29 August 2019

Mr. Allan Ota Oceanographer Water Division (WTR-2-4) U.S. EPA Region 9 75 Hawthorne Street San Francisco, CA 94105

Subject: Application for Ocean Dumping Permit for Starkist Samoa Co., American Samoa

Dear Mr. Ota,

Pursuant to Section 102 of the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972 (33 U.S.C. 1412), Starkist Samoa Co. ("Starkist") submits its application for an ocean dumping permit in accordance with the requirements presented in CFR §221.1. Supporting materials to this application are provided as attachments.

(a) Name and address of applicant;

Starkist Samoa Co., PO Box 368, Pago Pago, American Samoa 96799

(b) Name of the person or firm transporting the material for dumping, the name of the person(s) or firm(s) producing or processing all materials to be transported for dumping, and the name or other identification, and usual location, of the conveyance to be used in the transportation and dumping of the material to be dumped, including information on the transporting vessel's communications and navigation equipment;

Name of Producer: Starkist Samoa Co.

Name of Transporter: (Proposed) Aquatic Blue Environmental, PO Box 1861, Pago Pago, American Samoa, 96799.

Starkist proposes to contract with Aquatic Blue Environmental to operate an ocean dumping vessel. Specifications for this vessel are generally described within this application and in Attachment 1.

Aquatic Blue's vessel Master Captain will have experience captaining vessels performing open ocean operations and be a highly skilled vessel mechanic, proficient in fixing electrical systems, navigation systems, and issues with engines. The captain will be certified in operating vessels in both open ocean and near shore conditions. Aquatic Blue's Chief Engineer for the Starkist ocean dumping vessel will be an experienced mechanic, including experience with managing crew members and designing, maintaining, and monitoring pump systems.

P.O. Box 368

Pago Pago, AS 96799

<u>Transporter Vessel Communications and Navigation Equipment</u>: The transporting vessel, (name is to be determined) is equipped with a GPS receiver enabled with the Wide Area Augmentation System (WAAS) for horizontal position accuracy of +/-10 feet. The GPS receiver provides speed, course and the time and date information received from the satellite signals. The tracking unit is fitted with calibrated current sensors on up to two pumps to detect changes in pump amperage signifying use and is fitted with a flow meter to measure and record the flow rate at the point of discharge. The vessel is equipped with two VHF marine radios, radar, and one Single Sideband marine radios.

Starkist has contracted with Advanced Dredging & Industrial Solutions (ADISS, Inc.) to provide a vessel tracking and e-logging system to comply with the vessel monitoring requirements set forth by United States Environmental Protection Agency (USEPA) Region 9 for approval to dispose of fish waste within the USEPA designated American Samoa offshore disposal site. ADISS specializes in monitoring dredging projects and has provided tracking services to commercial dredging companies since 1997. About 800 monitoring projects have been completed, documenting more than 250,000 loads of dredged material to offshore and upland placement sites.

To accomplish the vessel monitoring requirements, a "Black Box" data logger configured and wired to receive and record vessel position, pump status and discharge flow rate information will be installed. The data logger will be housed in a watertight enclosure along with a back-up battery, power supply, Wi-Fi network adaptor and amber alert LED. The system will be powered by 110VAC supplied by the vessel.

Flow meter data will be interrogated by the logger software to confirm flow rates are within acceptable seasonal tolerances. If seasonal rate thresholds are exceeded, the system will provide a visual alert by flashing the amber alert LED until rates fall below the threshold limits. Control of the flow rate is discussed in Section g.

The data logger will be programmed to acquire position and sample the sensors at two different intervals. While inside a pre-determined geo-fence surrounding the designated disposal area, the system will log data at a 12-second rate. While outside the geo-fence and away from the disposal area, the system will log at a 5-minute rate. The "Black Box" logging system on the vessel will store and report the following data points at the designated intervals:

- GMT Date/Time (converted to Local when imported)
- Latitude/Longitude
- Speed
- Course
- System Voltage
- Pump Amperage
- Flow Rate (when discharging)

The position and sensor data will be logged and stored in the onboard data logging system. When possible, the logged data will be transmitted to a Fish Waste Disposal (FWD) website (created and operated by ADISS for Starkist) via a connection between the onboard Wi-Fi system and the island cellular data network (subject to communications connectivity with the mainland). This connection may be possible between the vessel and the island-based cellular data network during ocean dumping trips; however, the practical reach

of the cellular phone coverage system will need to be confirmed. At a minimum, the transfer of data to the FWD website is expected to occur as the vessel returns to Pago Pago Harbor (the Harbor) and the vessel's Wi-Fi returns to within coverage of the island data network system. In addition to the "Black Box" data logger, the vessel will also be equipped with an e-Logging laptop/netbook that ADISS will train the vessel crew to operate. This laptop/netbook will provide the crew with a software interface to enter and submit their daily trip logs.

In addition to the "Black Box" data logger, the vessel Captain/crew will maintain the laptop/netbook and enter trip specific details not recorded by the data logger including:

- Notification time/date with ASEPA/CGLO before each trip
- Onshore loading start/end times
- Volume loaded (in gallons)
- Wind direction (including every 30 minutes during discharge)
- Swell
- Dump site center conditions (coordinates, wind direction and observed surface water direction)
- Current direction (at center, end of discharge)
- Discharge pattern
- Presence of plume
- Time and position of any floating material
- Unusual occurrences
- Deviations from normal disposal pattern (with rationale for the deviation)

The data logging software will be capable of interfacing with the incoming GPS data to auto-populate several form fields to simplify data entry (i.e., discharge rate, total run time, average speed during discharge). The vessel Wi-Fi network will transmit the required vessel trip logs from the laptop/netbook to the FWD website via the same data connection as outlined above.

As a back up to the data upload system when Wi-Fi network coverage is not available, the software will be programmed to save and store logged and vessel data to a flash drive when inserted into the netbook/laptop. Once saved to the flash drive, the Captain/crew member can download and email the daily data files directly to the ADISS server when they return to the island, subject to accessible data connections between the island communication and the mainland. Once received by ADISS, the files will undergo a data validation Quality Assurance (QA) process. Upon completion of the QA process, the data will be made available on the website for viewing by authorized external parties on a biweekly basis. The FWD website will operate continuously in support of the vessel operations and will be monitored and supported by ADISS's team of Information Technology (IT) specialists.

The FWD website will host aerial and map views that will show shorelines as well as the designated EPA disposal site boundary. The website will also include other features, including the ability to display cursor coordinates and distance measurements from viewer selected map locations. Additionally, the website will provide access to the "trip plots" on a biweekly basis that will display the vessels geographical data (i.e., vessel navigational plot showing its course during discharge) and sensor status relative to the permitted

disposal site. This data will clearly show where disposal operations occurred by showing position and corresponding pump and flow status.

(c) Adequate physical and chemical description of material to be dumped, including results of tests necessary to apply the Criteria, and the number, size, and physical configuration of any containers to be dumped;

Fish processing waste from the dissolved air flotation (DAF) sludge, press liquor/water from the fishmeal sump, and pre-cooker wastewater as authorized in 40 CFR 228.15(m)(1)(vi).

Physical and chemical data characterizing the material to be dumped is provided as Attachment 2. Sampling of the three wastewater streams was conducted on five separate days between June 20 and 27, 2019 as outlined in the Ocean Disposal Waste Stream Characterization Sampling and Analysis Plan (SAP) dated June 14, 2019. During the sampling period, 24-hour composite samples were collected from each source which were then composited to generate one combined ocean disposal composite sample for each of the sample days. The composite sample was analyzed for a list of parameters as requested by USEPA Region 9, including volatile organic compounds (VOCs), metals, pyrethrins, formaldehyde, nitrogen compounds, phosphorus, and general chemistry (e.g., oil and grease, solids, volatile solids, etc.), among others. The full list of analytes and results are provided in Attachment 2 and were previously provided to USEPA on July 24, 2019.

The composite sample representing the combined waste streams proposed for ocean disposal was also subjected to bioassay testing as outlined in the Ocean Disposal Bioassay Testing SAP dated June 14, 2019. The purpose of the bioassay testing was to characterize the potential toxicity of the ocean disposal waste to three separate sensitive marine, water-column dwelling organisms. Suspended particulate phase bioassays were performed using six dilutions (2.0, 1.0, 0.5, 0.25, 0.125, and 0.06%) and a laboratory control. Bioassay testing was completed on the combined ocean disposal composite sample collected on June 27, 2019 (as outlined above) and the results are provided in Attachment 2.

To demonstrate that the current wastewater data is compatible with historical combined waste stream conditions, the 2019 dataset was compared to historical datasets for various measured parameters. As outlined in Attachment 2, the samples of the combined ocean disposal wastewater collected in June 2019 are generally consistent with wastewater that was previously permitted for ocean disposal. When average concentrations for parameters analyzed in previous years were compared against the average concentration data collected in 2019, the 2019 concentrations were generally lower or within the historical average concentrations.

Further, a limiting permissible concentration (LPC) concentration was calculated in accordance with 40 CFR section 227.27 (a) where the LPC is the concentration of waste in the receiving water that does not exceed an acute toxicity threshold of 0.01 of the lowest acutely toxic concentration (i.e., the EC50 or LC50 of the sensitive marine organisms tested). The LPC was then compared to estimated waste sample concentrations at the edge of the dumping zone, based on 1997 plume dilution modelling (CH2M Hill 1997). The 1997 plume dilution modelling was based on dumping flow rates from the vessel, which are not expected to change. Bioassay results indicate that no adverse effects are expected to be observed at the edge

of the boundary under the conditions. Validated results from both the bioassay testing and the analytical testing programs are provided in Attachment 2.

(d) Quantity of material to be dumped;

Up to four hundred thousand (400,000) U.S. gallons per day which is consistent with the combined fish waste volumes historically permitted from the two canneries. This volume assumes that more than one dumping run would be completed in a day.

(e) Proposed dates and times of disposal;

The fish processing waste is generated whenever the Starkist facility is in operation. Starkist requests 400,000 gallons per day in order to allow operational flexibility in the facility's ocean dumping schedule. Additionally, there may be a need for accumulation of wastes and daily dumping up to 400,000 gallons in the event of unplanned downtime of the vessel or other emergency conditions. As noted above, this volume assumes that more than one dumping run would be completed in a day.

(f) Proposed dump site, and in the event such proposed dump site is not a dump site designated in this subchapter H, detailed physical, chemical and biological information relating to the proposed dump site and sufficient to support its designation as a site according to the procedures of part 228 of this subchapter H;

The proposed dump site is the USEPA designated site in the Pacific Ocean confined to a circular area with a 1.5 nautical mile radius, centered at 14° 24.00' South latitude by 170° 38.30 West longitude.

(g) Proposed method of releasing the material at the dump site and means by which the disposal rate can be controlled and modified as required;

The proposed method of releasing the fish processing waste at the dump site is through a pump/pipe system connecting the vessel's six holding tanks to a single discharge port at the stern of the vessel. Disposal rate during dumping is controlled by a manifold system with valves that allows the vessel crew to manually¹ release the fish waste from the holding tanks at a controlled rate. The flowrate of the discharge is then measured at a point closer to the discharge port (i.e., after the manifold). This approach to disposal allows for vessel stability to be maintained during discharge. See Section (c) above for more details on the vessel instruments monitoring and reporting of disposal rates.

¹ The valve system is manual with crew opening and closing valves as needed. To maintain stability, the crew will release fish waste from two tanks simultaneously, the tanks on opposite sides of the vessel (port and starboard). The level of each tank will be measured with sounding tape and/or a float switch system that displays the tank level. Each tank will also have a low- and high-level alarm system. Additionally, the vessel is equipped with multiple inclinometers to determine and maintain stability.

(h) Identification of the specific process or activity giving rise to the production of the material;

The fish processing waste is produced from the tuna canning process at the Starkist facility. The DAF sludge originates from the DAF treatment system which is a physical/chemical separation process to remove suspended material from the combined wastewater streams generated in the production facility. This treatment is achieved by dissolving air in a wastewater stream and combining it with the DAF influent under pressure, then releasing the air at atmospheric pressure in the flotation tank. The DAF influent is treated with aluminum sulfate (alum) and anionic polymer to improve solids separation. Solids and Oil and Grease particles adhere to the dissolved air, and these materials float to the surface of the DAF where they are removed from the surface as DAF float. DAF bottoms are materials that are unable to float due to their relative weight and sink to the bottom of the DAF for collection and removal via the DAF bottoms pump system. DAF float and DAF bottoms comprise the DAF sludge discussed in this permit application.

Wastewater from the pre-cookers is generated from condensed steam used to cook the fish, and from the release of liquids as the fish is cooked. Vegetable broth is added to some of the fish before entering the pre-cookers and a portion of the broth drains from the fish during the cooking process, accumulating in the pre-cooker wastewater. The pre-cooker area wastewater is currently collected in the pre-cooker sump, from which it is pumped to the fishmeal area for treatment via the steam-fed evaporator (SFE). Starkist intends to ocean dispose all the pre-cooker wastewater and discontinue treatment via the SFE.

Press water/liquor (also referred to as stickwater) generated from the fishmeal process was historically discharged to the fishmeal sump, along with other wastewater side streams generated in the fishmeal process, and the contents of the fishmeal sump were ocean disposed. In November 2017, Starkist installed a waste heat evaporator (WFE) for the removal of solids from the stickwater into a concentrate for beneficial re-use into fishmeal product. The condensate portion of the stickwater from the WFE continues to be discharged into the fishmeal sump, along with the other wastewater side streams historically generated in the fishmeal process area. The combined wastewater stream, including the WFE condensate and wastewater sources collecting in the fishmeal sump, will be ocean disposed.

(i) Description of the manner in which the type of material proposed to be dumped has been previously disposed of by or on behalf of the person(s) or firm(s) producing such material;

Until 1975, Starkist disposed of liquid wastes through direct discharge into the Harbor. As a result of the deleterious effects of harbor dumping, Starkist installed sludge-generating DAF equipment between 1974 and 1975. From 1975 until 1980, sludge generated by the DAF equipment was disposed of on land at one of two terrestrial dumping sites, which included a pit near Tafunafou on Tafuna and a diked ravine near Futiga. After numerous concerns were raised regarding land dumping practices, including serious human health hazards, water contamination, land space limitations, cultural practices (e.g., communal land ownership) and aesthetics (e.g., odors and traffic congestion), the USEPA issued a permit for ocean disposal in 1980. Starkist and Van Camp Seafood (VCS), subsequently operated as Chicken of the Sea (COS), began ocean disposal of fish wastes off the south coast of Tutuila Island, American Samoa in December of 1980 (Permit Number: OD 79-01/02 Special). Both Starkist and VCS/COS historically applied for coordinated ocean dumping permits and shared the cost of the ocean dumping vessel and monitoring programs, disposal vessel navigation system, and monthly ocean disposal site monitoring.

P.O. Box 368

Pago Pago, AS 96799

Research Permits were issued on February 26, 1987 (OD 86-01), September 2, 1987 (OD-87-01), March 4, 1988, (OD 88-01), and September 12, 1988 (OD 88-02). In 1990, the disposal site was moved further offshore into deeper water based on an Environmental Impact Statement (EIS) conducted February 24, 1989 (USEPA 1989). Special Permits were issued in 1990 (OD 90-01) and 1993 (OD 93-01).

The permitted disposal volume of fish processing waste was a total of 400,000 gallons per day (200,00 gallons per day per cannery). A major Tsunami struck the island in September 2009, damaging the facility, disrupting operations, and leading to the suspension of operations at the VCS/COS facility. Starkist continued ocean dumping through to approximately May 2012 at which time it began treating the high strength wastewater through a new wastewater treatment system.

Between 2012 and 2017, the previously ocean dumped fish wastes were pre-treated by a high strength wastewater treatment system before being combined with the remaining wastewater streams. The combined wastewater stream was then treated by a DAF system and discharged to an outfall diffuser in the Harbor via the Joint Cannery Outfall (JCO).

In November 2017, Starkist installed two fishmeal evaporators to reduce the pollutant loading discharged to the Harbor from the press water/liquor and the pre-cooker wastewater streams. The evaporators are required by Starkist's Consent Decree, effective March 7, 2018. The evaporators generate a concentrate stream which can be processed with the fish solids through the fishmeal drying process; however, the capacity of the fishmeal drying process is limited and not all of the concentrate can be processed each day. Since May 2018, StarKist has disposed of a portion of the evaporator concentrate to the local landfill. Starkist regularly communicates with the American Samoa Power Authority (ASPA) and the American Samoa EPA (ASEPA) on this matter.

