Abstract/Summary

This report summarizes a successful ILV of the analytical method for the analysis of valifenalate and its metabolites valifenalate acid and p-chlorobenzoic acid in soil.

Objective

The objective was to independently validate an analytical method for the determination of valifenalate, valifenalate acid and p-chlorobenzoic acid in soil to achieve a limit of quantitation (LOQ) of 0.005 mg/kg for valifenalate and valifenalate acid, and a LOQ of 0.01 mg/kg for p-chlorobenzoic acid.

Method Principles

Valifenalate, valifenalate acid and p-chlorobenzoic acid are extracted with mixtures of extraction solvents, acetone and 0.5 N HCl. The material is subjected to repeated extractions by shaking on a horizontal shaker table and, following centrifugation, a portion of the combined extract is reduced in volume by evaporation under an atmosphere of nitrogen and reconstituted in a mixed dilution solvent of CH₃OH:H₂O:HCOOH (10:90:0.1). An aliquot of the reconstituted extract is measured by LC-MS/MS, using MRM transitions for quantitation and confirmation. The limit of quantitation (LOQ) of the method is 0.005 mg/kg for valifenalate and valifenalate acid, and 0.01 mg/kg for p-chlorobenzoic acid.

1. Introduction

This project represents an Independent Laboratory Validation (ILV) of Precision Study Management, Protocol Amendment PSM-14-02-05, Amendment Number 2 for the Determination of Valifenalate and its metabolites valifenalate acid and p-chlorobenzoic acid. This method represents a highly selective LC-MS/MS method, as it employs both a quantitation and confirmation MRM transition for each analyte. The ILV was conducted on soil matrix. This ILV targeted an LOQ of 0.005 mg/kg and a corresponding LOD of 0.0015 mg/kg for both analytes, valifenalate and its metabolite valifenalate acid in soil and a targeted LOQ of 0.010 mg/kg and a corresponding LOD of 0.003 mg/kg for valifenalate's other metabolite pchlorobenzoic acid in soil.

2. Experimental

2.1 Test System

The validation study was carried out using soil purchased from Agvise Laboratories. The soil was homogenized in a Robot Coupe Blixer 3 prior to use.

2.2 Analytical Test and Reference Item

Standards of valifenalate, valifenalate acid and p-chlorobenzoic acid were provided by FMC Agricultural Solutions (Appendix 1).

Valifenalate (IR5885):

Structure:

Empirical formula: Molecular weight: CAS No.: Batch No.: Expiry Date: Purity: C₁₉H₂₇ClN₂O₅ 398.88 g/mol 283159-90-0 20071/77 November 2017 99.27%

Valifenalate acid (IR5839):

Structure

Empirical formula: Molecular weight: CAS No.: Batch No.: Expiry Date: Purity: C₁₈H₂₅ClN₂O₅ 384.86 g/mol NA G029/08 21 February 2017 98.4%

p-Chlorobenzoic acid:

Structure:

Empirical Formula: CAS Number: Molecular Weight: Batch No: Expiry Date: Purity: CIC₆H₄CO₂H 74-11-3 156.57 g/mol LC07337V May 2017 99.2%

2.3 Analytical Method

The Precision Study Management, Protocol Amendment PSM-14-02-05, Amendment Number 2 Analytical Method was used to conduct the ILV.

2.3.1 Apparatus

2.3.1.1 Laboratory Equipment

- Balances:
 - o Ohaus Explorer EOD120, SN D2771118362156
 - o Mettler AT201, SN L92660
- Centrifuges:
 - o Sorvall Legend XF
 - Eppendorf 5810
- Turbovap Zymark TurboVap II
- Pipettors: Rainin Pipet-plus, various sizes
- Fisherbrand 50 mL polypropylene centrifuge tube
- Fisher glass vials, 25 mL screw-cap and 2 mL crimp top
- Fisher 15 mL PP centrifuge tubes
- Gas tight syringes Hamilton, various sizes

All reusable glassware was cleaned in a laboratory dishwasher, solvent rinsed, and air-dried before use. Consumable glassware (injection vials, glass pipettes) was baked at 400°C for at least 30 minutes before use.

