

COLORADO STATE UNIVERSITY

Gathering Compressor Stations Recent Results Daniel Zimmerle

The **METEC**₄ Facility

Project Team & Partners

(CSU, PI)

(CSU)

(CSU, field team lead)

(CSU, project manager)

(AECOM, co-PI)

(Fort Lewis State)

(AECOM)

(AECOM)

Project Team

- Daniel Zimmerle
- Tim Vaughn
- Ben Luck
- Kristine Bennett
- Matt Harrison
- Terri Lauderdale
- Kindal Keen
- Laurie Williams
- David Allen (UTA, consultant)
- & numerous field staff

Funding:

- DOE, Office of Fossil Energy contract DE-FE0029068
- ONE Future

Cost share & site access:

- Anadarko Petroleum Corporation
- DCP Midstream
- Kinder Morgan Natural Gas Pipelines
- Mark West Energy Partners
- Pioneer Natural Resources
- Southwestern Energy
- Equinor (formerly Statoil Gulf Services)
- Williams
- XTO Energy, Inc., a subsidiary of ExxonMobil

Agenda

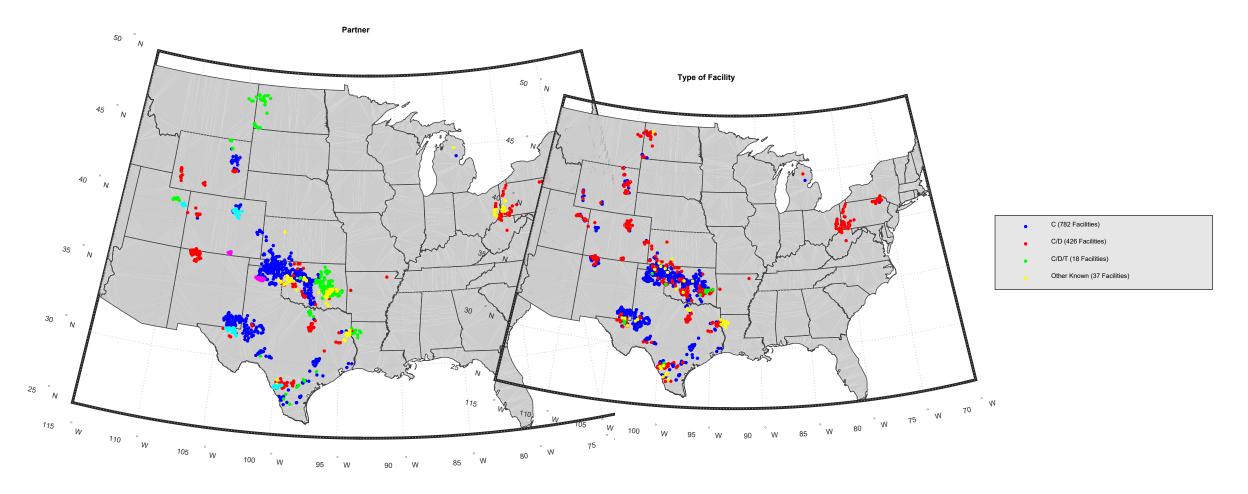
- Study design
- Compressor Station Results
- Pneumatics Long-duration Recordings
- Some notes about testing the Bacharach[™] High Flow Sampler

Publications & Reports

- Full report & data at https://mountainscholar.org/handle/10217/195489
 - Final Report http://dx.doi.org/10.25675/10217/194544
 - Volume 1: Pneumatic measurements

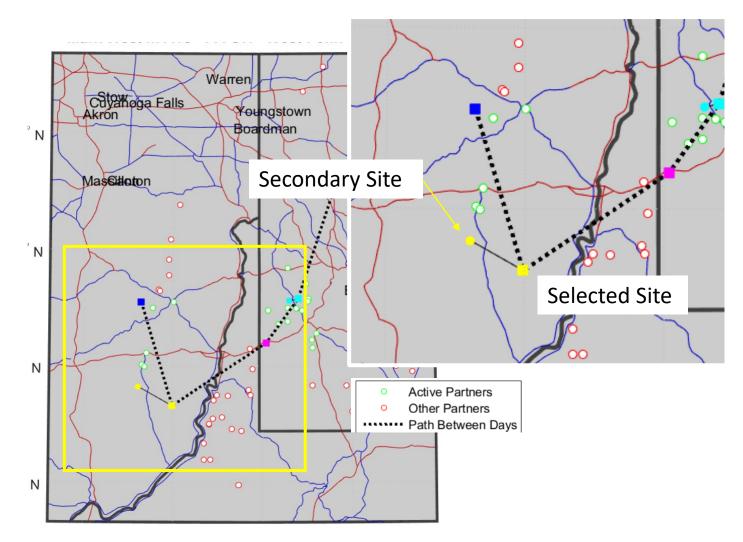
http://dx.doi.org/10.25675/10217/194543

Luck, B., Zimmerle, D., Vaughn, T., Lauderdale, T., Keen, K., Harrison, M., Marchese, A., Williams, L., Allen, D., 2019. Multiday Measurements of Pneumatic Controller Emissions Reveal the Frequency of Abnormal Emissions Behavior at Natural Gas Gathering Stations. Environ. Sci. Technol. Lett. <u>https://doi.org/10.1021/acs.estlett.9b00158</u>


- Volume 2: Engine exhaust measurements http://dx.doi.org/10.25675/10217/194542
 Paper in preparation; will be methods focused.
- Volume 3: Emission factors & national model http://dx.doi.org/10.25675/10217/194541
 Paper in internal review, likely out early 2020