Through conversations with the ASEPA and ASPA, Starkist understands that the capacity of the landfill is limited, and the concentrate generates nuisance odor which limits the long term feasibility of this disposal method. A permit to ocean dispose the three fish waste streams outlined in this permit application will end the need for ongoing concentrate disposal at the landfill.

(j) A statement of the need for the proposed dumping and an evaluation of short and long term alternative means of disposal, treatment or recycle of the material. Means of disposal shall include without limitation, landfill, well injection, incineration, spread of material over open ground; biological, chemical or physical treatment; recovery and recycle of material within the plant or at other plants which may use the material, and storage. The statement shall also include an analysis of the availability and environmental impact of such alternatives;

Starkist historically dumped fish processing waste based on the need demonstrated in the 1989 (EIS) (USEPA 1989). As noted above in Section i, the USEPA permitted ocean dumping at a designated offshore site in 1980. The designated site, at the time, was approximately 2.25 nautical miles from the nearest fringing reef. From 1980 to 1986 DAF sludge was dumped by Special Permit OD 79-01 and OD 79-02 (each cannery had its own permit). Due to cannery production growth, it was decided in 1986 to increase the diameter of the ocean dumping site and move the location south southeast from its original location. The drawback of the original designated site was that it could not be expanded appreciably without the plume being carried toward shallow water habitats if larger quantities of waste were dumped.

P.O. Box 368

Pago Pago, AS 96799

The EIS considered three alternatives for fish waste dumping: No Action, Land-based dumping, and oceanbased dumping. Each alternative included a set of options that were evaluated to select the approach with the lowest potential for human health and ecological impacts.

The "No Action" alternatives included: dumping without a permit, dumping on land, discontinue the use of DAF equipment, and discontinue operations in American Samoa. The no action alternatives were considered to either cause violations with local and federal regulations or deprive American Samoa of its major industry. Land-based alternatives included: ponding, landfilling, percolation of saline cannery waste. For the land-based alternatives, the EIS concluded that "the cumulative effect of these attempts to carry out land dumping have illustrated well the fact that land dumping on island territories is not a feasible alternative to management of fish processing wastes."

Based on the issues associated with land-based dumping, ocean dumping was the most viable and protective alternative. Three ocean-based alternatives were evaluated; shallow water site, the original permitted site, and deep-water site. The deep-water alternative was selected because this site offered the most protection against possible surface slicks approaching shores, there was minimal possibility that the plume would encroach on environmentally sensitive areas at this site, and it provided a larger mixing zone and dilution zone. It was deemed safe for disposal for larger quantities of waste.

Since no new land-based disposal options are available and the status of the previously reviewed options have not changed since 1989, the findings of the EIS continue to reflect the options for alternative disposal options.

As discussed in Section i (above), Starkist discontinued ocean dumping in 2012. Since 2012, the fish waste has been discharged via the Joint Cannery Outfall, which increased pollutant loading to the Harbor. As a result, Starkist upgraded the wastewater treatment systems, beginning in 2017 through early 2018, and have significantly reduced loading rates for Total Suspended Solids, Total Phosphorus, Total Nitrogen, Ammonia, and Oil and Grease, in part by recovering material within the fishmeal operations from the evaporators. However, through ongoing optimization efforts, a portion of the concentrate generated by the evaporators could not be recovered through the fishmeal dryers and required landfill disposal. Starkist's desire to reduce the overall nutrient loading to the Harbor and discontinue landfilling of concentrate from the plant, results in a need to re-engage in ocean dumping of fish waste.

Chemical, biological and physical options to upgrade the existing wastewater treatment system to achieve the NPDES permit limits for discharges to the Harbor via the JCO have been evaluated by Starkist. Through this process, two key constraints have been identified: footprint and operational complexity in a remote setting.

Additional footprint at the Facility for upgraded wastewater treatment systems is highly constrained by the orientation of the site relative to the mountains, the highway, and the Harbor. The size of a treatment system required to treat up to 2.9 million gallons per day of wastewater and meet the current NPDES permit limits without the resumption of ocean dumping, would only be feasible through capital investments on the order of \$65M.

To the extent a treatment system can even be designed and constructed to meet the draft NPDES Permit limits, given the very limited space available at the Facility, it is important to recognize that the operation

P.O. Box 368

of a complex treatment system in a remote location with limited local operation and maintenance resources increases the risk of future non-compliance. Contracting skilled off-island treatment operators may be possible but at a significant premium, while the local mechanical, electrical, and instrumentation and control staff are less skilled than in other parts of the United States, requiring emergency off-island support in the event of equipment failure. For example, recent repairs to wastewater treatment equipment prompted a shutdown of the production facility due to the limited ability for off-island contractors to travel to the site on one of the twice-weekly flights between Hawaii and American Samoa, even on an emergency basis. The risk to effluent wastewater compliance associated with operational complexity are significant.

The anticipated costs to attempt to meet the NPDES effluent limits presents a serious challenge to the viability of the facility and have necessitated Starkist to evaluate its options to close the facility and transfer production elsewhere. Transferring production off the island would have a very negative impact on the American Samoa economy. Starkist is the largest private-sector employer in American Samoa, with approximately 2,400 direct employees approximately 16% of the American Samoa workforce; approximately the same number of people are employed indirectly in jobs that result from Starkist's operations in American Samoa. An estimated 90% of the shipping containers leaving the Port of Pago Pago are associated with Starkist's operations. Starkist is already operating at a significant cost disadvantage to its competition in the tuna canning industry as a result of the competition's exclusive use of foreign canneries in low-wage countries. According to a 2016 Government Accountability Office (GAO) report, Starkist could save at least \$7.6 million annually - and as much as \$22.3 million annually - by relocating its American Samoa operations to another tariff-free country with lower labor costs.² The cost savings associated with moving operations would grow significantly without an appropriate ocean dumping permit.

The ASEPA supports ocean dumping of fish waste. During an in-person meeting³ between Starkist, USEPA, and the ASEPA to discuss ocean dumping, Director Fa'amao Asalele, Jr. (ASEPA) commented on the limited capacity of the landfill on the island of American Samoa to continue accepting concentrate from the Starkist facility and urged USEPA and Starkist to develop the information necessary to submit, review and approve an application for Ocean Disposal. Director Asalele stressed the impact of this permit on improving operations at the landfill, including issues with odors and community complaints.

(k) An assessment of the anticipated environmental impact of the proposed dumping, including without limitation, the relative duration of the effect of the proposed dumping on the marine environment, navigation, living and non-living marine resource exploitation, scientific study, recreation and other uses of the ocean.

The environmental impact of the proposed dumping in American Samoa has been demonstrated in the EIS conducted by the USEPA. With input from federal and local agencies and the public, USEPA designated the current deep-water dumping site. As noted above in Section j, the designation was based on the determination that ocean dumping of fish waste was the preferred alternative over other alternatives

² U.S. Government Accountability Office. *American Samoa: Alternatives for Raising Minimum Wages to Keep Pace with the Cost of Living and Reach the Federal Level.* December 2016.

³ Meeting was conducted May 8, 2019 at the USEPA Region 9 office, San Francisco, CA.

proposed for disposing of fish waste. The EIS determined that "no cumulative effects of ocean disposal are expected under presently permitted quantities of dumping. The currents and winds effectively dissipate the wastes, and none are measurable after four hours, nor are they visible on the morning following the previous day's disposal to indicate a buildup of wastes. The assimilative capacity of the open ocean is enormous. There should be no buildup of any pollutants under existing disposal practices."

Starkist has historically dumped fish waste at the EPA designated disposal site, as recent as 2012. In compliance with EPA's ocean dumping criteria at 40 CFR Parts 227 and 228 and pursuant to MPRSA of 1972 (33 U.S.C. §1401 et seq.), Starkist collected monthly data at the dump site (receiving waters and vessel operations) and the onshore storage tank to document the impact to the ocean dumping operation. In compliance with Special Conditions outlined in the previous permit (OD 93-01), Starkist routinely (i.e., every three months during the permit period) provided USEPA with Ocean Disposal Site Monitoring Reports during historical ocean dumping activities. These reports included ocean dumping vessel operations information, dump site monitoring data, and fish waste processing data including analytical and bioassay testing results. Based on Starkist's demonstration of compliance with permit conditions submitted to USEPA in these reports, there have been no discernable permanent effects on the water quality of the ocean in or near the dump site. Starkist proposes to dispose of fish waste from the same waste streams historically permitted.

As described in Section c (above and in Attachment 2), current analytical and biological toxicity data show consistent results with historical data from the same permitted combined waste streams. Based on dilution levels expected at the designated ocean dumping site, the fish processing wastes are not expected to cause significant short- or long-term impacts to oceanic water quality, marine ecosystems or human health.

Closing

We appreciate the USEPA's prompt review of the Ocean Dumping permit application information summarized in this letter. Should you have any questions about this submission, please feel free to contact me at 684.622.2003.

Sincerely,

Jason Kim

Jason Kim General Manager, Starkist Samoa Co.

Copies to:

Ms. Elizabeth Sablad and Ms. Sara Goldsmith – USEPA Ms. Ellen Blake – USEPA Director Fa'amao Asalele – ASEPA Archie Soliai, Edmund Kim and John Dearness – Starkist Samoa Co. Jeff Roberts, Esq., Mike Schenk and Scott Meece – StarKist Co. Janet Goodfellow, Keith Kroeger and Brandon Steets – Geosyntec Consultants Scott Dismukes, Esq. and Dave Rockman, Esq. – Eckert Seamans

P.O. Box 368

Pago Pago, AS 96799

www.starkist.com

Literature Cited:

CH2M Hill. 1997. Revised Report for Joint Cannery Ocean Dumping Studies in American Samoa.

U.S. Environmental Protection agency (USEPA). 1989. Final Environmental Impact Statement for the Designation of an Ocean Disposal Site off Tutuila Island, American Samoa for Fish Processing Wastes. February.

Application Supporting Attachments:

Attachment 1: Aquatic Blue Vessel Specifications Sheet

Attachment 2: Ocean Dumping - Physical and Chemical Description of Material to be Dumped

Attachment 3: Ocean Dumping Monitoring Plan

ATTACHMENT 1 AQUATIC BLUE VESSEL SPECIFICATIONS

DIMENSIONS

Length	
Beam	
Depth	
Clear Deck	
Deck Cargo	
Gross Tonnage	

LIQUID CAPACITIES

Potable Water Fuel Liquid Mud Bulk Tanks Lube Oil 197,000 Gals. 85,000 Gals. 1,100 BBLS 3,900 Cu Ft. (6 tanks) 600 Gals.

197 Ft 40 Ft

14 Ft

145 Ft x 33 Ft 775 LT 151 GT

DELIVERY RATES

Fuel Water Liquid Mud

MACHINERY

Main Engines Max HP

Speed

Fuel Burn

Generators

Bow Thruster Dynamic Positioning 450 GPM @ 100 Ft 530 GPM @ 100 Ft. 21 LBS PM @ 100 Ft.

2 – 3512 Caterpillars 2,600 12 Knots 124 GPH Cruising 12 GPH Standby

2 – 3306 Caterpillars - 175KW 8V-71-300HP Beier - IVCS 2000 DP1

DP1 BEIERS - IVCS 200 REPOWERED IN 2003 V 3512 CATERPILLARS

Jump Rack Stern

ELECTRONICS

2 VHF Marine Radios SSB Radio adars

Internet SAT Phone TV - Direct TV DVD

OTHER FEATURES

Central A/C & Heat Hull & Safety Equipment Laundry Ice Maker Jump Rack

CERTIFICATIONS

USCG Licensed and Approved For Oce USCG Licensed and Approved for 181

ATTACHMENT 2

Ocean Dumping - Physical and Chemical Description of Material to be Dumped

130 Stone Road West Guelph, Ontario N1G 3Z2 PH 519.822.2230 FAX 888.635.3470 www.geosyntec.com

Attachment 2

Date: August 29, 2019

Subject: Application for Ocean Disposal Permit - Sampling Results

Starkist Samoa Co., a wholly owned subsidiary of the StarKist Co. (collectively referred to as StarKist), is submitting an application to the United States Environmental Protection Agency (USEPA) for ocean dumping of fish waste. This attachment presents bioassay toxicity testing and chemical results to support the permit application [Section (c)] request for adequate physical and chemical description of material to be dumped.

The StarKist Facility historically operated under a Special Permit (OD93-01 Special) issued by the USEPA for ocean dumping of high strength wastewater streams. StarKist discontinued this program in approximately July 2012. StarKist has a need to resume ocean dumping of the same previously permitted high strength wastewater streams.

BACKGROUND

StarKist conducted sampling and analysis of the combined wastewater from streams designated for ocean disposal in 40 CFR 228, namely Dissolved Air Flotation (DAF) sludge, pre-cooker wastewater, and the treated discharge from presswater which collects in the fishmeal sump (fishmeal sump). The combined ocean disposal samples were analyzed for a suite of chemical analytes and for biological toxicity using a bioassay testing approach consistent with the historical ocean disposal bioassay testing.

In support of the sampling and analysis, two Sampling and Analysis Plans (SAPs) were developed and submitted to USEPA for review and approval; one for wastewater sampling and analytical testing (Analytical SAP, dated June 14, 2019), and the other for wastewater sampling and bioassay testing (Bioassay SAP, dated July 24, 2019).

Samples were collected in late June 2019. More specifically, 24-hour composite samples were collected of the historical ocean disposal streams (fishmeal sump wastewater, DAF sludge, and pre-cooker wastewater) over five days within a two-week period and these samples were submitted to the laboratory for analysis. On the final day of sampling, additional volume of the 24-hour composite was collected and submitted to the laboratory for bioassay testing.

2019 08 29 OD Application Attachment_Results Summary.docx

The following sections summarize the testing completed on these samples and the associated results. The bioassay and analytical testing laboratory's data packages are provided as appendices to this attachment.

BIOASSAY TESTING

Consistent with the historical permit for ocean disposal, bioassay testing was conducted to characterize the potential toxicity of high-strength waste to sensitive marine, water-column dwelling organisms. Sampling of the three wastewater streams was initiated on June 26, 2019 and completed on June 27, 2019, and the three samples were composited to generate a combined composite on June 27, 2019. Testing was initiated July 1, 2019.

The three test species used were the purple sea urchin (*Strongylocentrotus purpuratus*) larvae, mysid shrimp (*Americamysis bahia*), and inland silverside (*Menidia beryllina*). Consistent with historical bioassay tests, suspended particulate phase bioassays were performed using six dilutions (2.0, 1.0, 0.5, 0.25, 0.125, and 0.06% of the combined ocean disposal wastewater sample) and a laboratory control. The shrimp and silverside tests were run for 96-hours, ending July 5, 2019. The sea urchin test was run for 72-hours, ending July 4, 2019.

Bioassay Results

Results for the three bioassay tests were received from Enthalpy Analytical (formerly Nautilus Environmental) on July 24, 2019 and available laboratory reports are provided in Appendix A. All tests met the test acceptability criteria (i.e., the silversides and mysids showed less than 10% mortality in the controls and there was 80% normal shell development in the urchin control). Concurrent reference toxicant tests met all minimum test acceptability requirements and the Percent Minimum Statistical Difference (PMSD) value for the chronic urchin development test was within the acceptable range. The calculated median effect concentration values for all reference toxicant tests were within two standard deviations of the historical means, indicating typical organism sensitivity to copper.

Results of the three bioassay tests on diluted waste are presented in Table 1, along with a comparison of bioassay test results from historical testing in 1994/95. In 2019, the lab indicated one water quality deviation that was immediately addressed where possible; specifically, dissolved oxygen dropped to concentrations below 4 mg/L in the top two concentrations in the fish test and the top four concentrations in the urchin test. To address this issue, the fish and mysid shrimp tests were put on constant aeration; however,

the urchin test was not aerated due to the potential interference of aeration with the integrity of the urchin embryos in this test.

The samples were received slightly above the temperature range of 0-6 $^{\circ}$ C (6.8 $^{\circ}$ C at receipt). All tests were initiated within 98-hours of when the sample was collected. The laboratory controls met all minimum test acceptability requirements. Statistical analyses followed standard USEPA flowchart selections. The PMSD value for the urchin test was within the acceptable range. The data are deemed reliable for reporting purposes

Ammonia Results. The lab noted that ammonia levels in the sample were elevated. Subsamples were collected from each of the three bioassays upon initiation and at termination for each test, with the exception to the urchin development test at test termination due to technician error. Additional subsamples were collected for the mysid and inland silverside tests at 48 hours, prior to the test solution renewal. The subsamples were collected from the highest test concentration (2.0% sample) for each of the bioassays. If complete mortality in the highest concentration had occurred, then the concentration below was subsampled. Total ammonia in the 2.0% sample concentration ranged from 49.7 to 51.4 mg/L at the initiation of the bioassays.

