

Dispersion Modeling of Emissions from Hazardous Waste Combustion:

Veolia ES Technical Solutions, L.L.C., Sauget, Illinois

August 23, 2019

Prepared by:

Todd D. Ramaly, Environmental Scientist Christopher Lambesis, Environmental Scientist

EPA Region 5 Land, Chemicals & Redevelopment Division

This page intentionally left blank.

Contents

Chapter 1 Executive Summary
Chapter 2 Facility Conditions
Chapter 3 Meteorological Data
Protocol
Surface Characteristics and AERSURFACE
Continuous Snow Cover and Annual Precipitation
Missing/Calm Hours and AERMINUTE 1-Minute Data
Chapter 4 <i>AERMOD</i>
Control Pathway
Source Pathway
Receptor Pathway
Meteorology Pathway4-3
Terrain
Output
Emission Phase Partitioning
Chapter 5 Emission Rates at the MACT Standard5-1
Dioxin/Furans
Metals
Chapter 6 Metals Speciation and Loss to Global Cycle
Chapter 7 Uncertainty
Chapter 8 References

This page intentionally left blank.

Chapter 1 Executive Summary

As part of an Illinois Environmental Protection Agency (IEPA) Resource Conservation and Recovery Act (RCRA) permit appeal, the United States Environmental Protection Agency (EPA) updated the 2007 EPA Site-Specific Risk Assessment (SSRA) for the Veolia ES Technical Solutions, L.L.C. (Veolia) hazardous waste incineration facility in Sauget, Illinois. The 2007 EPA SSRA was used to support permit conditions in the RCRA permit issued by IEPA. The updated SSRA uses new air dispersion modeling results from current versions of preferred and recommended air dispersion models as described herein. Although the modeling effort is primarily for mercury, EPA also evaluated other possible emissions, such as dioxin/furans and other metals.

Specifically, EPA prepared and conducted stack gas dispersion modeling using EPA's latest version (18081) AERMOD model, described as a significant advance over ISCST3, the model used in the previous SSRA performed by EPA for IEPA in 2007. The AERMOD model requires different formatting for the meteorological data than for ISCST3 and includes several new and different subroutines requiring some site-specific parameters not used by ISCST3. EPA generally followed the approach described in EPA's 2005 *Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities* – HHRAP (U.S. EPA 2005a) but had to rerun the meteorological data and individual dispersion modeling runs. EPA used up-to-date information for these runs in keeping with the conceptual model in the HHRAP.

This page intentionally left blank.

Chapter 2 Facility Conditions

Veolia operates three waste-burning incinerators at its Sauget, Illinois facility (Units 2, 3 and 4). See Figure 2-1 for a map and aerial photo of the area surrounding the Veolia facility. Units 2 and 3 are fixed-hearth dual-chambered incinerators with spray dryer absorbers and fabric filters. Unit 4 is a rotary kiln with a secondary combustion chamber, tempering chamber, spray dryer absorbers, and fabric filters with carbon injection (Veolia 2014). Veolia recently installed activated carbon injection to Units 2 and 3 (Veolia 2019). Table 2-1 summarizes incinerator characteristics used in this analysis.

Stack heights and diameters were taken from a Risk Assessment submitted by Franklin Engineering for Veolia (Franklin 2017). Stack temperature was taken from the 2013 Comprehensive Performance Test (CPT) (Veolia 2014). Stack gas exit velocity was calculated from a one-year average of actual stack gas flowrates described by Veolia in the 2016 Confirmatory Performance Tests (CfPTs) (Veolia 2016a, 2016b, 2016c). EPA identified Universal Transverse Mercator (UTM) coordinates, Zone 15, for each stack from the internetbased geographic information system (GIS) Google Earth Pro (GEP). GEP is projected in the World Geodetic System of 1984 (WGS84) datum (the mathematical geoid used to represent the earth's surface). WGS84 is nearly identical to the North American Datum of 1983 (NAD83) datum which is used for most of the additional resources (terrain elevation maps, land use maps, etc.) needed to run the air dispersion model. Any locational data not in WGS84 or NAD83 will be converted before use. Base elevations for the stack were estimated using the *AERMAP* tool to import elevation data.

Table 2-1 Incinerator Characteristics								
Unit 2 3 4								
Thermal Input Rating (million British Thermal Units per hour) ¹	16	16	50					
Stack UTM Northing (meters) ²	4275918.17	4275964.87	4275207.53					
Stack UTM Easting (meters) ²	745302.11	745334.50	744975.55					
Stack Height (meters) ²	27.432	27.432	30.48					
Stack Diameter (meters) ²	0.686	0.686	1.219					
Stack Gas Exit Velocity (meters per second) ³	16.276	16.870	13.144					
Stack Gas Temperature (degrees Fahrenheit) ¹	391	367	373					
Base Elevation (meters above sea level) ⁴	124.910	124.970	124.800					

1 Veolia 2014

2 Franklin 2017

3 Veolia 2016a, 2016b, and 2016c

4 AERMAP

AERMOD View - Lakes Environmental Software

Chapter 3 Meteorological Data

Protocol

EPA processed five years of hourly surface and upper air meteorological data in accordance with EPA's *Regional Meteorological Data Processing Protocol, EPA Region 5 and States, August 2014 DRAFT* to prepare the data for AERMET, AERMOD's meteorological data processor (U.S. EPA 2014). The modeling protocol calls for five years of hourly meteorological data for facilities without an on-site weather station. EPA used five years of Integrated Surface Data files, 2011 through 2015, from the weather station at St. Louis, Lambert Field posted by the National Oceanic and Atmospheric Administration (NOAA) and obtained here: http://ftp.ncdc.noaa.gov/pub/data/noaa/.

EPA used GEP to confirm the location of the weather station tower. The location of the weather station tower appears to be approximately 900 meters west of the location reported in the facility's air-modeling files: 38.749°N, 90.364°W (IEPA 2017). The location according to GEP is 38.752465°N, 90.373464°W. EPA applied the updated weather station tower location to AERMET and reported the true elevation of 162 meters above sea level. EPA found the 900-meter difference altered some of the surface parameters used by AERMET to process the meteorological data, so EPA used the more precise locational data from GEP for the weather station tower location (See AERSURFACE discussion below).

EPA obtained upper air data for the same years and corrected the data for Greenwich Mean Time. The upper air files were obtained for the KILX Logan Airport site in Lincoln, Illinois from the following website: <u>http://esrl.noaa.gov/raobs/</u>.

Upon completion of the adjustments described below, surface- and profile-files for each year were then combined into 5-year files, 2011-2015VS.SFC and 2011-2015VS.PFL. The facility's 2017 SSRA did not follow the regional protocol (Franklin 2017).

Surface Characteristics and AERSURFACE

EPA used the AERSURFACE tool to characterize the surface surrounding the St. Louis Lambert Field weather station and that of the Veolia stacks. This is an aid to AERMET that uses 1992 National Land Cover Data to estimate several surface characteristics needed for AERMOD (USGS 2000). The surface characteristics include *surface roughness* – a measure of the obstacles to wind flow such as trees and buildings – that is functionally equivalent to the height above the ground surface where the horizontal wind velocity drops to zero. The *bowen ratio* is a measure of surface moisture which affects heat transfer in the atmosphere. *Noon-time albedo* is a measure of reflectivity that impacts heat transfer in the atmosphere because of its relationship to the amount of solar radiation reflected or absorbed by the earth's surface. AERSURFACE also allows the user to model these characteristics by compass-point direction, season and month. Previous sensitivity analysis of the deposition algorithms conducted in the ISCST3 modeling suite showed that surface roughness has a significant impact on results (U.S. EPA 1997a). Since the deposition algorithms in AERMOD are based on the same studies used for ISCST3, EPA's sought the most representative surface characteristics for this updated modeling.

To evaluate any potential impact on the weather station tower locational data, EPA ran AERSURFACE using both locations and limited a comparison of the compass-point directions to those upwind from Veolia's stacks and from the downwind direction of lakes at Frank Holten State Recreation Area. The upwind fetch approaching the weather station represents the data used by the model to set up the wind profile for modeling dispersion from Veolia's facility in the direction of the lakes. The lakes are roughly between azimuths of 77.3° and 106.67° from the perspective of the stacks. Thus, the upwind fetch is between azimuths of 257.3° and 286.67°.

EPA compared annual values for surface roughness, bowen ratio, and noon-time albedo at both the more precise weather station tower location from GEP and the location used in the 2017 SSRA. Using the more precise location increased surface roughness by 9% and reduced bowen ration by 3% in the upwind fetch. The downwind range (between 77.3° and 106.67°) also showed differences with surface roughness increasing by 16% and bowen ratio decreasing by 3%. Noon-time albedo did not change between locations. EPA chose to use the locational data taken from GEP because it is more precise and produces different surface characteristics for AERMET than the location used in the 2017 SSRA.

Continuous Snow Cover and Annual Precipitation

The protocol also recommends adjusting the surface characteristics for wintertime with continuous snow cover (altering the reflectivity of solar radiation – noon time albedo) and for annual precipitation (dry, average, or wet – altering the bowen ratio). Therefore, EPA modified AERSURFACE results for each year with the adjustments summarized in Table 3-1.

Table 3.2 summarizes days of snow cover for all months for this project. EPA obtained snow cover data at <u>https://www.ncdc.noaa.gov/qclcd/QCLCD</u>. Tables 3-3 through 3-7 document adjustments for snow cover for each of 12 compass-point directions for each month of the project with snow cover. The facility's 2017 SSRA did not adjust AERSURFACE for snow cover (Franklin 2017).

EPA made the recommended adjustment for soil moisture (wet, dry, average) based on annual precipitation amounts obtained here: https://www.weather.gov/media/lsx/climate/stl/precip/precip_stl_ranked_annual_amounts.pdf.

Table 3-8 shows adjustments EPA made for annual precipitation according to the protocol. EPA considered annual precipitation amounts greater than 43.487 inches (the 70th percentile of the 30-years of data through 2015) to be "wet" years in AERSURFACE. EPA considered annual precipitation amounts less than 34.508 inches (the 30th percentile of the 30-years of data through 2015) to be "dry" years in AERSURFACE. The facility's 2017 SSRA did not adjust AERSURFACE for annual precipitation (Franklin 2017).

Missing/Calm Hours and AERMINUTE 1-Minute Data

The protocol also addresses the number of reported wind speeds that are identified as missing or calm. The current National Weather Service (NWS) protocol is to record one-hour average wind speeds that are less than three knots as zero. This often results in an excessive proportion of missing and calm wind speeds which AERMOD will not process.

The protocol recommends using a data processing tool called AERMINUTE that converts twominute wind speed and wind direction NWS data into hourly averages for use in AERMOD. The two-minute data from the National Weather Service is not limited by the three-knot convention; and lighter, nonzero winds are included. The two-minute data is available for the St. Louis Lambert Field station and was successfully integrated with the standard surface files to produce met data with no more than 0.97% missing and calm hours. EPA obtained the data from <u>ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin/</u>. The improvement in missing and/or calm hours data for each modeled year is as follows: 2011 (11.34% reduced to 0.34%), 2012 (14.21% reduced to 0.87%), 2013 (11.84% reduced to 0.46%), 2014 (12.53% reduced to 0.65%), and 2015 (12.61% reduced to 0.97%).

Figure 3-1 shows a wind rose generated from all five years of the adjusted met data.

The AERMET processor allows the user to specify a wind speed below which winds in the twominute data will be considered calm. There is no default value, however a warning will be given if the value chosen is less than 0.5 m/s. The rationale behind setting the 0.5 m/s threshold is to make that value consistent with the minimum wind speed value set under current meteorological monitoring guidance for site-specific weather data towers. EPA used the 0.5 m/s minimum threshold wind speed option when preparing the data consistent with EPA guidance (U.S. EPA 2013).