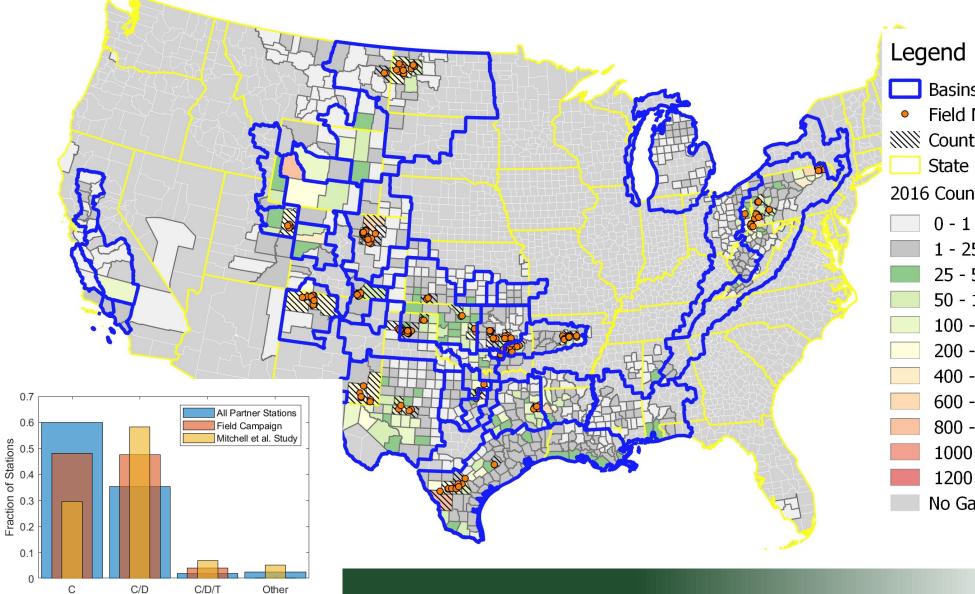
Study Design

Sampling: Collected Data from Partners



Early planning maps shown with data from 6 Partners

Geographically Clustered Sampling


- Select 1-2 partners for each week
- Randomly select 5 starting sites for each day
- Order geographically
- Identify sites nearby selected sites for each day

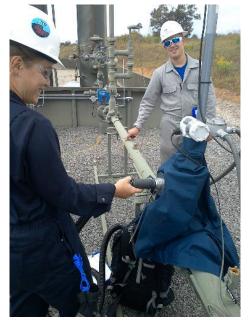
National

Station Type

yena

Basins with GHGRP Facilities Field Measurement Locations

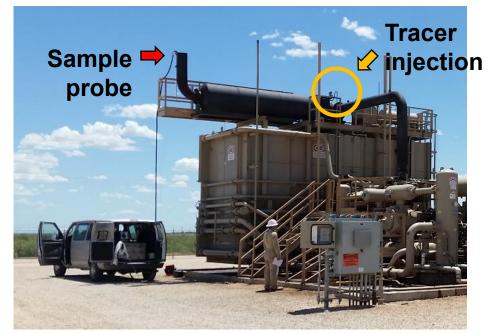
Counties Sampled in Field Campaign


State Boundaries

2016 County Gas Production (BCF)

Methods

OGI Detection + Direct component measurements


All teams

Long duration measurements of pneumatic controllers

Team 1 Extended field campaign

In-stack tracer measurements of exhaust emissions

Team 1

G&B Compressor Stations

Methods & Definitions

- A 'station' is all equipment on a G&B compressor station
 - Does not include co-located well pad equipment
- All major equipment units were recorded on every station visited
 - Yard piping was broken into several sub-sections at most stations
- All counting, screening and measurement was done on 'units of major equipment'
 - A 'measured unit' was fully screened and fully measured
 - A 'counted unit' was fully counted
 - Not all measured units were counted and vice versa

Post Campaign Analysis

• Classification of all unmeasurable emissions

Measured 2 types – BHFS or	Not measured but similar in observed	Not measured & unusual size	Measured but no emission was
bag	size	2 types – large	detected
	5 types	emitter &	1 type
		incomplete capture	

- Correction for gas composition (see high flow discussion)
- Combined data from longitudinal study done by GSI Environmental
- Model for station and national emissions

QC Checks

Measurements when no emissions were detected

 Table S3-8: Measurements where no Emissions were Detected with OGI

Measurement Location		OGI Detections Non-Zero Emissions Measured)	Fraction Non-Zero
Blowdown Vent	68	0	0%
Common Multi-Unit Vent	2	0	0%
Common Single-Unit Vent	39	0	0%
Common Station Vent	1	0	0%
Connector Threaded	1	0	0%
OEL	1	0	0%
PRV	199	0	0%
Pocket Vent	1	0	0%
Rod Packing Vent	56	1	1.8%
Starter Vent	32	0	0%
Thief Hatch	25	0	0%
Valve	3	0	0%
Total	428	1	0.23%

Zero measurements when emissions were detected

 Table S3-9: OGI Detections with Zero Measurements

Measurement Location	Total Measurements	Number of Zero Measurements	Zero Fraction
Compressor Blowdown Vent	29	2	6.9%
Compressor Common Multi-Unit Vent	13	2	15%
Compressor Common Single-Unit Vent	23	0	0%
Compressor Connector Flanged	39	2	5.1%
Compressor Connector Threaded	98	9	9.2%
Non-compressor Pump	11	0	0%
Non-compressor Regulator	37	3	8.1%
Non-compressor Valve	86	22	26%
Tank Common Multi-Unit Vent	14	0	0%
Tank Common Single-Unit Vent	42	5	12%
Tank Thief Hatch	65	2	3.1%
Total	1133	88	7.8%

Leaker Emission Factors

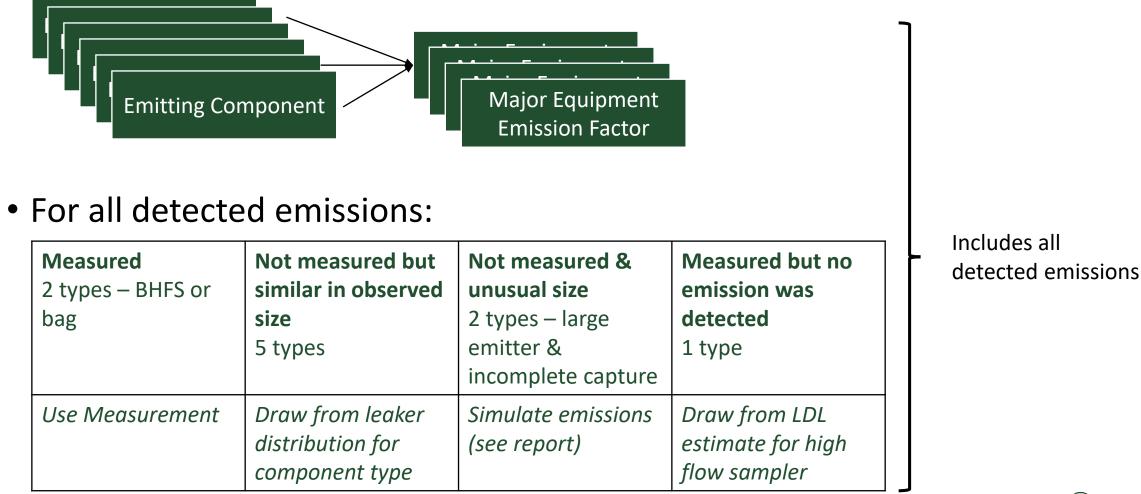
 Table S3-23:
 Component Leaker Factor Comparison