Ammonia levels remained stable throughout the testing period. At the termination of the mysid test, subsamples were collected from two individual replicates in the 1% sample concentration (complete mortality had occurred in the 2.0% sample by 48 hours), one with complete survival, and one with no survival. Total ammonia measurements were within 10% of each other (23.5 mg/L in the replicate with no survival, 24.9 mg/L in the replicate with no mortality), suggesting that for this species, ammonia may not be the primary or sole driver of toxicity. However, ammonia may have contributed to the observed effects.

Test Replicate Variability. Relatively high variability in test replicate response was observed in some test concentrations. This was most apparent in the mysid and urchin tests. All test solutions were thoroughly homogenized prior to making test dilutions as well as prior to distribution to the individual test chambers. However, it was noted at sample receipt that the sample had a large portion of heavy particulate matter that settled quickly. In the higher concentrations (specifically the 0.5 and 1.0% sample) of the mysid test, some replicates had complete survival while others had complete mortality. In the urchin test, some replicates of the 0.06% concentration showed a partial response (i.e., some normally developed embryos), while other replicates showed no normally developed embryos. The inter-concentration variability combined with the bench

observations suggest that at least a portion of the toxicity may be associated with particulate matter in the sample.

Results for Inland Silverside

The inland silverside demonstrated no significant toxicity at sample concentrations below 0.5% and demonstrated 100% mortality in the 2% sample. The No Observed Effect Concentration (NOEC) and the LC50 were estimated as 1.0% and 1.41%, respectively. As shown in Table 1, NOEC and LC50 results for the silversides show less toxicity in 2019 than in tests conducted in 1994/95 with sand dabs, *Citharichthys stigmaeus*, in which the NOEC was reported to range from 0.2 to 0.25% and the LC50 ranged from 0.27 to 0.396%.

Results for Mysid Shrimp

The mysid shrimp demonstrated no significant toxicity at sample concentrations below 0.25% and demonstrated 100% mortality in the 2% sample. The NOEC and the LC50 were estimated as 0.25% and 0.49%, respectively. Variability among replicates in the myside shrimp test was observed in the 0.25, 0.5, and 1.0% samples. As shown in Table 1, NOEC and LC50 results are comparable to those of mysid shrimp tests conducted in 1994/95 in which the NOEC was reported to range from 0.05% to 0.5% and the LC50 ranged from 0.12 to 1.16%.

Results for Sea Urchin

The sea urchin test showed abnormal development in all sample dilutions ranging from 0.06 to 2.0%; however, some normal development also was observed in the 0.06% sample. As shown in Table 1, the EC50 result from 2019 is comparable to the urchin test conducted in 1994/95 in which the EC50 was < 0.08%. Similarly, the 2019 urchin EC50 is comparable to the estimated EC50 for mussels in the first of two bivalve larval development tests performed in 1994/95 in which the EC50 was also < 0.08%. The NOEC was reported as < 0.06% in the 2019 test and was not reported on in the 1994/95 tests but was at a minimum < 0.08%. Deviations in water quality, elevated ammonia, and particles in the sample are possible contributors to the observed toxicity. Historical bioassay reports suggest that elevated ammonia, also observed during 1994/95 bioassay testing, is a potential cause of the observed toxicity.

Limiting Permissible Concentration

The limiting permissible concentration (LPC) was calculated in accordance with 40 CFR section 227.27 (a) where the LPC is the concentration of waste in the receiving water that

does not exceed an acute toxicity threshold of 0.01 of the lowest acutely toxic concentration (i.e., the EC50 or LC50 of the sensitive marine organisms tested). The LPC was then compared to estimated waste sample concentrations at the edge of the disposal zone, based on the 1997 plume dilution modeling (CH2M Hill 1997).

The LPC was calculated using the lowest EC/LC50 result of 0.04% for the purple sea urchin sample and applying the 0.01 factor (40 CFR 227.27), resulting in an LPC of 0.0004% sample (i.e., or 1% of the lowest EC50 measured in bioassay tests [0.04%]). Based on the 1997 plume dilution modeling (CH2M Hill 1997), which is the most current ocean disposal modeling information available, the estimated combined ocean disposal wastewater concentration at the edge of the disposal zone is 0.00025% (i.e., assuming a minimum dilution of 1:400,000). The estimated edge of disposal zone waste concentration is lower than the LPC, indicating that toxicity would not be observed at this boundary under the conditions assumed in this model¹.

CHEMICAL ANALYSIS

The historical ocean disposal program required routine analysis of the combined wastewater streams for ocean disposal for ammonia, oil and grease, total nitrogen and total phosphorus, total solids and total volatile solids. The USEPA requested that StarKist analyze the combined ocean disposal wastewater stream for additional chemical parameters, including volatile organic compounds (VOCs), metals, pyrethrins, formaldehyde, nitrogen compounds, phosphorus, and general chemistry (e.g., oil and grease, solids, volatile solids, etc.), among others.

Sampling of the three wastewater streams was initiated on five separate days between June 20 and 27, 2019, and 24-hour composite samples were collected from each source and were then composited to generate one combined, 24 hour composite sample, for each of the sample days. The samples were shipped off-island to TestAmerica Laboratories in Irvine, California on the next available flight.

¹ The results of the 1997 model predict minimum dilutions of approximately 400,000:1 at the edge of the dumping zone (for summer conditions with an ocean current of 0.8 knots and a dumping rate of 1200 gallons per minute corresponding to a vessel speed of 10 knots). These dilutions are predicted under what the authors of this report consider to be conservative (under predicted dilutions) and worst case conditions. The time allowed for dispersion in this model is unclear; however, by dividing a given distance (e.g. 2.5 nautical miles to the edge of the dumping zone) by the current speed (0.4 knots and 0.8 knots), the time is estimated to be 6.25 hours and 3.125 hours, respectively.

Analytical Results

Final results for the chemical analysis of samples collected in June 2019 have been received from TestAmerica and available laboratory reports are provided in Appendix B.

The data has been reviewed and validated by Geosyntec and are provided in Table 2. Of particular note are the rejected data for VOCs and some nitrogen compounds based on hold time and temperature exceedances. As discussed with USEPA, these issues demonstrate the challenges with shipping samples off-island. In particular, the temperatures of the coolers measured by the laboratory upon receipt were much higher than were observed during previous sampling events. The cause for the higher than anticipated temperatures is under review for future sampling events.

To demonstrate that the current wastewater data is compatible with historical combined waste stream conditions, the 2019 dataset was compared to historical datasets for various measured parameters. Pyrethrins results are not presented in Table 3 as there is no historical data to compare 2019 results to at this time. No pyrethrins were detected for the samples collected in 2019 (Table 2). For comparison purposes, the average for a subset of the sample parameters from June 2019 is presented in Table 3 for parameters for which historical sampling data is available, including data from November 2018², historical ocean disposal data from the 2010³ ocean disposal program (i.e., during the term of the 1998 Special Permit), and historical ocean disposal metals data from 1990 to 1993^4 (i.e., during the term of the 1990 Special Permit).

When average concentrations for parameters analyzed in 2010 are compared against the average data collected in June 2019, all concentrations, except for total phosphorus, are lower than the average data from 2010; total phosphorus is the same as historical data. Similarly, when the average metals data collected June 2019 are compared against the calculated average metals concentrations for a combined ocean disposal wastewater stream from 1990 to 1993, the metals concentrations in 2019 are generally lower, with the exception of aluminum. It is possible that the aluminum concentration is higher in

² In November 2018, StarKist completed a wastewater characterization study of the various wastewater streams, including DAF sludge, pre-cooker wastewater and the fishmeal sump. The wastewater quality of the combined ocean disposal wastewater stream was estimated by using the total loading contributed from each wastewater stream in proportion to each stream's daily flowrate.

³ Data between January and December 2010 represents a period when the ocean disposal program was operating consistently.

⁴ As summarized in the Fact Sheet for the 1993 Ocean Dumping Permit (OD 93-01 Special) dated July 31, 1993. Note that the data is provided for each of the individual streams and a combined ocean disposal wastewater concentration was estimated using the permitted volumes for each stream.

2019 due to increased alum requirements in the DAF associated with treating the high strength wastewater streams that were historically ocean disposed prior to 2012.

Since most of the parameters analyzed in June 2019 were not historically analyzed, the data in Table 2 should also be reviewed in the context of the bioassay testing results. The bioassay testing results are consistent with historical bioassay testing results which suggests that the wastewater quality is also consistent with historical wastewater quality.

Mercury, Copper, and Zinc Results

To provide insight into the wastewater analytical results for mercury, copper, and zinc, the Pollutant Minimization Plan (PMP) report prepared by gdc in December 2010 on StarKist's behalf as required by the 2008 National Pollutant Discharge Elimination System (NPDES) permit (Appendix C). At the time the PMP was completed, StarKist was ocean disposing the three wastewater streams discussed in this memorandum, therefore these streams were not included in the PMP investigation. However, as noted in the PMP report, the sources of these metals were identified to be the fish and equipment used to process the fish. Since these sources would also impact the pre-cooker wastewater, fishmeal sump, and the DAF sludge, a discussion of the information from the PMP is provided below.

More specifically, the findings of the report indicate that areas of the Facility where process wastewater is generated from water contact with raw and cooked tuna fish had elevated concentrations of all three metals. In addition, process wastewater that came into contact with galvanized fish bins (scows) at the site contained elevated concentrations of zinc. This type of scow has been in use at the Facility for many years.

Pre-cooker wastewater is generated from steam that comes into contact with steel racks and tuna in the pre-cooker area where all three metals may collect in the wastewater. Similarly, the fishmeal sump collects wastewater evaporated from stickwater generated from the processing of fish scraps. The DAF sludge is a mixture of solids that both float (DAF float) and sink (DAF bottoms) in the DAF treatment system which treats wastewater from all areas of the Facility, including thawing, spray cooling, butchering and packing processes. These are all areas where process wastewater comes into contact with tuna and galvanized steel.

The conclusions outlined in the PMP report also noted:

- There is no practicable way to reduce the source of mercury in the Facility other than maintaining good housekeeping practices that involve clean-up of fish scrap during washdown activities.
- The primary source of copper is from tuna. It was found that secondary sources of copper from plumbing fittings and piping appeared to be minor.
- The primary source of zinc is from tuna and scows. Scows are required in the marine environment to avoid excessive corrosion while transporting tuna and exposed to salt in ocean water used throughout the Facility.

Water Quality Criteria

Chemical concentrations in undiluted waste samples were compared to recommended acute water quality criteria (WQC) for the protection of aquatic life (USEPA 2016). Concentrations of metals and total cyanide in undiluted combined ocean disposal wastewater samples were elevated above the acute WQC. However, when the estimated dilution factor of 1:400,000 (i.e., based on CH2M Hill 1997 plume dilution model) was applied to the sample results, the diluted sample result was below all corresponding WQC.

Table 4 provides a comparison of preliminary chemistry results for the combined ocean disposal wastewater samples to toxicity effects concentrations (i.e., EC50s) in the literature or from the ECOTOX database (USEPA 2019). Concentrations of several metals and ammonia in undiluted combined ocean disposal wastewater samples exceeded the corresponding toxicity effects concentrations. The magnitude of exceedance of the toxicity effects concentrations from the literature (i.e., EC50s) was greatest for ammonia and zinc. When compared to toxicity effects concentrations from the literature, diluted wastewater samples (i.e., based on 1997 plume dilution model estimated concentrations at the edge of disposal zone) showed no exceedances for any constituents.

CONCLUSIONS

Based on the data summarized, the samples of the combined ocean disposal wastewater collected in June 2019 appear to be generally consistent with wastewater that was previously permitted for ocean disposal. Bioassay results indicate that no adverse effects are expected to be observed at the edge of the boundary under the conditions assumed the model.

REFERENCES

- CH2M Hill, 1993. Draft Study Plan for Joint Cannery Ocean Dumping Studies in American Samoa.
- CH2M Hill, 1997. Revised Report for Joint Cannery Ocean Dumping Studies in American Samoa.
- CH2M Hill and gdc, 1997. Joint Cannery Ocean Dumping Studies in American Samoa. Revised Report. Submitted to U.S. EPA Region 9, American Samoa EPA. Prepared for StarKist Samoa and VCS Samoa Packing. June 1997.
- USEPA. 1995. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine & Estuarine Organisms. EPA-600-R-95-136.
- USEPA, 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition (EPA/821/R-02/012). US EPA Office of Water, Washington, DC.
- USEPA, 2016. National Recommended Water Quality Criteria Aquatic Life Criteria Table. Updated Dec. 22, 2016. Available at: <u>https://19january2017snapshot.epa.gov/wqc/national-recommended-water-</u> <u>quality-criteria-aquatic-life-criteria-table_.html#table</u>.
- USEPA, 2019. **ECOTOX** Knowledgebase. Updated June 13, 2019. Available online at: <u>https://cfpub.epa.gov/ecotox/</u>

* * * *

Test	Endpoint	2019 Samples	1994/95 Samples				
		7/2019	2/1994	10/1994	6/1995		
Fish ¹ 96 hr Survival Test	NOEC	1.0	0.2	0.25	0.25		
Fish 96 hr Survival Test	LC50	1.41	0.27	0.35	0.396		
Mysid Shrimp 96 hr Survival	NOEC	0.25	0.05	0.5	0.5		
Test	LC50	0.49	0.12	1.16	1.16		
Blue Mussel 48 hr Larval	EC50	NT	< 0.08	0.1	²		
Development Test	LC50	NT	>1.2	>2.0	2		
	NOEC	< 0.06	NC	NC	NC		
Sea Urchin 72 hr Embryo Development Test	EC50	0.04	< 0.08	3	3		
Development Test	LC50	NC	>1.2	3	3		

Table 1. Bioassay Test Results with Comparison to 1994/1995 Samples

Notes

1 Sand dab (*Citharichthys stigmaeus*) were tested in 1994/95 and inland silverside (*Menidia beryllina*) tested in 2019

2 Mussel larvae were not available for test, requirement waived by U. S. EPA

3 Sea Urchin not tested in 10/1994 and 6/1995 with concurrence from U. S. EPA.

4 Median sublethal concentrations were defined as IC50 (median inhibitory concentrations) in 1994/95 and median effective concentrations (EC50) in 2019; however, effects measured and procedures followed were the same.

NC = Not Calculated

NT = Not Tested. Mussel species not tested in 2019.

