100	

(ere	DNS		LOG	OF	B	ORING	G TW	-18S	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 03/01/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			In Fi Se	asing Size iitial Wate inal Water elected fo rilling Cor	r Level ⁻ Level r Analysis	: 2" : 10.25' : 8.30' : NA : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels During Drilling - 10.25' After Completion - 8.30' DESC	CRIPTION	Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-18S TOC Elev.: 728.13
0	AR		GRAVEL SANDY CLAY, stiff, moist, bro)wn	1	¢		0.0	100	
	CL				2	ð		0.0	100	- Bentonite Seal
			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, nes	- 3	8		0.0	100	Pipe
7-	SP		Moist @ 6.75 feet	at @ 9 faat	4	 		0.0	100	
8 – 9 –			Coarse, brown-grey, very moi Medium to fine grained @ 8.5		5	8		0.0	100	Screen Sand Pack

10								7.27	ar 253		1221	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method : Sampling Method : Field/Office Logged :	03/01/2019 Direct Push Dual Tube CN/LL 2.25"			Ini Fir Se	asing Size tial Water nal Water elected fo illing Con	r Level Level r Analysis	: 2" : 10' : 9.18' : NA : EnviroDyr	namics
Depth in feet	uscs	GRAPHIC	Water Levels	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)		Vell: TVV-19 ev.: 729.01
0	AR	888	GRAVEL No Recovery (Rock pushed)		ż					25		
1 2 3 4						2	9		-	0		
5	11	SANDY CLAY, stiff, brown, m	oist		- 3			0.0	100			
6 7	CL		Very sandy @ 6 feet						0.0	100		
8 9	SP		SAND, medium dense/dense, poorly-sorted, with gravel & fir Moist @ 8 feet	slightly moist, brown, nes		5	0		0.0	100	₹.	– Bentonite Seal
10 11 11 12			SILTY SAND, coarse, wet, bro clay	own-grey, traces of grav	rel &	6	ø		0.0	100	-	- PVC Pipe
13 14			Medium to coarse, less silt @	15 feet		7	ø		0.0	100		
15	SM					8	Ø		0.0	100		
17-						9	ø		0.0	100		
19			107 SSAMONA			10	ø		0.0	100		
20 21			Coarse to very coarse @ 20 f	eet		11	ø		0.0	100		- Screen - Sand Pack
22	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, trace	es of	12	ļ		0.0	100		

C		DNS			LOG	OF	B	ORIN	G TW	-19S		
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter	: 03/01/2019 : Direct Push : Dual Tube : CN/LL : 2.25"	-		li F S	Casing Size nitial Wate Final Wate Selected fo Drilling Cor	r Level ⁻ Level r Analysis	: 2" : 10' : 8.66' : NA : EnviroD	ynamics
Depth in feet	nscs	GRAPHIC	Water Levels ▼ During Drilling - 10' ▼ After Completion - 8.66' DESC	CRIPTION		Samples	0	Total PID (ppm) 5 1	Total PID 0 (ppm)	Sample Recovery (%)	TOCE	Well: TW-19S Elev.: 728.64
0	AR		GRAVEL No Recovery (Rock pushed)			1			-	25		
3- 3- -						2	c.	>	2	0		—Bentonite Seal
5			SANDY CLAY, stiff, brown, m	oist		- 3	¢	>	0.0	100		PVC Pipe
6- - - 7-	CL		Very sandy @ 6 feet SAND, medium dense/dense, poorly-sorted, with gravel & fin	slightly moist, brown nes	2	4		>	0.0	100		
8-	SP		Moist @ 8 feet			5	¢		0.0	100	<u> </u>	
10- - - - - - - - - - - - - - - - - - -	SM		SILTY SAND, coarse, wet, bro clay	own-grey, traces of gr	avel &	6	¢	2	0.0	100		– Screen – Sand Pack

(DNS		LOG	G OF	BOR	ING TV	V-20	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 03/01/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Casing Siz Initial Wate Final Wate Selected fo Drilling Cor	r Level r Level or Analysis	: 2" : 5' : 4.23' : NA : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels During Drilling - 5' After Completion - 4.23' DESC	CRIPTION	Samples	Total PID (ppm) 0 5	Total	Sample Recovery (%)	Temp Well: TW-20 TOC Elev.: 720.08
0	CL		SILTY CLAY, brown, medium	stiff, moist	1	φ	0.0	100	-Bentonite Seal
2	SP		SAND, medium dense/dense, poorly-sorted, with gravel and	slightly moist, brown, fines	2	0	0.0	100	PVC Pipe
4 - 5- - -	CL		Moist @ 4 feet SILTY CLAY, brown, medium SILTY SAND, fine grained, we		3	0	0.0	100	-▼ Sand Pack
6 - - 7 -	SM		Grades to brown-grey, coarse SILTY CLAY, hard/very stiff, s gravel & sand		4	ð	0.0	100	
- - 8–	CL		Boring completed at 8.5 feet B	BGS.	5	· · · ·	0.0	100	

04-15-2019 I:\Indy Environmental/Project Files\AMPHENOL\Work Plans_2018\Off-Site Groundwater Investigation\Boring Logs\TVV-20.BOR

		980	Amphenol Corporation Hurricane Road Franklin, IN 0 # IND 044 587 848	Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter	: 03/01/2019 : Direct Push : Dual Tube : CN/LL : 2.25"			Ini Fii Se	asing Size itial Wate nal Water elected fo illing Cor	r Level Level r Analysis	: 2" : 3' : 3.22' : NA : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 3' After Completion - 3.22' DESC	CRIPTION		Samples	F (p	otal PID pm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-2 TOC Elev.: 718.59
0	CL		SILTY CLAY, medium stiff, br	C 2010 - 2000 - 2000 - 415		1	8		0.0	100	— Bentonit Seal
	SP		SAND, medium dense/dense, poorly-sorted, traces of grave	slightly moist, brown & fines	•						PVC Pipe
3			SILTY SAND, fine to medium	grained, wet, brown		2	Ø		0.0	100	Screen
	SM		Coarse @ 5 feet			3	0		0.0	100	
6- - - 7- -	CL		More gravel and clay @ 6.25 SILTY CLAY, hard/very stiff, s gravel & sand		aces of	4	0		0.0	100	

C	3	DNS		LOG	OF	BOR	NG T	W-22	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 03/01/2019 Drilling Method : Direct Push Sampling Method : Dual Tube Field/Office Logged : CN/LL Hole Diameter : 2.25"			Final Wa Selected	ter Level	: 2" : 7.75' : 6.25' : NA : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels ▼ During Drilling - 7.75' ∇ After Completion - 6.25' DES	CRIPTION	Samples	Total PID (ppm) 0 5	Tota	Recovery	Temp Well: TW-22 TOC Elev.: 720.84
0 - 1 -	CL		SILTY CLAY, brown, medium No Recovery (Rock pushed)	stiff, moist	1	¢	0.0	100	
2					2	0	-	0	Bentonite Seal PVC Pipe
4 - - 5 - - 6 -			SANDY CLAY, brown, mediur	n stiff, moist	- 3	Ø	0.0	100	鐵 巖
0- - 7- -	SP		SAND, medium dense/dense, poorly-sorted, with gravel and	slightly moist, brown, fines	4	Ø	0.0	100	_▼Screen
8 8 9 9	SM			um grained, wet, traces of gravel	5	o	0.0	100	—Sand Pack
10- - - 11- -			Coarse, brown-grey, with trac		6	0	0.0	100	
12	CL		gravel & sand	איז	7	φ	0.0	100	
13–			Boring completed at 13 feet B	GS.			-:1		1

¢	e co			LOG	OF	BO	RIN	g tv	V-23		
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 03/01/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Ini Fir Se	asing Size tial Wate nal Wate elected fo illing Cor	r Level Level r Analysis	: 2" : 7.5' : 6.78' : NA : EnviroDyn	amics
Depth in feet	uscs	GRAPHIC	Water Levels ✓ During Drilling - 7.5' ✓ After Completion - 6.78' DESC	CRIPTION	Samples	F (p	otal PID pm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp W TOC Ele	/ell: TVV-23 ev.:
0-		821.0	SANDY CLAY			11				833 838	
- - 1_ - -					1	¢		0.0	100		
2— - - 3—	CL				2	ø		0.0	100		– Bentonite Seal
4					3	Ø		0.0	100		−PVC Pipe
6- - - 7-	SP		SAND, medium grained, mois Very moist @ 7 feet	t	4	ø		0.0	100	<u> </u>	
- - 8- - -			SAND, silty to coarse, wet, broclay	own-grey, traces of gravel &						_	– Screen – Sand Pack
9	SM				5	ø		0.0	100		
10			SILTY CLAY, hard/very stiff, s	lightly moist arey traces of	- 6	ø		0.0	100		
- - 12- -	CL		gravel & sand	ngnay molet, grey, traves or	7	ę		0.0	100		
13—		111	Boring completed at 13 feet B	GS.							