EPA also enabled the ADJ_U* option in AERMET which adjusts the surface friction velocity (U*) under low-wind/stable conditions based on 2011 studies by Qian and Venkatram. The ADJ_U* option may be used as a regulatory option in AERMET with NWS data or with site-specific data that does not include turbulence (i.e., sigma-w and/or sigma-theta). This adjustment is applicable for releases relatively close to the surface (Qian and Venkatram, 2011).

While there is no set criterion for when to use ADJ_U*, when measured turbulence is not part of the meteorological data, this option improves model performance. Sources with smaller stacks in elevated terrain have the most model improvement (82 FR 5182, January 17, 2017). For taller stacks and/or cases where light winds/stable conditions are less important, model performance was largely unaffected. EPA's Regional Meteorologist, Randy Robinson, recommended this option for this project. The facility's 2017 SSRA did not adjust the surface friction velocity (U*) under low-wind/stable conditions (Franklin 2017).

	Table 3-1								
AERSURFACE Adjustments									
Year	Tower Land Use	Annual Precipitation	Snow Cover						
2011	Airport Site	Wet	Weighted for January, February, March, and December						
2012	Airport Site	Dry	Weighted for January, February, and December						
2013	Airport Site	Average	Weighted for January, February, March, and December						
2014	Airport Site	Average	Weighted for January, February, March, and November						
2015	Airport Site	Wet	Weighted for February and March						

Table 3-2								
Snow Cover								
Year	Month	% with snow						
2011	January	16	31	52%				
2011	February	13	28	46%				
2011	March	3	31	10%				
2011	November	0	30	0%				
2011	December	1	31	3%				
2012	January	4	31	13%				
2012	February	2	29	7%				
2012	March	0	31	0%				
2012	November	0	30	0%				
2012	December	1	31	3%				
2013	January	3	31	10%				
2013	February	7	28	25%				
2013	March	5	31	16%				
2013	November	0	30	0%				
2013	December	9	31	29%				
2014	January	9	31	29%				
2014	February	11	28	39%				
2014	March	1	31	3%				
2014	November	3	30	10%				
2014	December	0	31	0%				
2015	January	0	31	0%				
2015	February	10	28	36%				
2015	March	3	31	10%				
2015	November	0	30	0%				
2015	December	0	31	0%				

https://www.ncdc.noaa.gov/qclcd/QCLCD

					Table 3-3	3				
	Weighted Ad	justments to Noon-time Albedo, Bowen Ratio, and Surface Roo Without Spow Cover					ness (z) for Days with Snow cover in 2011			
Sector	Month	Albedo	Bowen Patio	7	Albedo	Bowen Patio	7	Albedo	Bowen Patio	7
1	Lauran	A10Cd0		L 0.05	A10Cd0		Z	A10000		L 0.047
1	January	0.18	0.67	0.05	0.44	0.5	0.044	0.31	0.58	0.047
1	March	0.18	0.67	0.05	0.44	0.5	0.044	0.30	0.39	0.047
1	December	0.17	0.54	0.05	0.44	0.5	0.044	0.19	0.54	0.055
2	January	0.10	0.07	0.041	0.11	0.5	0.034	0.17	0.00	0.037
2	February			0.041			0.034			0.038
2	March			0.046			0.034			0.045
2	December			0.041			0.034			0.041
3	Januarv			0.018			0.011			0.014
3	February			0.018			0.011			0.015
3	March			0.024			0.011			0.023
3	December			0.018			0.011			0.018
4	January			0.027			0.018			0.022
4	February			0.027			0.018			0.023
4	March			0.035			0.018			0.033
4	December			0.027			0.018			0.027
5	January			0.026			0.018			0.022
5	February			0.026			0.018			0.022
5	March			0.032			0.018			0.031
5	December			0.026			0.018			0.026
6	January			0.042			0.035			0.038
6	February			0.042			0.035			0.039
6	March			0.047			0.035			0.046
6	December			0.042			0.035	-		0.042
7	January			0.044			0.037			0.040
7	February			0.044			0.037			0.041
7	December			0.049			0.037			0.048
/ 0	Jamuaru			0.044			0.037			0.044
8	February			0.035			0.027			0.031
8	March			0.033			0.027			0.031
8	December			0.035			0.027			0.035
9	January			0.049			0.043			0.046
9	February			0.049			0.043			0.046
9	March			0.055			0.043			0.054
9	December			0.049			0.043			0.049
10	January			0.025			0.017			0.021
10	February			0.025			0.017			0.021
10	March			0.032			0.017			0.031
10	December			0.025			0.017			0.025
11	January			0.042			0.034			0.038
11	February			0.042			0.034			0.038
11	March			0.048			0.034			0.047
11	December			0.042			0.034			0.042
12	January			0.044			0.037			0.040
12	February			0.044			0.037			0.041
12	March			0.049			0.037			0.048
12	December			0.044			0.037			0.044

	Table 3-4 Adjustments to Noon-time Albedo. Bowen Ratio. and Surface Roughness (z) Weighted for Days with Snow cover in 2012										
	/ ujustinents t	Without Snow Cover				With Snow Cover			Weighted for Snow Cover		
Sector	Month	Albedo	Bowen Ratio	Z	Albedo	Bowen Ration	Z	Albedo	Bowen Ration	Z	
1	January	0.18	2.48	0.05	0.44	0.5	0.044	0.21	2.22	0.049	
1	February	0.18	2.48	0.05	0.44	0.5	0.044	0.20	2.34	0.050	
1	December	0.18	2.48	0.05	0.44	0.5	0.044	0.19	2.42	0.050	
2	January			0.041			0.034			0.040	
2	February			0.041			0.034			0.041	
2	December			0.041			0.034			0.041	
3	January			0.018			0.011			0.017	
3	February			0.018			0.011			0.018	
3	December			0.018			0.011			0.018	
4	January			0.027			0.018			0.026	
4	February			0.027			0.018			0.026	
4	December			0.027			0.018			0.027	
5	January			0.026			0.018			0.025	
5	February			0.026			0.018			0.025	
5	December			0.026			0.018			0.026	
6	January			0.042			0.035			0.041	
6	February			0.042			0.035			0.042	
6	December			0.042			0.035			0.042	
7	January			0.044			0.037			0.043	
7	February			0.044			0.037			0.044	
7	December			0.044			0.037			0.044	
8	January			0.035			0.027			0.034	
8	February			0.035			0.027			0.034	
8	December			0.035			0.027			0.035	
9	January			0.049			0.043			0.048	
9	February			0.049			0.043			0.049	
9	December			0.049			0.043			0.049	
10	January			0.025			0.017			0.024	
10	February			0.025			0.017			0.024	
10	December			0.025			0.017			0.025	
11	January			0.042			0.034			0.041	
11	February			0.042			0.034			0.041	
11	December			0.042			0.034			0.042	
12	January			0.044			0.037			0.043	
12	February			0.044			0.037			0.044	
12	December			0.044			0.037			0.044	

	Table 3-5									
	Adjustm	ents to Nooi	n-time Albedo, Bo	wen Ratio,	and Surface	Roughness (z) Wei	ghted for D	ays with Sno	w cover in 2013	
G . (N 4	W	/ithout Snow Cove	er	4 11 1	With Snow Cover		W	/eighted for Snow Co	over
Sector	Month	Albedo	Bowen Ratio	Z	Albedo	Bowen Ration	Z	Albedo	Bowen Ration	Z
1	January	0.18	1.08	0.05	0.44	0.5	0.044	0.21	1.02	0.049
1	February	0.18	1.08	0.05	0.44	0.5	0.044	0.25	0.94	0.049
1	March	0.17	0.81	0.054	0.44	0.5	0.044	0.21	0.76	0.052
1	December	0.18	1.08	0.05	0.44	0.5	0.044	0.26	0.91	0.048
2	January			0.041			0.034			0.040
2	February			0.041			0.034			0.039
2	March			0.046			0.034			0.044
2	December			0.041	-		0.034			0.039
3	January			0.018			0.011			0.017
3	February			0.018			0.011			0.016
3	March			0.024			0.011			0.022
3	December			0.018	-		0.011			0.016
4	January			0.027			0.018			0.026
4	February			0.027			0.018			0.025
4	March			0.035			0.018			0.032
4	December	-		0.027	-		0.018			0.024
5	January			0.026			0.018			0.025
5	February			0.026			0.018			0.024
5	March			0.032			0.018			0.030
5	December			0.026			0.018			0.024
6	January			0.042			0.035			0.041
6	February			0.042			0.035			0.040
6	March			0.047			0.035			0.045
6	December			0.042			0.035			0.040
7	January			0.044			0.037			0.043
7	February			0.044			0.037			0.042
7	March			0.049			0.037			0.047
7	December			0.044			0.037			0.042
8	January			0.035			0.027			0.034
8	February			0.035			0.027			0.033
8	March			0.041			0.027			0.039
8	December			0.035			0.027			0.033
9	January			0.049			0.043			0.048
9	February			0.049			0.043			0.048
9	March			0.055			0.043			0.053
9	December			0.049			0.043			0.047
10	January			0.025			0.017			0.024
10	February			0.025			0.017			0.023
10	March			0.032			0.017			0.030
10	December			0.025			0.017			0.023
11	Ignuary			0.042			0.034			0.041
11	February			0.042			0.034			0.040
11	March			0.048			0.034			0.046
11	December			0.042			0.034			0.040
12	Ionuom			0.044			0.027			0.042
12	Fahmuary			0.044			0.037			0.045
12	Morch			0.044			0.037			0.042
12	December			0.049			0.037			0.047
12	December			0.044			0.037			0.042

	Table 3-6										
	Ad	iustments to	Noon-time Albed	o. Bowen l	Ratio, and Su	rface Roughness	(z) Weight	ed for Davs wit	h Snow cover in 2014		
		Without Snow Cover			W	With Snow Cover			Weighted for Snow Cover		
Sector	Month	Albedo	Bowen Ratio	Z	Albedo	Bowen Ration	Z	Albedo	Bowen Ration	Z	
1	January	0.18	1.08	0.05	0.44	0.5	0.044	0.26	0.91	0.048	
1	February	0.18	1.08	0.05	0.44	0.5	0.044	0.28	0.85	0.048	
1	March	0.17	0.81	0.054	0.44	0.5	0.044	0.18	0.80	0.054	
1	November	0.17	1.08	0.054	0.44	0.5	0.044	0.20	1.02	0.053	
2	January			0.041			0.034			0.039	
2	February			0.041			0.034			0.038	
2	March			0.046			0.034			0.046	
2	November			0.046			0.034			0.045	
3	January			0.018			0.011			0.016	
3	February			0.018			0.011			0.015	
3	March			0.025			0.011			0.025	
3	November			0.018			0.011			0.017	
4	January			0.027			0.018			0.024	
4	February			0.027			0.018			0.023	
4	March			0.035			0.018			0.034	
4	November			0.036			0.018			0.034	
5	January			0.026			0.018			0.024	
5	February			0.026			0.018			0.023	
5	March			0.032			0.018			0.032	
5	November			0.032			0.018			0.031	
6	January			0.042			0.035			0.040	
6	February			0.042			0.035			0.039	
6	March			0.047			0.035			0.047	
0	November			0.047			0.035			0.046	
7	January			0.044			0.037			0.042	
7	March			0.044			0.037			0.041	
7	November			0.049			0.037			0.049	
8	Ianuary			0.035			0.037			0.033	
8	February			0.035			0.027			0.032	
8	March			0.041			0.027			0.041	
8	November			0.042			0.027			0.041	
9	January			0.049			0.043			0.047	
9	February			0.049			0.043			0.047	
9	March			0.055			0.043			0.055	
9	November			0.055			0.043			0.054	
10	January			0.025			0.017			0.023	
10	February			0.025			0.017			0.022	
10	March			0.032			0.017			0.032	
10	November			0.032			0.017			0.031	
11	January			0.042			0.034			0.040	
11	February			0.042			0.034			0.039	
11	March			0.048			0.034			0.048	
11	November			0.048			0.034			0.047	
12	January			0.044			0.037			0.042	
12	February			0.044			0.037			0.041	
12	March			0.049			0.037			0.049	
12	November			0.049			0.037			0.048	