Table 2. Combined Ocean Disposal Wastewater Analytical Results

490 1800 2200 0.78 0.12 2.5 179 0.81 25685 0.15 74000 2.5 0.18 0.36 0.045 2.5 0.08 6370 5	R	6/21/2019 2.5 550 2200 2600 0.74 0.14 2.5 170 0.71 25825 0.17 65000 2.5 0.19 0.42 0.037 2.5 0.069 7090 5	R J J R UJ R UJ R J R R J R J R J J J J	6/25/2019 1.3 180 1700 2100 0.27 0.063 1.3 400 0.32 26250 0.077 51000 1.3 0.08 0.22 0.018 1.3 0.096 11.2	R J J R UJ UJ UJ G G G G G G G G G G G G G G G	6/26/2019 1.3 740 2400 2900 1.3 0.23 1.3 400 1.20 23975 0.37 42000 1.3 0.27 0.86 0.021 1.3 0.11	R J J J R UJ J R J R J R J J R J J R J J J J	6/27/2019 1.3 160 2400 3000 0.32 0.055 1.3 400 0.57 26357.5 0.081 43000 1.3 0.083 0.21 0.32 1.3 0.15	R J J R UJ UJ J R J R J J R J R J R	Average 424 2100 2560 0.6820 0.1216 309.8 UJ 0.7220 25618.5 0.1696 55000 0.1606 0.4140 0.0306 0.1610	Concentration (μg/L) 424,000 2,100,000 2,560,000 682 121.6 309.8 722 25,618,500 169.6 55,000,000 160.6 414 30.6	Edge of Disposal Zone (µg/L) 	(acute) (µg/L) ^{2,4} — — — 69 — — — — — 33 — — 4.8 1 —
490 1800 2200 0.78 0.12 2.5 179 0.81 25685 0.15 74000 2.5 0.18 0.36 0.045 2.5 0.08 6370 5	J J R UJ J R J R J R J J J J J	550 2200 2600 0.74 0.14 2.5 170 0.71 25825 0.17 65000 2.5 0.19 0.42 0.037 2.5 0.069 7090	J J R UJ J R J R J R J J R J J	180 1700 2100 0.27 0.063 1.3 400 0.32 26250 0.077 51000 1.3 0.08 0.22 0.018 1.3 0.096	J J R UJ J R J R J R	740 2400 2900 1.3 0.23 1.3 400 1.20 23975 0.37 42000 1.3 0.27 0.86 0.021 1.3 0.11	J J R UJ J R J R J J R J R	160 2400 3000 0.32 0.055 1.3 400 0.57 26357.5 0.081 43000 1.3 0.083 0.21 0.032 1.3	J J R UJ R J R J J J J J J J R J R J R J R J	2100 2560 0.6820 0.1216 309.8 UJ 0.7220 25618.5 0.1696 55000 0.1606 0.4140 0.0306 	2,100,000 2,560,000 682 121.6 309.8 722 25,618,500 169.6 55,000,000 160.6 414 30.6 	5.25 6.4 0.001705 0.000304 — 0.0007745 0.001805 64.04625 0.000424 137.5 — 0.0004015 0.001035 0.0000765	
1800 2200 0.78 0.12 2.5 179 0.81 25685 0.15 74000 2.5 0.18 0.36 0.045 2.5 0.08 6370 5	J R UJ J R J R J R J J J J	2200 2600 0.74 0.14 2.5 170 0.71 25825 0.17 65000 2.5 0.19 0.42 0.037 2.5 0.069 7090	J R UJ J R J R J R J R J J	1700 2100 0.27 0.063 1.3 400 0.32 26250 0.077 51000 1.3 0.08 0.22 0.018 1.3 0.096	J R UJ J R J R J R	2400 2900 1.3 0.23 1.3 400 1.20 23975 0.37 42000 1.3 0.27 0.86 0.021 1.3 0.11	J R UJ J R J R J R R	2400 3000 0.32 0.055 1.3 400 0.57 26357.5 0.081 43000 1.3 0.083 0.21 0.032 1.3	J R UJ R J R J R J R J R J R J R	2100 2560 0.6820 0.1216 309.8 UJ 0.7220 25618.5 0.1696 55000 0.1606 0.4140 0.0306 	2,100,000 2,560,000 682 121.6 309.8 722 25,618,500 169.6 55,000,000 160.6 414 30.6 	5.25 6.4 0.001705 0.000304 — 0.0007745 0.001805 64.04625 0.000424 137.5 — 0.0004015 0.001035 0.0000765	
2200 0.78 0.12 2.5 179 0.81 25685 0.15 74000 2.5 0.18 0.36 0.045 2.5 0.08 6370 5	J R UJ J R J R J R J J J J	2600 0.74 0.14 2.5 170 0.71 25825 0.17 65000 2.5 0.19 0.42 0.037 2.5 0.069 7090	J R UJ J R J R J R J R J J	2100 0.27 0.063 1.3 400 0.32 26250 0.077 51000 1.3 0.08 0.22 0.018 1.3 0.096	J R UJ J R J R J R	2900 1.3 0.23 1.3 400 1.20 23975 0.37 42000 1.3 0.27 0.86 0.021 1.3 0.11	J R UJ J R J R J R R	3000 0.32 0.055 1.3 400 0.57 26357.5 0.081 43000 1.3 0.083 0.21 0.032 1.3	J R UJ R J R J R J R J R J R J R	2560 0.6820 0.1216 309.8 UJ 0.7220 25618.5 0.1696 55000 0.1606 0.4140 0.0306 	2,560,000 682 121.6 309.8 722 25,618,500 169.6 55,000,000 160.6 414 30.6 	6.4 0.001705 0.000304 0.0007745 0.001805 64.04625 0.000424 137.5 0.0004015 0.001035 0.0000765	
0.78 0.12 2.5 179 0.81 25685 0.15 74000 2.5 0.18 0.36 0.045 2.5 0.08 6370 5	R UJ J R J R J R J J J J J	0.74 0.14 2.5 170 0.71 25825 0.17 65000 2.5 0.19 0.42 0.037 2.5 0.069 7090	R UJ J R J R J R J R J J	0.27 0.063 1.3 400 0.32 26250 0.077 51000 1.3 0.08 0.22 0.018 1.3 0.096	R UJ J R UJ J R J R J R	1.3 0.23 1.3 400 1.20 23975 0.37 42000 1.3 0.27 0.86 0.021 1.3 0.11	R UJ J R R J R J R R	0.32 0.055 1.3 400 0.57 26357.5 0.081 43000 1.3 0.083 0.21 0.032 1.3	R UJ J R J R R J R J R R	0.6820 0.1216 309.8 UJ 0.7220 25618.5 0.1696 55000 0.1606 0.4140 0.0306 	682 121.6 309.8 722 25,618,500 169.6 55,000,000 160.6 414 30.6	0.001705 0.000304 	69 — — — 33 — — 4.8 1 —
0.12 2.5 179 0.81 25685 0.15 74000 2.5 0.18 0.36 0.045 2.5 0.08 6370 5	UJ J R J R J R J J	0.14 2.5 170 0.71 25825 0.17 65000 2.5 0.19 0.42 0.037 2.5 0.069 7090	UJ J J R J J R J R J J	0.063 1.3 400 0.32 26250 0.077 51000 1.3 0.08 0.22 0.018 1.3 0.096	UJ J R J J R J R	0.23 1.3 400 1.20 23975 0.37 42000 1.3 0.27 0.86 0.021 1.3 0.11	UJ J J R J J R J J R	0.055 1.3 400 0.57 26357.5 0.081 43000 1.3 0.083 0.21 0.032 1.3	UJ J R J J R J R	0.1216 309.8 UJ 0.7220 25618.5 0.1696 55000 0.1606 0.4140 0.0306 	121.6 309.8 722 25,618,500 169.6 55,000,000 160.6 414 30.6	0.000304 — 0.0007745 0.001805 64.04625 0.000424 137.5 — 0.0004015 0.001035 0.0000765 —	
2.5 179 U 0.81 25685 0.15 74000 2.5 0.18 0.36 0.045 2.5 0.08 6370 5	UJ J R J R J R J J	2.5 170 0.71 25825 0.17 65000 2.5 0.19 0.42 0.037 2.5 0.069 7090	UJ J J R J J R J R J J	1.3 400 0.32 26250 0.077 51000 1.3 0.08 0.22 0.018 1.3 0.096	UJ J R J J R J R	1.3 400 1.20 23975 0.37 42000 1.3 0.27 0.86 0.021 1.3 0.11	UJ J J R J J R J J R	1.3 400 0.57 26357.5 0.081 43000 1.3 0.083 0.21 0.032 1.3	UJ J R J J R J R	 309.8 UJ 0.7220 25618.5 0.1696 55000 0.1606 0.4140 0.0306 			
179 U 0.81 25685 0.15 74000 2.5 0.18 0.36 0.045 2.5 0.08 6370 5	UJ J R J R J R J J	170 0.71 25825 0.17 65000 2.5 0.19 0.42 0.037 2.5 0.069 7090	UJ J J R J J R J R J J	400 0.32 26250 0.077 51000 1.3 0.08 0.22 0.018 1.3 0.096	UJ J R J J R J R	400 1.20 23975 0.37 42000 1.3 0.27 0.86 0.021 1.3 0.11	UJ J J R J J R J J R	400 0.57 26357.5 0.081 43000 1.3 0.083 0.21 0.032 1.3	UJ J R J J R J R	309.8 UJ 0.7220 25618.5 0.1696 55000 0.1606 0.4140 0.0306 	309.8 722 25,618,500 169.6 55,000,000 160.6 414 30.6	0.0007745 0.001805 64.04625 0.000424 137.5 — 0.0004015 0.001035 0.0000765 —	
0.81 25685 0.15 74000 2.5 0.18 0.36 0.045 2.5 0.08 6370 5	J R J J R J J J J	0.71 25825 0.17 65000 2.5 0.19 0.42 0.037 2.5 0.069 7090	J R J J J R R J J	0.32 26250 0.077 51000 1.3 0.08 0.22 0.018 1.3 0.096	J R J J R J R R	1.20 23975 0.37 42000 1.3 0.27 0.86 0.021 1.3 0.11	J 7 8 7 7 7 7 7 7 7 8	0.57 26357.5 0.081 43000 1.3 0.083 0.21 0.032 1.3	J R J J R J R	0.7220 25618.5 0.1696 55000 0.1606 0.4140 0.0306 	722 25,618,500 169.6 55,000,000 160.6 414 30.6 	0.001805 64.04625 0.000424 137.5 0.0004015 0.001035 0.0000765 	
25685 0.15 74000 2.5 0.18 0.36 0.045 2.5 0.08 6370 5	R] R]]	25825 0.17 65000 2.5 0.19 0.42 0.037 2.5 0.069 7090	R J R R J J	26250 0.077 51000 1.3 0.08 0.22 0.018 1.3 0.096	R J R	23975 0.37 42000 1.3 0.27 0.86 0.021 1.3 0.11	R J R	26357.5 0.081 43000 1.3 0.083 0.21 0.032 1.3	R J R	25618.5 0.1696 55000 0.1606 0.4140 0.0306 	25,618,500 169.6 55,000,000 160.6 414 30.6 	64.04625 0.000424 137.5 0.0004015 0.001035 0.0000765 	
0.15 74000 2.5 0.18 0.36 0.045 2.5 0.08 6370 5	R] R]]	0.17 65000 2.5 0.19 0.42 0.037 2.5 0.069 7090	R J R R J J	0.077 51000 1.3 0.08 0.22 0.018 1.3 0.096	R J R	0.37 42000 1.3 0.27 0.86 0.021 1.3 0.11	R J R	0.081 43000 1.3 0.083 0.21 0.032 1.3	R J R	0.1696 55000 0.1606 0.4140 0.0306 	169.6 55,000,000 160.6 414 30.6 	0.000424 137.5 	33 — — 4.8 1 —
74000 2.5 0.18 0.36 0.045 2.5 0.08 6370 5	R] R]]	65000 2.5 0.19 0.42 0.037 2.5 0.069 7090	R J R R J J	51000 1.3 0.08 0.22 0.018 1.3 0.096	R J R	42000 1.3 0.27 0.86 0.021 1.3 0.11	R J R	43000 1.3 0.083 0.21 0.032 1.3	R J R	55000 0.1606 0.4140 0.0306 	55,000,000 160.6 414 30.6 	137.5 	
2.5 0.18 0.36 0.045 2.5 0.08 6370 5	R] R]]	2.5 0.19 0.42 0.037 2.5 0.069 7090	R J R R J J	1.3 0.08 0.22 0.018 1.3 0.096	R J R	1.3 0.27 0.86 0.021 1.3 0.11	R J R	1.3 0.083 0.21 0.032 1.3	R J R	 0.1606 0.4140 0.0306 	 160.6 414 30.6 		 4.8 1
0.18 0.36 0.045 2.5 0.08 6370 5	J R J J	0.19 0.42 0.037 2.5 0.069 7090	J R J	0.08 0.22 0.018 1.3 0.096	J R	0.27 0.86 0.021 1.3 0.11	J R	0.083 0.21 0.032 1.3	J R	0.1606 0.4140 0.0306	414 30.6 	0.001035 0.0000765	
0.36 0.045 2.5 0.08 6370 5	R J J	0.42 0.037 2.5 0.069 7090	RJ	0.22 0.018 1.3 0.096	R	0.86 0.021 1.3 0.11	R	0.21 0.032 1.3	R	0.4140 0.0306 	414 30.6 	0.001035 0.0000765	4.8 1 —
0.045 2.5 0.08 6370 5	R J J	0.037 2.5 0.069 7090	RJ	0.018 1.3 0.096	R	0.021 1.3 0.11	R	0.032	R	0.0306	30.6	0.0000765	1
2.5 0.08 6370 5	R J J	2.5 0.069 7090	RJ	1.3 0.096	R	1.3 0.11	R	1.3	R			_	_
0.08 6370 5	J J	0.069 7090	J	0.096		0.11							
6370 5	J	7090	-		J		J	0.15		0.1010			
5			J	11.2				0.15	J	0.1010	101	0.0002525	
	R	5			J	8.8	J	52	J	2706.4	2,706,400	6.766	
	1	5	R	2.5	R	2.5	R	2.5	R			_	_
180		180		100		330		97		177.4	177,400	0.4435	_
0.16		0.14		0.15	U	0.30	U	0.15	U	0.1800	180	0.00045	_
0.0046		0.0044		0.0023		0.0045		0.0036		0.00388	3.9	0.0000097	_
11	R	11	R	5.5	R	5.5	R	5.5	R			_	_
0.064		0.062		0.054		0.14	J	0.05	U	0.0740	74	0.000185	74
5.5	R	5.5	R	ND		5.5	R	5.5	R			_	_
5.5	R	5.5	R	1.1	R	5.5	R	5.5	R			_	—
0.31 U	UJ	0.31	UJ	0.31	UJ	0.31	UJ	0.31	UJ	0.3100			
2.5	R	2.5	R	0.5	R	2.5	R	2.5	R			_	—
3700	J	4000	J	3700	J	4200	J	4200	J	3960	3,960,000	9.9	115 ³
			-		R							_	
	J		J		J		J		J				
	J	980	J	570	J	630	J	690	J	684	684,000	1.71	11 ³
200	U	200	U	200	U	200	U	200	U				
	-		-		-		-		-	0.416	416	0.00104	290
			+ +										
	R		R		R		R		R				
												9.9	
	-										, ,		
	-		-		0		-		-		.,,		
			-										
25	ĸ		K		ĸ		K		ĸ				90
	2.5 7.2 550 200 0.53 0.4 2.5 3700 35000 21000 2.5 24	7.2 J 550 J 200 U 0.53 - 0.4 - 2.5 R 3700 J 21000 J 2.5 R	7.2 J 11 550 J 980 200 U 200 0.53 0.42 0.4 0.45 2.5 R 2.5 3700 J 4000 35000 J 31000 21000 J 16000 2.5 R 2.5	7.2 J 11 J 550 J 980 J 200 U 200 U 0.53 0.42 0.4 0.4 0.45 0.45 2.5 R 2.5 R 35000 J 31000 J 21000 J 16000 J 2.5 R 2.5 R	7.2 J 11 J 2.5 550 J 980 J 570 200 U 200 U 200 0.53 0.42 0.2 0.2 0.4 0.45 0.18 2.5 R 2.5 R 1.3 3700 J 4000 J 3700 35000 J 31000 J 33000 21000 J 16000 J 15000 2.5 R 2.5 R 1.3	7.2 J 11 J 2.5 J 550 J 980 J 570 J 200 U 200 U 200 U 0.53 0.42 0.2 0.2 0.4 0.45 0.18 1 2.5 R 2.5 R 1.3 R 3700 J 4000 J 3700 J 35000 J 31000 J 33000 J 21000 J 16000 J 15000 J 2.5 R 2.5 R 1.3 R	7.2 J 11 J 2.5 J 3.3 550 J 980 J 570 J 630 200 U 200 U 200 U 200 0.53 0.42 0.2 0.73 0.4 0.45 0.18 0.58 2.5 R 2.5 R 1.3 3700 J 4000 J 3700 J 4200 35000 J 31000 J 33000 J 33000 21000 J 16000 J 15000 J 17000 2.5 R 2.5 R 1.3 R 1.3	7.2 J 11 J 2.5 J 3.3 J 550 J 980 J 570 J 630 J 200 U 200 U 200 U 200 U 200 U 0.53 0.42 0.2 0.73 I 0.73 I 0.4 0.45 0.18 0.58 I I 2.5 R 2.5 R 1.3 R 1.3 R 3700 J 4000 J 3700 J 4200 J J 35000 J 31000 J 33000 J 33000 J 21000 J 16000 J 15000 J 17000 J 2.5 R 2.5 R 1.3 R 1.3 R	7.2 J 11 J 2.5 J 3.3 J 7.5 550 J 980 J 570 J 630 J 690 200 U 200 U 200 U 200 U 200 0.53 0.42 0.2 0.73 0.2 0.4 0.45 0.18 0.58 0.15 2.5 R 2.5 R 1.3 R 1.3 3700 J 4000 J 3700 J 4200 J 4200 35000 J 31000 J 33000 J 33000 J 13000 21000 J 16000 J 15000 J 17000 J 15000 2.5 R 2.5 R 1.3 R 1.3 R 1.3	7.2 J 11 J 2.5 J 3.3 J 7.5 J 550 J 980 J 570 J 630 J 690 J 200 U 200 U 200 U 200 U 200 U 0.53 0.42 0.2 0.73 0.2 0.2 0.4 0.45 0.18 0.58 0.15 0.1 2.5 R 2.5 R 1.3 R 1.3 R 3700 J 4000 J 3700 J 4200 J 4200 J 35000 J 31000 J 33000 J 33000 J 13000 J 21000 J 16000 J 15000 J 1700 J 15000 J 2.5 R 2.5 R 1.3 R 1.3 R	7.2 J 11 J 2.5 J 3.3 J 7.5 J 6.3 550 J 980 J 570 J 630 J 690 J 684 200 U 200 1 6.3 6.416 6.58 0.15 0.352 2.5 8 2.5 R 1.3 33000 J 4200 J 4200 J 3960 35000 J 31000	7.2 J 11 J 2.5 J 3.3 J 7.5 J 6.3 6,300 550 J 980 J 570 J 630 J 690 J 684 684,000 200 U 200 U 200 U 200 U 200 U 0.53 0.42 0.2 0.73 0.2 0.16 416 0.4 0.45 0.18 0.58 0.15 0.352 352 2.5 R 2.5 R 1.3 R 1.3 R 1.3 R 3700 J 4000 J 3700 J 4200 J 3960 3,960,000 35000 J 31000 J 33000 J 13000 J 29000 29,000,000 21000 J 16000 J 15000 J 17000 J 15000 J 16800 16,800,000 2.5 R 2.5 R 1.3 R	7.2 J 11 J 2.5 J 3.3 J 7.5 J 6.3 6,300 0.01575 550 J 980 J 570 J 630 J 690 J 684 684,000 1.71 200 U 200 U 200 U 200 U 200 0.53 0.42 0.2 0.73 0.2 0.416 416 0.00104 0.4 0.45 0.18 0.58 0.15 0.352 352 0.00088 2.5 R 2.5 R 1.3 R 1.3 R 3700 J 4000 J 3700 J 4200 J 3960 3,960,000 9.9 35000 J 31000 J 33000 J 13000 J 29,000,000 72.5 21000 J 16000 J 15000 J 15000 J 16800 16,800,000 42 2.5

B - compound was found in the blank and sample

CMC = criterion maximum concentration

F1 -MS and/or MSD Recovery is outside acceptance limits.