04-15-2019 I:\Indy Environmental/Project Files\AMPHENOL\Work Plans_2018\Off-Site Groundwater Investigation\Boring Logs\TVV-23.BOR

	For	mer A 980	Mathematical and the second se	Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter	: 03/06/2019 : Direct Push : Dual Tube : CN/LL : 2.25"			In F S	asing Size hitial Wate inal Wate elected fo rilling Cor	r Level r Level or Analysis	: 2" : 5' : 4.80' : NA : EnviroDy	namics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 5' After Completion - 4.80' DESC	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)		Vell: TW-24 lev.: 720.34
0 - - 1- -	SANDY CLAY, brown, medium stiff, moi					1	1 ¢	, ,	0.0	100		— Bentonit Seal
2 - 3- -	CL					2	c	,	0.0	100		— PVC Pipe
4 - 5- - -	SP		Very moist, very sandy @ 4.7 SAND, medium dense/dense, traces of gravel & fines		orted,	- 3	c	>	0.0	100		— Screen — Sand Pack
6 - - 7 - -	CL		SILTY CLAY, soft-medium sti sand hard/very stiff, slightly moist @		of gravel &	4	C		0.0	100		ļ
8						5	-		0.0	100		

	For	mer A 980	ULTING GROUP Amphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter	: 03/06/2019 : Direct Push : Dual Tube : CN/LL : 2.25"			Ini Fir Se	asing Size tial Wate hal Water elected fo illing Cor	r Level ⁻ Level r Analysis	: 2" : 3' : 3.32' : NA : EnviroDynamics		
Depth in feet	uscs	GRAPHIC	Water Levels During Drilling - 3' After Completion - 3.32' DES	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)		Vell: TW-25 lev.: 720.05	
0 - 1- - 2- -	CL		SANDY CLAY, brown, mediu	n stiff, moist		1	Φ		0.0	100		— Bentoniti Seal — PVC Pipe	
	SP		SAND, medium dense/dense, traces of gravel & fines	wet, brown, poorly-se	orted,	- 2	¢		0.0	100	▼	—Screen —Sand Pack	
5 - - 6 - 7-	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, tra	ices of	4	0		0.0	100			

			ULTING GROUP	Date Completed	: 03/04/2019				asing Size		: 2"	
		980	Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method Sampling Method Field/Office Logged Hole Diameter	: Direct Push : Dual Tube : CN/LL : 2.25"			In Fi Se	itial Wate nal Water	r Level ⁻ Level r Analysis	: 9.5' : 8.47' : NA : EnviroDy	mamics
Depth in feet	USCS	GRAPHIC	Water Levels ▼ During Drilling - 9.5' ∇ After Completion - 8.47' DES	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	TOC E	Well: TW-26 lev.: 728.11
0 - 1 - 2 -			No Recovery (Rock pushed)			1	8		-	0		
3 3 4						2	ø		ē	0		
5	CL		SANDY CLAY, brown, mediu SAND, medium dense/dense sorted, traces of gravel & silt		poorly	3	•		0.0	100		— Bentonite Seal
7	SP					4	•		0.0	100		PVC Pipe
9 9 10			Very moist @ 9 - 9.5 feet SILTY SAND, coarse, brown-	grey, wet, medium der	nse	5	•		0.0	100	⊻	T DC
11- 11- 12-						6	•		0.0	100		
13- 13- 14-	SM					7	•		0.0	100		
15 15 16			Gravelly, dense @ 15 feet			8	•		0.0	100		— Screen — Sand Pack
17 17	CL CL		SILTY CLAY, brown, stiff, mo SILTY CLAY, hard/very stiff, s \gravel & sand		ces of	9	0		0.0	100		

(ere	DNS		LOG	OF	BORI	NG TV	V-26S	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 03/04/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Casing Si Initial Wat Final Wat Selected f Drilling Co	er Level er Level or Analysis	: 2" : 9.5' : 8.78' : NA : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels ▼ During Drilling - 9.5' ∇ After Completion - 8.78' DESC	CRIPTION	Samples	Tota PID (ppm 0 5	Total	Sample Recovery (%)	Temp Well: TW-26S TOC Elev.: 728.43
0	-		No Recovery (Rock pushed)		1	Ø	-	0	
	-				2	Ø		o	Bentonite Seal
n	CL		SANDY CLAY, brown, mediur SAND, medium dense/dense, sorted, traces of gravel & silt		3	Ø	0.0	100	R83 898
	SP				4	Ø	0.0	100	_▼
8-			Very moist @ 9 feet SILTY SAND, coarse, brown-{	grey, wet, medium dense	5	Ø	0.0	100	
	SM				6	Ø	0.0	100	Screen Sand Pack

	9				LOC	g of	=	BORIN	G TV	V-27	
			980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 03/04/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Ini Fii Se	asing Size itial Wate nal Water elected fo illing Cor	r Level ⁻ Level r Analysis	: 2" : 10.5' : 8.88' : NA : EnviroDynamics
				Water Levels							
				✓ After Completion - 8.88'							
Depth			₽			w	į.	Total			Temp Well: TW-27 TOC Elev.: 728.36
in	SOSI		GRAPHIC			Samples		PID (ppm)	Total PID	Sample Recovery	100 Elov. 720.00
feet		8	В	DESC	CRIPTION	Sa		0 5 10		(%)	п
0	1	1	11	SANDY CLAY, medium stiff, b	rown, moist		Π				
1	3					1		 	0.0	100	
	3								1.11.2010	COLUMN THE D	
2	-						╢				磁 鐵
3	30					2			0.0	100	
	-		1)					T	0.0	100	- Bentonite Seal
<u>د</u> 4	-					-	$\left\ \right\ $				
Da.12-]					155			1000	P. SPANSK	
M 5	+			SAND, medium dense/dense,	slightly moist, brown,	3		•	0.0	100	PVC Pipe
6 Buil	1			poorly-sorted, traces of gravel	& fines						PVC Pipe
	-										
nesandan	-					4		•	0.0	100	
	s	P									
8	3						1				
9 9	_					5		•	0.0	100	_▼.
2-100	-			Moist @ 9.5 feet						1111422026	
8L07 5	-						$\left\ \right\ $				
K Liai	ŧ			SILTY SAND, brown-grey, we	t, traces of gravel & clay, dense	6			0.0	100	Screen
	-								0.0	100	Pack
12	-						$\left\ \right\ $				
SVAINI	- s	и							854.004	GARDERS	Auto and
13]					7		•	0.0	100	
14	_										
Dumen											
15	1	-	61	SILTY CLAY, hard/very stiff, s	lightly moist, brown-grey,	- 8		•	0.0	100	
	- c	L	1	traces of gravel & sand Grey @ 15.75 feet	anana amining tang kanalanan pengang Palatat Sang Ang Kang Palatan Palatan Palatan Palatan Palatan Palatan Pala						
-15-2019 1:Vingy EnvironmentalVroject FilesAMMPHENOLIVVork Plans, 2018/UFF-Site Groundwater Investigation/Bonng Logs/1W-27/BUK 10 16 6 8 2 2 9 11 11 12 12 12 12 12 12 12 12 12 12 12	1	2	14			9		•	0.0	100	
2 5 17	_			Boring completed at 16.5 feet	BGS.						

(DNS		L	.0G (DF	BORI	NG TW	/-28D	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed : 03/04/ Drilling Method : Direct Sampling Method : Dual 1 Field/Office Logged : CN/LL Hole Diameter : 2.25"	Push Fube			Casing Siz Initial Wate Final Wate Selected fi Drilling Co	er Level er Level or Analysis	: 2" : 9.75' : 8.97' : NA : EnviroDynamics
Depth in feet	uscs	GRAPHIC	Water Levels ✓ During Drilling - 9.75' ✓ After Completion - 8.97' DESC	CRIPTION		Samples	Total PID (ppm 0 5	Total	Sample Recovery (%)	Temp Well: TW-28D TOC Elev.: 728.37
0			No Recovery (Rock pushed)			1	¢	-	o	
3_ 3_ 4_					2	Ø	-	0		
- - 5 - - 6			SAND, medium dense/dense, poorly-sorted, traces of gravel	slightly moist, brown, & fines		3	Ø	0.0	100	Bentonite Seal
7-	SP		Moist @ 7.5 feet			4	Ø	0.0	100	PVC Pipe
9_			SILTY SAND, coarse, wet, tra	oos of gravel 8 elay		5	0	0.0	100	▼
10- - - 11- -			Very coarse, less silt from 10			6	Ø	0.0	100	
12_ - - 13_ -	SM					7	ø	0.0	100	Screen
14	CL	111	SILTY CLAY, hard/very stiff, s	lightly moist, grey, traces of		8	0	0.0	100	Pack
10-			gravel & sand Boring completed at 15.0 feet		/		v the file of the	111.0		