	Table 3-7									
	Adjustments to	o Noon-time	Albedo, Bowe	en Ratio, and	Surface Roug	hness (z) Wei	ghted for Da	ys with Snow	cover in 201	5
		Wit	hout Snow Co	over	W	ith Snow Cov	er	Weighted for Snow Cover		
Sector	Month	Albedo	Bowen Ratio	Z	Albedo	Bowen Ration	Z	Albedo	Bowen Ration	Z
1	February	0.18	0.67	0.05	0.44	0.5	0.044	0.27	0.61	0.048
1	March	0.17	0.54	0.054	0.44	0.5	0.044	0.20	0.54	0.053
2	February			0.041			0.034			0.039
2	March			0.046			0.034			0.045
3	February			0.018			0.011			0.016
3	March			0.025			0.011			0.024
4	February			0.027			0.018			0.024
4	March			0.035			0.018			0.033
5	February			0.026			0.018			0.023
5	March			0.032			0.018			0.031
6	February			0.042			0.035			0.040
6	March			0.047			0.035			0.046
7	February			0.044			0.037			0.042
7	March			0.049			0.037			0.048
8	February			0.035			0.027			0.032
8	March			0.041			0.027			0.040
9	February			0.049			0.043			0.047
9	March			0.055			0.043			0.054
10	February			0.025			0.017			0.022
10	March			0.032			0.017			0.031
11	February			0.042			0.034			0.039
11	March			0.048			0.034			0.047
12	February			0.044			0.037			0.042
12	March			0.049			0.037			0.048

Note: Only Surface Roughness (z) is adjusted for compass point direction)n.
--	-----

Table 3-8								
		An	nual Moistu	ure/Precipitation Adj	ustment			
Year	Precipitation							
	(inches)							
2016	41.44							
2015	61.24	wet			overall average for modeling period =	45.364	inches	
2014	43.43	normal			2011-2015			
2013	42.68	normal						
2012	32.3	dry						
2011	47.17	wet			30-year average (1987-2016) =	40.44	inches	
2010	39.07							
2009	50.92							
2008	57.96			percentiles	30th	34.508	inches	
2007	30.57				70th	43.487	inches	
2006	29.93							
2005	37.85							
2004	42.27							
2003	46.06							
2002	40.95							
2001	35.29							
2000	37.37							
1999	34.06							
1998	43.62							
1997	31.23							
1996	43.67							
1995	41.68							
1994	34.7							
1993	54.76							
1992	33.49							
1991	33.48							
1990	45.09							
1989	28.6							
1988	33.93							
1987	38.38							
1986	34.88	J						
	https://ww	ww.weather	.gov/media	n/lsx/climate/stl/pred	cip/precip_stl_ranked	annual_an	nounts.pdf	

WRPLOT View - Lakes Environmental Software

This page intentionally left blank.

Chapter 4 AERMOD

EPA used version 9.6.5 of AERMOD-View (a proprietary version of AERMOD that adapts the unmodified program kernel of EPA's Build Number 18081 version of AERMOD into a graphical user interface) from Lakes Environmental Software of Waterloo, Ontario. This chapter follows the organizational structure of AERMOD's various input modules (called pathways).

Control Pathway

The control pathway sets various major modeling options including specifying options for dispersion modeling, terrain, and gas deposition as well as types of pollutants to be modeled. EPA evaluated dry and wet deposition of particles, particle bound compounds, and gasses from the Veolia emissions. EPA activated wet- and dry- plume depletion algorithms (to account for reductions in plume concentration from deposition that occurs closer to the stacks). EPA selected air concentration and deposition flux for both highest one-hour result and annual average for model output.

The model calculated gas deposition using default inputs. In default mode, the model estimated deposition velocity using default adjustments to leaf area indexes and a pollutant reactivity for divalent mercury of 1.0. The model set the pollutant reactivity for other vapors (organic compounds) at a default of zero. The facility's 2017 SSRA used a pollutant reactivity for divalent mercury of 0.0, referencing the HHRAP. However, the HHRAP does not recommend this value and AERMOD recommends using a value of 1.0 for divalent mercury.

EPA set seasonal categories to default values (winter is January and February, transitional spring is March through May, midsummer is June through August, autumn is September and October, and late autumn is November and December). EPA determined land use categories for gas deposition by extracting land use/land cover data from 2011 (USGS 2014) using ARCGIS (a geographical information system from ESRI of Redlands, California) and determining which land use type was most prominent within each 10-degree arc-slice surrounding the stack. Table 4-1 summarizes this information. The same analysis showed the overall land use around the facility to be 56% rural. AERMOD uses rural dispersion coefficients as default values.

Source Pathway

The characteristics of the sources were defined in Section 2 above. EPA delineated several buildings, tanks, and other structures as input for evaluating building downwash. EPA evaluated the dimensions of buildings near the stack for the potential to alter the plume with downwash effects by entering them into the model and using the BPIP tool to estimate building downwash effects. EPA used building dimensions and locational data from modeling files Veolia provided to the IEPA (IEPA 2017). Figure 4-1 and 4-2 show a three-dimensional depiction of the building layout. Table 4-2 summarizes the heights of buildings input into the model.

EPA entered gas and particle data for deposition under the Source pathway.

For divalent mercury deposition, EPA used the following parameter values.

Diffusivity in Air	0.0453 square centimeters per second (cm^2/s)	(U.S. EPA 2016)
Diffusivity in Water	$5.25 \times 10^{-6} \text{ cm}^2/\text{s}$	(U.S. EPA 2005a)
Cuticular Resistance	10^7 seconds per centimeter (s/cm)	(Wesely 2002)
Henry's Law Constant	2.37×10^{-5} Pascal cubic meters per mole (Pa·m ³ /mole)	(U.S. EPA 2016)

For organic vapor deposition, EPA used the following parameters reported in Wesely 2002 for generic vapor (as benzene):

Diffusivity in Air	$0.08962 \text{ cm}^2/\text{s}$
Diffusivity in Water	1.04×10^{-5} cm ² /s
Cuticular Resistance	2.51×10 ⁴ s/cm
Henry's Law Constant	557 Pa·m ³ /mole

For particulate matter deposition, EPA used site-specific particle-size data under AERMOD's Method 1 handling of particle data. This data is used for both particle-based pollutant dispersion, where the particle itself is expected to comprise the pollutant, and for particle-bound-based pollutant dispersion, where the pollutant is expected to be absorbed onto the surface of a particle. HHRAP assumes the amount of a particle-bound pollutant present on a given particle to be directly proportional to surface area since the contaminant is absorbed to the surface. To account for this, HHRAP recommends that the particle size distribution be adjusted for relative particle surface area assuming the particles are spherical.

In March of 2005, Veolia conducted stack testing on the Unit 4 rotary kiln and stack for particle size distribution. The stacks for Units 2 and 3, however, were not tested. On October 14, 2005, Veolia' submitted a detailed rationale for applying the Unit 4 stack particle data to the stacks for Units 2 and 3 based on similarities in air pollution control systems (Onyx 2005).

EPA considered the differences in the design and operation of the incinerators (rotary kiln versus dual-chamber/fixed hearth for example), in choosing to use the more conservative Unit 4 sitespecific particle source data. EPA compared particle-bound deposition results for Units 2 and 3 using Unit 4 stack particle data to an example of particle data from HHRAP consistent with combustion facilities equipped with either electrostatic precipitators or fabric filters. The sitespecific particle size distribution (adjusted for surface area) from the Unit 4 stack resulted in higher total deposition rates at the Lakes at Frank Holten State Recreation Area (the critical receptor location for mercury emissions) than the example particle size distribution in HHRAP. This testing was conducted during the previous iteration of modeling using the ISCST3 model. Since the particle deposition algorithms are based on the same studies for both AERMOD and ISCST3, EPA believes it is reasonable in the absence of stack-specific data for Units 2 and 3 to use the particle data which resulted in higher deposition at the lakes, the Unit 4 data, for the current round of modeling. EPA used the particle data from the Unit 4 test in part because it resulted in more conservative particle bound deposition. Table 4-3 summarizes the particle size distribution including fraction of total mass by mean diameter (for particle dispersion) and fraction of total surface area by mean particle diameter (for particle-bound dispersion). EPA

recommends future stack-specific testing for particle size distribution for Units 2 and 3, especially since the facility recently modified the air pollution control devices.

Receptor Pathway

EPA used a multi-tier Cartesian receptor grid for the project with 100-meter (m) spacing out to three kilometers (km) and 500-m spacing from three km to 10 km from a centroid of the stack locations. EPA selected the elevated terrain option and imported land elevations for each of the 5,233 receptor grid-nodes. See Figure 4-3 for an illustration of the multi-tiered receptor grid.

Meteorology Pathway

EPA concatenated the AERMET files prepared as described in Section 2 of this report (for the years 2011 through 2015) into five-year files for both the surface file and the profile file. EPA selected the entire meteorological period for modeling. The weather station tower at St. Louis, Lambert Field, St. Louis, Missouri has a base elevation of 162 meters.

Terrain

EPA used the AERMOD tool AERMAP to import terrain elevations for the stacks, all entered buildings, and receptor grid nodes. Figure 4-4 shows the terrain elevations surrounding the facility. Elevated terrain near the stacks can have a significant impact on the results of air modeling. Veolia's stacks are located on Mississippi River bottomland with nearby bluffs rising as much as 150 feet (44 meters) above the top of Veolia's highest stack. To properly handle terrain effects, each receptor point must have a corresponding elevation.

EPA used United States Geological Survey (USGS) 7.5 Minute Digital Elevation Models (DEMs) with 30 x 30-meter samples (of elevation) to obtain the elevations. EPA downloaded these DEMs from the Agency's server in 2002 for the 2007 SSRA. The elevation data is expected to remain valid for the current modeling. EPA used the following specific DEMs: Cahokia, Illinois; Clayton, Missouri; French Village, Illinois; Granite City, Illinois; Monks Mound, Illinois; and Webster Grove, Illinois.

The Clayton, French Village, and Monks Mound DEMs are in a different projection than the default projection selected for the modeling (NAD83). EPA used ARCGIS version 8.3 to convert the DEMs from the 1927 North American Datum (NAD27) to NAD83. EPA used ARCGIS to ensure that elevation values in the DEMs were in the same units (meters). The model sampled the DEMs in ARCGIS to derive an elevation for each receptor point. ARCGIS combined the UTM coordinates of the receptor grid points with their respective elevations into a text file used to import elevations into the dispersion model.

Output

EPA selected the highest annual averages for concentration, and all combinations of deposition flux for output into contour plot files.

Emission Phase Partitioning

EPA modeled three types of emissions from the Veolia facility: vapor; particle; and particlebound. Particle-bound differs from particle in that the mass fraction assigned to each particlesize range is further adjusted for surface area available for that particle-size range. Particlebound is a separate run because certain types of contaminants are expected to be adsorbed to the surface of particulate emissions and surface area is a better predictor of mass fraction for these adsorbing contaminants than volume or weight. EPA performed a separate vapor model run for divalent mercury vapor.