H - sample was prepped or analyzed beyond the specified holding time

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

mg/L - miligrams per liter

R - The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".

ug/L - micrograms per liter

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

X - surrogate is outside the control limits

 \ast - LCS or LCSD is outside acceptance limits or the RPD $% 10^{-1}$ exceeds the control limits.

^ - instrument related QC is outside acceptance limits

-- - not applicable

1 Estimated dilution of waste based on CH2M Hill (1997) plume dilution model results which showed a 1:400,000 minmum dilution at the edge of the disposal zone.

2 Metals concentrations for criteria are based on dissolved metals concentrations; sample metals concentrations were total (particulate and dissolved) metals concentrations.

3 Total Nitrogen and Total Phosphorous WQC are based on the American Samoa Water Quality Standards 2013 Revision, Administrative Rule No. 001-2013

4 USEPA, 2016. National Recommended Water Quality Criteria - Aquatic Life Criteria Table. Updated Dec. 22, 2016. Available at: https://19january2017snapshot.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table_.html#table.

l Water	
	teria

Table 3: Combined Ocean Disposal Wastewater Quality Comparison Table

Parameter	Units	June 2019 Sampling Event - Average	June 2019 Sampling Event - Maximum	November 2018 Sampling Event - Average	November 2018 Sampling Event - Maximum	2010 Ocean Disposal Data - Average	2010 Ocean Disposal Data - Maximum	1990 - 1993 Ocean Disposal Data - Average	
Aluminum	mg/L	424	740	394	#REF!	-	-	#REF!	
Ammonia (as N)	mg/L	2,100	2,400	1,140	#REF!	3,765	5,100	-	
Ammonia (as NH ₃)	mg/L	2,560	3,000	1,384	#REF!	-	-	-	
Cadmium	mg/L	0.17	0.37	0.137	#REF!	-	-	#REF!	
Chemical Oxygen Demand	mg/L	55,000	74,000	56,570	#REF!	-	-	-	
Chromium	mg/L	0.161	0.270	0.096	#REF!	-	-	#REF!	
Copper	mg/L	0.414	0.860	0.167	#REF!	-	-	#REF!	
Oil and Grease (HEM)	mg/L	2,706	7,090	4,407	#REF!	4,787	5,530	-	
Lead	mg/L	-	-	0.0273	#REF!	-	-	#REF!	
Mercury	mg/L	0.00388	0.0046	0.0015	#REF!	-	-	#REF!	
Nickel	mg/L	0.08	0.14	0.0449	#REF!	-	-	#REF!	
Nitrogen, Total	mg/L	3,960	4,200	3,284	#REF!	4,549	5,100	-	
Phosphorus, Total	mg/L	684	980	506	#REF!	705	850	-	
Total Kjeldahl Nitrogen	mg/L	3,960	4,200	3,266	#REF!	-	-	-	
Total Solids	mg/L	29,000	35,000	29,645	#REF!	38,071	48,136	-	
Total Suspended Solids	mg/L	-		18,115	#REF!	-		-	
Total Volatile Solids	mg/L	16,800	21,000	18,161	#REF!	21,437	35,367	-	

Notes:

1990 - 1993 data is from reports submitted by StarKist Samoa to the US EPA on July 29, 1993 in response to Special Condition 3.3.5 in the 102 special permit

2010 Ocean Disposal data is taken from 12 ocean disposal wastewater samples collected once per month in 2010

HEM - hexane extractable method

June 2019 sampling data is from June 20, 21, 25, 26, and 27

mg/L - milligrams per liter

N - nitrogen

NH3 - ammonia

November 2018 sampling data is from November 6 - 16

Table 4. Comparison of Average Ocean Disposal Stream Sample Chemistry (Undiluted and Diluted) to Toxicity Effects Concentrations in the Literature¹

	Average Ocean Diluted ² Av		Diluted ² Average Ocean	Diluted ² Average Ocean	Diluted ² Average Ocean	Diluted ² Average Ocean						Effects					Magnitude of	Magnitude of
Parameter	Parameter Units Disposal Stream Disposal Stream	Disposal Stream Sample at Edge of Disposal		Organism Life stage	Effect	Effect Measurement	NOEC Range	LOEC Range	EC50 Range	Fraction (T/D) for Effects Measured	Units	Citation	Exceedance of Effects Concentration, Undiluted Average OD Sample	Exceedance of Effects Concentration, Diluted OD Sample				
Aluminum	mg/L	424	0.0106	Paracentrotus lividus	Embryo	Development	Deformation	0.269	3.48	-	Т	mg/L	Caplat,C., R. Oral, M.L. Mahaut, A. Mao, D. Barillier, M. Guida, C. Della Rocca, and G. Pagano 2010 Ecotoxicol. Environ. Saf.73(6): 1138- 1143	122	0.0003			
Ammonia as NH3	mg/L	2560	0.064	Strongylocentrotus purpuratus	Embryo	Development	Deformation	4.5	-	7.2	Т	mg/L	Green, D.J., Alzadjali, S., and Bay, S. Toxicity of Ammonia to Pacific Purple Sea Urchin (S. Purpuratus) Embryos.	356	0.0089			
Estimated Unionized Ammonia	mg/L	22.05	0.00055125	Strongylocentrotus purpuratus	Embryo	Development	Deformation	0.012 - 0.06	1	0.07 - 0.098	-	mg/L	Inouye et al. 2015. DMMP Clarification Paper. Modifications to Ammonia and Sulfide Triggers for Purging and Reference Toxicant Testing for Marine Bioassays. April 17, 2015.	315	0.0008			
Arsenic	mg/L	0.682	0.00001705	Strongylocentrotus purpuratus	Embryo	Development	Developmental changes, general		0.011	-	Т	mg/L	Garman et al. 1997; Aquat. Toxicol.39(3/4): 247-265	62	0.0002			
Barium	mg/L	0.1216	0.0000304	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA			
Boron	mg/L	0.722	0.00001805	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA			
Cadmium	mg/L	0.1696	0.00000424	Strongylocentrotus purpuratus	Embryo	Reproduction	Reproduction, general	-	-	0.5 - 0.51	Т	mg/L	Bailey et al. 1995;. Environ. Toxicol. Chem.14(12): 2181-2186	0.3	0.0000008			
Chromium	mg/L	0.1606	0.000004015	Heliocidaris tuberculata ³	Zygote	Development	Normal	0.46	-	1	Т	mg/L	Doyle,C.J., F. Pablo, R.P. Lim, and R.V. Hyne; 2003; Arch. Environ. Contam. Toxicol.44(3): 343-350	0.1606	0.0000004			
Copper, Total	mg/L	0.414	0.00001035	Strongylocentrotus purpuratus	Embryo	Normal	Development			0.0148 - 0.046	D	mg/L	Various (Ecotox Database)	28.0	0.0001			
copper, rotai	mg/L	0.414	0.00001035	Strongylocentrotus purpuratus	Embryo	Normal	Development			0.011 - 0.035	Т	mg/L	Rivera-Duart et al. 2005; Environ. Sci. Technol.39(6): 1542-1546	37.6	0.0001			
Cyanide, Total	mg/L	0.0306	0.000000765	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA			
Formaldehyde	mg/L	0.101	0.000002525	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA			
Magnesium	mg/L	177.4	0.004435	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA			
Manganese	mg/L	0.18	0.0000045	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA			
Mercury	mg/L	0.00388	0.00000097	Paracentrotus lividus	Egg/Embryo	Development	Developmental changes, general	0.0027	0.027	0.0078 - 0.017	Т	mg/L	Various (Ecotox Database)	0.50	0.0000012			
Nickel	mg/L	0.074	0.00000185	Strongylocentrotus purpuratus	Embryo	Development	Developmental changes, general		0.4	-	Т	mg/L	Garman et al. 1997; Aquat. Toxicol.39(3/4): 247-265	0.185	0.0000005			
INCACE	mg/L	0.074	0.00000185	Glyptocidaris crenularis	Embryo	Development	Developmental changes, general	-	-	0.806 - 2.90	т	mg/L	Various (Ecotox Database)	0.099	0.0000002			
Phenolics, Total Recoverable	mg/L	6.3	0.0001575	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA			
Selenium	mg/L	0.416	0.0000104	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA			
Titanium	mg/L	0.352	0.0000088	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA			
Zinc	mg/L	23.4	0.000585	Strongylocentrotus purpuratus	Embryo	Development	Developmental changes, general	-		0.023 - 0.14	т	mg/L	Various (Ecotox Database)	1017	0.003			

Notes 1 Samples with detected concentrations shown. 2 Estimated dilution of wase based on CH2M Hill (1997) plume dilution model results which showed a 1-400,000 minmum dilution at the edge of the disposal zone. 3 Data from only the most sensitive urchin species (to chromium) in the Ecotox Database is shown. D = Dissolved

B = D solution of the EC50 was greater than 1. T = Total

USEPA 2019. ECOTOX Knowledgebase. Updated June 13, 2019. Available online at: https://cfpub.epa.gov/ecotox/

APPENDIX A Enthalpy Environmental Final Toxicity Report July 2019

Toxicity Testing Results StarKist Samoa

Ocean Disposal Streams Sample

Monitoring Period: June 2019

Prepared for: Geosyntec Consultants 920 SW Sixth Street, Suite 600 Portland, OR 97204

Project Manager: Keith Kroeger

Submitted: July 24, 2019

Data Quality Assurance:

Results verified by:

- EA/Nautilus Environmental is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (ORELAP ID 4053). It is also certified by the State of California Water Resources Control Board Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552).
- o All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- o All test results have met internal Quality Assurance Program requirements.

Peter Arth, Laboratory Director

California 4340 Vandever Avenue San Diego, California 92120 858.587.7333 fax: 858.587.3961

INTRODUCTION

A series of marine bioassay tests using a vertebrate (*Menidia beryllina*), a crustacean (*Americamysis bahia*), and an echinoderm larva (*Strongylocentrotus purpuratus*) was performed on a sample collected from the StarKist Samoa facility. Testing was conducted as part of a program to establish the toxicity thresholds of a waste stream for potential open ocean disposal. Tests were performed at the Enthalpy Analytical (formerly Nautilus Environmental) laboratory located in San Diego, California between July 1 and 5, 2019.

MATERIALS AND METHODS

Test Material

The sample used for test initiations was collected on June 28, 2019. Collection was conducted under the direction of Geosyntec Consultants, and the sample was shipped to Enthalpy via a transportation and delivery service. Upon arrival at Enthalpy, an aliquot was drawn from the sample to measure temperature, pH, dissolved oxygen (DO), salinity, alkalinity, and total ammonia. Testing was initiated the day the samples were received, and the remaining sample volume was stored in the dark at 4°C until used for renewals. A summary of the sample receipt information is provided in Table 1 below. Copies of the sample check in sheet and chain of custody (COC) form are presented in Appendices A and B, respectively.

Sample ID	Ocean Disposal (OD) Streams
Nautilus Log-in No.	19-0711
Collection Date, Time	6/28/2019, 1022 (Pacific Time)
Receipt Date, Time	7/1/2019, 0835 (Pacific Time)
Receipt Temperature (°C)	6.8
Dissolved Oxygen (mg/L)	0.9
pH (units)	6.11
Salinity (ppt)	18.8
Alkalinity (mg/L CaCO ₃)	2,420
Total Chlorine (mg/L)	NM ^a
Total Ammonia (mg/L)	2446
Unionized ammonia (mg/L)	0.42

Table 1. Sample Information

^a NM = Not Measured. Due to the dark color and turbidity of the sample, measurement for total chlorine could not be taken via standard colorimetric methods used in the laboratory.

Test Methods

Chronic toxicity testing was conducted according to USEPA (1995). Acute toxicity testing was conducted according to procedures presented by USEPA (2002).

Inland Silverside Acute Toxicity Test Specifications

Statistical Analysis Software:	CETIS™, version 1.8.7.20
Protocol Used:	USEPA/821/R-02/012, 2002 Acute Manual
Test Acceptability Criteria:	Lab control mean survival ≥ 90 percent
Test Concentrations:	2, 1, 0.5, 0.25, 0.125, and 0.06 percent sample, and laboratory control
Control Water:	Natural seawater (Scripps Institution of Oceanography intake)
Test Organism Source; Age:	Aquatic Biosystems, Inc. (Fort Collins, CO); 12 days
Test Organism:	Menidia beryllina (inland silverside)
Test Period:	7/1/2019, 1235 to 7/5/2019, 1330

Note: Due to poor fitness of available Pacific Topsmelt cultures, the Inland Silverside was used as the vertebrate for acute testing.

Mysid Shrimp Acute Toxicity Test Specifications

Test Period:	7/1/2019, 1215 to 7/5/2019, 1315
Test Organism:	Americamysis bahia (mysid shrimp)
Test Organism Source; Age:	Aquatic Biosystems, Inc. (Fort Collins, CO); 5 days
Control Water:	Natural seawater (Scripps Institution of Oceanography intake)
Test Concentrations:	2, 1, 0.5, 0.25, 0.125, and 0.06 percent sample, and laboratory control
Test Acceptability Criteria:	Lab control mean survival ≥ 90 percent
Protocol Used:	USEPA/821/R-02/012, 2002 Acute Manual
Statistical Analysis Software:	CETIS™, version 1.8.7.20

Urchin Development Chronic Toxicity Test Specifications

Test Period:	7/1/2019, 1015 to 7/4/2019, 1035
Test Organism:	Strongylocentrotus purpuratus (purple urchin)
Test Organism Source; Age:	Adult brood stock collected off Point Loma in San Diego, CA
Control Water:	Natural seawater (Scripps Institution of Oceanography intake)
Test Concentrations:	2, 1, 0.5, 0.25, 0.125, and 0.06 percent sample, and laboratory control
Test Acceptability Criteria:	Mean control normal development of \ge 80 percent; Percent Minimum Statistical Difference (PMSD) for development rate \le 25
Protocol Used:	USEPA/600/R-95/136, 1995 West Coast Marine Chronic
Statistical Analysis Software:	CETIS™, version 1.8.7.20

All statistical endpoints reported were calculated using the Comprehensive Environmental Toxicity

Information System^M (CETIS) by Tidepool Scientific Software according to flowchart specifications provided in USEPA method guidance. Organism performance in the sample was compared to performance observed in the concurrent laboratory control exposures. A No Observed Effect Concentration (NOEC), Lowest Observed Effect Concentration (LOEC), and 50 percent effect concentrations (EC/LC₅₀), were calculated for all tests.