$\operatorname{Component}^1$	Emission Factor (scfh whole gas)	GHGRP ² Emission Factor	Ratio Study to GHGRP	Transmission ³ Emission Factor	Ratio Study to Transmission
All OEL	5.58 [+67%/-51%]	2.8	1.99	143 [+1093%/-100%]	0.044 [0.016 to 0.1]
All Other	24 [+67%/-49%]			22.6 [+1218%/-97%]	$1.1 \ [0.43 \text{ to } 2.5]$
Comp Blowdown Vent	21.3 [+150%/-70%]			76.4 [+546%/-100%]	0.15 [0.066 to 0.28] \checkmark
Comp Conn. Flange	12.2 [+57%/-40%]	4.1	2.98	21.2 [+465%/-100%]	$0.77 \ [0.21 \text{ to } 2]$
NC Conn. Flange	7.88 [+42%/-36%]	4.1	1.92	9.87 [+491%/-99%]	0.84 [0.47 to 1.4]
Comp Conn. Thread	14.5 [+52%/-38%]	1.3	11.2	21.2 [+465%/-100%]	0.64 [0.19 to 1.5]
NC Conn. Thread	5.77 [+31%/-28%]	1.3	4.44	12 [+368%/-100%]	$0.5 \ [0.29 \text{ to } 0.78]$
Comp PRV	21.2 [+82%/-57%]	4.5	4.71	22.6 [+1218%/-97%]	$0.8 \ [0.29 \text{ to } 1.8]$
NC PRV	10.8 [+123%/-80%]	4.5	2.41	22.6 [+1218%/-97%]	$0.53 \ [0.092 \text{ to } 1.4]$
Comp Reg.	13.9 [+38%/-32%]	4.5	3.09		-
NC Reg.	8.01 [+33%/-30%]	4.5	1.78		
Comp Rod Packing Vent	28.2 [+37%/-24%]			219 [+728%/-100%]	$0.12 \ [0.059 \text{ to } 0.23]$
Comp Valve	41.1 [+109%/-64%]	4.9	8.39	12.2 [+613%/-95%]	$3.3 \ [0.91 \text{ to } 8.2]$
NC Valve	7.89 [+46%/-37%]	4.9	1.61	12 [+368%/-100%]	0.68 [0.38 to 1.1]

¹ Abbreviations: "Comp" = Compressor service; "NC" = non-compressor service; "Conn." = connector; "Reg." = regulator.

Does not include estimates for detected 'large emitters'

Average (Population) Emission Factors


 Table S3-28:
 Comparison of Whole Gas Average Emission Factors to GHGRP Factors

		Eastern Region		Wes	stern Region
Category	Emission Factor (scfh)	GHGRP EF (scfh)	Ratio of Study to GHGRP EF	GHGRP EF $(scfh)$	Ratio of Study to GHGRP EF
Compressor Connector Flanged	0.0186 [+25%/-14%]	0.003	▶ 6.28 [4.65 to 8.53]	0.017	$1.1 \ [0.902 \text{ to } 1.4]$
Non-compressor Connector Flanged	0.0213 [+17%/-14%]	0.003	7.2 [5.41 to 9.47]	0.017	1.26 [1.04 to 1.5]
Compressor Connector Threaded	0.0308 [+31%/-20%]	0.003	• 10.4 [7.45 to 14.7]	0.017	$1.82 \ [1.42 \text{ to } 2.43]$
Non-compressor Connector Threaded	0.0127 [+12%/-11%]	0.003	4.3 [3.28 to 5.54]	0.017	$0.75 \ [0.639 \text{ to } 0.878]$
Compressor PRV	0.54 [+44%/-25%]	0.04	\blacktriangleright 17.4 [5.21 to 42.8]	0.193	2.93 [1.63 to 4.95]
Non-compressor PRV	0.279 [+50%/-22%]	0.04	• 9.01 [2.82 to 22.5]	0.193	$1.52 \ [0.871 \text{ to } 2.64]$
Compressor Valve	0.169 [+38%/-18%]	0.027	► 6.46 [4.27 to 9.78]	0.121	1.4 [1.1 to 1.95]
Non-compressor Valve	0.091 [+28%/-23%]	0.027	3.48 [2.21 to 5.16]	0.121	$0.755 \ [0.564 \text{ to } 0.991]$
Compressor Rod Packing Vent	27.7 [+25%/-11%]	1.3	▶ 21.8 [15.2 to 30.8]	1.3	21.9 [15.3 to 31.2]
All OEL	0.294 [+30%/-21%]	0.061	$5.32 \ [2.6 \text{ to } 9.76]$	0.031	$9.92 \ [6.03 \text{ to } 15.6]$
Compressor Rod Packing Vent (OP)	25.2 [+25%/-11%]	1.3	▶ 19.8 [13.9 to 28.3]	1.3	19.8 $[13.9 \text{ to } 28.1]$
Compressor Rod Packing Vent (NOP)	1.14 [+39%/-28%]	1.3	$0.895 \ [0.556 \text{ to } 1.37]$	1.3	$0.895 \ [0.558 \text{ to } 1.4]$
Compressor Rod Packing Vent (NOD)	0.15 [+18%/-20%]	1.3	$0.119 \ [0.0814 \text{ to } 0.165]$	1.3	0.118 [0.0807 to 0.167]

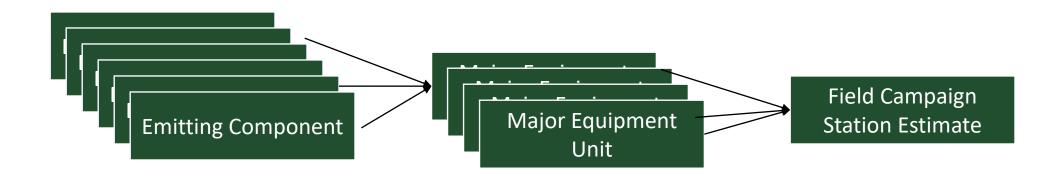
Does not include estimates for detected 'large emitters'