				De autor		OF	B				01
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter	: 03/04/2019 : Direct Push : Dual Tube : CN/LL : 2.25"			Ini Fi Se	asing Size itial Wate nal Water elected fo rilling Cor	r Level ⁻ Level r Analysis	: 2" : 9.75' : 8.95' : NA : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-28 TOC Elev.: 728.34
0		1 2.	No Recovery (Pushed a rock			1	0		÷	0	
2- - 3- - - 4-						2	ø		÷	0	— Bentonite Seal
- 5 - - 6			SAND, medium dense/dense poorly-sorted, traces of grave	, slightly moist, brown, I & fines		3	0		0.0	100	PVC Pipe
- 7_ - 8_	SP		Moist @ 7.5 feet			4	0		0.0	100	
9 - - - - - -			SILTY SAND, coarse, wet, tra			5	0		0.0	100	_▼Screen
- - - - - -	SM		∕-Very coarse, less silt from 10	9 - 11 teet		6	0		0.0	100	- Sand Pack

¢	e co	DNS		LOG	OF	BOF	RING	G TW	-29D	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 03/04/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Ini Fir Se	asing Size tial Wate nal Water elected fo illing Cor	r Level Level r Analysis	: 2" : 9.75' : 8.08' : NA : EnviroDynamics
Depth in feet	USCS	GRAPHIC	Water Levels ▼ During Drilling - 9.75' ∇ After Completion - 8.08' DESC	CRIPTION	Samples	P (pr	otal ID om) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-29[TOC Elev.: 727.38
0- - 1- 2-			SANDY CLAY, brown, mediur	n stiff, moist	1	¢		0.0	100	
2 	CL				2	φ		0.0	100	
5- 5- 6-			SAND, medium dense/dense, poorly-sorted, traces of grave	slightly moist, brown, & fines	3	ø		0.0	100	
7-	SP		Moist @ 7.5 feet		4	ø		0.0	100	PVC Pipe
9-			SILTY SAND, coarse, wet, tra	ces of gravel & clay	5	6		0.0	100	<u>▼</u>
10- - - 11-	-		Very coarse, less silt from 10		6	6		0.0	100	
12- - - 13- -	SM				7	6		0.0	100	Screen
-14- 15-	CL	1.1.1	SILTY CLAY, hard/very stiff, s \gravel & sand	lightly moist, grey, traces of	8	Φ		0.0	100	Pack

C					LOG	OF	BOR	INC	G TW	-29S		
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method Sampling Method Field/Office Logged	: 03/04/2019 : Direct Push : Dual Tube : CN/LL : 2.25"			Ini Fir Se	asing Size tial Water nal Water elected fo illing Con	r Level · Level r Analysis	: 2" : 9.75' : 8.00' : NA : EnviroDy	namics
Depth in feet	USCS	GRAPHIC	Water Levels During Drilling - 9.75' After Completion - 8.00' DESC	CRIPTION		Samples	Tota PIC (ppr 0 5)	Total PID (ppm)	Sample Recovery (%)		Vell: TW-29S lev.: 727.29
0-		11	SANDY CLAY, brown, mediur	n stiff, moist								ĺ
- - 1 -						1	0		0.0	100		
2	CL									100		
3 4						2	φ		0.0	100		—Bentonite Seal
- - 5- -			SAND, medium dense/dense, poorly-sorted, traces of gravel	slightly moist, brown, & fines		3	ø		0.0	100		
3 - 3 - - 4 - - - - - - - - - - - - - -												—PVC Pipe
7 - - 8	SP		Moist @ 7.5 feet			4	¢		0.0	100	-	
9 - - - - -						5	0		0.0	100		
- 10 -			SILTY SAND, coarse, wet, tra Very coarse, less silt from 10									— Screen — Sand Pack
11-	SM					6	ø	***********	0.0	100		
12-	-											

ogs/TW-29S.BOR Files/AMPHENOL/Work Plans 2018/Off-Site 04-15-2019 I:\Indv Envi

		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Drilling Method Sampling Method Field/Office Logged	: 03/04/2019 : Direct Push : Dual Tube : CN/LL : 2.25"		-	In Fi S	asing Size itial Wate inal Water elected fo rilling Cor	r Level ⁻ Level r Analysis	: 2" : 8.5' : 7.28' : NA : EnviroDyr	namics
Depth in feet	nscs	GRAPHIC	Water Levels ▼ During Drilling - 8.5' ▼ After Completion - 7.28' DES	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)		Vell: TVV-3 [,] av.: 726.36
0 - 1 - 2			SANDY CLAY, brown, mediu	n stiff, moist		1	8		0.0	100		
3	CL					2	•		0.0	100		– Bentonit Seal
5			SAND, medium dense/dense, poorly-sorted, traces of grave	slightly moist, brown, & fines		3	ø		0.0	100		- PVC Pipe
7	SP					4	0		0.0	100	_▼	
9 9 10			Wet, medium grained, poorly			5	•		0.0	100	_	−Screen −Sand Pack
11- 11- 12-	SM		SILTY SAND, coarse, wet, tra brown-grey	uces of graver & Glay,		6	•		0.0	100		
13-	CL		SILTY CLAY, brown, stiff, mo		es of	7	•		0.0	100		
14-	CL		gravel & sand			8			0.0	100		

(LOG	OF	BOF	RING	G TW	-30D	
		980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed: 03/04/2019Drilling Method: Direct PushSampling Method: Dual TubeField/Office Logged: CN/LLHole Diameter: 2.25"			Ini Fii Se	asing Size tial Wate nal Water elected fo illing Cor	r Level · Level r Analysis	: 2" : 8' : 7.94' : NA : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels During Drilling - 8' After Completion - 7.94' DESC	CRIPTION	Samples	P (pp	otal ID om) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-30D TOC Elev.: 727.08
0			SANDY CLAY, brown, mediur	n stiff, moist	1	¢		0.0	100	
	CL				2	ø		0.0	100	— Bentonite Seal
4 - 4 - 5 - 5 - 6 - 7 - 8 - 10 - 11 - 12 - 13 - 14 - 15 - 15 -			SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, nes	- 3	φ		0.0	100	
7-	SP				4	ø		0.0	100	Pipe
8			SILTY SAND, coarse, wet, tra	ces of gravel & clay	5	¢		0.0	100	¥
10- 	SM				6	Ø		0.0	100	Screen
12- - - 13-	CL SM		SILTY CLAY, brown, stiff, moi	ces of gravel and clay	7	ø		0.0	100	-Sand Pack
- - - - -	CL		SILTY CLAY, hard/very stiff, s gravel & sand	lightly moist, grey, traces of	8	¢		0.0	100	
15—			Boring completed at 15.0 feet	BGS.		iii				

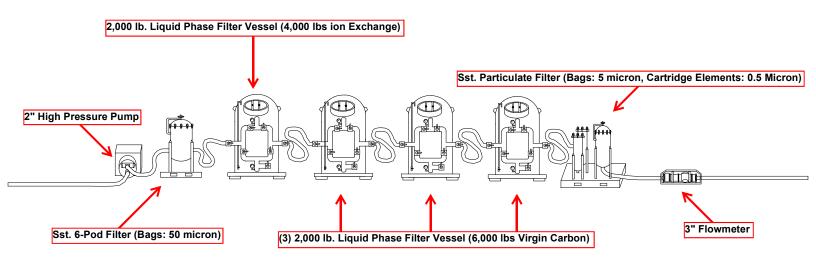
04-15-2019 1: Indy Environmental/Project Files/AMPHENOL/Work Plans_2018/Off-Site Groundwater Investigation/Boring Logs/TW-30.BOR

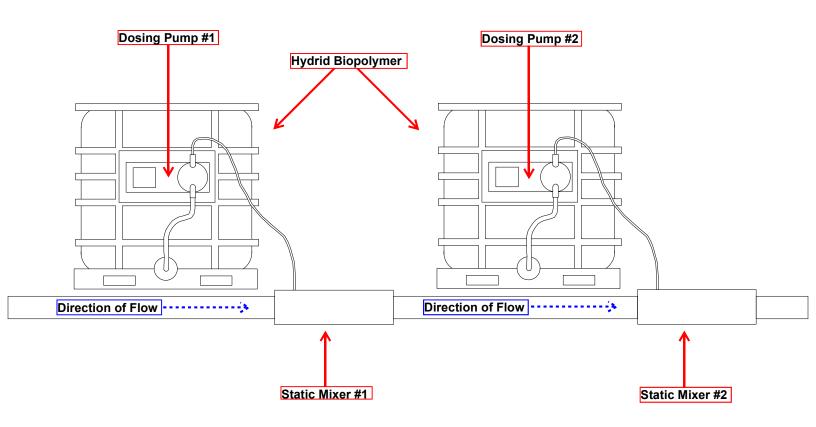
	For	ner A 980	mphenol Corporation Hurricane Road Franklin, IN # IND 044 587 848	Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter	: 03/04/2019 : Direct Push : Dual Tube : CN/LL : 2.25"			Ini Fir Se	tial Wate nal Wate lected fo illing Cor	r Level ⁻ Level r Analysis	: 2" : 8' : 7.94' : NA : EnviroDynamics
Depth in feet	nscs	GRAPHIC	Water Levels ▼ During Drilling - 8' ∇ After Completion - 7.94' DESC	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)	Temp Well: TW-30 TOC Elev.: 727.08
0 1 2 2			SANDY CLAY, brown, mediur	n stiff, moist		1	\$		0.0	100	
3 3 4 4	CL					2		· · · · · · · · · · · · · · · · · · ·	0.0	100	-Bentonite Seal
5 - 6 - 7 -	SP		SAND, medium dense/dense, poorly-sorted, with gravel & fir	slightly moist, brown, les	5	- 3	-		0.0 0.0	100	PVC Pipe
8 8 9 10 10	SM		SILTY SAND, coarse, wet, tra	ces of gravel & clay		5			0.0	100	
11- 11- 12-	1986-					6	•		0.0	100	Screen —Sand Pack
13 13 14 14	CL SM CL		SILTY CLAY, brown, stiff, moi SILTY SAND, coarse, wet, tra SILTY CLAY, hard/very stiff, s gravel & sand	ces of gravel and clay		7	6		0.0	100	