EPA modeled emissions in AERMOD with a *unit emission rate*, meaning that the modeled emission rate for all sources and pollutants is one gram per second (g/s). This allows for the running of one generic set of vapor, particle, and particle-bound model runs that can be scaled to the actual emission rate by simple application of a factor to the results. EPA enters the emission rate factor in the risk assessment stage. Although divalent mercury vapor gets a special run due to its unique fate and transport characteristics, EPA still uses a *unit emission rate* so that it is compatible with the other runs.

Figures 4-5 through 4-12 present average annual air concentrations and total deposition flux for modeled emissions from Unit 2. Concentration and deposition contours for modeled emissions from Units 3 and 4 are similar in shape and magnitude to that of Unit 2. All plotfiles for this project are available in the electronic project archive.

	Table 4-1																												
												Land	Use/Land (Cover within 3	km by 10-D	egree Ard	5												
	AERMOD Land Use Categories for Gas Deposition	7 - Bodi Wate	ies of er	none	6 - S Areas	Suburban s, Forested	5 - S Area	Suburban s, Grassy	1 - Urban La	and, No V	√egetation	8 - Ba Mosi	arren Land, tly Desert		4 - 1	Forest				3 - Rangela	and		2 - Ag I	gricultural Land	9 - Nor Foreste Wetland	n- ed ds			
10-degree ARC (centered on (degrees)	2011 National Land Use/Land Cover Categories	11 - O Wate	ppen er	12 - Perennial Snow and Ice	22 - E Low	Developed, Intensity	21 - E Ope	Developed, en Space	23 - Developed, Medium Intensity	24 - I High	Developed, Intensity	31 - E (Rock/	Barren land /Sand/Clay)	41 - Deciduous Forest	42 - Evergreen Forest	43 - Mixed Forest	90 - We	· Woody etlands	52 - Shrub/ Scrub	71 - Grassland/ Herbaceous	81 -	Pasture/ Hay	82 - C C	Cultivated Crops	95 - Emerge Herbaced Wetland	nt ous ds	Total Pixel Count	Highest Category - Percentage	Predominant Land Use Category
10		176 1	9.86%	-	137	15.46%	71	8.01%	129	73	22.80%	0	0.00%	54	-	-	267	36.23%	-	-	2	0.23%	0	0.00%	5 0.5	56%	914	36%	forest
20		36 4	4.06%	-	213	24.04%	165	18.62%	130	69	22.46%	0	0.00%	37	-	-	201	26.86%	-	-	45	5.08%	0	0.00%	0 0.0	00%	896	27%	forest
30		3 (0.34%	-	333	37.58%	119	13.43%	209	126	37.81%	0	0.00%	17	-	-	79	10.84%	-	-	0	0.00%	0	0.00%	0 0.0)0%	886	38%	urban
40		0 (0.00%	-	397	44.81%	129	14.56%	208	137	38.94%	0	0.00%	0	-	-	13	1.47%	-	-	0	0.00%	0	0.00%	0 0.0)0%	884	45%	suburban forest
50		0 (0.00%	-	388	43.79%	116	13.09%	131	217	39.28%	0	0.00%	0	-	-	0	0.00%	-	-	0	0.00%	18	2.03%	0 0.0)0%	870	44%	suburban forest
60		0 (0.00%	-	308	34.76%	127	14.33%	184	235	47.29%	0	0.00%	0	-	-	1	0.11%	-	-	0	0.00%	23	2.60%	0 0.0)0%	878	47%	urban
70		0 0	0.00%	-	406	45.82%	122	13.77%	136	212	39.28%	0	0.00%	0	-	-	7	0.79%	-	-	0	0.00%	0	0.00%	0 0.0)0%	883	46%	suburban forest
80		59 (6.66%	-	167	18.85%	111	12.53%	128	356	54.63%	0	0.00%	6	-	-	46	5.87%	-	-	0	0.00%	0	0.00%	0 0.0)0%	873	55%	urban
90		0 (0.00%	-	149	16.82%	109	12.30%	259	302	63.32%	0	0.00%	0	-	-	68	7.67%	-	-	0	0.00%	3	0.34%	0 0.0	0%	890	63%	urban
100		0 (0.00%	-	193	21.78%	156	17.61%	121	160	31.72%	0	0.00%	0	-	-	42	4.74%	-	-	20	2.26%	189	21.33%	0 0.0)0%)0%	881	32%	urban
110		0 (0.00%	-	184	20.77%	114	12.8/%	158	141	33.75%	0	0.00%	0	-	-	8	0.90%	-	-	10	1.13%	270	30.47%	0 0.0)0%)0%	885	34%	urban
120			0.00%	-	290	32.7570 21.260/	167	17.7270	120	97	24.4970	0	0.00%	0	-	-	21	2.05%	-	-	0	0.00%	205	22.9170		00%	863 863	270/	suburban forest
130			0.00%	-	277	31.20% 42.550/	227	16.6370	1/0	54	37.1370 28.100/	0	0.00%	0	-	-	51	5.50%	-	-	0	0.00%	22	0.33%		00%	802 806	3770 420/	urban auhumhan fanast
140			0.00%	-	3// 419	42.55%	237	20.7370	195	54 70	28.1070	0	0.00%	0	-	-	12	0.00%	-	-	0	0.00%	55 05	5.7270 10.729/		00%	002	4370	suburban forest
150			0.00%	-	280	47.1070	164	24.3070	100	100	22 750/	0	0.00%	0	-	-	0	0.00%	-	-	0	0.00%	95 60	6 770/		0.0%	903	4770	suburban forest
170			0.00%	-	300	43.91%	63	18.3170 7.11%	232	163	55.75% 11 58%	0	0.00%	0	-	-	0	0.00%	-	-	0 73	0.00% 8.24%	85	0.7770		00%	912	4470	suburban forest
180		4 (0.0070	-	300	36.46%	136	15 35%	252	137	44.3870	0	0.00%	0	-	-	38	4 29%	-	-	0	0.00%	0	9.3970		070	904	45%	urban
190		23 2	2 60%	-	366	41 31%	115	12 98%	200	75	31.04%	0	0.00%	0	-	-	53	5.98%	-	-	0	0.00%	82	9.26%	0 0.0	00%	914	41%	suburban forest
200		68 7	7.67%	-	107	12 08%	56	6 3 2%	64	76	15.80%	0	0.00%	6	-	-	103	12 30%	-	-	0	0.00%	376	42 44%	40 4 5	51%	896	41%	agricultural
210		31 3	3 50%	-	127	14 33%	192	21.67%	40	37	8 69%	0	0.00%	5	-	-	53	6 55%	-	-	23	2.60%	378	42.4470	0 0.0	00%	886	4270	agricultural
210		12 1	1 35%	-	147	16 59%	218	21.0770	297	147	50 11%	0	0.00%	0	-	-	28	3.16%	-	-	0	0.00%	35	3 95%	0 0.0	00%	884	50%	urban
230		399 4	1.507%	-	82	9.26%	96	10.84%	160	102	29 57%	0	0.00%	7	-	-	20	3 50%	-	-	0	0.00%	0	0.00%	0 00	00%	870	45%	open water
240		663 7	4 83%	-	36	4.06%	16	1.81%	59	71	14 67%	33	3 72%	, 0	-	-	0	0.00%	-	-	0	0.00%	0	0.00%	0 00	00%	878	75%	open water
250		242 2	27.31%	-	109	12.30%	3	0.34%	196	319	58.13%	14	1.58%	0	-	-	0	0.00%	-	-	0	0.00%	0	0.00%	0 0.0	00%	883	58%	urban
260		153 1	7.27%	-	98	11.06%	21	2.37%	165	418	65.80%	18	2.03%	0	-	-	0	0.00%	-	-	0	0.00%	0	0.00%	0 0.0	00%	873	66%	urban
270		111 1	2.53%	-	141	15.91%	27	3.05%	225	377	67.95%	8	0.90%	0	-	-	0	0.00%	-	-	0	0.00%	0	0.00%	0 0.0)0%	889	68%	urban
280		78 8	8.80%	-	134	15.12%	2	0.23%	281	387	75.40%	0	0.00%	0	-	-	0	0.00%	-	-	0	0.00%	0	0.00%	0 0.0)0%	882	75%	urban
290		79 8	8.92%	-	197	22.23%	12	1.35%	258	340	67.49%	0	0.00%	0	-	-	0	0.00%	_	-	0	0.00%	0	0.00%	0 0.0)0%	886	67%	urban
300		85 9	9.59%	_	152	17.16%	7	0.79%	278	351	70.99%	6	0.68%	0	_	_	0	0.00%		_	5	0.56%	0	0.00%	0 0.0)0%	884	71%	urban
310		75 8	8.47%	_	127	14.33%	3	0.34%	297	350	73.02%	2	0.23%	0	_	_	0	0.00%	_	_	8	0.90%	0	0.00%	0 0.0)0%	862	73%	urban
320		92 1	0.38%	_	63	7.11%	14	1.58%	277	437	80.59%	5	0.56%	0	-	-	0	0.00%	_	-	7	0.79%	0	0.00%	0 0.0)0%	895	81%	urban
330		120 1	3.54%	_	61	6.88%	5	0.56%	226	476	79.23%	0	0.00%	0	-	-	0	0.00%	_	-	14	1.58%	0	0.00%	0 0.0)0%	902	79%	urban
340		174 1	9.64%	_	4	0.45%	0	0.00%	118	595	80.47%	0	0.00%	0	_	_	0	0.00%	_	_	20	2.26%	0	0.00%	0 0.0	00%	911	80%	urban
350		313 3	5.33%	_	42	4.74%	19	2.14%	190	321	57.67%	11	1.24%	3	_	_	0	0.34%	-	_	15	1.69%	0	0.00%	0 0.0	00%	914	58%	urban
360		695 7	78.44%	-	41	4.63%	6	0.68%	55	62	13.21%	7	0.79%	6	-	-	27	3.72%	-	-	4	0.45%	0	0.00%	1 0.1	11%	904	78%	open water
		3691 1	1.52%	0	7283	22.74%	3291	10.27%	6449	7752	44.34%	104	0.32%	141	0	0	1120	3.94%	0	0	246	0.77%	1908	5.96%	46 0.1	14%	32031		
Note: The assi	onment of 2011 La	nd Use/Lan	d Cover c	ategories to	AERMO)D gas-denos	sition cat	tegories was	at the discretion	on of the	55.66%	rural																	

This page intentionally left blank.

	Table	4-2		
	Building Elevations and I	Heights for Downv	vash	
Building ID	Description	Tier_Number	Base_Elevation	Tier_Height
			[m]	[m]
AshStore	Ash Storage	1	125	6.90
2/3DirIn	Units 2 & 3 Direct Injection Building	1	125	6.25
ProdDock	Production Building Dock	1	125	5.23
NendPers	North End Personnel	1	125	5.23
SDA2	Spray Dryer Adsorber 2	1	125	24.16
BagHse2	Unit 2 Baghouse	1	125	15.36
SDA3	Spray Dryer Adsorber 3	1	125	24.16
BagHse3	Unit 3 Baghouse	1	125	15.36
SDA4	Spray Dryer Adsorber 4	1	124.9	25.40
BagHse4	Unit 4 Baghouse	1	124.9	4.11
SendPers	South End Personnel Building	1	124.9	6.10
BulkFeed Bulk Feed Building		1	124.9	17.27
DrumStor	Drum Storage Building Unit 6	1	124.9	6.15

Data extracted from dispersion modeling input file, Veolia.PIP (IEPA 2017).

Table 4-3									
Site-Specific Particle Size Distribution									
Geometric Mean Diameter (µm)	Fraction of Total Mass	Fraction of Total Surface Area							
0.16	0.008	0.082							
0.26	0.011	0.073							
0.36	0.011	0.054							
0.46	0.011	0.042							
0.78	0.088	0.192							
1.84	0.370	0.343							
3.83	0.445	0.198							
6.22	0.056	0.015							

Onyx 2005

This page intentionally left blank.