Major Equipment Emission Factors

ENERGY INSTITUTE

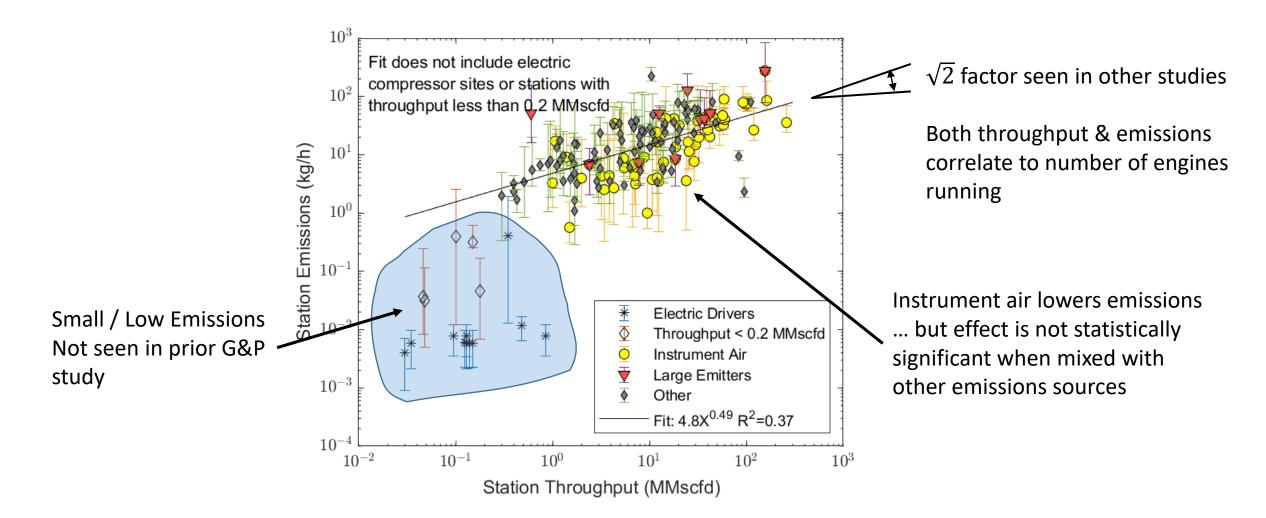
Major Equipment Emission Factors

 Table S3-40:
 Major Equipment Factor Comparison

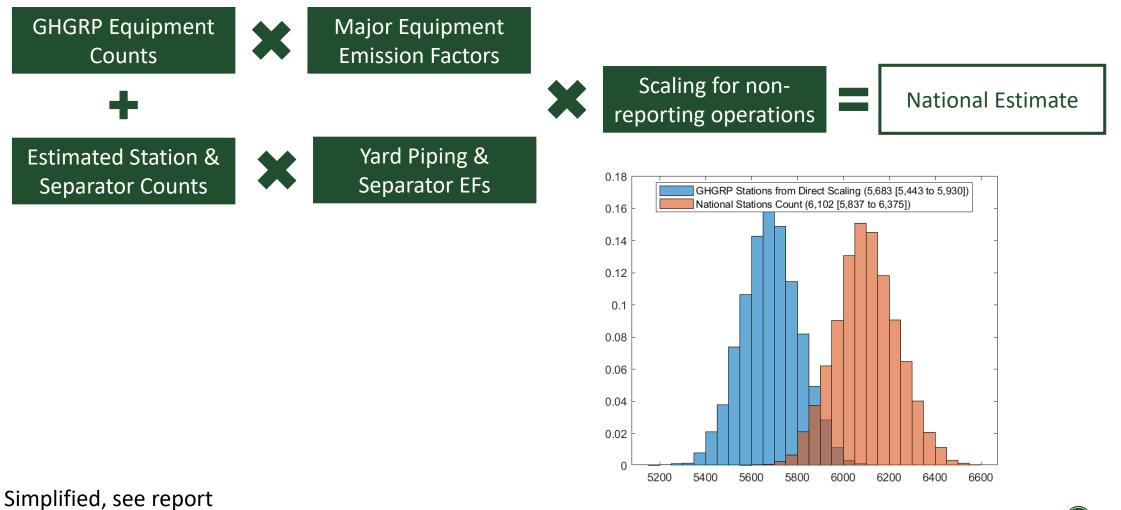

$\operatorname{Component}^1$	Emission Factor (scfh whole gas)	GHGI ² Emission Factor	Ratio Study to GHGI	GHGRP East ³ Emission Factor	Mean Ratio Study to GHGRP East	GHGRP West ³ Emission Factor	Mean Ratio Study to GHGRP West
AGRU	4.04 [+451%/-95%]						
Compressor	110 [+542%/-100%]	14.5	7.58	0.5	220	12.7	8.63
Dehydrator	3.41 [+894%/-94%]	3.41	1	1.11	3.07	4.87	0.7
Separator	0.647 [+1188%/-68%]	2.84	0.228	0.05	12.9	6.49	0.0998
Tank	39.3 [+560%/-99%]						
YardPiping	86.3 [+190%/-100%]	1.5	57.5	0.46	188	2.78	31

¹ Abbreviations: "Comp" = Compressor; "AGRU" = Acid gas removal unit;

- Includes estimates for detected 'large emitters'
- Definition of 'yard piping' includes all equipment not in other equipment categories


Station Estimates

- If unit was screened & measured, use:
 - Measurements + simulated emissions for all 'detected but unmeasured'
- If unit was not screened and/or measured:
 - Draw from major equipment emission factors



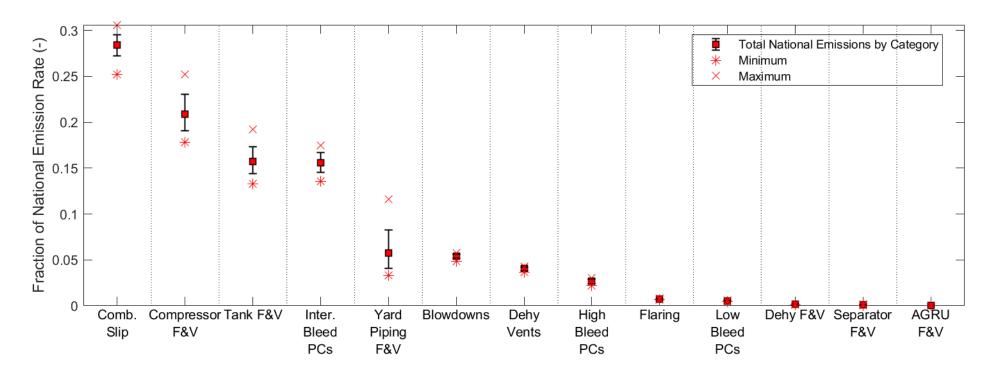
Station Measurements

National Emissions

ENERGY INSTITUTE

National Estimate

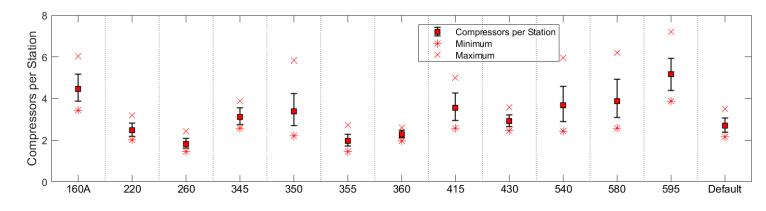
Table 10: National and Station Summary of Emissions