2.3.1.2 LC-MS/MS System

- Shimadzu LC2080 UHPLC system, including a vacuum solvent degasser, binary UHPLC pump, column oven, autosampler
- Applied Biosystems MDS Sciex API 6500 linear ion trap MS/MS system with TurboIonspray (ESI) source
- Thermo Betasil C18 100 x 2.1 mm, 5 µm Catalog # 70105102130

2.3.2 Solvents, Chemicals and Consumables

- Methanol, HPLC grade, Fisher, lot #152153
- Formic Acid, Acros Organics, lot #B0527746
- Acetone, Fisher, lot # 150933
- Hydrochloric acid 0.5N, Fisher lot # 153033

2.3.3 Preparation of Standard Solutions

2.3.3.1 Stock and Working Solutions

Valifenalate, valifenalate acid and p-chlorobenzoic acid were received as neat compounds from FMC Agricultural Solutions. The neat materials were stored under ambient conditions when not in use. The stock solutions were prepared in methanol and stored in the freezer at -20 C.

Stock solutions:

Compound	Battelle ID	Neat material ID	Mass (mg)	Final Volume (mL)	Solution Concentration (µg/mL)**
Valifenalate	IM13	150624-04 (Val*)	10.78	10	1070
Valifenalate Acid	IN93	150624-05 (ValA*)	10.74	10	1057
p-Chlorobenzoic Acid	IO10	150624-03 (p-CBA*)	10.19	10	1011
Valifenalate	IN38	150624-04 (Val)	10.11	10	1004
Valifenalate Acid	IN98	150624-05 (ValA)	10.45	10	1028
p-Chlorobenzoic Acid	IO11	150624-03 (p-CBA)	9.05	10	898

* "Val" refers to valifenalate, "ValA" refers to valifenalate acid, and p-CBA refers to pchlorobenzoic acid.

** Concentration corrected for purity of neat material

Working solutions: The working solutions were prepared with methanol:water (50:50 v:v) with 0.1 % formic acid and stored in the freezer at -20 °C when not in use:

Working solution: valifenalate and valifenalate acid							
Battelle	Use	Stock conc.	Stock volume	Total volume	Conc.		
ID	solution	(µg/mL)	(µL)	(mL)	(µg/mL)		
	IM13	1070	467	10	50.0 (val)		
11194	IN93	1057	473	10	50.0 (valA)		

	Working solution: p-CBA							
Battelle	Use	Stock conc.	Stock volume	Total volume	Conc.			
ID	solution	$(\mu g/mL)$	(µL)	(mL)	(µg/mL)			
IO12	IO10	1011	990	10	100			

2.3.3.2 Fortification Solutions

Fortification solutions of the analytes were prepared in methanol:water (50:50 v:v) with 0.1 % formic acid and stored in the freezer at -20 $^{\circ}$ C when not in use:

Fortification solutions: valifenalate and valifenalate acid							
Battelle	Use solution	Stock conc.	Stock volume	Total volume	Conc.		
ID	Ose solution	$(\mu g/mL)$	(µL)	(mL)	$(\mu g/mL)$		
1NI05		50.0	1000	10	5.00 (val)		
11193	11194	50.0 1000	1000	10	5.00 (valA)		
INIO C	INIO5	5.00	1000	10	0.500 (val)		
11190	11193	5.00	1000	10	0.500 (valA)		

Fortification solutions: p-CBA							
Battelle	Use	Stock conc.	Stock volume	Total volume	Conc.		
ID	solution	(µg/mL)	(µL)	(mL)	(µg/mL)		
IO13	IO12	100	1000	10	10.0		
IO14	IO13	10.0	1000	10	1.00		

2.3.3.3 Solvent Calibration Solutions:

Intermediate solutions for calibrations were prepared in methanol:water (50:50 v:v) with 0.1 % formic acid and stored in the freezer at -20 $^{\circ}$ C when not in use:

Intermediate calibration solutions: valifenalate and valifenalate acid								
Battelle	Use	Stock conc.	Stock volume	Total volume	Conc.			
ID	solution	(µg/mL)	(µL)	(mL)	(µg/mL)			
1001	IN38	1004	500	10	50.2 (val)			
1001	IN98	1028	485	10	49.9 (valA)			
1002	1001	50.2	500 485 500	10	2.51 (val)			
1002	1001	49.9		10	2.49 (valA)			
1002	1002	2.51	500	10	0.125 (val)			
1005	1002	2.49	500	10	0.125 (valA)			

Intermediate Calibration solutions:p-CBA							
Battelle ID	Use Solution	Stock conc.	Stock volume	Total volume	Conc.		
		(µg/mL)	(µL)	(mL)	(µg/mL)		
IO65	IO11	898	110	10	9.88		
IO66	IO65	9.88	100	10	0.0988		

Solvent calibration solutions were prepared by diluting working calibration standards in methanol:water (20:80 v:v) with 0.1% formic acid. Solvent calibration solutions were stored in a freezer at -20 $^{\circ}$ C when not in use:

Calibration solutions: valifenalate and valifenalate acid							
Battelle ID	Use solution	Stock conc. (µg/mL)	Stock volume (µL)	Total volume (mL)	Conc. (ng/mL)		
IO04	IO03	0.125 0.125	20	10	0.251 (val) 0.249 (valA)		
IO05	IO03	0.125 0.125	40	10	0.502 (val) 0.499 (valA)		
IO06	IO03	0.125 0.125	120	10	1.51 (val) 1.50 (valA)		
IO83	IO04	0.000 0.000	1000	10	0.251 (val) 0.249 (valA)		
IO84	IO05	0.001 0.000	1000	10	0.502 (val) 0.499 (valA)		
IO85	IO06	0.002 0.001	830	10	0.125 (val) 0.124 (valA)		

p-CBA calibration solutions, prepared in 20:80 Methanol/H2O w/0.1% Formic Acid								
Dattalla ID	Use solution	Stock conc.	Stock volume	Total volume	Conc.			
Dattelle ID		$(\mu g/mL)$	(µL)	(mL)	(ng/mL)			
IO67	IO66	0.0988	7.5	10	0.0741			
IO68	IO66	0.0988	25	10	0.247			
IO69	IO66	0.0988	75	10	0.741			
IO70	IO66	0.0988	150	10	1.48			
IO71	IO66	0.0988	300	10	2.96			
IO72	IO66	0.0988	500	10	4.94			

Matrix matched calibration solutions of the analytes were prepared by diluting 1000 μ L of untreated control (UTC) extract with a combination of 10:90 methanol:water with 0.1% formic acid and standard solution. Matrix-matched calibration solutions were stored refrigerated with samples at 0-4 °C when not in use:

Battelle ID	Stock solution ID	Volume taken of stock solution (µL)	Volume of diluent 10:90 methanol:water with 0.1% HCOOH (µL)	Final Volume (µL)	Solution Conc. (ng/mL)
CG959UTC-	1004	1000	· · · · · ·		0.0251 (val)
AG(7)	1001		7950	10000	0.0249 (valA)
	1074	50			0.0/41 (p-CBA)
CG959UTC-	IO05	1000	7975	10000	0.0502 (val) 0.0499 (valA)
AG(9)	IO66	25			0.247 (p-CBA)
CONTRA	IOOC	020			0.125 (val)
CG959UTC-	1006	830	8095	10000	0.124 (valA)
AG(11)	IO66	75	Volume of diluent 10:90 methanol:water with 0.1% HCOOH (µL) 7950 7975 8095 8830 8830 8833 8833 8833 8830 8833 8830 8833 8830 8833 88000 8170 8980 8960 8880		0.741 (p-CBA)
CCOSOLITIC	1002	20			0.251 (val)
CG959UTC-	1003	20	8830	10000	0.249 (valA)
AG(13)	IO66	150	n with 0.1% HCOOH (μL) 7950 7975 8095 8830 88660 88660 88380 8833 8833 8000 8170 8980		1.48 (p-CBA)
	1002	40			0.502 (val)
CG959UIC-	1003		8660	10000	0.499 (valA)
AG(15)	IO66	300			2.96 (p-CBA)
CC050LITC	1002	120			1.51 (val)
CG95901C-	1005	120	8380	10000	1.50 (valA)
AG(17)	IO66	500			4.94 (p-CBA)
CH022UTC- AG(7)	IO06	167	8833	10000	0.0250 (valA)
CH022UTC- AG(9)	IO05	1000	8000	10000	0.0499 (valA)
CH022UTC- AG(11)	IO06	830	8170	10000	0.124 (valA)
CH022UTC- AG(13)	IO03	20	8980	10000	0.249 (valA)
CH022UTC- AG(15)	IO03	40	8960	10000	0.499 (valA)
CH022UTC- AG(17)	IO03	120	8880	10000	1.50 (valA)