RESULTS AND DISCUSSION

There was complete mortality at 96 hours in the 2 percent concentration of the inland silverside test. None of the other concentration resulted in statistically significant reduction in fish survival, resulting in a NOEC of 1 percent sample.

Complete mortality was also observed in the 2 percent sample concentration of the mysid shrimp test. Reduced mean survival was also observed for mysids exposed to the 0.25, 0.5, and 1 percent sample concentrations; only the 0.5 percent sample concentration resulted in a statistically significant effect. However, there was a 42 percent effect from control in the 1 percent sample, and the lack of significance was due to the relatively high variability within the test concentrations. Based on the test data and guidance in USEPA 2000, the NOEC is reported as 0.25 percent sample. Additional discussion is provided below Tables 2 and 3.

The urchin test resulted in significant adverse effects to development in all concentrations tested, and the NOEC is reported as less than 0.06 percent sample. A summary of statistical results for the acute and chronic bioassays is presented in Table 2. Detailed test results for the bioassays are presented in Table 3. Raw data and statistical analyses are presented in full in Appendix C.

Species & Test Endpoint	NOEC (% sample)	LOEC (% sample)	LC₅₀/ EC₅₀ (% sample)	Toxic Units (TU₄/TU₅)
Inland Silverside				
96-hr Acute Survival	1	2	1.41	70.9
Mysid Shrimp				
96-hr Acute Survival	0.25	0.5	0.49	204
Purple Urchin				
Chronic Development	<0.06	0.06	0.04	>1667

NOEC = The highest Concentration tested that caused No Observed Effect to the test organisms

LOEC = The Lowest Observed Effect Concentration

LC₅₀/EC₅₀ value = the sample concentration that is estimated to cause a lethal or adverse effect to 50% of the test organisms

TU_a = Acute Toxic Units (TU_a): 100 ÷ LC₅₀

TU_c = Chronic Toxic Units (TU_c): 100 ÷ NOEC

	Inland Silverside	Mysid Shrimp	Purple Urchin
Test Concentration (% sample)	Mean Percent Mean Percent Survival Survival		Mean Percent Normal Larval Development
Lab Control	100	95.0	98.8
0.06	100	100	15.4*
0.125	100	95.0	0.00*
0.25	100	80.0	0.00*
0.5	100	40.0*	0.00*
1	85.0	55.0	0.00*
2	0.00*	0.00*	0.00*

Table 3. Summary of Toxicity Test Results

*An asterisk indicates a statistically significant decrease compared to the lab control

While a toxicity identification evaluation (TIE) would be necessary to determine the exact cause of the toxicity observed to the various species, it was noted that ammonia levels in the sample were elevated. Subsamples were collected from each of the three bioassays upon initiation and at termination for each test, with one exception (no ammonia subsample was collected for urchin development test at test termination due to technician error). Additional subsamples were collected for the mysid and inland silverside tests at 48 hours, prior to the test solution renewal. The subsamples were collected from the highest test concentration (2 percent sample) for each of the bioassays. If complete mortality in the highest concentration had occurred, then the concentration below was subsampled. Total ammonia in the 2 percent sample concentration ranged from 49.7 to 51.4 mg/L at the initiation of the bioassays.

Generally, the ammonia levels remained stable throughout the testing period. At the termination of the mysid test, subsamples were collected from two individual replicates in the 1 percent sample concentration (complete mortality had occurred in the 2 percent sample by 48 hours), one with complete survival, and one with no survival. Total ammonia measurements were within 10 percent of each other (23.5 mg/L in the replicate with no survival, 24.9 mg/L in the replicate with no mortality), suggesting that for this species, ammonia may not be the primary or sole driver of toxicity. However, ammonia may have contributed to the observed effects.

Relatively high variability in test replicate response was observed in some test concentrations. This was most apparent in the mysid and urchin tests. All test solutions were thoroughly homogenized prior to making test dilutions as well as prior to distribution to the individual test chambers. However, it was noted at sample receipt that the sample had a large portion of heavy particulate matter that settled quickly. In the higher concentrations (specifically the 0.5 and 1 percent sample) of the mysid test, some replicates had complete survival while others had complete mortality. In the urchin test, some replicates of the 0.06 percent concentration showed a partial response (i.e some normally developed embryos), while other replicates showed no normally developed embryos. The inter-concentration

variability combined with the bench observations suggest that at least a portion of the toxicity may be associated with particulate matter in the sample.

QUALITY ASSURANCE

The samples were received slightly above the temperature range of 0-6 °C (6.8 °C at receipt). All tests were initiated within 98-hours of when the sample was collected. The laboratory controls met all minimum test acceptability requirements. Statistical analyses followed standard USEPA flowchart selections. The PMSD value for the urchin test was within the acceptable range. The data are deemed reliable for reporting purposes.

Due to the heavy debris and dark coloration of the sample, some mortality observations were unable to be collected at 24 and 72 hours. During the 48-hour renewal for the acute tests and at termination, mortality was evaluated in all test replicates.

Due to aeration of the test replicates, salinity in the mysid test exceeded the recommended range of +/-2ppt from the control salinity of 34 ppt. The salinity only slightly exceeded this threshold and did so in test concentrations which resulted in complete survival, suggesting that the increased salinity was unlikely to cause adverse effects to the test organisms.

The dissolved oxygen (DO) in the sample was below 1.0 mg/L at receipt. Due to the low sample concentrations tested, the sample was not aerated prior to addition to the control water to create the test solutions. When initial water quality measurements were collected prior to the addition of the test organisms, all DO levels were above 7.0 mg/L, well within the allowable range for the tests. Approximately 3 hours later, DO was measured in the highest test concentration of all three bioassays. The mysid and inland silverside test DO levels had fallen below 5 mg/L, indicating that overnight the DO levels would have fallen below the 4.0 mg/L warning level. Therefore, within 4 hours of test initiation all test replicates for the mysid and inland silverside bioassays were put on continuous, aeration for the duration of the test period. All concentrations of the mysid test stayed above 4.0 mg/L throughout the test.

Despite the constant aeration, water quality measurements at 24 hours into the test showed the DO concentrations in the inland silverside test fell to 0.7 and 1 mg/L in the 2 and 1 percent sample concentrations, respectively. The reason the DO fell in the inland silverside test and not the mysid test (despite having the same test temperature, test chamber size, and test solution volume) is likely due to the loading difference, with the fish having a higher mass and thus higher oxygen demand relative to the mysid. While it is not possible to make a definitive conclusion on the impact of the reduced DO concentrations with regard to the observed mortality in the fish test, the fact that the DO fell to 1.0 mg/L in the 1 percent sample concentration and still resulted in 85 percent mean survival suggests that DO was not likely to have a substantial contribution to the observed mortality in the 2 percent sample.

A drop in DO was also observed in the larval development test. This test was not aerated throughout the duration due to the possible interference it would create with the test organisms. The drop in DO for the larval development test was observed at 48 hours, as opposed to the fish and mysid test which

was noticed immediately. This is likely due to the larval development test being conducted at 15 °C as opposed to 25 °C for the fish and mysid. At 48 hours the DO in the larval development test fell below 4.0 mg/L in all but the 0.125 and 0.06 percent sample concentrations. However, toxicity was observed in both of those concentrations, suggesting that the effects observed in the higher test concentrations with the low dissolved oxygen were likely not associated with the low DO.

Reference Toxicant Testing

Concurrent reference toxicant tests met all minimum test acceptability requirements and the PMSD value for the chronic urchin development test was within the acceptable range. The calculated median effect concentration values for all reference toxicant tests were within two standard deviations of the historical means, indicating typical organism sensitivity to copper. Reference toxicant test results are summarized in Table 5 and are presented in full in Appendix D. A list of laboratory qualifier codes used for data recording can be found in Appendix E.

Species & Test Endpoint	EC₅₀ (µg/L copper)	Historical mean ± 2 SD (µg/L copper)	CV (%)
Inland Silverside			
96-hr Acute Survival	224	198 ± 80.3	20.3
Mysid Shrimp			
96-hr Acute Survival	230	273 ± 140	25.6
Purple Urchin			
Larval Development	10.9	14.0 ± 7.00	25.0

 Table 5. Summary of Reference Toxicant Test Results

EC₅₀ = The concentration expected to cause an adverse effect to 50 percent of the test organisms

Historical Mean = The mean EC_{50} from the laboratory's previous 20 tests, plus or minus two standard deviations (SD) CV = Coefficient of Variation

REFERENCES

- Tidepool Scientific Software. 2000-2013. CETIS Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20.
- USEPA. 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications Under the National Pollutant Discharge Elimination System. United States Environmental Protection Agency Office of Wastewater Management (EPA-833-R-00-003).
- USEPA. 1995. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. EPA/600/R-95/136.
- USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. EPA/821/R-02/012, October 2002.

Appendix A Sample Information

Sample Check-In Information

Nautilus Environmental
4340 Vandever Avenue
San Diego, CA 92120

.

60	syntec7	C		
Client:	100-	(Jeosy	nlec	Consultanto
Sample ID:	Starkist	Samoa Co	-00	Streams
Test ID No(s).:	1907 -	5077-1	<u>302 01</u>	3

5083	Sample Description:			
	Park Brown, Opiq	ue, Strong	, odor, 1	teary debis
	<u> </u>	7	//	
	· · · · · · · · · · · · · · · · · · ·			
	COC Complete (Y/N)	?		
	А <u>//</u> В С			
	â			
	Filtration? Y (N) ,		
	Pore Size:	/		
Y N	Organisms	or	Debris	
	Organishis	01	Debils	
	Salinity Adjustment?	YN		
· · · · · · · · · · · · · · · · · · ·	Test:	Source:	Targe	et ppt:
	Test:	Source:	Targe	et ppt:
	Test:	Source:	Targe	et ppt:
	pH Adjustment? Y	N)		
		A	в	С
	Initial pH:			
	Amount of HCI added:			
	Amount of HCI added.	·		
Other:	Final pH:	~		
T.	Cl ₂ Adjustment? Y	(N)		
Salinity:		Α	В	C
	Initial Free Cl ₂ :			
Other:	STS added:			
	Final Free Cl ₂ :			
Salinity:				
	Sample Aeration? Y	Ń		
Other:	·	A	в	С
	Initial D.O.			
Salinity:	Duration & Rate	3		
Soundy	Final D.O.			
ime.	i mai D.O.	L	<u> </u>	<u>.</u>
		Sinnal Oh-	lata Dani	
	Subsam <u>ples</u> for Addi NH3 Othe		istry Require	ed?(Y)N
alue x20 = 2,420	Tech Initials A			
Fue in - Gyw	rech initials A	· B	_ C	(.
refore analyte not M	TANKOd	QC Ch	eck: EG	7/11/19
sugar an angle In In			A	, -112/1a
-		Final Revi	iew: <u>FI</u>	11-11

Sample (A, B, C):	
Log-in No. (19-xxxx): 071/6/14/19	
Sample Collection Date & Time: ELAT/19 + 0622-P07	COC Com
Sample Receipt Date & Time: 1/17/1/19 835	а <u>//</u> в_
Number of Containers & Container Type: 2 /L tub (5	
Approx. Total Volume Received (L): アスレ	Filtration
Check-in Temperature (°C)	Po
Temperature OK? ¹ Y (N) Y N Y N Y N	Or
DO (mg/L) 0.9	
pH (units)	Salinity A
Conductivity (µS/cm)	Test:
Salinity (ppt)	Test:
Alkalinity (mg/L) ² $ \lambda $	Test:
Hardness (mg/L) ^{2,3}	pH Adjust
Total Chlorine (mg/L)	
Technician Initials ACS	
Acute Mysid and	Amount of
Test Performed: Meridia, Urdin Control/Dilution Water: 8:2 / Lab SW / Lab ART Other:	
Development Alkalinity: 112 Hardness or Salinity: 34 ppt	Cl ₂ Adjust
Additional Control? Y (N) = Alkalinity: Hardness or Salinity:	
	Initia
Test Performed: Control/Dilution Water: 8:2 / Lab SW / Lab ART Other:	STS a
Alkalinity: Hardness or Salinity:	Final
Additional Control? Y N = Alkalinity: Hardness or Salinity:	
	Sample A
Test Performed: Control/Dilution Water: 8:2 / Lab SW / Lab ART Other:	
Alkalinity: Hardness or Salinity:	Initia
Additional Control? Y N = Alkalinity: Hardness or Salinity:	
Notes: ¹ Temperature of sample should be 0-6°C, if received more than 24 hours past collection time.	Final
2 mg/L as CaCO3, 3 Measured for freshwater samples only, NA = Not Applicable	Subcomp
	Subsamp
Additional Comments 12 Reve Ars 7/1/19 (C) 1:19 Silution prior to analysis weosured value x20 = 21	120 Teo
	<u>.</u>

@ Unable to zero colorimeter due to dark where of sample, therefore analyte not MAS @Engis 7/1/9 (E) Q16 5-8/15/19

Overlying Water

Total Ammonia Analysis

-Freshwater ŵ'r r						
DC-001 7124/19						
	ent: Geosyntec/					_
Proj	ect: Starkist-Am	ierican Samoa	1			
Test Ty	pe: Acute My	psid, Alu	te Menidie	a, unhan	Developn	nent
	ank: 0,0			Analyst	: NM	
Test Start D	ate: 7/1/19		An	alysis Date	: 7/24/19	<u> </u>
					N x 1.22	
Sample ID	Nautilus ID	Sub-Sample Date	Day	NH3-N (mg/L)	Ammonia (mg/L)	
Blank Spike (10 mg/L NH ₃)		NA	2 3 TONINA	7.1	8.7	
Starkist- American Samoa		7/1/19	7419/7/11	40.1	48.9	x 50 = 2446,1
						-
						-
						-
						-
Spike Check (10 mg/L NH ₃)		NA	NA	7.0	8.5	
						-
						-
						-
						_
				200	117 6	x 50=2372,9
Sample Duplicate ^a Sample Duplicate + Spike ^a		NA	NA	38.9	47.5	x = 2946.3
Spike Check (10 mg/L NH ₃)		NA	NA	7.0	8,5	100-21103
ability and an (to high third)				1.0	013	

<u>Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L)</u> x 100 [average ammonia] (mg/L) Acceptable Range: 0-20%

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L) Acceptable Range: 80-120%^b

QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	0.0	NA	87	10	NA	87
Stanfelst	48.9	47.5	589	10	Q,82.9	100

Comments:

Notes: ^aUnless otherwise noted, the last sample listed on the datasheet is used for duplicate and duplicate + spike QC check.

^b Acceptable range for % recovery applies only to the blank spike. Spike recoveries in samples may vary based on sample matrix and are for information only.

ObTP 218 7/24/19

^c Calculation not performed due to one or both values below the method detection limit.

Method Detection Limit = 0.5 mg/L

7/24/19 Л QC Check:

0

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Unionized Ammonia Calculation

Client:	Geosyntec	
Test Type:	Sample receipt	
Test ID:	1907-S077 to S079	
Test Date:	7/1/2019	

Sample ID	Test Day	Sample Type	Actual Total Ammonia (mg/L)	Temp (C)	Salinity (ppt)	pH	Temp (K)	I	I Rounded	pК	Unionized Ammonia (mg/L)
OD Streams	0	water	2446	6.8	18.8	6.11	279.96	4.31849	4	9.29	0.420
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000

Note: Water quality parameters reflect values at sample check-m.