Estimate	$\begin{array}{c} \text{Total} \\ \text{Methane} \\ \text{Emissions} \\ (Gg \cdot y^{-1}CH_4) \end{array}$	Activity Factor (Stations)	Emission Factor $(kg \cdot h^{-1}station^{-1}CH_4)$
National Estimate & Comparison			
Marchese et. al [4]	$1697 \ [1,512 \text{ to } 1,886]$	4,459 [3,756 to 5,380]	42.6 [34.6 to 52.6]
EPA GHGI[9]	1,955.1	5,241	42.6^{*}
This Study	1,286 [1,241 to 1,338]	6,102 [5,837 to $6,375$]	$24.1 \ [22.8 \text{ to } 25.5]$
Study Field Campaign Comparison ⁺			
Mitchell et. al $[3]$		115	$55.4 \ [40.9 \text{ to } 72.7]$
Study Field Campaign		180	24.3 [18.5 to 31.8]

* Current GHGI estimate for G&B uses the Marchese et al. emission factor.

⁺ Comparison of field campaign results does not include episodic emissions, which were not measured in either field campaign.

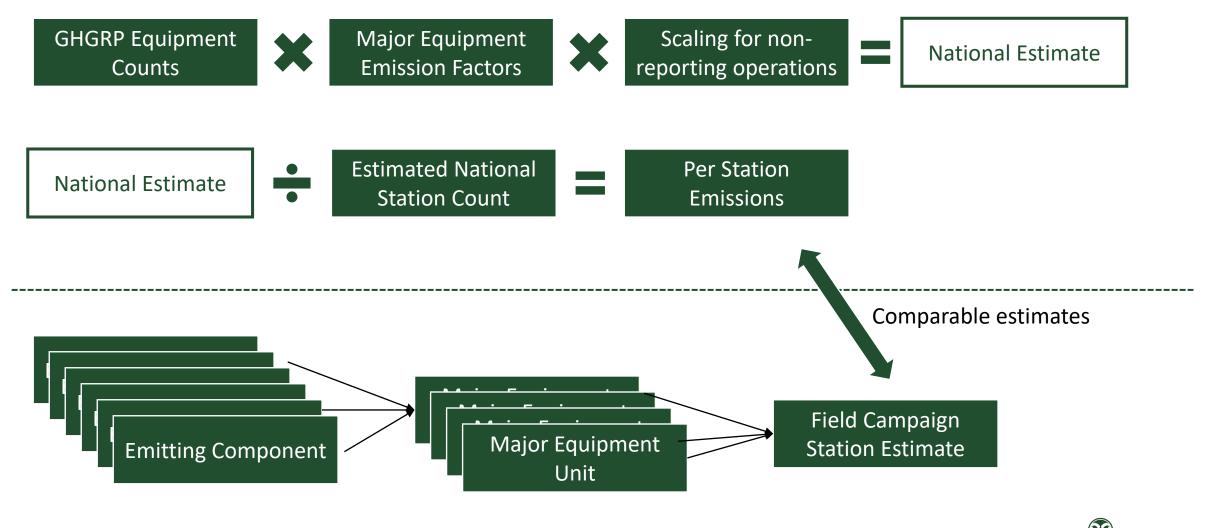
Fraction of Emissions by Category



Major Equipment Type

Factors Behind Change

- Estimate more, smaller, facilities
 - Based upon partner data from >1700 facilities
 - Estimates vary substantially between AAPG basins
- Mix of compressor drivers different by basin differs from prior studies
- Been lots of attention on NG emissions over last five years


AAPG Province ID

Compressors	482	418	273	458	140	201	1,002	145	581	119	217	101	487
Stations	108	169	151	145	42	101	439	41	200	33	57	20	181

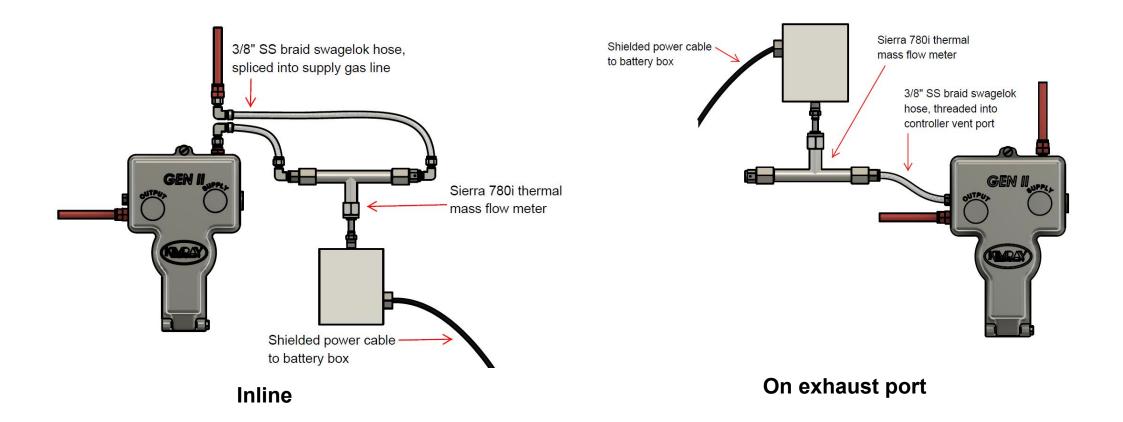
More analysis in forthcoming paper

Two Estimates of Station Emissions

ENERGY INSTITUTE

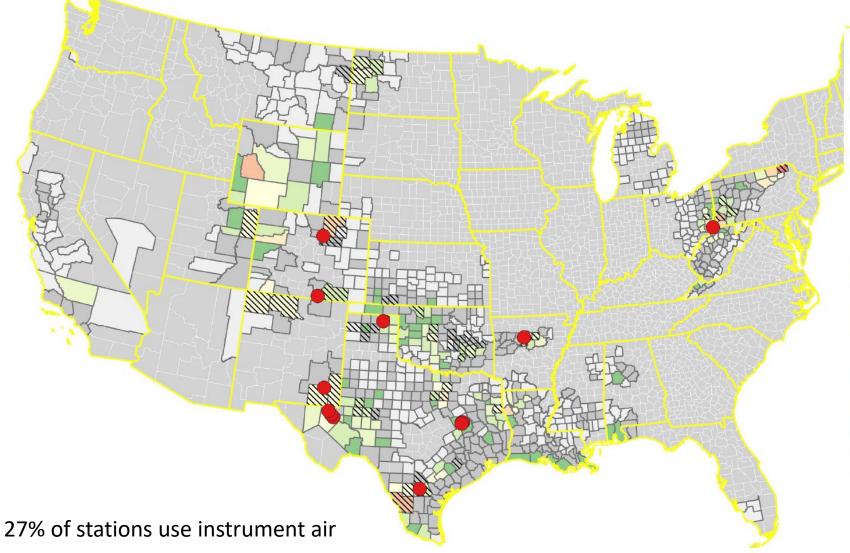
National Estimate: What's Missing?