2.3.4 Extraction

Extraction Method

- 1. Measure 10 g of homogenized sample into a 50 mL screw-capped polypropylene container
- 2. Fortify samples if necessary
- 3. Add 20 mL of extraction solvent, acetone: 0.5 N HCl (50:50, v/v)
- 4. Shake on a shaker table for 30 minutes at 3000 rpm
- 5. Centrifuge at 3000 rpm for 10 min
- 6. Transfer supernatant to a clean 50 mL centrifuge tube.
- 7. Vortex to break up pellet
- 8. Add 20 mL of extraction solvent, acetone: 0.5 N HCl (50:0, v/v) to the solid sample
- 9. Shake on a shaker table for 30 minutes at 3000 rpm
- 10. Centrifuge at 3000 rpm for 10 min
- 11. Combine supernatant from second extraction with that of first extraction
- 12. Transfer 10 mL aliquot of supernatant to a 15 mL centrifuge tube
- 13. Reduce the volume down to about 6.5 mL on turbovap with water bath at $40 \,{}^{0}\text{C}$
- 14. Add $CH_3OH:H_2O:HCOOH$ (50:50:0.1, v/v/v) to bring the volume to 10 mL
- 15. Filter through a Teflon syringe filter
- 16. Transfer 1 mL to a 12 mL vial and diluted with 9 mL of 10:90 methanol: water (v/v) with HCOOH at 0.1%
- 17. Transfer an aliquot to an autosampler vial
- 18. Analyze by LC-MS/MS

2.4 LC-MS/MS Analysis

Calibration solutions, matrix-matched calibration solutions, blank extracts, control sample extracts and fortified sample extracts were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The following LC/MS/MS conditions were used for valifenalate and valifenalate acid analysis in positive ionization mode:

LC System	Shimadzu LC2080 degasser, binary U) UHPLC HPLC put	system, i mp, colum	including a vacuun n oven, autosample	n solvent
LC Column	Thermo Betasil C1	Thermo Betasil C18 100 x 2.1 mm, 5 μm Catalog # 70105102130 20 μL			
Injection Vol.	20 µL				
HPLC Method	Mobile Phase A: 0.	.1 % form	ic acid in	water	
	Mobile Phase B: 0.	.1 % form	ic acid in a	acetonitrile	
	Mobile Phase Com	position			
	Time (min)				
HPLC Method	0.0	Flow (mL/	v rate /min)	% A	% B
Ret. Times	1.5	0	.8	80	20
	1.7	0.8		5	95
	3.0	0.8		5	95
	3.1	0	.8	5	95
	5.0	0	.8	80	20
	~ 2.2 – 2.4 minutes	0	.8	80	20
MS/MS System	Applied Biosystem system with Turbo	is MDS So Ionspray (ciex API 6 (ESI) sourc	500 linear ion trap l ce	MS/MS
	Source temperature	2:	550°C		
	Gas supply (GS 1):		70 (arbit	rary units)	
	Gas supply (GS 21):	70 (arbit	rary units)	
Ion Source Conditions	Curtain gas (CUR)	:	45 (arbit	rary units)	
ESI Positive Polarity	Collision gas (CAI	D):	medium	(arbitrary units)	
	Entrance potential:		10 V		
	IonSpray voltage:		4000 V		
	Resolution:		Q1: Unit, Q3 Unit		