Figure 4-1. 3-Dimensional Image of Buildings and Tanks (Building Downwash Tier 1 Buildings in Blue w/Unit 4 Stack in Red)

Figure 4-2. 3-Dimensional Image of Buildings and Tanks (Building Downwash Tier 1 Buildings in Blue w/Units 2 and 3 Stacks in Red)

Figure 4-3. Receptor Grid Veolia ES Technical Solutions, L.L.C., Sauget, IL

AERMOD View - Lakes Environmental Software

PROJECT TITLE:

Figure 4-4. Terrain Elevations Veolia ES Technical Solutions, L.L.C., Sauget, IL

AERMOD View - Lakes Environmental Software

Figure 4-5. Veolia, Sauget, Illinois. Stack 2 - Divalent Mercury Vapor Concentration Plot File of Annual Values Averaged Across 5 Years

I	PLOT FILE OF ANNUAL VALUES AVERAGED ACROSS 5 YEARS FOR SOURCE GROUP: ALL g/m^2																		
0.0	03	0.0	05 0.0	06	0.0)10	0.0	20	0.0	50	0.0	060	0.1	00	0.2	00 0	.297		
COM	OMMENTS: MODELING OPTIONS:								COMPANY NAME:										
	MODELING, OPTIONS, USED NONDFAULT, CONC, DEPOS,								:, ,	U.S. EPA									
	DDEP, WDEP, ELEV,								MODELER:							STATES			
					ADJ_U	*			- ,	TDR									
					OUTPUT	TYPE:	REC	CEPTORS:		SCALE:			1:1	44,679		ROM		V AGI	
Total Depos. 5233						33		0				J 4 km		SENTAL P	ROTECTIC	5			
MAX: UNITS:							DATE:					PRO	JECT NO .:						
					0.29678	B	g/n	n^2			e	6/2/2019	9						

PROJECT TITLE:

Figure 4-6. Veolia, Sauget, Illinois. Stack 2 - Divalent Mercury Vapor Total Deposition

X-Direction [m]

Figure 4-7. Veolia, Sauget, Illinois. Stack 2 - Particle Bound Concentration Plot File of Annual Values Averaged Across 5 Years

PROJECT TITLE:

PROJECT TITLE:

Figure 4-9. Veolia, Sauget, Illinois, Stack 2 - Particle Concentration Plot File of Annual Values Averaged Across 5 Years

PROJECT TITLE:

PROJECT TITLE:

Figure 4-11. Veolia, Sauget, Illinois. Stack 2 - Vapor Concentration Plot File of Annual Values Averaged Across 5 Years

											-	
.0	00	0.0	00 0	0.0	01 0	.C	03	0.0	05	0.0	08	0.0
:01	MMENTS:						NODEL NODE NOND DDEP DRYD ADJ_I	ING OP FAUI , WDI PLT, J*	TIONS: , OPT .T, CO EP, EI WETI	TIONS ONC, LEV, DPLT	, USEI DEPO: , RURA	D:, S, NL,
							outpu [.] Total I	r type Depo:	s.	RECEF	PTORS:	
						N	лах:) .140 3	89		UNITS: g/m^	2	

C

Figure 4-12. Veolia, Sauget, Illinois. Stack 2 - Vapor Total Deposition Plot File of Annual Values Averaged Across 5 Years

PROJECT TITLE:

Chapter 5 Emission Rates at the MACT Standard

To estimate emission rates, EPA combined the stack gas flow rate with the Clean Air Act Maximum Achievable Control Technology (MACT) standards. The MACT standards applicable to incinerators were promulgated as stack concentrations and not as emission rates. At a constant stack concentration, an increase in stack gas flowrate would increase emission rates. The SSRA results are wholly dependent on emission rates. To estimate emission rates, we must determine the stack gas flowrate and combine it with the MACT standard. EPA calculated MACT emissions using the stack gas flowrates from the 2013 CPT, Table Summaries of Isokinetic Sampling, 3-3, 3-4, and 3-5 (Veolia 2014). One objective of the 2013 CPT test runs was to determine maximum stack gas flowrate. EPA averaged these maximum measured flowrates from the CPT to estimate the emission rate at the MACT. Veolia has operated at higher stack gas flowrates for each of its units in the past and stack gas flowrates higher than the values given here will increase the allowable emissions under the MACT and result in higher modeled risks to the community. EPA separately evaluated actual measured emissions from the 2013 CPT (Veolia 2014) for comparison.

Table 5-1 summarizes the maximum stack gas flowrates EPA used to estimate emission rates at the MACT standard. Tables 5-2 describes emission rates for dioxins and furans at the MACT standard. Note that the MACT standard for dioxin and furan emissions was promulgated as a single value based on the relative toxicity of individual dioxin and furan congeners to 2,3,7,8-tetrachloro-dibenzo-dioxin, known as toxicity equivalence (TEQ). Tables 5-3 through 5-5 summarize emission rates for heavy metals at their respective MACT standards.

	Table 5-1	
	Maximum Stack Gas Flowrate	
Unit	Dry Standard Cubic Feet per Minute (dscfm)	Dry Standard Cubic Meters per Second (dscms)
2	5,235	2.47
3	5,459	2.58
4	16,471	7.77

Dioxin/Furans

	Table 5-2										
	Dioxin/Furan Emission Rates										
			MACT Standard	MACT Standard	Average 2013						
	2013 CPT	Dioxin MACT	Dioxin Emission	Dioxin Emission	CPT Dioxin						
	Stack Flowrate	Standard	Rate	Rate	Emission Rate						
Unit	(dscms)	(ng TEQ/dscm)	(ng TEQ/s)	(g TEQ/s)	(g TEQ/s)						
2	2.47	0.2	0.494	4.94 x 10 ⁻¹⁰	1.77 x 10 ⁻¹¹						
3	2.58	0.2	0.515	5.15 x 10 ⁻¹⁰	2.12 x 10 ⁻¹²						
4	7.77	0.4	3.109	3.11 x 10 ⁻⁹	6.55 x 10 ⁻¹⁰						

Metals

	Table 5-3										
	Mercury Emission Rates										
			MACT Standard	MACT Standard	Average 2013						
	2013 CPT	Mercury MACT	Mercury Emission	Mercury emission	CPT Mercury						
	Stack Flowrate	Standard	Rate	rate	Emission Rate						
Unit	(dscms)	(ug/dscm)	(ug/s)	(g/s)	(g/s)						
2	2.47	130	321	3.21 x 10 ⁻⁴	1.87 x 10 ⁻⁴						
3	2.58	130	335	3.35 x 10 ⁻⁴	8.51 x 10 ⁻⁵						
4	7.77	130	1,010	1.01 x 10 ⁻³	4.95 x 10 ⁻⁵						

	Table 5-4											
	Semi Volatile Metals (SVM) – Cadmium and Lead – Emission Rates											
Unit	2013 CPT Stack Flowrate (dscms)	SVM MACT Standard (ug/dscm)	MACT Standard SVM Emission Rate (ug/s)	MACT Standard SVM Emission Rate (g/s)	Average 2013 CPT SVM Emission Rate (g/s)							
2 3 4	2.47 2.58 7.77	230 230 230	568 593 1,790	5.68 x 10 ⁻⁴ 5.93 x 10 ⁻⁴ 1.79 x 10 ⁻³	1.77 x 10 ⁻⁶ 2.70 x 10 ⁻⁵ 3.87 x 10 ⁻⁵							

	Table 5-5										
	Low Volatile Metals (LVM) – Arsenic, Beryllium, and Chromium – Emission Rates										
			MACT Standard		Average 2013						
	2013 CPT	LVM MACT	LVM Emission	MACT Standard	CPT LVM						
	Stack Flowrate	Standard	Rate	LVM Emission Rate	Emission Rate						
Unit	(dscms)	(ug/dscm)	(ug/s)	(g/s)	(g/s)						
2	2.47	92	227	2.27 x 10 ⁻⁴	4.76 x 10 ⁻⁶						
3	2.58	92	237	2.37 x 10 ⁻⁴	1.69 x 10 ⁻⁵						
4	7.77	92	715	7.15 x 10 ⁻⁴	4.76 x 10 ⁻⁵						

Chapter 6 Metals Speciation and Loss to Global Cycle

EPA adjusted emission rates for different species of mercury and chromium expected to be present in the emissions. The different species vary greatly in fate, transport, and toxicity characteristics. Mercury is also adjusted for expected loss to global cycle by which a fraction of mercury emitted does not deposit locally.

EPA estimated mercury speciation from stack testing. Mercury can be emitted not only in different phases (vapor and particle-bound) but also in different species that affect how mercury is dispersed and deposited. The primary species of concern are elemental mercury and divalent mercury. Veolia did not conduct separate stack testing for mercury speciation during the last three CPTs. Mercury speciation can be estimated from the stack testing Method 29 results as follows (U.S. EPA 2005a):

- Mercury found in the probe rinse and filter can be assumed to be particle or particle-bound mercury.
- Mercury found in the nitric acid/hydrogen peroxide impinger and rinse is expected to be divalent mercury vapor.
- Mercury found in the potassium permanganate impinger and rinse is expected to be elemental mercury vapor.

According to the Mercury Study Report to Congress (U.S. EPA 1997b), the greatest degree of local deposition in consideration of loss to global cycle (where some of the mercury is assumed to leave the study area without depositing) is associated with divalent mercury vapor emissions (68% depositing locally).

The fraction of a pollutant that remains in the vapor phase in the surrounding area is identified in the model as F_v . This parameter tells the model how to partition the pollutant between the various phases. Since the "loss to global cycle" assumptions ultimately affect how the mercury species deposit, F_v must be individually calculated for the species of mercury and entered into the model. Table 6-1 summarizes the MACT standard emission rates for different mercury species and includes adjustments for global loss. Table 6-2 summarizes the emission rates for different mercury species at the average emission rate from the 2013 CPT and includes adjustments for global loss.

The diagrams in Figures 6-1, 6-2, and 6-3 show how the speciation of mercury and the estimates for "loss to global cycle" are factored into the emission rates at the MACT standard. The diagrams in Figures 6-4, 6-5, and 6-6 show how the speciation of mercury and the estimates for "loss to global cycle" are factored into the average 2013 CPT reported emission rates. The diagrams also show how EPA calculates F_v for both elemental and divalent mercury. Divalent mercury is modeled as mercuric chloride. These factors combined to scale the dispersion and deposition results from the "unit" emission model to site-specific air concentrations and deposition fluxes for the different species and phases of mercury. EPA then used the scaled

results as the contaminant source for fate and transport of mercury through the environment to exposure scenarios.

Chromium is emitted as either the hexavalent species or as the trivalent species. Hexavalent chromium is more toxic than trivalent. EPA does not have site-specific sampling data documenting the fractions of each chromium species in Veolia's stack emissions. In the absence of site-specific data, the HHRAP recommends apportioning them evenly - 50% and 50% (EPA 2005a). Table 6-3 summarizes chomium emissions by species at both the MACT standard and at the average emission from the 2013 CPT (Veolia 2014).