- Some estimates for Alaska
- Engine crankcase vents
- Direct measurements for blowdowns, flares and certain vents



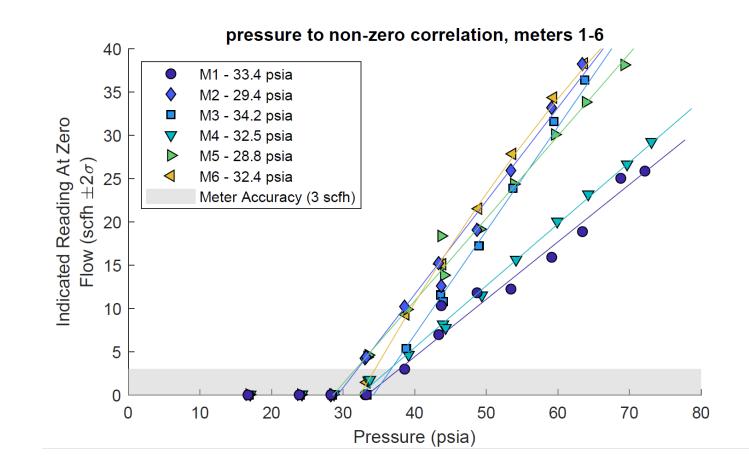
Pneumatic Results

Luck, B., Zimmerle, D., Vaughn, T., Lauderdale, T., Keen, K., Harrison, M., Marchese, A., Williams, L., Allen, D., 2019. Multiday Measurements of Pneumatic Controller Emissions Reveal the Frequency of Abnormal Emissions Behavior at Natural Gas Gathering Stations. Environ. Sci. Technol. Lett. <u>https://doi.org/10.1021/acs.estlett.9b00158</u>



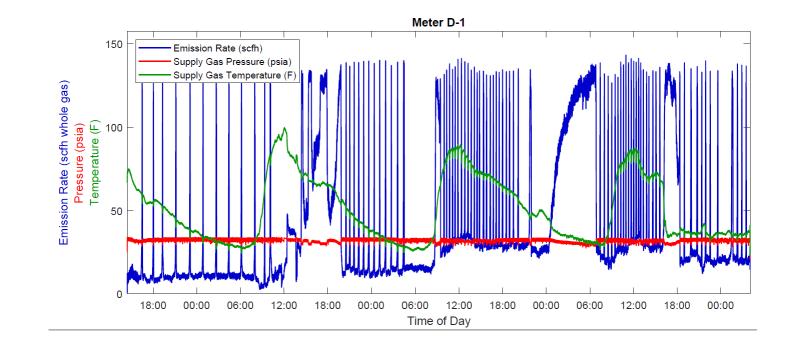
Pneumatic Monitoring Installs

Where Pneumatic Measurements were Taken



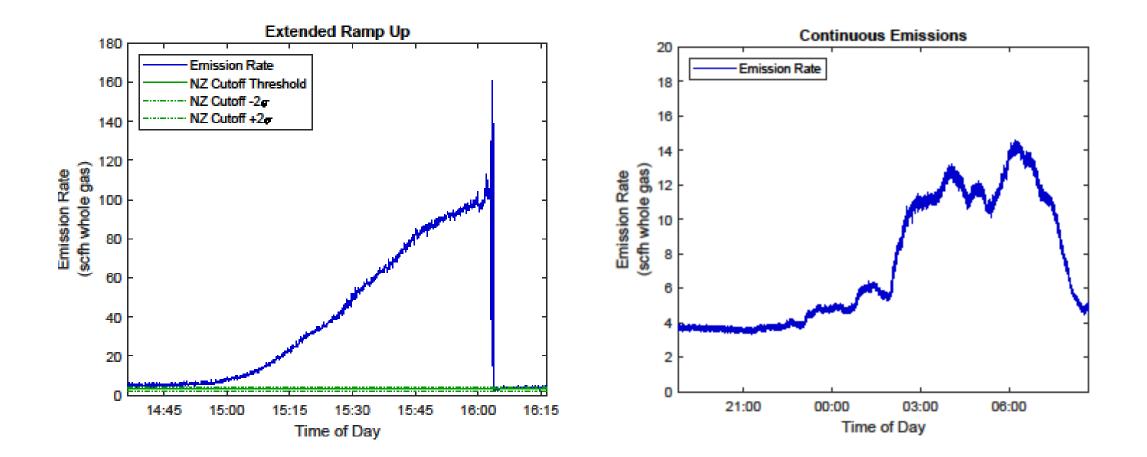
Legend Pneumatic Measurement Locations **Basins with GHGRP Facilities** Image: Counties Sampled in Field Campaign State Boundaries 2016 County Gas Production (BCF) 0 - 11 - 2525 - 50 50 - 100 100 - 200 200 - 400400 - 600 600 - 800 800 - 1000 1000 - 12001200 - 1213

Calibration Problems

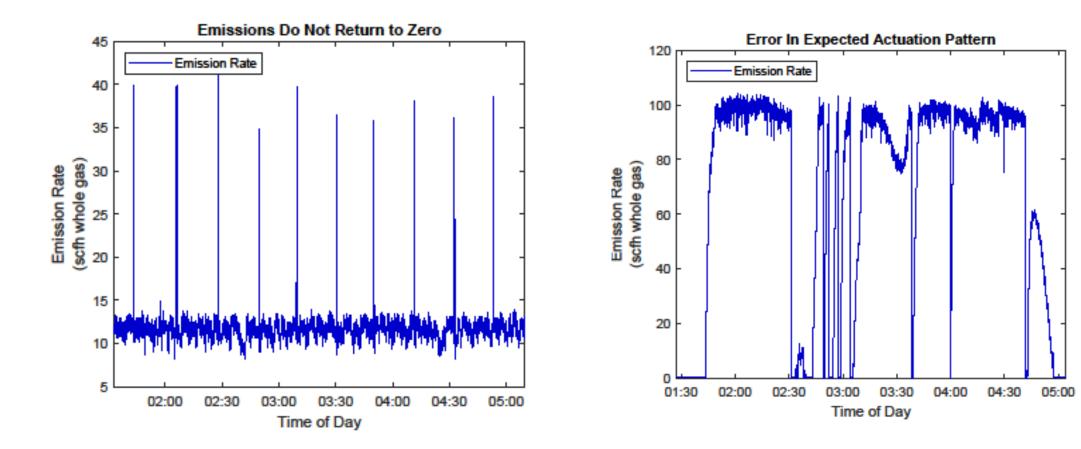

- Meters indicated flow when none was present
- Problem only above 30 psia supply pressure
- Makes difficult to distinguish small flows from meter errors