	,		LOG						a se a constante da	
980	Hurricane Road Franklin, IN	Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter	: 03/04/2019 : Direct Push : Dual Tube : CN/LL : 2.25"			Ini Fii Se	itial Water nal Water elected fo	r Level ⁻ Level r Analysis	: 8' : 8.05'	amics
GRAPHIC	Water Levels During Drilling - 8' After Completion - 8.05' DESC	CRIPTION		Samples	0	Total PID (ppm) 5 10	Total PID (ppm)	Sample Recovery (%)		Vell: TW-30 ev.: 727.21
	SANDY CLAY, brown, mediu	n stiff, moist		1	ø		0.0	100		
				2	ø		0.0	100		– Bentonite Seal
	SAND, medium dense/dense, poorly-sorted, with gravel & fi	slightly moist, brown nes	(3	ø		0.0	100		- PVC Pipe
				4	ø		0.0	100		
	SILTY SAND, coarse, wet, tra	ices of gravel & clay		5	8		0.0	100	₹	– Screen − Sand Pack
	CEAPHIC	Image: Sandy CLAY, brown, medium Sandy CLAY, brown, medium <td>Immer Amphenol Corporation 980 Hurricane Road Franklin, IN PA ID # IND 044 587 848 Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter Vater Levels Image: Completion - 8.05' Image: Completion - 8.05' Image: Completion - 8.05'</td> <td>mer Amphenol Corporation 930 Hurricane Road Franklin, IN PA ID # IND 044 587 848 Date Completed Dilling Method Sampling Method Eled/Office Logged Could Hole Diameter Dual Tube Field/Office Logged COULL Hole Diameter Water Levels Total Completion - 8.05' Total Completion - 8.05' SANDY CLAY, brown, medium stiff, moist SAND, medium dense/dense, slightly moist, brown, poorly-sorted, with gravel & fines SILTY SAND, coarse, wet, traces of gravel & clay</td> <td>mer Amphenol Corporation 980 Hurricane Road Franklin, IN PRA ID # IND 044 587 848 Date Completed Sampling Method Sampling Method Sampling Method Delay Sampling Method Sampling Method Sampling Method Delay Corporation Sampling Method Delay Corporation Sampling Method Delay Sampling Method Delay Corporation Sampling Method Delay Corporation Sampling Method Delay Corporation Sampling Method Delay Corporation Delay</td> <td>mer Amphenol Corporation Date Completed : 03/04/2019 Pranklin, IN Direct Push Direct Push Pranklin, IN Sampling Method : Durit Tube Pranklin, IN Date Completion : Durit Tube Pranklin, IN Date Completion : Durit Tube Partition Direct Push : Durit Tube Pranklin, IN Durit Durit : Durit Tube Pranklin, IN Durit Durit : Durit Tube Pranklin, IN Durit Durit : Durit Durit Pranklin, IN Durit Durit : Durit Pranklin, IN Durit Durit : Durit Pranklin, IN Durit : Durit Pranklin, IN Durit : Durit Pranklin, Durit : Durit : Durit</td> <td>mer Amphenol Corporation Date Completed : 03/04/2019 C. C. S. S. C. S. S.</td> <td>Principanti Amphenol Corporation 980 Hurricane Road Franklin, N Date Completed Diffing Method Franklin, N 0.30/4/2019 Diffing Method Frankling Method</td> <td>Amphenol Corporation 980 Hurricane Road Franklin, IN Franklin, IN</td> <td>mer Amphenol Corporation 380 Hurricane Road Franklin, N Date Completed Sampling Method Sampling Method Field Uffice Logged CALL : 000 Deter Push Field Uffice Logged CALL Casing Size Initial Water Level Salected for Analysis No Deter Completion - 8.05' : 7 Total PD <td: 7<br="">Total PD <td: 7<br="">Total PD</td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td>	Immer Amphenol Corporation 980 Hurricane Road Franklin, IN PA ID # IND 044 587 848 Date Completed Drilling Method Sampling Method Field/Office Logged Hole Diameter Vater Levels Image: Completion - 8.05' Image: Completion - 8.05' Image: Completion - 8.05'	mer Amphenol Corporation 930 Hurricane Road Franklin, IN PA ID # IND 044 587 848 Date Completed Dilling Method Sampling Method Eled/Office Logged Could Hole Diameter Dual Tube Field/Office Logged COULL Hole Diameter Water Levels Total Completion - 8.05' Total Completion - 8.05' SANDY CLAY, brown, medium stiff, moist SAND, medium dense/dense, slightly moist, brown, poorly-sorted, with gravel & fines SILTY SAND, coarse, wet, traces of gravel & clay	mer Amphenol Corporation 980 Hurricane Road Franklin, IN PRA ID # IND 044 587 848 Date Completed Sampling Method Sampling Method Sampling Method Delay Sampling Method Sampling Method Sampling Method Delay Corporation Sampling Method Delay Corporation Sampling Method Delay Sampling Method Delay Corporation Sampling Method Delay Corporation Sampling Method Delay Corporation Sampling Method Delay Corporation Delay	mer Amphenol Corporation Date Completed : 03/04/2019 Pranklin, IN Direct Push Direct Push Pranklin, IN Sampling Method : Durit Tube Pranklin, IN Date Completion : Durit Tube Pranklin, IN Date Completion : Durit Tube Partition Direct Push : Durit Tube Pranklin, IN Durit Durit : Durit Tube Pranklin, IN Durit Durit : Durit Tube Pranklin, IN Durit Durit : Durit Durit Pranklin, IN Durit Durit : Durit Pranklin, IN Durit Durit : Durit Pranklin, IN Durit : Durit Pranklin, IN Durit : Durit Pranklin, Durit : Durit : Durit	mer Amphenol Corporation Date Completed : 03/04/2019 C. C. S. S. C. S.	Principanti Amphenol Corporation 980 Hurricane Road Franklin, N Date Completed Diffing Method Franklin, N 0.30/4/2019 Diffing Method Frankling Method	Amphenol Corporation 980 Hurricane Road Franklin, IN Franklin, IN	mer Amphenol Corporation 380 Hurricane Road Franklin, N Date Completed Sampling Method Sampling Method Field Uffice Logged CALL : 000 Deter Push Field Uffice Logged CALL Casing Size Initial Water Level Salected for Analysis No Deter Completion - 8.05' : 7 Total PD : 7 Total PD <td: 7<br="">Total PD <td: 7<br="">Total PD</td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:>

Appendix D

Groundwater Treatment System Components and Drawings


IWM Consultants


Franklin, IN Filtration / Treatment System

IWM Consultants

Franklin, IN Filtration / Treatment System

Appendix E

Ambient Air Monitoring Plan

Former Amphenol

Perimeter and Work Area Air Monitoring and Sampling Plan

Franklin, Indiana

June 18, 2019

Version 1.0

Perimeter and Work Area Monitoring and Sampling Plan Former Amphenol

Franklin, Indiana

Prepared for: Amphenol

Prepared by: Groundwater & Environmental Services, Inc. 440 Creamery Way, Suite 500 Exton, PA 19341 800-426-9871 www.gesonline.com

GES Project: 1704073

Date: June 18, 2019

Thomas M. Baylis, CIH Vice President, HSSE

Robert Elliott Principle Environmental Scientist

Joseph Keller Vice President, Client Programs

Table of Contents

1		Ρι	urpose/Scope	. 1
2		De	efinitions	.2
3		Pe	erimeter Monitoring and Sampling Requirements	.4
	3.	1	Continuous Perimeter Monitoring	.4
	3.	2	Periodic Perimeter Monitoring	.4
	3.	3	Perimeter Air Sample Collection	.5
4		W	/ork Area Continuous Monitoring	.6
5		С	ontinuous Perimeter Particulate Monitoring	.7

Appendix A

Mini RAE 3000 Data Sheet Area RAE Plus Data Sheet GasMet DX4040 Data Sheet

Appendix B

Attachment 1 – Perimeter Air Monitoring Form Attachment 2 – Work Area Monitoring Form

1 Purpose/Scope

This plan describes the air quality monitoring and sampling which will occur during the removal and replacement of sanitary sewer sections associated with the former Amphenol Site remediation in Franklin, Indiana. The plan will be implemented to ensure that staff performing excavation activities are not exposed to airborne concentrations of Contaminants of Concern above the established exposure limits for Trichloroethylene (TCE) and Perchloroethylene (PCE). The plan will also be implemented to ensure the residences and businesses established along the perimeter of the work activities are not affected by offsite migration of the Contaminants of Concern (TCE or PCE).