	Table 6-1										
	Speciated Mercury Emission Rates at the MACT Standard Emission										
		Divalent Mercury	Modeled		Modeled						
	MACT	Emission Rate	Divalent Mercury		Elemental						
	Standard	(divalent vapor	Emission Rate with		Mercury Emission						
	Mercury	and particle	Loss to Global	Elemental Mercury	Rate with Loss to						
	emission rate	bound)	Cycle	Emission Rate	Global Cycle						
Unit	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)						
2	3.21 x 10 ⁻⁴	2.80 x 10 ⁻⁴	1.94 x 10 ⁻⁴	4.11 x 10 ⁻⁵	4.11 x 10 ⁻⁷						
3	3.35 x 10 ⁻⁴	3.05 x 10 ⁻⁴	2.07 x 10 ⁻⁴	2.97 x 10 ⁻⁵	2.97 x 10 ⁻⁷						
4	1.01 x 10 ⁻³	9.81 x 10 ⁻⁴	6.65 x 10 ⁻⁴	2.97 x 10 ⁻⁵	2.97 x 10 ⁻⁷						

	Table 6-2														
	Speciated Mercury Emission Rates at the 2013 CPT Emission Rate														
		Divalent Mercury	Modeled		Modeled										
		Emission Rate	Divalent Mercury		Elemental										
	Average 2013	(divalent vapor	Emission Rate with		Mercury Emission										
	CPT Mercury	and particle	Loss to Global	Elemental Mercury	Rate with Loss to										
	Emission Rate	bound)	Cycle	Emission Rate	Global Cycle										
Unit	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)										
2	1.87 x 10 ⁻⁴	1.63 x 10 ⁻⁴	1.11 x 10 ⁻⁴	2.39 x 10 ⁻⁵	2.39 x 10 ⁻⁷										
3	8.51 x 10 ⁻⁵	7.86 x 10 ⁻⁵	5.27 x 10 ⁻⁵	7.55 x 10 ⁻⁶	7.55 x 10 ⁻⁸										
4	4.95 x 10 ⁻⁵	4.81 x 10 ⁻⁵	3.26 x 10 ⁻⁵	1.45 x 10 ⁻⁶	1.45 x 10 ⁻⁸										

	Table 6-3													
Spee	Speciated Chromium Emission Rates at MACT Standard Emission Rate and at 2013 CPT Emission Rate													
Unit	MACT Standard	MACT Standard	Average 2013 CPT	Average 2013 CPT										
	Chromium Emission Rate	Chromium Emission	Chromium Emission	Chromium Emission										
	as Hexavalent Chromium	Rate as Chromium	Rate as Hexavalent	Rate as Chromium										
	(g/s)	(trivalent)	Chromium	(trivalent)										
		(g/s)	(g/s)	(g/s)										
2	1.14 x 10 ⁻⁴	1.14 x 10 ⁻⁴	2.38 x 10 ⁻⁶	2.38 x 10 ⁻⁶										
3	1.19 x 10 ⁻⁴	1.19 x 10 ⁻⁴	8.45 x 10 ⁻⁶	8.45 x 10 ⁻⁶										
4	3.58 x 10 ⁻⁴	3.58 x 10 ⁻⁴	2.38 x 10 ⁻⁵	2.38 x 10 ⁻⁵										

											Figure 6-1											
					Pha	se Allocation an	d Spec	iation of	Merc	cury for V	eolia 2019 EPA	A RIsk Assessn	ent at MACT	Stan	dard Emission F	late		_				
										Stack 2	- 2013 Metho	129 Results										
									_									_				
					Cita Cassifia Staal: Cassi	ation Daculta					Clabal Laga	ort to Congress										
					Site-specific stack speci	auon Results			-		Giobai Loss	riactions				Lost to Global						
							1								Deposited (g/s)	Cycle (g/s)						
Total Mercury Emmission	3				% Elemental Mercury																	
into Air	3.21E-04	g/s			Vapor				•	1%	Deposited as	elemental mercury	y vapor		4.11E-07			_				
con	erted from M	IACT			12.80%	4.11E-05	g/s															
0/ Manage Dhave				1					-	99%	Lost to globa	l cycle				4.07E-05						
% vapor Phase					% Divalent Mercury																	
99.95%	3.21E-04	g/s	\leftarrow	+	Vapor			-	•	68%	Deposited as	divalent mercury v	apor		1.90E-04							
		0	\backslash		87.2%	2.80E-04	g/s	\leq			1											
									•	32%	Lost to globa	l cycle				8.95E-05						
% Particle Bound Phase				$\mathbf{\lambda}$									L					_				
0.0480/		,			% Divalent Mercury																	
0.045%	1.46E-07	g/s			Particle Bound	1.4(E.07	. 1.		*	36%	deposited as	divalent mercury p	articulate		5.25E-08			_				
					0.045%	1.40E-07	g/s		•	649/	Lost to globe	l avala ac divalant	margury particul	ote		0 22E 08						
										0470	Lost to gioba	regere as divalent	mercury particul	aic		9.551-08						
												Site-	Specific Overal	ll Frac	tion Global Loss							
Summary with Consid	eration of I	loss to	Global	Cycle			_		_						Total Deposited	Total Lost						
									_						1.91E-04	1.30E-04		_				
Total mercury emitted depo	osited as dival	ent merc	ury										Percent o	of Total	59.409%	40.591%						
Deposited as divalent merc	urv vanor + 1	Denosite	d as dival	ent me	reury particulate																	
Deposited as a valent mere	ary rupor · ·	seposite	=		1.90E-04	g/s																
			01	r	59.281%	of total mercury en	nitted															
Total mercury deposited as	elemental vap	or																				
B NIL VI					1				_			Method 29 Hg S	peciation									
Deposited elemental merci	iry vapor =		4.11E	5-07	g/s								2012 Ha Same	ation		D 1	D2	D2	Armana			
			0.128	50%0	or total mercury emitted								2013 Hg-Speci	auon		KI	K2	К3	Average			
							-	-				particulate He	Probe Rinse an	d Filter		0.08	0.08	0.08	0.08	Particulate	0.08	0.045%
												particulate 11g	, rrese remse an	a i inter		ND	ND	ND	0.00	. articulate	0.00	0.07570
												HgCl2	nitric and perox	cide		84.2	182	142	136.06667			
Vapor Fraction (Fv) o	f Deposited	Mercu	iry		(for partitioning between	vapor and particle b	ound de	position flu	ixes)				l Ì									
- ()			Ĺ									HgCl2	empty rinse			51.6	0.57	0.15	17.44	Divalent	153.50667	87.2%
I	v (divalent me	ercury)=	total dep	posited	as divalent mercury vapor	divided by total diva	ent me	rcury depos	ited									ND				
H	v (divalent mo	ercury)=	0.99972	24173								elemental Hg	g permanganate			31.136	0.5	3.4	11.678667			
	(-1+-2		4.4.1.2		 	 				. 1		.1	TICL			ND	17.0	14.2	10.9((((7	El	22 545222	12.00/
FV	(elemental mo	ercury)=	total dep	osited	as elemental mercury vapo	or divided by total el	emental	mercury de	eposite	ea		elemental Hg	g HCI rinse			1.1	17.2	14.3	10.800007	Elemental	22.545333	12.8%
FV	(cremental inc	crculy)-	1						-											Total	176,132	
																				rotai	1101152	

											Figure 6-2										
						DI .		· 10	• .• .•		P. 2010 ED.		(MACT C)								
						Phase	Alloca	ition and S	peciation of	Mercury for V	2012 Methed	Risk Assessment a	t MACI Standa	ard Emission F	late						
			-							Stack 3	- 2015 Method A	29 Results	-								
			_																		
			-		a'. a .'a a la	i di Di la				Mercury Re	ort to Congress					-					
			-		Site-Specific Stack Spec	lation Results				Giobal Loss	Fractions			Lost to Global							
									1				Deposited (g/s)	Cycle (q/s)							
Total Mercury Emmissions					% Elemental Mercury								Deposited (g/s)	Cycic (g/s)							
into Air	3.35E-04	g/s			Vapor			-+	1%	Deposited as	elemental mercury	vapor	2.97E-07								
con	verted from M	IACT		1	8.87%	2.97E-05	g/s	\leq													
				/					99%	Lost to glob	al cycle			2.94E-05							
% Vapor Phase																					
					% Divalent Mercury																
99.88%	3.35E-04	g/s	$\langle \rangle$	•	Vapor				68%	Deposited as	divalent mercury v	apor	2.07E-04			_					
					91.0%	3.05E-04	g/s														
0/ Dontiala Davind Direr			\vdash						32%	Lost to glob	al cycle			9./6E-05							
% Particle Bound Phase				×	% Divalant Marcury		-														
0.116%	3 89E-07	a/s			Particle Bound				36%	denosited as	divalent mercury n	articulate	1 40F-07								
0.11070	5.0712-07	E/ 3			0.116%	3.89E-07	g/s		5070	deposited as	divarent mercury p	articulate	1.401-07								
							8.	*	64%	Lost to glob	al cycle as divalent	mercury particulate		2.49E-07							
				L					L												
											Site-	Specific Overall Fra	ction Global Loss								
						_															
Summary with Conside	ration of L	oss to C	Global C	ycle									Total Deposited	Total Lost							
													2.08E-04	1.27E-04							
Total mercury emitted depo	sited as divale	nt mercu	ıry									Percent of Tota	1 62.02%	37.981%							
D																					
Deposited as divalent mercu	iry vapor + D	eposited	as divale	nt mere	cury particulate	. 1.															
			=		2.07E-04	g/s	ittad														
			01		01.93070	or total mercury en	Inted						-								
Total mercury deposited as	elemental van	or																			
21											Method 29 Hg S	neciation									
Deposited elemental mercu	ry vapor =		2.97E	2-07	g/s																
			0.08	9%	of total mercury emitted							2013 Hg-Speciation		R1	R2	R3	Average				
											particulate Hg	g Probe Rinse and Filte	r	0.08	0.08	0.08	0.08	Particu	late	0.08	0.116%
														ND	ND	ND					
											HgCl2	nitric and peroxide		81	52.2	54	62.4				
Vapor Fraction (Fv) of	Deposited	Mercu	ry		(for partitioning between	n vapor and particle b	ound de	position flux	es)												
		,			P. 1						HgCl2	empty rinse		0.29	0.25	0.18	0.24	Divale	nt (62.64	91.0%
	rv (divalent me	ercury)=	total der	osited	as divalent mercury vapor	r divided by total dival	ent mer	cury deposite	ed		alamant-111-			0.21	0.049	0.1/	0.1202222		\rightarrow		
	rv (divalent me	ercury)=	0.9993	24324							elemental Hg	g permanganate	-	0.21	0.048 ND	0.16	0.1393333				
Fo	(elemental m	ercury)=	total der	osited	as elemental mercury yar	or divided by total el	mental	mercury dep	osited		elemental He	HCl rinse		2.5	2.6	12.8	5 9666667	Eleme	ntal	6 106	8.9%
Fv	(elemental ma	ercurv)=	1	u	as elementar meredry vap		memai		ooneu		eremendi Hg			2.2	2.0	12.0	5.5000007	Elemen		0.100	0.770
1.		() () () () () () () () () ()	·								1							Tota	d e	58.826	