Appendix B Chain-of-Custody Information

4340 Vandever Avenue San Diego, CA 92120 Phone 858.587.7333 infoSD@enthalpy.com							· · · .	9					ate 6	Chain of Custo
Sample Collection By:											A		-	Page / of
Report to: Company Address City/State/Zip Contact Phone Email	920 SW Portlan Keith K 971-27	V Sixth d, OR roeger 1-590		500 	-	Invoice To: Company Address City/State Contact Phone Email	÷.,	Same as Report to	Survival (A. affinis or M. beryllina)	burchin Larval Development (S.	val (<i>A. bahia</i>)	,		Nautilus Matrix Codes: <u>G</u> = Grab <u>C</u> = Composite <u>FW</u> = Freshwater <u>SW</u> = Seawater <u>Sed</u> = Sediment <u>STRM</u> = Stormwater <u>GW</u> = Groundwater
SAMPLE ID		· •	SAMPLE		MATRIX CODE	Contair	her			72-hr Purple (Ir Sur			
	Da	te .	Time	Type (G or C)	(FW, SW, Sed, STRM, GW, WW, O)	Туре	Qty	COMMENTS	96-Hour	2-hr P	96-Hour	4		<u>WW</u> = Wastewater
OD Streams	62	510	06:22	KC	ww	cubitainer	21		- m	X	б Х	-	+-	O = Other (specify)
	(6/25	0/1 7		7 45	•							-		
¢ • *			·	• p			4				1	-		
2	· ·	. *	,		é é		-		- ·					
с, р			с. ф	04		p			- 0					
PROJECT INFORMA	TION	0		SAM	IPLE RECEIPT			1) RELINQUISHED, BY (CLIENT)			• •			1.1.1
Project Name: StarKist	•		Tol	al No. of Co	Pa	2	(Signature)	(Time)	(Signatu	re)	2) F	RECEIN	ED BY	(COURIER)
PO No.:				ived Good		Y .	o (Printed Nam	// 11:00 (Date)	(Printéd	Name)		_		(Date)
Shipped Via:			Mat	ches Test S	ichedule?	·N	(Company)	•	(Compan	y) .	• •			
(por email 8/15/19)			-			12 ptm	(Signature) (Printed Nam (Company)	3) RELINQUISHED BY (COURIER) (Time) (Date)	(Printed) Am Nau	anda	Sage	r) BY (L	ABORATORY) (Time) 0835 (Come) 7//4 (Log-in #5) [907]]

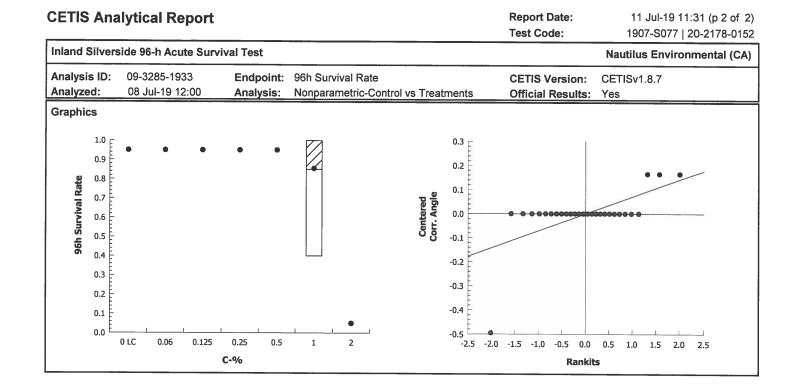
itional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted. Shaded areas are for lab use only Report turn-around-time varies depending on length of test; please inquire with your project manager.

http://enthalpy.com/environmental-toxicology-2/

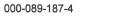
8 _____

Appendix C Raw Data and Statistical Analysis Acute Inland Silverside

CETIS Summary Report


								1000 00001			0011120	2110 010
Inland Silvers	ide 96-h Acute	Survival	Test							Nautilus	s Environm	ental (CA)
Batch ID: Start Date: Ending Date: Duration:	14-3706-7634 01 Jul-19 12:35 05 Jul-19 13:30 4d 1h	5 F	Test Type: Protocol: Species: Source:	Survival (96h) EPA/821/R-02- Menidia beryllir Aquatic Biosys	na			Analyst: Diluent: Brine: Age:		ral Seawate	er	
Receive Date:	02-7149-1510 27 Jun-19 10:2 01 Jul-19 08:35 34d 2h (6.8 °C)	5 5	Code: Material: Source: Station:	19-0711 Effluent Sample Starkist Samoa OD Streams				Client: Project:	Geos	syntec		
Comparison S	Summary					· · · · · · · · · · · · · · · · · · ·						
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	τu	Meth	od			
	96h Survival Ra	ate	1	2	1.414	19.3%	100			-One Rank	Sum Test	
Point Estimat	e Summary										2	
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Meth	od			
19-2340-3418	96h Survival Ra	ate	EC25	1.118	0.5739	1.329	89.4	7 Linea	ar Inte	rpolation (I	CPIN)	
			EC50	1.412	0.8984	1.553	70.8					
Test Acceptat	oility											*
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	its	Over	lap	Decision		
09-3285-1933	96h Survival Ra	ate	Contr	ol Resp	1	0.9 - NL		Yes		Passes A	cceptability	Criteria
19-2340-3418	96h Survival Ra	ate	Contro	ol Resp	1	0.9 - NL		Yes			cceptability	
96h Survival I	Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Мах	Std E	Err	Std Dev	CV%	%Effect
0	Lab Control	4	1	1	1	1	1	0		0	0.0%	0.0%
0.06		4	1	1	1	1	1	0		0	0.0%	0.0%
0.125		4	1	1	1	1	1	0		0	0.0%	0.0%
0.25		4	1	1	1	1	1	0		0	0.0%	0.0%
0.5		4	1	1	1	1	1	0		0	0.0%	0.0%
1		4	0.85	0.3726	1,	0.4	1	0.15		0.3	35.29%	15.0%
2		4	0	0	0	0	0	0		0		100.0%
96h Survival I	Rate Detail											
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							Х
0	Lab Control	1	1	1	1							
0.06		1	1	1	1							
0.125		1	1	1	1							
0.25		1	1	1	1							
0.5		1	1	1	1							
1		0.4	1	1	1							
2		0	0	0	0							
-		U	U	v	0							

06458/16/19


Analyst: Ja QA: Php 7/12/19

CETIS An	alytical Rep	ort						-	ort Date: Code:			31 (p 1 of 2 0-2178-015
Inland Silve	rside 96-h Acute	Survival	Test							Nautilus	s Environn	nental (CA)
Analysis ID: Analyzed:	09-3285-1933 08 Jul-19 12:0		•	n Survival Ra nparametric-		vs T	reatments		IS Version		.8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C > T	NA	NA			19.3%	1	2	1.414	100
Steel Many-	One Rank Sum T	est										
Control	vs C-%		Test Stat	Critical	Ties	DF	P-Value	P-Type	Decisior	n(α:5%)		
Lab Control	0.06		18	10	1	6	0.8333	Asymp		nificant Effect		
	0.125		18	10	1	6	0.8333	Asymp	-	nificant Effect		
	0.25		18	10	1	6	0.8333	Asymp	-	ificant Effect		
	0.5		18	10	1	6	0.8333	Asymp	-	ificant Effect		
	1		16	10	1	6	0.6105	Asymp	-	ificant Effect		
ANOVA Tabl	le											
Source	Sum Squ	lares	Mean Sq	uare	DF		F Stat	P-Value	Decision	ı(α:5%)		
Between	0.090905	09	0.018181)2	5		1	0.4457	Non-Sign	ificant Effect		
Error	0.327258	3	0.018181	02	18				0			
Total	0.418163	4			23							
Distribution	al Tests											
Attribute	Test			Test Stat	Critica	1	P-Value	Decision	α:1%)			
Variances			ity of Variance	e 1	4.248		0.4457	Equal Var	iances			
Variances	Levene E	Equality of	Variance	9	4.248		0.0002	Unequal \	/ariances			
Distribution	Shapiro-	Wilk W No	ormality	0.4634	0.884		<0.0001	Non-norm	al Distribut	ion		
96h Survival	Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1	1	1		1	1	1	0	0.0%	0.0%
0.06		4	1	1	1				4			
			•				1	1	1	0	0.0%	0.0%
0.125		4	1	1	1		1 1	1	1	0 0		0.0% 0.0%
0.25		4 4	1 1	1 1	1 1		1 1 1	-	1 1 1		0.0%	
0.25 0.5		4 4	1 1 1	1 1	1		1 1 1 1	1	1 1 1 1	0	0.0% 0.0%	0.0%
0.25 0.5 1		4	1 1 1 0.85	1	•		1 1 1 1	1	1 1 1 1	0 0	0.0% 0.0% 0.0%	0.0% 0.0%
0.25 0.5		4 4	1 1 1 0.85 0	1 1	1		1 1 1 1 1 0	1 1 1	1 1 1 1 0	0 0 0	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%
0.25 0.5 1 2 Angular (Con	rrected) Transfor	4 4 4 4	0	1 1 0.3726	1 1		1 1 1 1	1 1 1 0.4	1 1	0 0 0 0.15	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 15.0%
0.25 0.5 1 2 Angular (Con	rrected) Transfor Control Type	4 4 4 4	0	1 1 0.3726	1 1 0	CL	1 1 1 1	1 1 1 0.4	1 1	0 0 0 0.15	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 15.0%
0.25 0.5 1 2 Angular (Con	·	4 4 4 4 med Sum	0 Imary	1 1 0.3726 0	1 1 0	CL	1 1 1 1 0	1 1 1 0.4 0 Min	1 1 0 Max	0 0 0.15 0 Std Err	0.0% 0.0% 0.0% 35.29%	0.0% 0.0% 15.0% 100.0%
0.25 0.5 1 2 Angular (Con C-% 0	Control Type	4 4 4 med Sum Count	0 Imary Mean	1 1 0.3726 0 95% LCL	1 1 0 95% U	CL	1 1 1 0 Median	1 1 0.4 0 Min 1.345	1 1 0 Max 1.345	0 0 0.15 0 Std Err 0	0.0% 0.0% 0.0% 35.29% CV% 0.0%	0.0% 0.0% 15.0% 100.0% %Effect 0.0%
0.25 0.5 1 2 Angular (Con C-% 0 0.06	Control Type	4 4 4 med Sum Count 4	0 mary <u>Mean</u> 1.345	1 1 0.3726 0 95% LCL 1.345	1 1 0 95% U 1.346	CL	1 1 1 0 Median 1.345 1.345	1 1 0.4 0 Min 1.345 1.345	1 1 0 Max 1.345 1.345	0 0 0.15 0 Std Err 0 0	0.0% 0.0% 0.0% 35.29% CV% 0.0% 0.0%	0.0% 0.0% 15.0% 100.0% %Effect 0.0% 0.0%
0.25 0.5 1 2 Angular (Con C-% 0 0.06 0.125	Control Type	4 4 4 7 med Sum Count 4 4	0 mary Mean 1.345 1.345	1 0.3726 0 95% LCL 1.345 1.345	1 1 0 95% U 1.346 1.346	CL	1 1 1 0 Median 1.345 1.345 1.345	1 1 0.4 0 Min 1.345 1.345 1.345	1 1 0 Max 1.345 1.345 1.345	0 0 0.15 0 Std Err 0 0 0	0.0% 0.0% 0.0% 35.29% CV% 0.0% 0.0% 0.0%	0.0% 0.0% 15.0% 100.0% %Effect 0.0% 0.0%
0.25 0.5 1 2 Angular (Con C-% 0 0.06 0.125 0.25	Control Type	4 4 4 rmed Sum <u>Count</u> 4 4 4	0 Mean 1.345 1.345 1.345 1.345	1 0.3726 0 95% LCL 1.345 1.345 1.345 1.345 1.345	1 1 0 95% U 1.346 1.346 1.346 1.346	CL	1 1 1 0 Median 1.345 1.345 1.345 1.345	1 1 0.4 0 Min 1.345 1.345 1.345 1.345	1 1 0 Max 1.345 1.345 1.345 1.345	0 0 0.15 0 Std Err 0 0 0 0	0.0% 0.0% 0.0% 35.29% CV% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 15.0% 100.0% %Effect 0.0% 0.0% 0.0%
0.25 0.5 1 2	Control Type	4 4 4 rmed Sum <u>Count</u> 4 4 4 4	0 mary <u>Mean</u> 1.345 1.345 1.345 1.345	1 0.3726 0 95% LCL 1.345 1.345 1.345	1 1 0 95% U 1.346 1.346 1.346	CL	1 1 1 0 Median 1.345 1.345 1.345	1 1 0.4 0 Min 1.345 1.345 1.345	1 1 0 Max 1.345 1.345 1.345	0 0 0.15 0 Std Err 0 0 0	0.0% 0.0% 0.0% 35.29% CV% 0.0% 0.0% 0.0%	0.0% 0.0% 15.0% 100.0% %Effect 0.0% 0.0%

Analyst: Ja QA: 077/2/19

		ytical Repo	1.						eport Date: est Code:			1:31 (p 1 of 1 20-2178-015
Inland	Silversi	de 96-h Acute S	urvival Tes	st						Nautilu	s Enviro	nmental (CA
Analys Analyz		19-2340-3418 08 Jul-19 12:00		ooint: ysis:	96h Survival Ra Linear Interpola)		ETIS Version: fficial Results:	CETISv1 Yes	.8.7	
Linear	Interpo	lation Options						· · · · · · ·			,	
X Tran	sform	Y Transform	Seed	1	Resamples	Exp 95%		Nethod				
Linear		Linear	1382	357	1000	Yes	٦	wo-Point Inte	erpolation			
Point E	Stimate	es										
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
EC25	1.118	0.5739	1.329	89.47	75.22	174.3						
EC50	1.412	0.8984	1.553	70.83	64.39	111.3						
96h Su	rvival R	ate Summary				Calcu	lated V	ariate(A/B)				
C-%	C	ontrol Type	Count	Mean	Min	Max	Std E	rr Std De	v CV%	%Effect	Α	в
0	La	ab Control	4	1	1	1	0	0	0.0%	0.0%	20	20
0.06			4	1	1	1	0	0	0.0%	0.0%	20	20
0.125			4	1	1	1	0	0	0.0%	0.0%	20	20
0.25			4	1	1	1	0	0	0.0%	0.0%	20	20
0.5			4	1	1	1	0	0	0.0%	0.0%	20	20
1			4	0.85	0.4	1	0.15	0.3	35.29%	15.0%	17	20
2			4	0	0	0	0	0		100.0%	0	20
OGh Survival Data	1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1		a l									
	0.0 0.0	0.5	1.0 C-%		1.5 2.0							

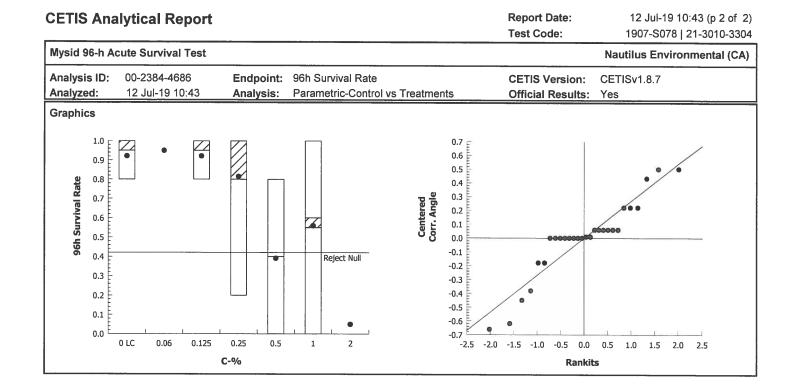
Marine Acute Bioassay Static-Renewal Conditions

Water Quality Measurements & Test Organism Survival

Client:	Geosyntectuco		Test Species: M. beryllin	na			Te	ch Init	ials	
Sample ID:	Starkist Samoa Co.	Opstreams	Start Date/Time: 7/1/2019	1235		0	24	48	72	96
Sample Log-in No.:			End Date/Time: 7/5/2019	1330	Counts:	DM	B	STN	RT	RI
Test No.:	1907-5077				Readings:	PM	RT	N	21	RT
	· · · · ·				Dilutions made by:	Dn		DM		