The following LC/MS/MS conditions were used for p-chlorobenzoic acid analysis in negative ionization mode:

LC System	Shimadzu L degasser, bir	C2080 UHP hary UHPLC	LC system, inclu pump, column ov	ding a vacuum solvent en, autosampler		
LC Column	Thermo Beta	asil C18 100 :	x 2.1 mm, 5 µm C	atalog # 70105102130		
Column Temp	40 °C					
Injection Vol.	50 µL					
	Mobile Phas	e A: 0.1 % fo	ormic acid in wate	r		
	Mobile Phas	e B: 0.1 % fo	rmic acid in aceto	onitrile		
	Mobile Phas	e Compositio	on			
	Time (min)	Flow rate (mL/min)	% A	% B		
HPLC Method	0.0	0.8	90	10		
	2.5	0.8	10	90		
	3	0.8	10	90		
	3.1	0.8	90	10		
	5	0.8	90	10		
Ret. Times	~ 2.2 - 2.4 1	ninutes				
MS/MS System	Applied Bio system with	systems MD TurboIonspra	S Sciex API 6500 ay (ESI) source	linear ion trap MS/MS		
	Source temperature:	550°C	550°C			
	Gas supply (GS 1):	50 (arbit	50 (arbitrary units)			
	Gas supply (GS 21):	50 (arbit	50 (arbitrary units)			
Ion Source Conditions	Curtain gas (CUR):	20 (arbit	20 (arbitrary units)			
ESI Positive Polarity	Collision gas (CAD):	⁵ medium	medium (arbitrary units)			
	Entrance potential:	-10 V				
	IonSpray voltage:	-4500 V				
	Resolution:	Q1: Uni	Q1: Unit, Q3: Unit			

	399 m/z > 155 m/z (used for quantitation)			
MS/MS Conditions for Valifenalate	Dwell time:	100 msec	DP:	80 V
	CE:	39 V	CXP:	11 V
	399 > 116 m/z (used for confirmation)			
	Dwell time:	100 msec	DP:	80 V
	CE:	25 V	CXP:	10 V
MS/MS Conditions for Valifenalate Acid	385 > 116 m/z (used for quantitation)			
	Dwell time:	100 msec	DP:	85 V
	CE:	27 V	CXP:	10 V
	385 > 144 m/z (used for confirmation)			
	Dwell time:	100 msec	DP:	85 V
	CE:	19 V	CXP:	9 V
MS/MS Conditions for Valifenalate	155 > 111 m/z (used for quantitation)			
	Dwell time:	500 msec	DP:	-27
	CE:	-16 V	CXP:	-10 V
	155 > 35 m/z (used for confirmation)			
	Dwell time:	500 msec	DP:	-19 V
	CE:	-45 V	CXP:	-16 V

MRM Transitions for Valifenalate, Valifenalate acid and p-chlorobenzoic acid.

2.5 Calculations

The following equation was used to calculate the individual residues R in mg/kg:

$$R = C_{End} \times \left(\frac{V_{Ex}}{W}\right) \times DF \times \frac{1}{1000}$$

Where:

R: Residue in mg/kg.

 C_{End} : Final concentration of analyte in extract in ng/mL.

 V_{Ex} : Extraction volume (40 mL).

W: Weight of sample (10 g)

DF: Dilution factor – final volume/aliquot volume

1/1000: mass conversion from ng/g to mg/kg

The values reported in the tables are calculated with full precision, but displayed with three significant figures. Therefore minor discrepancies may occur when recalculated with a pocket calculator.

Recoveries (Rec.) were calculated for the fortified specimens as follows:

$$Rec. = \frac{R}{R_{fort.}} \times 100$$

Where

Rec.: Recovery R_{fort} : Residue fortified, in mg/kg.