									Figur	e 6-3									
					Р	hase A	Allocation and	Speciation of N	Aercury for Veolia 2019	EPA	RIsk Assessment at	t MACT Stands	ard Emission R	ate					
									Stack 4 - 2013 M	ethod 2	9 Results								
									Mercury Report to Con	mess									
				Site-Specific Stack Speci	iation Results				Global Loss Fractions	деза									
			·										Lost to Global						
												Deposited (g/s)	Cycle (g/s)						
Fotal Mercury Emmissions	5			% Elemental Mercury															
into Air	1.01E-03	g/s		Vapor				1%	Deposited as elemental	mercury	vapor	2.97E-07			_				
cor	nverted from M/	ACT		2.93%	2.97E-05	g/s		0.09/	Taatta alabel avala				2.04E.05						
% Vapor Phase								99%	Lost to global cycle				2.94E-05						
70 vapor r nase				% Divalent Mercurv															
99.41%	1.00E-03	g/s	$\leftarrow +$	 Vapor 			-+	68%	Deposited as divalent m	ercury v	apor	6.63E-04							
			\mathbf{i}	96.5%	9.75E-04	g/s													
							~	32%	Lost to global cycle				3.12E-04						
% Particle Bound Phase				*															
0.5000/		,		% Divalent Mercury				2/0/				2.155.07							
0.590%	5.96E-06	g/s		Particle Bound	5.06E.06	ala		30%	deposited as divalent me	ercury pa	rticulate	2.15E-06				_			
				0.390%	5.90E-00	g/s	-	6494	Lost to global guale as	divolant	neroury porticulate		2 81E 06						
								0470	Lost to global cycle as	ai varent i	nereury particulate		5.012-00						
										Site-	Specific Overall Fract	tion Global Loss							
Summary with Conside	eration of Lo	ss to Gl	obal Cyc	le								Total Deposited	Total Lost						
												6.65E-04	3.45E-04						
Total mercury emitted depo	osited as divalent	t mercury	/								Percent of Total	65.845%	34.155%						
Dama ait and an directant manage	Date of the second seco		a disatant m																
Jeposneu as urvaient merci	ury vapor + De	posneu a		6 65E 04	ale										-				
			or	65.816%	of total mercury en	nitted													
Fotal mercury deposited as	elemental vapor																		
									Method	29 Hg S	peciation								
Deposited elemental mercu	iry vapor =		2.97E-07	7 g/s															
			0.0293%	of total mercury emitted							2013 Hg-Speciation		R1	R2	R3	Average			
							_				D 1 D' 17'1		0.00	0.00	0.00	0.00		0.00	0.5000/
									partic	ulate Hg	Probe Rinse and Filter		0.08	0.08	0.08	0.08	Particulate	0.08	0.590%
										HaC12	nitric and perovide		0	10.4	19.5	12 966667			-
Vapor Fraction (Fv) of	f Deposited M	/ercurv		(for partitioning between	vanor and particle b	ound des	nosition fluxes)			rige12	mare and perovide		,	10.4	17.5	12.900007			
	posice i			(15) partitioning between	. apor and particle b	cana de	position nuxes)			HgCl2	empty rinse		0.12	0.12	0.12	0.12	Divalent	13.086667	96.5%
	Fv (divalent me	rcury)=	total deposi	ted as divalent mercury vapor	divided by total dival	ent mer	cury deposited			ingenz			ND	ND	ND		Diffutent	121230007	,
	Fv (divalent me	rcury)=	0.9967740	97					elem	ental Hg	permanganate		0.048	0.047	0.047	0.0473333			
													ND	ND	ND				
F	v(elemental me	rcury)=	total deposi	ted as elemental mercury vap	or divided by total ele	emental	mercury deposite	d	elem	ental Hg	HCl rinse		0.22	0.082	0.75	0.3506667	Elemental	0.398	2.9%
F	v(elemental me	rcury)=	1											ND					-

													Figure 6-4											
Number of Process of																								
Name Note							Phase Allocation	and S	pecia	tion of	f Mercur	y for	Veolia 2019 I	EPA RIsk Asses	ssment at 2	013 CP	T Emission Rate							
Since and and any and any											Sta	ck 2 -	2013 Method	29 Results										
Image: provide of the set o								-					Mercury Rep	ort to Congress						_				
Index or province of the control o						Site-Specific Stack Speci	ation Results		-				Global Loss I	ractions				×						
Total Accord primations into <i>M</i> M Deposited meternal mercery upor 1 2 40%, 239E,45 gr. Deposited meternal mercery upor 1 11E,44 gr. Deposited mete									+								Demosited (a/a)	Lost to Global						
Name 187 br 188 br 198 br 198 br 239 br	Total Mercury Emmissions			1		% Elemental Mercury											Deposited (g/s)	Cycle (g/s)						
AvanueAvan	into Air	1 87E-04	σ/s			Vapor				-	1%		Deposited as	elemental mercury	vanor		2 39E-07							
9. Voor Prace 90 Lot to global cycle 0 2.37E-65 0.0	Average emis	sion from 20	13 CPT		1	12.80%	2.39E-05	ø/s	-		1.7	,	Deposited as	siemental mereary	hapor		2.572.07							
$\frac{1}{3} \ \text{Vegac} \ Final element of the rest of $					/					-	999	6	Lost to global	cvcle				2.37E-05						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	% Vapor Phase																							
99.95% 37E-6 9 9 9 9 9 9 9 9 9						% Divalent Mercury																		
= 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	99.95%	1.87E-04	g/s	\leftarrow	+	Vapor				-+	689	6	Deposited as	divalent mercury v	apor		1.11E-04							
$ \begin black besin black besin black besin black bl$						87.2%	1.63E-04	g/s																
9: Particle Board Parce 9: Shole af Marce										-	329	6	Lost to global	cycle				5.22E-05						
Add <td>% Particle Bound Phase</td> <td></td>	% Particle Bound Phase																							
0.05%8.498.498.498.498.498.498.498.499.499.499.499.44						% Divalent Mercury																		
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.045%	8.49E-08	g/s			Particle Bound				-	369	6	deposited as o	livalent mercury pa	rticulate		3.06E-08							
$ \left $						0.045%	8.49E-08	g/s	\leq															
c c c c c c c c c								-		-	649	6	Lost to global	cycle as divalent 1	nercury partic	culate		5.44E-08		_				
Image: state I					L						L													
Image: bit is a state with the sta									-					~										
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$														Site-	Specific Ove	rall Frac	ction Global Loss							
Summa with Consideration is bold Cycle indication is bold Cycle				<u></u>	<u> </u>				-											-				
	Summary with Conside	ration of L	oss to	Global	Cycle												Total Deposited	Total Lost						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								-									1.11E-04	7.59E-05		_				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total mercury emitted depos	sited as divale	ent merc	ury											Percer	nt of Tota	1 59.409%	40.591%						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Densited as Eastern			A Card																				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Deposited as divalent mercu	ry vapor + D	Jeposite	d as divai	ent me	1 11E 04	ala																	
= 0 0 0 0 0 0 0 0 0 0				-		50 2910/	g/s	aittad																
naimener strengt of the s				01		39.28170	of total mercury en	littea									-			_				
$ \frac{1}{1} = 1$	Total mercury deposited as a	elemental van	or					-	1															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	rotal mereta y deposited as e	remental rap						-						Method 29 Hg Si	necistion									
Image: second	Deposited elemental mercur	v vapor =		2.39F	-07	g/s								Mittildu 27 Hg S	Actiation									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,		0.128	0%	of total mercury emitted									2013 Hg-Sp	eciation		R1	R2	R3	Average			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																								
Image: bit i														particulate Hg	Probe Rinse	and Filter	r	0.08	0.08	0.08	0.08	Particulate	0.08	0.045%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																		ND	ND	ND				
Vapor Fraction (P) User (P) (for partitioning between upor and particle (P) (for partitioning between upor and partitioning between upor and p														HgCl2	nitric and per	roxide		84.2	182	142	136.06667			
Image: Problem in the construction of the construction	Vapor Fraction (Fv) of	Deposited	Mercu	irv		(for partitioning between	vapor and particle be	ound de	positio	on fluxe:	s)													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									<u> </u>		/			HgCl2	empty rinse			51.6	0.57	0.15	17.44	Divalent	153,50667	87.2%
Fv (divalent mercury) 0.999724173 Image: constraint of the second s	Fv	divalent me	rcury)=	total dep	osited	as divalent mercury vapor	divided by total dival	lent mei	rcury d	leposite	d									ND				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fv	(divalent me	rcury)=	0.99972	24173									elemental Hg	permanganat	e		31.136	0.5	3.4	11.678667			
$\frac{1}{1}$																		ND						
Fv (elemental mercury)= 1 Trade 17/ 122	Fv (e	elemental me	rcury)=	total dep	osited	as elemental mercury vapo	or divided by total ele	emental	mercu	iry depo	sited			elemental Hg	HCl rinse			1.1	17.2	14.3	10.866667	Elemental	22.545333	12.8%
Tate1 177 122	Fv (e	elemental me	rcury)=	1																				
10131 1/0.152																						Total	176.132	

											Figure 6-5										
					Dha		ocation on	d Snaaiatia	n of N	Ioroury for	Voolio 2010 Fi	ра рър а	esosemon	t at 2013 CPT	Emission Data						
					L IIS	ise And	ocation an	u speciatio	on or iv	Stack 3 -	2013 Method 3	FA KISK A 99 Results	ssessmen	t at 2015 CF 1	Emission Rate						
						_				Stack 0 -	2015 Mictilda	in suits									
										Mercury Rep	ort to Congress										
				Site-Specific Stack Speci	ation Results					Global Loss F	ractions										
			{												Lost to Global						
						<u> </u>								Deposited (g/s)	Cycle (g/s)						
Iotal Mercury Emmissions	8 51E 05	ala		% Elemental Mercury			_	104		Deposited as	alamantal marcur	innor		7.55E.08							
Average em	ission from 20	g/s 13 CPT	1	8.87%	7.55E-06	g/s		1 70		Deposited as	elemental mercury	vapor		7.55E-08							
		15 01 1		0.0778	1.552.00			99%		Lost to global	cycle				7.47E-06						
% Vapor Phase																					
				% Divalent Mercury																	
99.88%	8.50E-05	g/s		Vapor	7.75F.05			68%		Deposited as	divalent mercury v	apor		5.27E-05							
				91.0%	/./SE-05	g/s		220/		Loct to alche	avala				2.48E.05						
% Particle Bound Phase			\sim			$ \rightarrow $		32%		Lost to global	cycle				2.40E-03						
Jor al tiole Botala Thabe			1	% Divalent Mercury																	
0.116%	9.89E-08	g/s		Particle Bound			-	36%		deposited as o	livalent mercury p	articulate		3.56E-08							
				0.116%	9.89E-08	g/s	<														
							*	64%		Lost to global	cycle as divalent	mercury part	ticulate		6.33E-08						
								L													
											614.	6 ¹ 6 - O-	U.E.	Chihal Lass							
											Site-	Specific Ov	erall Fract	tion Global Loss	\$		-				
Summary with Conside	ration of Lo	ss to G	lobal Cvcle											Total Deposited	Total Lost						
														5.28E-05	3.23E-05						
Total mercury emitted depo	sited as divaler	t mercur	y									Perc	ent of Total	62.02%	37.981%						
Deposited as divalent mercu	ıry vapor + De	posited	as divalent me	rcury particulate																	
			=	5.27E-05	g/s												_				
			or	01.930%	of total mercury em	Itted															
Total mercury deposited as	elemental vano	r																			
											Method 29 Hg S	peciation									1
Deposited elemental mercu	ry vapor =		7.55E-08	g/s																	
			0.089%	of total mercury emitted								2013 Hg-S	peciation		R1	R2	R3	Average			
						$ \rightarrow $					particulate Hg	Probe Rins	e and Filter		0.08	0.08	0.08	0.08	Particulate	0.08	0.116%
											U-C12	nitrio and -	arovida		ND 81	52.2	54	62.4			
Vanor Fraction (Fy) of	Deposited N	Aercur	J	(for partitioning between	vanor and particle bo	und den	osition fluxe	•e)			ngC12	mute and p	CIOXICE		01	34.4	54	02.4			
vapor rraction (FV) 01	Deposited	rereur	1	(10) partitioning between	vapor and particle bo	unu uepo	osition nuxe	-5)			HaC12	empty rips	•		0.29	0.25	0.18	0.24	Divalent	62.64	91.0%
1	Fv (divalent me	rcury)=	total deposite	d as divalent mercury vapor	divided by total divale	ent merc	ury deposite	ed			rigeiz	empty rinst			0.27	0.20	0.10	0.24	Divalent	02.04	71.070
1	Fv (divalent me	rcury)=	0.999324324	,							elemental Hg	permangan	ate		0.21	0.048	0.16	0.1393333			
																ND					
Fv	(elemental me	rcury)=	total deposite	d as elemental mercury vapo	or divided by total ele	mental p	nercury dep	osited			elemental Hg	HCl rinse			2.5	2.6	12.8	5.9666667	Elemental	6.106	8.9%
Fv	(elemental me	rcury)=	1																		