The plan will address the following approach for monitoring and sampling activities for Volatile Organic Compounds (VOC) of concern:

- Continuous Perimeter Monitoring
- Periodic Perimeter Monitoring
- Work Area Continuous Monitoring

In addition to the VOC monitoring, the plan will also describe the approach for monitoring perimeter airborne particulate levels.

2 **Definitions**

<u>Action Level</u> (AL) – an airborne concentration of a Contaminant of Concern (CoC) that requires staff onsite to implement a response to prevent worker exposure or impact to non-work areas.

<u>Employee exposure</u> – Exposure to airborne TCE or PCE above an exposure limit that would occur if an individual was not using respiratory protective equipment.

<u>Exposure Limit</u> - is a level of **exposure** established for a chemical substance or physical agent that will prevent an adverse health or other negative effect.

Indiana Department of Environmental Management (IDEM) Remediation Closure Guide for Residential Indoor Air Screening Levels – Established air concentrations that represent a minimal risk for individuals to experience an adverse health effect if exposure occurs at or below these concentrations. The IDEM standard for TCE is currently 0.4 parts per billion (ppb). The IDEM standard for PCE is 6.1 ppb. These conservative IDEM indoor air quality standards will be used to determine the AL for the outdoor perimeter air quality monitoring.

<u>Levels of Protection (personal protective equipment)</u>: Levels of protection consist of the personal protective equipment (PPE) that is required for work activities when chemical exposure is possible. For this project, two levels of protection may be worn, Environmental Protection Agency (EPA) level D or EPA level C PPE. EPA level D PPE will consist of the following equipment:

- Hardhat
- Safety Glasses with side-shields
- Steel-toed boots
- Standard work uniform (pants and shirts with sleeves)
- High visibility clothing such as DOT Level II vest
- Leather or similar work-gloves

EPA level C PPE will consist of the following equipment:

- Hardhat
- Steel toed boots
- Respiratory protection consisting of an either a half-face or full-face air purifying respirator with organic vapor cartridges. However, if a half-face air-purifying respirator is worn, then staff must also wear safety glasses with side-shields
- Chemical protective coverall such as Tyvek or similar protective coverall.
- DOT Level II vest
- Latex or similar protective over-boots
- Nitrile chemical protective gloves over nitrile surgical gloves

<u>Mini RAE and Area RAE</u> – these are both direct reading instruments known as photoionization detectors (PIDs). A PID is an efficient detector for many Volatile Organic Compounds (VOCs).

PIDs produce instantaneous readings, operate continuously, and are commonly used as hand-held portable instruments. Mini RAEs and Area RAEs are capable of detecting total concentrations of VOCs at ppb levels. These instruments measure total VOCs and do not specify what VOCs are detected. Refer to Appendix A for equipment description data sheets.

<u>Monitoring Technician</u> - The individual who will be responsible for implementing and conducting the required monitoring and sampling described in this plan.

<u>Screening level</u> - an airborne concentration of a CoC that requires staff onsite to conduct additional monitoring to determine if a specific chemical compound (TCE or PCE) is present above or below the AL.

<u>Threshold Limit Value (TLV)</u> – is a Time Weighted Average (TWA) level established by the American Conference of Governmental Industrial Hygienist (ACGIH) for worker protection from VOC exposure. The TLV for PCE is currently 25 parts per million (ppm). The TLV for TCE is currently 10 ppm. These ACGIH standards will be used to determine a work area AL for each CoC.

<u>Time Weighted Average</u> - is the **average** workplace exposure to any hazardous contaminant or agent using the baseline of an 8 hour day or 40 hours per week work schedule.

<u>GasMet DX4040</u> – is a Fourier Transform Infrared Spectroscopy (FTIR) Gas Analyzer that monitors multiple gases simultaneously and identify specific gas with its stored library. The GasMet DX4040 can specify whether or not a specific VOC is present at ppb levels. Refer to Appendix A for equipment description data sheets.

3 Perimeter Monitoring and Sampling Requirements

3.1 Continuous Perimeter Monitoring

Continuous perimeter monitoring will be implemented during excavation site activities. Perimeter monitoring will consist of the following approach:

- 1. Each day during excavation activities, an Area-RAE that is capable of detecting VOCs at ppb levels will be placed at two downwind and one upwind locations. The Area-RAE is capable of providing data-logging over 12-hours of continuous readings and has a GPS feature which will allow the perimeter location to be defined with GPS coordinates.
- 2. At the conclusion of each work shift, data collected will be downloaded for daily documentation of work area conditions.
- 3. Each perimeter location will be positioned within 20 feet of the work area approximately 4 to 5 feet above ground level. The two downwind locations will be positioned 40 feet apart along the downwind perimeter of the sewer right of way.
- 4. The wind direction will be determined by using a National Weather Service application (app) and/or the onsite weather station on an hourly basis and the locations downwind and upwind adjusted based on the prevailing wind direction.
- 5. As the excavation activities proceed along the right of way and street location, the perimeter monitoring stations will be relocated so that the air quality along the perimeter will continue to be evaluated immediately adjacent to the construction activity.
- 6. Each Area RAE will be calibrated daily in accordance with manufacture's instruction. In addition, because Area RAEs are not capable of detecting specific VOCs, the Area RAEs will be adjusted to alarm at a screening level of 5 ppm total VOCs.
- 7. If the Area RAE alarms at an established perimeter location, a GasMet DX4040 direct-reading instrument will be used to confirm the presence or absence of PCE or TCE.
- 8. If either TCE or PCE is confirmed at an AL that exceeds 10 ppb, then work activities will be stopped until appropriate vapor control actions are implemented or levels are permitted to dissipate below the established AL. Vapor control methods that could be introduced to the work area may include but are not limited to vapor suppressant foam or similar material.
- 9. All readings will be captured on the Perimeter Air Monitoring Form provided as Attachment 1.

3.2 Periodic Perimeter Monitoring

Periodic perimeter monitoring will be required during excavation activities to verify work area perimeter conditions have not exceeded the AL stated in section 3.1. Periodic monitoring will consist of the following approach:

1. The monitoring technician will be responsible for confirming VOC concentrations at each perimeter monitoring location at 60 minute intervals.

- 2. Perimeter periodic monitoring will be conducted with a mini RAE. Although a mini RAE has data logging capability, readings collected during the periodic perimeter monitoring will be recorded on the Perimeter Air Monitoring form provided as attachment 1. Data collected will include the date, time, instrument reading, the designation of the perimeter location, and the current weather conditions including wind direction.
- 3. The AL stated for the continuous monitoring will be implemented during periodic monitoring. If the screening level of 5 ppm is reached at an established perimeter location, a GasMet Dx4040 direct-reading instrument will be used to confirm the presence or absence of TCE or PCE.
- 4. If either TCE or PCE is confirmed at a level that exceeds 10 ppb by the GasMet Dx4040, then the actions indicated in section 3.1 number 8 must be implemented.

4 Work Area Continuous Monitoring

During excavation activities, continuous work area monitoring will be conducted to ensure that staff engaged in excavation activities are not exposed above the TLV for TCE of 10 ppm or the TLV for PCE of 25 ppm. The following approach will be implemented for work area monitoring to ensure that worker exposure does not occur:

- 1. Continuous work area air monitoring will be conducted using a Mini RAE with the monitoring instrument positioned as close as practical to the excavator/excavation activity without impacting the safety of the monitoring technician.
- 2. If 10 ppm of total VOCs is detected by the Mini RAE, the monitoring technician will monitor the area with the GasMet Dx4040 to determine whether TCE or PCE is detected at 10 ppm or greater. If 10 ppm or greater of either TCE or PCE is detected:
 - 1) Then work must stop until levels have dissipated below the AL of 10 ppm.
 - 2) Vapor suppression methods are implemented to the reduce TCE and PCE emissions, or
 - 3) Staff will have upgraded to EPA Level C protection.
- 3. If TCE and PCE levels are detected below the AL, then work can continue; however, air quality checks that are established at 30 minute intervals for up to 2 hours must be conducted to ensure that TCE and PCE levels remain below the AL of 10 ppm.
- 4. All readings will be captured on the Work Area Monitoring Form provided as Attachment 2.