The calculation is exemplified with the soil sample CG961LOQ-AG(5) fortified at 0.005 mg/kg (LOQ) for valifenalate. The final extract was examined by LC-MS/MS run to give a peak area of 13290 counts for the transition 399 m/z > 155 m/z. Using the respective calibration curve (see Figure 4) a final concentration of 0.0928 ng/mL was calculated (see Table 1).

Thus:

$$R = C_{End} \times \left(\frac{V_{Ex}}{W}\right) \times Dilution \ Factor = 0.0928 \frac{\text{ng}}{\text{mL}} \times \left(\frac{40 \text{ mL}}{10.07 \text{ g}}\right) \times \frac{10 \text{ mL}}{1 \text{ mL}} \times \frac{1}{1000}$$
$$= 0.00369 \frac{\text{mg}}{\text{kg}}$$

And:

$$Rec. = \frac{R}{R_{fort.}} \times 100 = \frac{0.00369 \frac{\text{mg}}{\text{kg}}}{0.00496 \frac{\text{mg}}{\text{kg}}} \times 100 = 74\%$$

2.6 Deviations from the Method Validation

There were deviations from the method described in document Precision Study Management, Protocol Amendment PSM-14-02-05, Amendment Number 2 and included in the Study Plan.

- 1. The Study plan states that the laboratory will follow the extraction procedure as stated in Eurofins method RA034 v07, but the laboratory followed the extraction procedure as stated in Precision Study Management, Protocol Amendment Number 2 to be consistent with the method used to analyze field samples. The Eurofins method RA034 v07 MRM transitions were very unusual, used both positive and negative ionization for a given analyte, hence the laboratory alerted the Study Monitor and agreed upon to follow the Precision Study Management, Protocol Amendment Number 2 in its entirety. This deviation did not have any serious impact on the study.
- Solvent based calibrations were prepared using 20:80:.1% (methanol:water with 0.1% HCOOH) and matrix matched calibrations were prepared using 10:90:.1% (methanol:water with 0.1% HCOOH) hence the solution makeup for the solvent based calibrations and matrix calibrations were slightly different. However, this deviation did not have any serious impact on the study.
- 3. During the sample extraction step, after centrifugation the procedure instructs to transfer the supernatant liquid to a clean 50 mL centrifuge tube followed by the addition of 20 mL of extraction solvent to the remaining solid residue in the extraction tube. The project team decided to vortex the extraction tube before the addition of 20 mL of extraction solvent so that the residue pellet can break up. Although this step was neither stated in the Protocol Amendment nor in the Study Plan, yet the laboratory included this step and it did not cause any serious impact on the study.

3.1 Specificity, Calibration, Matrix Effects and Sensitivity

The highly specific LC-MS/MS method utilizing two mass transitions was confirmed. The product ion spectra valifenalate, valifenalate acid and p-chlorobenzoic acid are shown in Figures 1, 2, 3 and 3A, respectively. The project team was able to confirm that 399 m/z > 155 m/z and 399 > 116 m/z were the most appropriate transitions for quantitation and confirmation of valifenalate, respectively, using the instrument conditions described herein. Also, it was confirmed that 385 m/z > 116 m/z and 385 m/z > 144 m/z were the most appropriate transitions for quantitation and confirmation of valifenalate acid, respectively, both in the positive ionization mode. The laboratory confirmed that 155 m/z > 111 m/z and 155 m/z > 35 m/z were the most appropriate transitions for quantitation and confirmation and confirmation of p-chlorobenzoic acid, respectively, both in the negative ionization mode.

The project team was able to confirm that for valifenalate and its metabolite valifenalate acid the LC-MS/MS method afforded detection of the analyte at concentrations of 0.025 ng/mL with a 20 μ L injection, providing sufficient sensitivity to quantify residues of the analyte in the final extracts. Also, the project team confirmed for the second metabolite, p-chlorobenzoic acid the LC/MS/MS method was capable of detecting the analyte at concentration of 0.075 ng/mL with a 50 μ L injection, providing adequate sensitivity to quantify residues of p-chlorobenzoic acid in the final extract. An instrument calibration for each transition was generated using six