Data Collected

- 72 successful measurements
 - 40 intermittent
 - 24 low bleed
 - 8 high bleed
- Average duration of 76 hours


Fault Observations

- Definitions:
 - Low bleed: Normally operating if their average emission rates were ≤ 6 scfh.
 - High bleed: normally operating if average emission rates consistent with their published steady state gas consumption values
 - Intermittent: identified four failure behaviors
- Refers to emissions behavior only
- Determined by expert panel from API, industry members, study team



Intermittent PC Abnormal Op. Modes

Intermittent PC Abnormal Op. Modes

Results

 Table S1-2:
 Classification of abnormally operations for intermittent PCs

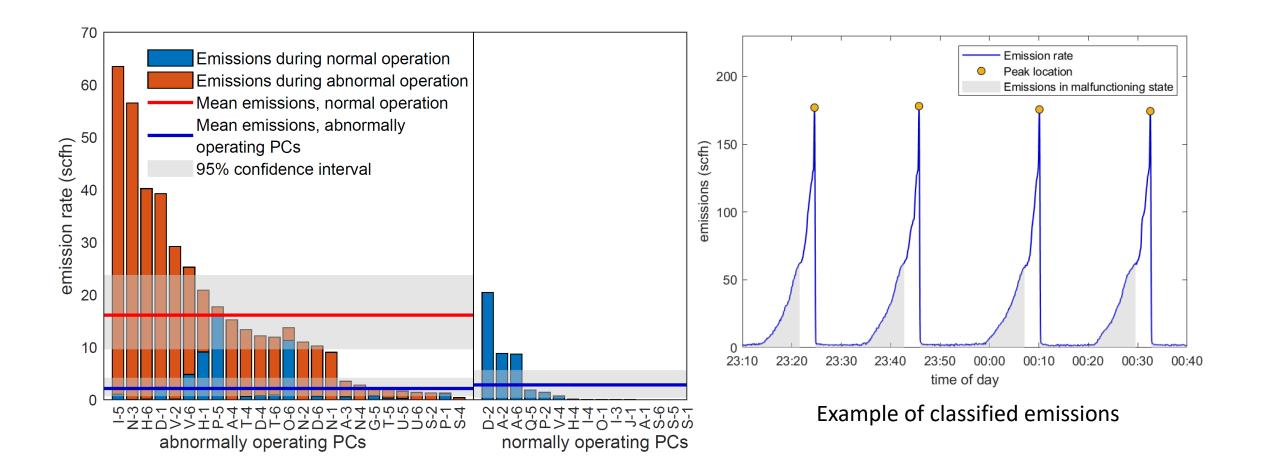
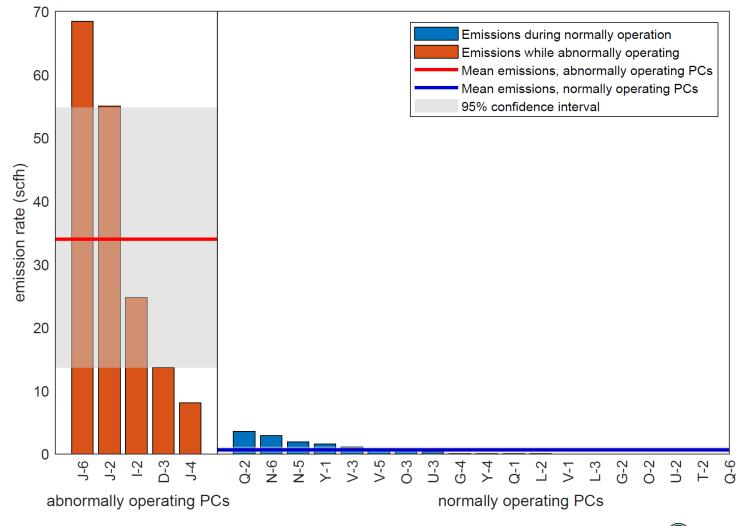

	Recording ID	Continuous Emissions	Extended Ramp	Does Not Return to Zero Between Actuations	Irregular Behavior	Total AO Classifications
	A-3			\checkmark		1
Individual Controllers could have multiple error types	A-4	\checkmark				1
mainiauar controllers could have maitiple error types	D-1	\checkmark	\checkmark	\checkmark	\checkmark	4
	D-4	\checkmark		\checkmark	\checkmark	3
	D-6			\checkmark	\checkmark	2

Table 1. Average Emission Rates for Normally and Abnormally Operating PCs

		average emissions (scfh whole gas)				as)		
pneumatic controller type	total	exhibiting abnormal behavior ^a	norr	nally operati	ng	behavin	g abnormally ^a	
intermittent	40	25	2.82 [+3.23/-2.41]			16.11 [+7.88/-6.35]		
low-bleed	24	5	0.68 [+0.50/-0.42]			34 [+20.81/-19.78]		
high-bleed	8	0	19.25 [+13.55/-10.26]			_b		
total	72	30	4.98 [+3.49/-2.95]			19.09 [+7.61/-6.80]		
^{<i>a</i>} An expert panel identified abno	ormal emission	as behavior from the pneumatic contro	ller. ^b No	high-bleed	PCs were	assigned as	malfunctioning.	
		T-5		\checkmark			1	
		T-6		\checkmark		\checkmark	2	
		U-5		\checkmark			1	
		U-6		\checkmark			1	
		V-2	\checkmark			\checkmark	2	
		V-6	\checkmark	\checkmark	\checkmark		3	
		Fraction Impacted	48%	40%	24%	58%		
							Store D	