5 Continuous Perimeter Particulate Monitoring

Particulate monitoring will be conducted using a real-time aerosol monitor (MIE pDR-1000 Data-RAM or similar device). This device (particulate monitor) is capable of measuring airborne particulate of less than 10 micrometers in size and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The monitoring equipment will be equipped with an audible alarm to indicate exceedance of the action level.

During excavation activities, a perimeter particulate monitor will be stationed at the upwind and two downwind site perimeter locations next to the Area RAE. In addition, visible fugitive dust migration will be visually assessed during all work activities. The following approach will be implemented for the work area particulate monitoring:

- 1. Each particulate monitor will be placed at 4 to 5 feet above ground level.
- 2. In addition to the stationary particulate monitors with the data-logger, the monitoring technician will measure hourly particulate levels at each designated location. Particulate levels will be documented on the "Perimeter Air Monitoring Form" "Attachment 1"
- 3. If the downwind particulate levels exceed 1.0 mg/M³ greater than the upwind perimeter location for a 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques will be employed by applying water (wetting) to the work area surface. Work will continue with dust suppression techniques provided that the downwind particulate levels do not exceed 1.0 mg/M³ above the upwind level and provided that no visible particulate is migrating from the work area.
- 4. If, after the implementation of dust suppression such as using a water spray to dampen the soil and excavated material, the downwind particulate levels remain greater than 1.0 mg/M³ above the upwind level, work will be stopped and re-evaluation of activities initiated. Work will resume provided that dust suppression measures and other engineering controls are successful in reducing the downwind particulate concentration to ≤ 1.0 mg/M³ of the upwind level and there is no visible dust migration

Mini RAE 3000 Data Sheet Area RAE Plus Data Sheet GasMet Dx4040 Sheet

MiniRAE® 3000 +

Portable Handheld VOC Monitor

The MiniRAE 3000 + is a comprehensive handheld VOC (Volatile Organic Compound) monitor that uses a third-generation patented PID technology to accurately measure one of the highest levels of ionizable chemicals available on the market. The MiniRAE 3000 + is a comprehensive handheld VOC (Volatile Organic Compound) monitor that uses a thirdgeneration patented PID technology to accurately measure one of the highest levels of ionizable chemicals available on the market.

It provides full-range measurement from 0 to 15,000 ppm of VOCs. The MiniRAE 3000 + has a built-in wireless modem that allows real-

Workers can quickly measure VOCs and wirelessly transmit data

time data connectivity with the command center located up to 2 miles (3 km) away through a Bluetooth connection to a RAELink 3* portable modem or optionally via Mesh Network.

- Highly accurate VOC measurements
- Reflex PID Technology[™]
- Low maintenance—easy access to lamp and sensor
- Low cost of ownership
- 3-year 10.6eV lamp warranty
- BLE module & dedicated APP for Enhanced Datalogging capability

FEATURES & BENEFITS

- Third-generation patented PID technology
- Reflex PID Technology[™]
- VOC detection range from 0 to 15,000 ppm
- 3-second response time
- Humidity compensation with built-in humidity and temperature sensors
- Six-month datalogging
- Highly connectivity capability through multiple wireless module options
- Large graphic display with integrated flashlight
- Multi-language support with 10 languages encoded
- IP- 67 waterproof design

APPLICATIONS

- Oil and Gas
- HazMat
- Industrial Safety
- Civil Defense
- Environmental and Indoor Air Quality

	م مرم ا
Instrument Sp	
Size	10" L x 3.0" W x 2.5" H (25.5 cm x 7.6 cm x 6.4 cm)
Weight	26 oz (738 g)
Sensors	Photoionization sensor with standard 10.6 eV or optional 9.8 eV or 11.7 eV lamp
Battery	 Rechargeable, external field-replaceable Lithium-Ion battery pack Alkaline battery adapter
Running time	$16\ \text{hours of operation}\ (12\ \text{hours with alkaline battery adapter})$
Display Graphic	4 lines, $28x43mm$, with LED backlight for enhanced display readability
Keypad	1 operation and 2 programming keys, 1 flashlight on/off
Direct Readout	Instantaneous reading • VOCs as ppm by volume (mg/m3) • High values • STEL and TWA • Battery and shutdown voltage • Date, time, temperature
Alarms	 95dB at 12" (30 cm) buzzer and flashing red LED to indicate exceeded preset limits High: 3 beeps and flashes per second Low: 2 beeps and flashes per second STEL and TWA: 1 beep and flash per second Alarms latching with manual override or automatic reset Additional diagnostic alarm and display message for low battery and pump stall
EMC/RFI	Compliant with EMC directive (2004/108/EC) EMI and ESD test: 100MHz to 1GHz 30V/m, no alarm Contact: ±4kV Air: ±8kV, no alarm
IP Rating	 IP-67 unit off and without flexible probe IP-65 unit running
Datalogging	Standard 6 months at one-minute intervals
Calibration	Two-point or three-point calibration for zero and span. Reflex PID Technology™ Calibration memory for 8 calibration gases, alarm limits, span values and calibration dates
Sampling Pump	 Internal, integrated flow rate at 500 cc/mn Sample from 100' (30m) horizontally or vertically
Low Flow Alarm	Auto pump shutoff at low-flow condition
Communication & Data Download	 Download data and upload instrument set-up from PC through charging cradle or using BLE module and dedicated APP Wireless data transmission through built-in RF modem
Wireless Network	Mesh RAE Systems Dedicated Wireless Network
Wireless Range (Typical)	Up to 15ft (5m) for BLE EchoView Host: LOS > 660 ft (200 m) ProRAE Guardian & RAEMesh Reader: LOS > 660 ft (200 m) ProRAE Guardian & RAELink3 Mesh: LOS > 330 ft (100 m)
Safety Certifications	US and Canada: CSA, Classified as Intrinsically Safe for use in Class I, Division 1 Groups A, B, C, D Europe: ATEX II 2G EEx ia IIC T4
Temperature	-4° to 122° F (-20° to 50° C)
Humidity	0% to 95% relative humidity (non-condensing)

For more information

www.honeywellanalytics.com www.raesystems.com

Europe, Middle East, Africa

Life Safety Distribution GmbH Tel: 00800 333 222 44 (Freephone number) Tel: +41 44 943 4380 (Alternative number) Middle East Tel: +971 4 450 5800 (Fixed Gas Detection) gasdetection@honeywell.com

Americas

Honeywell Analytics Distribution Inc. Tel: +1 847 955 8200 Toll free: +1 800 538 0363 detectgas@honeywell.com Honeywell RAE Systems Phone: +1 408 952 8200 Toll Free: +1 888 723 4800

Datasheet_MiniRAE 3000_+_DS-1018-_EN ©2018 Honeywell International Inc.

Instrument Specifications

Attachments	Durable bright yellow rubber boot			
Warranty	3 years for 10.6 eV lamp, 1 year for pump, battery, sensor and instrument			
Wireless Frequency	ISM license-free band. IEEE 802.15.4 Sub 1GHz			
Wireless Approvals	FCC Part 15, CE R&TTE, Others ¹			
Radio Module	Supports BLE or Bluetooth or RM900			

¹ Contact RAE Systems for country-specific wireless approvals and certificates. Specifications are subject to change.

Sensor Specifications

Gas Monitor	Range	Resolution	Response Time T90
VOCs	0 to 999.9 ppm	0.1 ppm	< 3 s
	1,000 to 15,000 ppm	1 ppm	< 3 s

MONITOR ONLY INCLUDES:

- MiniRAE 3000 + Monitor, Model PGM-7320
- Wireless communication module built in, as specified
- Datalogging with ProRAE Studio II Package
- Charging/download adapter
- RAE UV lamp, as specified
- Flex-I-Probe™
- External filter
- Rubber boot
- Alkaline battery adapter
- Lamp-cleaning kit
- Tool kit
- Soft leather case

OPTIONAL CALIBRATION KIT ADDS:

- 100 ppm isobutylene calibration gas, 34L
- Calibration regulator and flow controller

OPTIONAL GUARANTEED COST-OF-OWNERSHIP PROGRAM:

- 4-year repair and replacement warranty
- Annual maintenance service

Asia Pacific

Honeywell Analytics Asia Pacific Tel: +82 (0) 2 6909 0300 India Tel: +91 124 4752700 China Tel: +86 10 5885 8788-3000 analytics.ap@honeywell.com

Technical Services

EMEA: HAexpert@honeywell.com US: ha.us.service@honeywell.com AP: ha.ap.service@honeywell.com

AreaRAE Plus

Multiple gas threats. One easy-to-use transportable area detector.

AreaRAE Plus

Visibility on more threats than ever - all in one flexible area detector with remote monitoring

AreaRAE Plus is a wireless, transportable area monitor that can simultaneously detect toxic and combustible gases, volatile organic chemicals, and meteorological factors that affect the speed and direction of the gas.