											Figure 6-6										
						P	hasa	Allocation	and Speciation	of Marcury for	r Veolia 2010 F	PA Riel /	1	nt at 2013 CPT	Emission Data						
						1	nase	Anocation	and Speciation	Stack 4 -	- 2013 Method	29 Results	s		Emission Rate						
										Mercury Rep	ort to Congress										
					Site-Specific Stack Spec	iation Results				Global Loss	Fractions										
															Lost to Global						
			_				_							Deposited (g/s)	Cycle (g/s)						
Total Mercury Emmissions	1055.05	, I.			% Elemental Mercury				10/	D 1.1				1 455 00							
into Air	4.95E-05	g/s		*	Vapor	1.45E.0/		-	1%	Deposited as	elemental mercur	y vapor		1.45E-08							++
Average	emission from	2013 CI			2.95%	1.45E-06 g	/s _		0.0%	Lost to globs	al ovala				1.44E.06						++
% Vapor Phase							-		9970	Lost to gioba	u cycle				1.441.400						++
70 vapor r nase					% Divalent Mercury																
99.41%	4.92E-05	g/s	\leftarrow		Vapor			-	68%	Deposited as	divalent mercury	vapor		3.25E-05							
		G	$\left \right\rangle$		96.5%	4.78E-05 g	/s 🗧	\triangleleft				1		1							
								-	32%	Lost to globa	al cycle				1.53E-05						
% Particle Bound Phase				$\mathbf{\lambda}$																	
					% Divalent Mercury																
0.590%	2.92E-07	g/s			Particle Bound				36%	deposited as	divalent mercury p	particulate		1.05E-07							
					0.590%	2.92E-07 g	/s <	\leq .													
		_						*	64%	Lost to globa	al cycle as divalent	mercury par	rticulate		1.87E-07						
									ł												
							_				Site	-Specific O	verall Frac	ction Global Loss							
Summary with Canaid.	anation of L		lahal C	uala										T + 1 D '+ -1	Tradition						
Summary with Conside	eration of Lo		JODAI C	ycie											1 COT OF						
Total manager amittad dama	nited on director	-										Dame	ant of Tata	3.20E-05	1.09E-05						++
Total mercury emitted depo	sited as divate	nt mercu	u y									ren	cent of Tota	05.84570	54.15570						
Deposited as divalent merci	urv vapor + D	enosited	as divaler	t merc	urv particulate																
Deposited as a falent mere	ary napor · D	eposited	=	a mere	3.26E-05	g/s															
			01		65.816%	of total mercury emitted	1														1
						í í															
Total mercury deposited as	elemental vapo	or																			
											Method 29 Hg	Speciation									
Deposited elemental mercu	iry vapor =		1.45E	-08	g/s																
			0.029	3%	of total mercury emitted							2013 Hg-5	Speciation		R1	R2	R3	Average			
		-									particulate H	g Probe Rin	se and Filte	r	0.08	0.08	0.08	0.08	Particula	te 0.08	0.590%
											- ···				ND	ND	ND	1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		_	
											HgCl	2 nitric and j	peroxide		9	10.4	19.5	12.966667			
vapor Fraction (Fv) of	Deposited	Mercur	ry		(for partitioning between	n vapor and particle bound	depos	sition fluxes)													
	E (E L)										HgCl	2 empty rins	se		0.12	0.12	0.12	0.12	Divalen	13.086667	96.5%
	Fv (divalent m	ercury)=	total dep	osited	as divalent mercury vapor	divided by total divalent r	nercui	ry deposited			1				ND	ND	ND 0.047	0.0472222			
	rv (divalent m	ercury)=	0.9967	409/							elemental H	g permangan	nate		0.048 ND	0.04 /	0.047	0.04/3333			
г	v (elementel m	ercury)-	total day	osited	as elemental mercury you	or divided by total elemen	tal me	ercury denosit	ted		elemental U	g HCl rince	-		0.22	0.082	0.75	0.3506667	Flomon	al 0.309	2.9%
F	v (elemental m	ercury)=	: 1	osned	as cremental mercury vap	or annucu by total cleffiel	nai iile	ereary ucposit	ivu		eremental fi	g nermse			0.22	ND	0.75	0.000007	Lieffieht	u 0.370	2.7/0
r	· (eremental III	lere ury)-	1													112			Total	13.56466	7
																					-

This page intentionally left blank.

Chapter 7 Uncertainty

EPA used the AERMOD dispersion model for this SSRA. AERMOD is a steady-state plume model that assumes Gaussian distributions in the vertical and horizontal dimensions for stable conditions, and in the horizontal for convective conditions. Vertical concentration distributions in convective conditions are from a bi-Gaussian probability density function of the vertical velocity. Unlike ISCST3, AERMOD includes updated treatments of boundary layer theory, an understanding of turbulence and dispersion, and handling of terrain interactions (U.S. EPA 2003). In 2005, EPA determined that AERMOD is appropriate for point sources with elevated continuous releases of toxic air emissions in rural or urban areas of simple and complex terrain with receptors up to 50 km from the source (U.S. EPA 2005b).

Studies of model accuracy described in the EPA Revision to the Guideline on Air Quality Models (70 FR 68218) for models such as AERMOD show that "models are more reliable for estimating longer time-averaged concentrations" (such as the annual averages used in this risk assessment) and that "the models are reasonably reliable in estimating the magnitude of highest concentrations." Furthermore, model evaluation studies showed a notable improvement in accuracy over the dispersion model ISCST3, which was used in previous SSRAs (U.S. EPA 2005b).

EPA chose a 20- by 20-kilometer grid centered on the facility to model air dispersion for this SSRA. HHRAP recommends this configuration as described in Chapter 4: "experience has shown us that most significant deposition occurs within a 10-km radius" (U.S. EPA 2005a). EPA determined that configuration is appropriate in this situation.

Table 7-1 summarizes site-specific data used to refine the air-modeling. Site-specific data is of greater certainty than default or estimated values. There will be some uncertainty with models such as AERMOD; and it is important to note that actual concentrations could be higher or lower.

Table 7-1 Air-Dispersion Modeling S	te-Specific Parameter Sources
Parameter	Source
Stack Location	Google Earth Pro
Stack Height	Franklin 2017
Stack Diameter	Franklin 2017
Stack Gas Exit Velocity	Veolia 2016a, 2016b, 2016c
Stack Gas Temperature	Veolia 2014
Stack Base Elevations and Terrain Data for Study Area	AERMAP
Surface and Upper Air Hourly and Climatic Data from	NOAA
2011-2015	ftp://ftp.ncdc.noaa.gov/pub/data/noaa/
	http://esrl.noaa.gov/raobs/
	https://www.ncdc.noaa.gov/qclcd/QCLCD
	https://www.weather.gov/media/lsx/climate/stl/
	precip/precip_stl_ranked_annual_amounts.pdf
	ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin
Local Land Use/Land Cover Data for Wind Profile and	USGS 2000, 2014
Deposition	
Location and Dimensions of Facility Building, Tanks,	IEPA 2017
and Structures for Building Downwash Evaluation	
Site-specific Test Data for Particle Size Distribution	Onyx 2005

Г

Chapter 8 References

Franklin 2017, Veolia Environmental Services Rotary Kiln and Fixed Hearth Incinerators Human Health Risk Assessment Report, Franklin Engineering Group, Inc., Franklin, TN, December 22, 2017.

IEPA 2017, electronic message from S. Suthar, IEPA to T. Ramaly, U.S. EPA, regarding dispersion modeling files provided to IEPA by Veolia ES Technical Solutions, L.L.C., including attachments, June 28, 2017.

Onyx, 2005, Correspondence with T. Ramaly, U.S. EPA via electronic mail with attached document *Determination of Appropriate Particle Size Distribution and Mercury Speciation to be Utilized for the Fixed Hearth and Rotary Kiln Incinerators*, David Klarich, Onyx Environmental Services, Inc., October 14.

Qian, W., and A. Venkatram, 2011: "Performance of Steady-State Dispersion Models Under Low Wind-Speed Conditions", Boundary Layer Meteorology, 138, 475-491. Schulman, L.L., D.G. Strimaitis, and J.S. Scire, 1980: Buoyant line and point source (BLP) dispersion model user's guide. Prepared for The Aluminum Association, Inc. P-7304B. July 1980

U.S. EPA 1997a, *Model Parameter Sensitivity Analysis*, U.S. EPA Region 6 Center for Combustion Science and Engineering, Dallas, TX, May 23, 1997.

U.S. EPA 1997b, *Mercury Study Report to Congress, Volume III: Fate and Transport of Mercury in the Environment*, EPA-452/R-97-005, OAQPS and ORD, U.S. EPA, Washington DC, December 1997.

U.S. EPA 2003, *AERMOD: Latest Features and Evaluation Results*, EPA-454/R-03-003, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, June 2003.

U.S. EPA 2005a, *Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities*, Office of Solid Waste and Emergency Response, EPA530-R-05-006, September 2005.

U.S. EPA 2005b, *Revision to the Guidance on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions, Final Rule*, Federal Register Volume 70, number 216, November 9, 2005.

U.S. EPA 2013, *MEMORANDUM - Use of ASOS meteorological data in AERMOD dispersion modeling*, Office of Air Quality Planning and Standards, Air Quality Modeling Group, Research Triangle Park, NC, March 8, 2013.

U.S. EPA 2014, *DRAFT Regional Meteorological Data Processing Protocol, EPA Region 5 and States*, U.S. EPA, Chicago, IL, August 2014.

U.S. EPA 2016, Memorandum to File, RE: Review of the Literature for Gas Deposition Parameters for Divalent Mercury Vapor for Use in Air-dispersion and Risk Assessment Modeling, T. Ramaly and C. Lambesis, U.S. EPA Region 5, Land and Chemicals Division, Chicago, IL, September 13, 2016.

USGS 2000, *NLCD 1992 Land Cover Conterminous United States*, U.S. Geologic Survey, Sioux Falls, SD, October 10, 2000.

USGS 2014, NLCD 2011 Land Cover (2011 Edition), U.S. Geologic Survey, March 31, 2014.

Veolia 2014, Comprehensive Performance Test Report - Fixed Hearth Incinerator - Unit 2 Fixed Hearth Incinerator - Unit 3, Rotary Kiln Incinerator - Unit 4, Veolia ES Technical Solutions L.L.C., Sauget, IL, January 28, 2014.

Veolia 2016a, *Confirmatory Performance Test Plan for the Unit 2 Fixed Hearth Incinerator*, Veolia ES Technical Solutions, L.L.C., Sauget, IL, January 7, 2016.

Veolia 2016b, *Confirmatory Performance Test Plan for the Unit 3 Fixed Hearth Incinerator*, Veolia ES Technical Solutions, L.L.C., Sauget, IL, January 7, 2016.

Veolia 2016c, *Confirmatory Performance Test Plan for the Unit 4 Rotary Kiln Incinerator*, Veolia ES Technical Solutions, L.L.C., Sauget, IL, January 7, 2016.

Veolia 2019, Comprehensive Performance Test Report for Fixed Hearth Incinerator – Unit 2, Fixed Hearth Incinerator – Unit 3, Rotary Kiln Incinerator – Unit 4, Prepared for: Veolia ES Technical Solutions, L.L.C., Sauget, IL, January 23, 2019.

Wesely, M.L., Doskey, P.V., and Shannon, J.D., 2002, *Deposition Parameterizations for the Industrial Source Complex (ISC3) Model*, Environmental Research Division, Argonne National Laboratory, Argonne, IL, June 2002.