ENERGY INSTITUTE

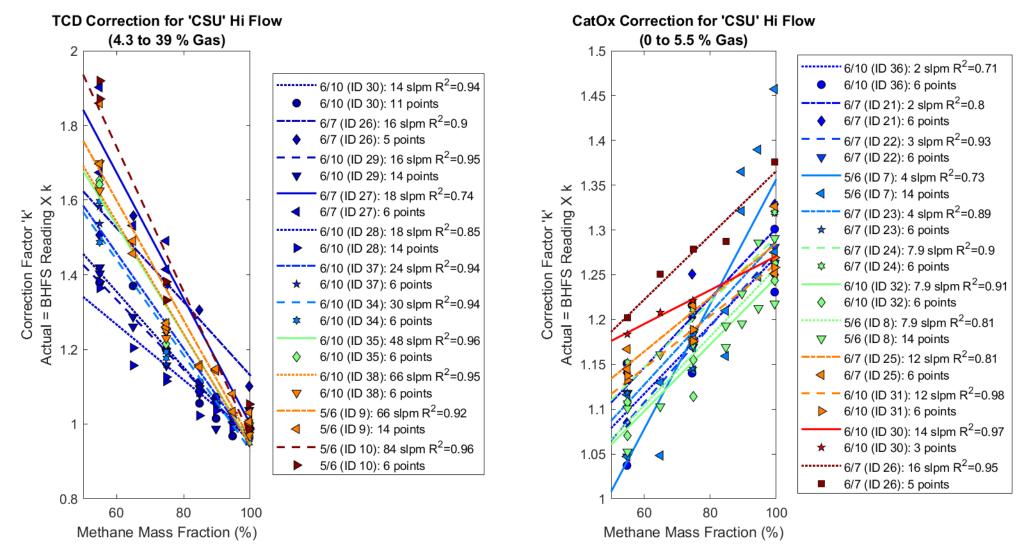

Intermittent PCs Emission Rates

Low Bleed PC Emission Rates

 Abnormal = average emissions > 6 scfh

Notes from High Flow Testing

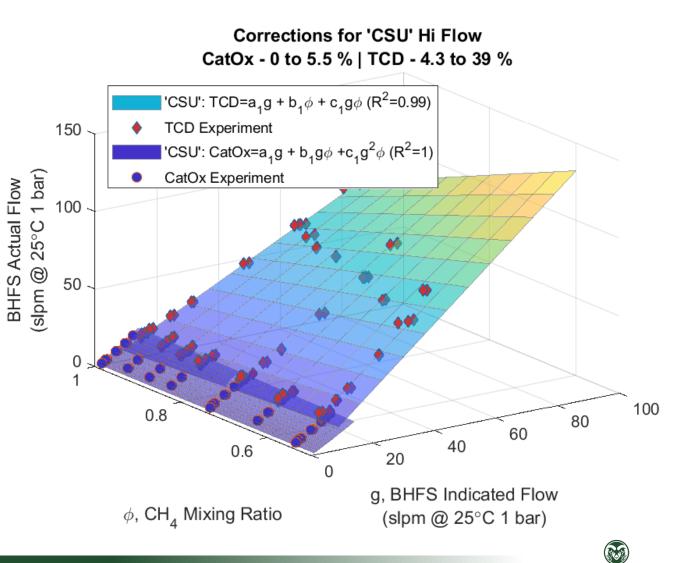
Testing @ METEC


- Post campaign
- 3 high flow units used in field (out of six)
- Using knowledge from Connelly et al. testing (tested only sensor & software)
- Full-function test
 - Metered emission rate 50-100% methane
 - Fed through entire instrument, as in field
 - Assure 100% capture

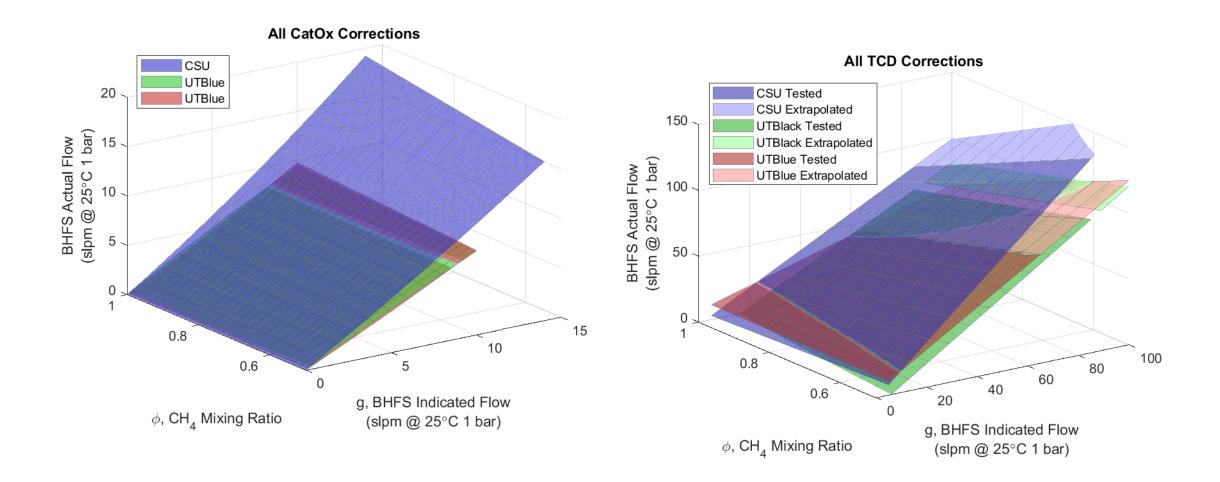
Connolly, J.I., Robinson, R.A., Gardiner, T.D., 2019. Assessment of the Bacharach Hi Flow[®] Sampler characteristics and potential failure modes when measuring methane emissions. Measurement 145, 226–233. <u>https://doi.org/10.1016/j.measurement.2019.05.055</u>

Sample measurement data:

Observations


- Testing performed in sets each set should form one curve at same flow rate with varying methane concentration
- Gas mix taken from gas compositions in study

- Switch over point between CatOx and TCD varies substantially
- Repeatability is not great (cal'd every day)
- Correction from reading to actual depends on reading
 - i.e. correction curve is a *correction surface*



Correction Surface

- Two surfaces ... one for each sensor mode
 - Surfaces 'twist' in opposite directions
- Transition between surfaces is visible on the display ... but varies in gas composition

Substantial Variation Between Instruments

Closing Observations

- Testing shows that the high flow *method* works
- Uncertainty in measurements may be higher than previously thought
- Testing the sensor / software system independent of the full flow illuminates only some behaviors
- Corrections likely need to be unit-specific
- Calibration process appears to contribute to some day-to-day variation

Thank You

Contact

Daniel Zimmerle, Sr. Research Associate, Energy Institute Dan.Zimmerle@colostate.edu | 970 581 9945 5W 3

www.facebook.com/csuenergyinstutute

Energy.ColoState.edu

ENERGY INSTITUTE

GOLDRADO STATE UNIVERSITY