Whether you need to protect your community by monitoring a fence line, protect your employees during a maintenance turnaround, or protect your fire and hazmat team during emergency response, the AreaRAE Plus alerts you to threats with local audible and visual alarms. Plus, it works with Honeywell's remote monitoring software to give you a real-time view of threat readings from a safe location.

AreaRAE Plus delivers flexibility for your changing requirements:

• Up to six 4R+ sensors for toxic and combustible gas.

Choose from a mix of up to 20 sensors based on your needs and switch them out whenever your needs change.

• 7R+ photoionization detector.

Monitor VOCs in parts per million, with built-in compensation for temperature and humidity.

• Optional meteorological sensor for tracking toxic plumes.

Honeywell's compact RAEMet sensor sits at the top of the AreaRAE Plus and measures wind speed, wind direction, temperature and humidity. This information is then modeled in Honeywell's real time monitoring software which integrates the ALOHA hazard monitoring program.

Applications

- Industrial emergency response teams
- Maintenance turnarounds / Shutdowns
- Fence line monitoring
- Clearing a confined space for entry
- Wastewater pipeline rehabilitation
- Site remediation
- Fumigation, excavation and other environmental liabilities

Ease & Flexibility

- Available in Rapid Deployment Kit for quick threat assessment
- User-friendly interface; turn it on and go
- Flexible power options for short and long-term deployments
- Easy to hear and see, with 108-decibel alarm
- Easy USB connection to configuration software
- Built-in Mesh modem for short range comminution with RAE Systems wireless portable detectors.
- Device Management with Honeywell Sotera[™]

Remote Visibility on Threats

- Delivers real-time readings to Honeywell's remote monitoring software, so you can instantly determine the location and severity of a threat
- Map-based display is accessible from any computer with an internet connection — or from our laptop as a turnkey host
- Enables coordination and data sharing in joint operations

Specifications

DIMENSIONS	314 x 306 x 166 mm (with rubber boot) 12.36" x 12.04" x 6.53" (with rubber boot)				
WEIGHT	6.3 kg (13.88 lb) full option configuration 6.5 kg (14.33 lb) full option configuration (+RAEMet)				
GAS SENSORS SLOTS	up to 7; see Sensor list				
ADDITIONAL SENSOR	RAEMet (Wind Speed, Wind Direction, Temperature & Humidity)				
GPS	Standard equipment in every unit				
BATTERY	Rechargeable 7.2 V / 10 Ah Li-ion battery pack with built-in charger Alkaline Battery Adapter				
	~20 hours with wireless connectivity on Li-ion battery pack				
OPERATING HOURS	Specification at room temperature (20°C)				
	Large 240 x 320 pixel LCD backlit display				
DISPLAY	64 x 85 mm / 2.5" x 3.33"				
KEYPADS	3 operation and programming keys				
	Multi-tone 108 dB buzzer \circledast 3.3 ft / 1 m, Bright LED 360 degree view and on-screen indication of alarm conditions				
ALARMS	Additional diagnostic alarm and display message for low battery				
	Wireless connectivity alarm				
DATA LOGG I NG	Continuous data logging (90 days for 7 gas sensors, 1 Gamma sensor, 1 RAEMet (wind speed & direction, temp and RH), and GPS at 1 min intervals, 24/7)				
DATA STORAGE	24M bytes (memory full action: stop when full or Wrap around)				
DATA INTERVAL	User-configurable from 1 to 3,600 sec				
	Standard Bluetooth Low Energy module (BT4.0) and GPS				
	Primary radio module: - Long range ISM License Free 900 MHz or 2.4 GHz radio - IEEE 802.11 b/g WI-Fi				
	Secondary radio module: Short range IEEE 802.15.4 900 MHz or 868MHz Mesh Radio				
WIRELESS ¹	$ \begin{array}{l} \label{eq:Wireless range}^{3}: \\ \mbox{Up to 2 miles (3 km) for ISM 900 MHz;} \\ \mbox{Up to 1.2 miles (2 km) for ISM 2.4 GHz;} \\ \mbox{Up to 330 ft (100m) for W-Fi;} \\ \mbox{Up to 660 ft (200m) for Mesh secondary radio;} \\ \mbox{Up to 15 ft (5m) for BLE.} \end{array} $				
	Wireless Approval: FCC Part 15, CE R&TTE, Others ⁴				
	Communicates to ProRAE Studio II via USB cable to PC;				
COMMUNICATION	Wireless data and alarm status transmission via Wi-Fi or ISM modem;				
	Act as gateway to connect up to 8 remote instruments (using secondary radio module)				
SAFETY CERTIFICATION	US / Canada: Class 1, Division 2 Groups A, B, C, D				
SAMPLING PUMP	Built-in pump, typical flow rate 450 cc/min				
TEMPERATURE	-20 °C to +50 °C / (-4 °F to +122 °F)				
HUMIDITY	0% to 95% relative humidity (non-condensing)				
INGRESS PROTECTION (IP)	IP 65				
DEDEODMANCE TERTR	MIL-STD-810G and 461F				
PERFORMANCE TESTS	LEL CSA C2.2No. 152, ISA-12.13.01				
WARRANTY?	Four years for 0,2 Liquid Oxygen sensors Three years for CO, and H ₂ S sensors Two years for non-consumable components, catalytic LEL sensor and 10.6eV 7R+ PID lamp One year on all other sensors, battery, and other consumable parts Six months for 9.8eV lamp PID sensor				

RAEMet SPECIFICATIONS (Optional)					
WIND SPEED	Range: 0 to 20 m/s (0 to 44 mph) Start Speed: 0.1 m/s (0.22 mph)				
WIND DIRECTION	Range: 360° (No dead band)				
TEMPERATURE	-20 °C to 60 °C (-4 °F to 140 °F) Resolution 0.1 °C (1.8 °F)				
HUMIDITY	10 to 95% RH Resolution 1% RH				
COMPASS	Resolution 1º				
POWER	Power supplied by the AreaRAE Plus				

 $^{1}\!\mathrm{Additional}$ equipment and/or software licenses may be required to enable remote wireless monitoring and alarm transmission

²Against factory defects

"Against raceory access "Receiving 2 80%
 "Contact RAE Systems for country specific wireless approvals and certificates Specifications are subject to change

Supported Sensors

SENSOR	RANGE	RESOLUTION
PID SENSORS		
7R+; 10.6 eV ppm	0 to 5,000 ppm	0.1 ppm
4R+; 9.8 eV*	0 to 2,000 ppm	0.1 ppm
COMBUSTIBLE SENSOR		
CATALYTIC BEAD SENSOR	0 to 100% LEL	1% LEL
NDIR SENSOR		
Carbone Dioxide (CO ₂)	0 to 50,000 ppm	100 ppm
ELECTROCHEMICAL SENSORS		
AMMONIA (NH ₃)	0 to 100 ppm	1 ppm
CARBON MONOXIDE (CO)	0 to 500 ppm	1 ppm
CARBON MONOXIDE EXT. (CO HR)	0 to 2,000 ppm	10 ppm
CARBON MONOXIDE H_2 Comp (CO H_2 Comp)	0 to 2,000 ppm	10 ppm
CHLORINE (Cl ₂)	0 to 50 ppm	0.1 ppm
CHLORINE DIOXIDE (CIO ₂)	0 to 1 ppm	0.03 ppm
ETHYLENE OXIDE (ETO-A)	0 to 100 ppm	0.5 ppm
ETHYLENE OXIDE (ETO-B)	0 to 10 ppm	0.1 ppm
ETHYLENE OXIDE (ETO-C)	0 to 500 ppm	10 ppm
HYDROGEN (H ₂)	0 to 2,000 ppm	10 ppm
HYDROGEN CHLORIDE (HCI)	0 to 15 ppm	1 ppm
HYDROGEN CYANIDE (HCN)	0 to 50 ppm	0.5 ppm
HYDROGEN FLUORIDE (HF)	0.5 to 10 ppm	0.1 ppm
HYDROGEN SULFIDE (H ₂ S)	0 to 100 ppm	0.1 ppm
HYDROGEN SULFIDE EXT. (H ₂ S HR)	0 to 1,000 ppm	1 ppm
OXYGEN (O ₂)	0 to 30 %	0.10 %
SULFUR DIOXIDE (SO ₂)	0 to 20 ppm	0.1 ppm
NITRIC OXIDE (NO)	0 to 250 ppm	0.5 ppm
NITROGEN DIOXIDE (NO ₂)	0 to 20 ppm	0.1 ppm
PHOSPHINE (PH ₃)	0 to 20 ppm	0.1 ppm

Honeywell Gas Detection

Honeywell is able to provide gas detection solutions to meet the requirements of all applications and industries. Contact us in the following ways:

HEADQUARTERS

Europe, Middle East, Africa

Life Safety Distribution GmbH Javastrasse 2 8604 Hegnau Switzerland Tel: +41 (0)44 943 4300 Fax: +41 (0)44 943 4398 gasdetection@honeywell.com Customer Service: Tel: 00800 333 222 44 (Freephone number) Tel: +41 44 943 4380 (Alternative number) Fax: 00800 333 222 55 Middle East Tel: +971 4 450 5800 (Fixed Gas Detection) Middle East Tel: +971 4 450 5852 (Portable Gas Detection)

Americas

RAE Systems by Honeywell 3775 North First Street San Jose, CA 95134 USA Tel: +1 877 723 2878

Honeywell Analytics Distribution Inc. 405 Barclay Blvd. Lincolnshire, IL 60069 USA Tel: +1 847 955 8200 Toll free: +1 800 538 0363 Fax: +1 847 955 8210 detectgas@honeywell.com

Asia Pacific

Honeywell Industrial Safety 7F SangAm IT Tower, 434, Worldcupbuk-ro, Mapo-gu, Seoul 03922 Korea Tel: +82 (0) 2 6909 0300 Fax: +82 (0) 2 2025 0328 India Tel: +91 124 4752700 China Tel: +86 10 5885 8788 3000 analytics.ap@honeywell.com

www.honeywellanalytics.com www.raesystems.com

Please Note:

While every effort has been made to ensure accuracy in this publication, no responsibility can be accepted for errors or omissions. Data may change, as well as legislation, and you are strongly advised to obtain copies of the most recently issued regulations, standards, and guidelines. This publication is not intended to form the basis of a contract.

AreaRAE Plus_DS01166_V4_EN 06-18 © 2018 Honeywell Analytics Device Management with Honeywell Sotera[™]

honeywellanalytics.com/products/ Honeywell-Sotera

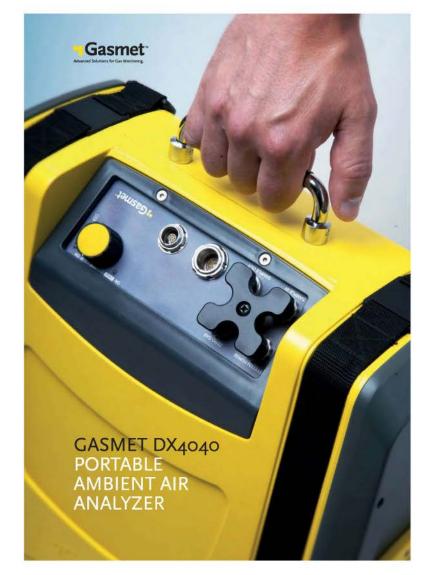
FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) ANALYSIS

- Identification of both organic & inorganic compounds
- Multi-compound analysis as standard (max. 25 compounds analyzed simultaneously with Calcmet Lite)
- Cross-interferences automatically compensated for in the analysis
- Possibility to store sample spectra for post-measurement analysis with Laptop PC and Calemet Pro (250 compound chemical library available for identification of unknowns)

LOW OPERATING COSTS AND RUGGED CONSTRUCTION

- No sensors etc. that would need replacing on regular basis
- Corrosion & contamination resistant materials
 Calibration checks are not needed; only zero calibration with nitrogen or air

QUICK TO SET-UP AND EASY TO USE


- No sample preparation needed
- Battery operated with several hours of operating time
- Truly portable with wireless connection between analyzer and handheld PDA

Gasmet

Gasmet Technologies Oy Pultitie 8 z., co880 Helsinki, Finland Tel.+358 g 7590 0400 Fax +358 g 7590 0435 e-mail: contact@gasmet.fi www.gasmet.fi Gasmet Technologies Inc North America Tel. +1866 685 co50 e-mail: sales@gasmet.com www.gasmet.com

Gasmet DX4040 is standard equipped with an IP67 rated PDA and Calcmet Lite software. Large touch screen buttons and keypad are easy to use even in demanding field conditions. All measured data is stored on the PDA and can be sent as e-mail messages with the built-in 3G modern and Wireless LAN adapter.

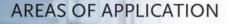
> Gasmet Technologies (Asia) Ltd Hong Kong Tel.+852 3568 7586 e-mail: sales@gasmet.com.hk www.gasmet.fi

The advanced, easy-to-use Gasmet DX4040 FTIR Gas Analyzer is one of the most powerful instruments available for gas analysis.

BRING THE LABORATORY TO THE SITE

The Gasmet DX4040 FTIR gas analyzer can detect up to 25 gases simultaneously providing validated results in 35 seconds. Fourier Transform Infrared Spectroscopy (FTIR) provides reliable measurements with low detection limits & true multi-compound analysis capability. The library of measured gases can be changed by the user through an easy to use interface, providing exceptional flexibility and ability to respond to any measurement requirement in the field.

Measurement with the DX4040 is easy: sample gas is drawn into the analyzer with a built-in pump through a handheld particle filter and Tygon tubing. The analyzer runs in continuous mode, measuring time-weighted averages of user definable length from 1 second to 5 minutes. The Gasmet DX4040 is capable of sub-ppm detection limits without using softent traps for sample pre-concentration, which guarantees fast response times. Zero calibration with dean air or nitrogen is the only calibration required, carrier gases, special test gases or other consumables are not needed.


EXTENSIVE LIBRARY

Casmet DX4040 comes with a rugged PDA with Calcrnet software. Single button operation and on-screen instructions in Calcrnet Life make the instrument easy to use, while Calcrnet Professional lest power users take full control of the FTIR instrument.

Built-in GPS and digital camera can be used to link measurements to geographic coordinates and photographs of emission sites.

7

DETECTION

voc's, Freons, inorganic gases – all with a single analyzer

INDUSTRIAL HYGIENE Wortpisce Air Quality measurement of Volatile Organic Compounds for regulatory compliance testing testing

HOSPITALS Anesthetic gases, sterilizer FUMIGANTS Detection of residual fumigants.

SOIL GAS MEASUREMENTS Identification of Chiorinated Hydrocarbons and arex at remediation sites.

FIRST RESPONDERS & HAZMAT TEAMS

Identification and Quantification of Toxic

Industrial Chemicals and Chemical Warfare Agents.

Appendix B

Attachment 1- Perimeter Air Monitoring Form Attachment 2 – Work Area Monitoring Form Attachment 3 – Confirmation Data Form

Attachment 1 – Perimeter Air Monitoring Form

Page 10

PERIMETER AIR MONITORING FORM

Site Location and Address

Somela Daint	Data	Time Collected	Wind	Current Temperture (F)	Current Weather Conditions	Mini RAE PID Reading Action Level 5 ppm	0.01 ppm	Particulate Monitoring Meter Action Level 1.0 mg/M ₃ (mg/M ₃)	Commonte
Sample Point	Date	(a.m./p.m.)	Direction/Speed	. emperture (i*)	Conditions	(ppm)	(ppm)	(mg/wis)	Comments
_									
Sample Point 1									
Sample Point 1 (GPS Coordinates)									
-									
_									
_									
Sample Point 2 (GPS Coordinates)									
(GPS Coordinates)									
-									
F									
F									
F									
Sample Point 3									
(GPS Coordinates)									
-									
Sample Point 4 (GPS Coordinates)									
(GPS Coordinates)									
Sample Point 5 (GPS Coordinates)									
` É									
_									
Sample Point 6									
Sample Point 6 (GPS Coordinates)									
-									
F									
Sample Point 7									
(GPS Coordinates)									
F									
-									
Sample Point 8 (GPS Coordinates)									
(GPS Coordinates)									
F									

PID Calibration Mini RAE Pre Calibration

____ppm Post Calibration _____ppm

Entire form must be completed per the Air Monitoring Plan. The GasMet DX4040 readings are to be noted when Mini RAE total VOCs detects 5 ppm.

Signature:

Date:

Attachment 2 – Work Area Monitoring Form

WORK AREA AIR MONITORING FORM

Site Location and Address

		Time Collected	Wind	Current	Current Weather	Mini RAE PID Reading Action Level 10 ppm	GasMet DX4040 Reading Action Level 0.01 ppm	
Sample Point	Date	(a.m./p.m.)	Direction/Speed	Temperture (F)	Conditions	(ppm)	(ppm)	Comments
Sample Point A (GPS Cordinates)			-					
(GFS Cordinates)								
Sample Point B								
(GPS Cordinates)								
Sample Point C (GPS Cordinates)								
(Gr 5 Cordinates)								
Sample Point C								
Samp l e Point C (GPS Cordinates)								
Sample Point D (GPS Cordinates)								
(Gr & Cordinates)								
Samp l e Point E								
(GPS Cordinates)								
Samp l e Point F (GPS Cordinates)								
Sample Point G								
Sample Point G (GPS Cordinates)								

PID Calibration Mini RAE Pre Calibration ____

__ppm Post Calibration ___ppm

Entire form must be completed per the Air Monitoring Plan. The GasMet DX4040 readings are to be noted when Mini RAE total VOCs detects 10 ppm.

Signature: ____

Date: ____