Concentration (%)	Rep			iber o ganis		9	AS		Salini (ppt)				Te	mpera (°C)	turə		Q 5	Disso	lved ((mg/L		n			pH (units)	
		0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	98
Lab Control	A	5	5	5	5	S	34.1	34.4	34.2	34,9	355	24.1	24.4	24.2	24.5	24,4	7.5	6.3	i-6.6	6.4	63	7.96	8.02	7.82	7.94	808
	в	5	5	5	5	5			349			300		243	and the second s				6.0	and the second second			1	1.96		
	С	5	5	5	5	5		1.000	2.6						1	23										
	D	5	5	5	5	5	130		1						1						10	1				
0.06%	A	5	5	5	5	5	34.1	34.4	34.1	35.1	35.8	24.0	24.5	243	24.5	24.4	7.6	62	46	6.3	6.2	7.88	8.00	778	8.02	6.10
	в	5	5	5	5	5			35.2	-			193	249				1	6.1					4.A		
	С	5	S	5	5	5							100			12					-					
	D	5	5	5	5	5			1	1										1						
0.125%	A	5	5	5	5	5	34.[34.2	314	34.9	355	24.0	245	243	24.5	24.4	26	6.2	4.7	6.3	6.3	7.80	7.99	7.72	8.01	8.10
	в	5	6	5	5	5			34.8	status a Province Par			8	24.5	-				6.1					501		
	С	5	5	5	5	5													17	1						
	D	5	5	5	S	5								0	-				1965							
0.25%	A	5	5	5	5	5	34.1	347	34 (34,7	35.4	24.1	247	慶	24.5	245	76	6.0	6.6	6.1	6.1	765	7.88	7.6	7.87	7.96
	В	5	5	5	5	5		1	348		128	5.5		24.5		En l			5.6	10000				7.70		
	С	5	5	5	5	5			168					1												
	D	5	5	5	5	5														000						
0.5*7	A	5	5	5	5	5	34.0	34.7	34	34	55.4	24.2	24	243	24.5	244	75	Ч.	6.5	4.6	6.0	7.42	7.30	7.38	7.94	7.99
	в	5	5	5	5	S		1	347	10.00				24.7	-	5.00			51		1			7.13		
	С	5	6	5	5	5							120											2.4		
10	D	5	5	5	5	5									2.18									1		
1.0 %	A	5	2	Z	2	2	34.0	341	34.0	341	35,0	4,0	24.6	242	217	246	73	1.0	6.5	30	4.6	708	7.34	1.06	7.43	7.78
	В	5	5	5	5	5			34.5					249				0	4.8					768		
	С	5	55	5	5	5																				
	D	5	5	5	5	5															1985					- 3
2.0 %	A	5	0	-		1	34.0	311	34.	-	-	24.2	24.6	242	-	-	70	0.7	63	-	-	6.72	7.49	675	-	-
	в	5	0	-	K	D			35.4			1		1 24.6					5.0				-	1.58		2
_	С	5	2	0	10	P	2.3	1.8										133						2.2		
	D	5	0	7	1							131					2									
nitial Counts QC'd b Initiated b		-	_															() () () ()			10					
Animal Source/Date	e Rece	ived	:	AC	51	61	29/	19		-	Age a	at Initi	ation	_1	2 4	day	s						Fee	ding T	imes	
nimal Acclimation	n Qualit	fiers	(circl	e all 1	that a	pply):	:			(122)1	Q23	8 /	Q24	/ no	one			_			0	24	48	72	96
Comments:		i = it	nitial r	eadin	g in fr	esh te	est solu	ution, 1	í = fina	l read	ing in t	est ch	ambei	r prior f	to rene	ewal ,	۵) m	18 11	571	1/19	AM: PM:	1705	0100	0850	1000	0900
									0	ŷ) / r						0	Da	16 12	171	2/17			1.27		57 B	
C Chaole	KI	20	-1	12/1	a				-0			100	218-	1241	19	C	Dor	明	5			ino	71	24	49	
QC Check:	<u>r1</u>	r	(1	-11										· · · · · · · · · · · · · · · · · · ·	· •				- FI	nal Re	view:					

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.


Acute Mysid Shrimp

CETIS Sun	nmary Repo	rt						port Date: st Code:		2 Jul-19 10:4 07-S078 21	. ,
Mysid 96-h Ad	cute Survival Te	st								s Environm	
Batch ID: Start Date: Ending Date: Duration:	13-1291-7689 01 Jul-19 12:15 05 Jul-19 13:15 4d 1h	i	Test Type: Protocol: Species: Source:	Survival (96h) EPA/821/R-02- Americamysis Aquatic Biosys	bahia		Di	ine:	Natural Seawal Not Applicable 5d	er	
Receive Date	17-2973-4607 23 Jun-19 10:2 ₀01 Jul-19 08:35 3 Ad 2h (6.8 °C)	2	Code: Material: Source: Station:	19-0711 Effluent Sample Starkist Samoa OD Streams				ient: (oject:	Geosyntec		
Comparison	Summary										
Analysis ID	Endpoint		NOEL	. LOEL	TOEL	PMSD	TU	Metho	d		
00-2384-4686	96h Survival Ra	ate	0.25	0.5	0.3536	55.7%	400	Dunne	tt Multiple Com	nparison Tes	st
Point Estimat	e Summary										
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Metho	d		
09-6936-5347	96h Survival Ra	ate	EC25 EC50	0.3029 0.4904	0.09827 0.09014	1.418 1.839	330.2 203.9	Linear	Interpolation (I	CPIN)	
Test Acceptal	bility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	ts	Overla	ap Decision	I	
00-2384-4686	96h Survival Ra	ate	Contro	ol Resp	0.95	0.9 - NL		Yes	Passes A	cceptability	Criteria
09-6936-5347	96h Survival Ra	ate	Contr	ol Resp	0.95	0.9 - NL		Yes	Passes A	cceptability	Criteria
96h Survival	Rate Summary										
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Ei	r Std Dev	CV%	%Effect
0	Lab Control	4	0.95	0.7909	1	0.8	1	0.05	0.1	10.53%	0.0%
0.06		4	1	1	1	1	1	0	0	0.0%	-5.26%
0.125		4	0.95	0.7909	1	0.8	1	0.05	0.1	10.53%	0.0%
0.25		4	0.8	0.1635	1	0.2	1	0.2	0.4	50.0%	15.79%
0.5		4	0.4	0	0.9197	0	0.8	0.1633		81.65%	57.89%
1		4 4	0.55 0	0 0	1 0	0	1 0	0.263	0.526	95.63%	42.11%
2		4	0	0	0	0	0	0	0	·····	100.0%
96h Survival											
C-%	Control Type	Rep 1		Rep 3	Rep 4						
0	Lab Control	1	0.8	1	1						
0.06		1	1	1	1						
0.125		1	0.8	1	1						
0.25		1	1	0.2	1						
0.5		0.4	0.4	0.8	0						
1		0	1	1	0.2						
2		0	0	0	0						

@ 2 a 15 9/15/19

		ort						•	ort Date: Code:		Jul-19 10:4 7-S078 21	-3010-330
Mysid 96-h A	Acute Survival Te	st								Nautilus	Environn	nental (CA)
Analysis ID: Analyzed:	00-2384-4686 12 Jul-19 10:4		•	Survival Ra ametric-Con		reatr	ments		IS Version: ial Results:	CETISv1. Yes	.8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C > T	NA	NA			55.7%	0.25	0.5	0.3536	400
Dunnett Mul	tiple Comparisor	n Test										
Control	vs C-%		Test Stat	Critical	MSD	DF	P-Value	P-Type	Decision(a:5%)		
Lab Control	0.06		-0.2473	2.407			0.8958	CDF		icant Effect		
	0.125		0	2.407			0.8333	CDF	•	icant Effect		
	0.25		0.6682	2.407			0.5725	CDF	-	icant Effect		
	0.5*		2.535	2.407			0.0392	CDF	Significant			
	1		1.831	2.407		-	0.1381	CDF	-	icant Effect		
ANOVA Table	e		·····									
Source	Sum Squ	ares	Mean Squ	are	DF		F Stat	P-Value	Decision(
Between	1.49915		0.2998301		5		2.586	0.0623	Non-Signif	icant Effect		
Error	2.08676		0.1159311		18							
Total	3.585911				23							
Distributiona	al Tests											
Attribute	Test			Test Stat	Critica		P-Value	Decision	(α:1%)			
Variances	Mod Leve	ene Equalit	y of Variance	2.66	4.248		0.0571	Equal Var	iances			
Variances	Levene F								lances			
Distribution	Lovono L	Equality of N	/ariance	6.494	4.248		0.0013	Unequal \				
		Equality of N Wilk W Nor		6.494 0.9123	4.248 0.884		0.0013 0.0395	-	/ariances			
								Unequal \	/ariances	-7.5.1. ⁻		
	Shapiro-							Unequal \	/ariances	Std Err	CV%	%Effect
96h Survival	Shapiro-I Rate Summary	Wilk W Nor	mality	0.9123	0.884	CL	0.0395	Unequal Normal Di	/ariances stribution	Std Err 0.05	CV% 10.53%	%Effect 0.0%
96h Survival C-%	Shapiro-N Rate Summary Control Type	Wilk W Nor	mality Mean	0.9123 95% LCL	0.884 95% U	CL	0.0395 Median	Unequal Normal Di	/ariances stribution Max		-	
96h Survival C-% 0	Shapiro-N Rate Summary Control Type	Wilk W Nor Count	mality Mean 0.95	0.9123 95% LCL 0.7909	0.884 95% U	CL	0.0395 Median 1	Unequal N Normal Di Min 0.8	/ariances istribution Max 1	0.05	10.53%	0.0%
96h Survival C-% 0 0.06	Shapiro-N Rate Summary Control Type	Wilk W Nor Count 4 4	mality Mean 0.95 1	0.9123 95% LCL 0.7909 1	0.884 95% U 1 1	CL	0.0395 Median 1 1	Unequal Normal Di Min 0.8 1	/ariances istribution Max 1 1	0.05 0	10.53% 0.0%	0.0% -5.26%
96h Survival C-% 0 0.06 0.125	Shapiro-N Rate Summary Control Type	Wilk W Nor Count 4 4 4	Mean 0.95 1 0.95	0.9123 95% LCL 0.7909 1 0.7909	0.884 95% U 1 1 1	CL	0.0395 Median 1 1 1	Unequal N Normal Di Min 0.8 1 0.8	/ariances istribution Max 1 1 1 1	0.05 0 0.05	10.53% 0.0% 10.53%	0.0% -5.26% 0.0%
96h Survival C-% 0 0.06 0.125 0.25	Shapiro-N Rate Summary Control Type	Vilk W Nor Count 4 4 4 4	Mean 0.95 1 0.95 0.95 0.8	0.9123 95% LCL 0.7909 1 0.7909 0.1635	0.884 95% U 1 1 1 1	CL	0.0395 Median 1 1 1 1	Unequal Normal Di Min 0.8 1 0.8 0.2	/ariances istribution Max 1 1 1 1 1	0.05 0 0.05 0.2	10.53% 0.0% 10.53% 50.0%	0.0% -5.26% 0.0% 15.79%
96h Survival C-% 0 0.06 0.125 0.25 0.5	Shapiro-N Rate Summary Control Type	Vilk W Nor Count 4 4 4 4 4 4	Mean 0.95 1 0.95 0.8 0.8 0.4	0.9123 95% LCL 0.7909 1 0.7909 0.1635 0	0.884 95% U 1 1 1 1 0.9197	CL	0.0395 <u>Median</u> 1 1 1 1 0.4	Unequal \ Normal Di 0.8 1 0.8 0.2 0	/ariances istribution Max 1 1 1 1 1 0.8	0.05 0 0.05 0.2 0.1633	10.53% 0.0% 10.53% 50.0% 81.65%	0.0% -5.26% 0.0% 15.79% 57.89%
96h Survival C-% 0 0.06 0.125 0.25 0.5 1 2	Shapiro-N Rate Summary Control Type	Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean 0.95 1 0.95 0.95 0.8 0.4 0.55 0	0.9123 95% LCL 0.7909 1 0.7909 0.1635 0 0	0.884 95% U0 1 1 1 0.9197 1	CL	0.0395 Median 1 1 1 1 0.4 0.6	Unequal N Normal Di 0.8 1 0.8 0.2 0 0	/ariances istribution Max 1 1 1 1 0.8 1	0.05 0 0.05 0.2 0.1633 0.263	10.53% 0.0% 10.53% 50.0% 81.65%	0.0% -5.26% 0.0% 15.79% 57.89% 42.11%
96h Survival C-% 0 0.06 0.125 0.25 0.5 1 2 Angular (Cor	Shapiro- I Rate Summary Control Type Lab Control	Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean 0.95 1 0.95 0.95 0.8 0.4 0.55 0	0.9123 95% LCL 0.7909 1 0.7909 0.1635 0 0	0.884 95% U0 1 1 1 0.9197 1		0.0395 Median 1 1 1 1 0.4 0.6	Unequal N Normal Di 0.8 1 0.8 0.2 0 0	/ariances istribution Max 1 1 1 1 0.8 1	0.05 0 0.05 0.2 0.1633 0.263	10.53% 0.0% 10.53% 50.0% 81.65%	0.0% -5.26% 0.0% 15.79% 57.89% 42.11%
96h Survival C-% 0 0.06 0.125 0.25 0.5 1 2 2 Angular (Cor C-%	Shapiro- I Rate Summary Control Type Lab Control	Vilk W Nor Count 4 4 4 4 4 4 4 4 4 4 med Sumr	Mean 0.95 1 0.95 0.8 0.4 0.55 0 mary	0.9123 95% LCL 0.7909 1 0.7909 0.1635 0 0 0 0	0.884 95% U 1 1 1 1 0.9197 1 0		0.0395 Median 1 1 1 1 0.4 0.6 0	Unequal N Normal Di 0.8 1 0.8 0.2 0 0 0 0	Variances istribution Max 1 1 1 1 1 0.8 1 0	0.05 0 0.05 0.2 0.1633 0.263 0	10.53% 0.0% 10.53% 50.0% 81.65% 95.63%	0.0% -5.26% 0.0% 15.79% 57.89% 42.11% 100.0%
96h Survival C-% 0 0.06 0.125 0.25 0.5 1 2	Shapiro- I Rate Summary Control Type Lab Control rrected) Transfor Control Type	Vilk W Nor Count 4 4 4 4 4 4 4 4 4 4 7 med Sumr Count	Mean 0.95 1 0.95 0.8 0.4 0.55 0 mary Mean	0.9123 95% LCL 0.7909 1 0.7909 0.1635 0 0 0 0 95% LCL	0.884 95% U0 1 1 1 1 1 0.9197 1 0 95% U0		0.0395 Median 1 1 1 1 0.4 0.6 0 Median	Unequal N Normal Di 0.8 1 0.8 0.2 0 0 0 0 0 0 0 0	Variances Istribution Max 1 1 1 1 1 0.8 1 0 0 Max	0.05 0 0.05 0.2 0.1633 0.263 0 Std Err	10.53% 0.0% 10.53% 50.0% 81.65% 95.63%	0.0% -5.26% 0.0% 15.79% 57.89% 42.11% 100.0%
96h Survival C-% 0 0.06 0.125 0.25 0.5 1 2 Angular (Cor C-% 0 0.06	Shapiro- I Rate Summary Control Type Lab Control rrected) Transfor Control Type	Vilk W Nor Count 4 4 4 4 4 4 4 4 4 4 4 4 5 7 7 7 0 0 0 1 7 7 7 7 7 7 7 7 7 7 7 7 7	Mean 0.95 1 0.95 0.8 0.4 0.55 0	0.9123 95% LCL 0.7909 1 0.7909 0.1635 0 0 0 0 95% LCL 1.096	0.884 95% U0 1 1 1 1 0.9197 1 0 95% U0 1.475		0.0395 Median 1 1 1 1 0.4 0.6 0 Median 1.345	Unequal N Normal Di 0.8 1 0.8 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/ariances stribution Max 1 1 1 1 1 0.8 1 0 0 Max 1.345	0.05 0 0.05 0.2 0.1633 0.263 0 Std Err 0.05953	10.53% 0.0% 10.53% 50.0% 81.65% 95.63% CV% 9.26%	0.0% -5.26% 0.0% 15.79% 57.89% 42.11% 100.0% %Effect 0.0%
96h Survival C-% 0 0.06 0.125 0.25 0.5 1 2 Angular (Cor C-% 0 0.06 0.125	Shapiro- I Rate Summary Control Type Lab Control rrected) Transfor Control Type	Vilk W Nor Count 4 4 4 4 4 4 4 4 4 4 med Sumr Count 4 4	Mean 0.95 1 0.95 0.8 0.4 0.55 0 mary Mean 1.286 1.345	0.9123 95% LCL 0.7909 1 0.7909 0.1635 0 0 0 0 95% LCL 1.096 1.345	0.884 95% U0 1 1 1 1 0.9197 1 0 95% U0 1.475 1.346		0.0395 Median 1 1 1 1 0.4 0.6 0 Median 1.345 1.345	Unequal N Normal Di 0.8 1 0.8 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/ariances stribution Max 1 1 1 1 1 0.8 1 0 0 Max 1.345 1.345	0.05 0 0.05 0.2 0.1633 0.263 0 Std Err 0.05953 0	10.53% 0.0% 10.53% 50.0% 81.65% 95.63% CV% 9.26% 0.0%	0.0% -5.26% 0.0% 15.79% 57.89% 42.11% 100.0% %Effect 0.0% -4.63%
96h Survival C-% 0 0.06 0.125 0.25 0.5 1 2 Angular (Cor C-% 0 0.06 0.125	Shapiro- I Rate Summary Control Type Lab Control rrected) Transfor Control Type	Vilk W Nor Count 4 4 4 4 4 4 4 4 4 4 5 Count 4 4 4 4	Mean 0.95 1 0.95 0.8 0.4 0.55 0 mary Mean 1.286 1.345 1.286	0.9123 95% LCL 0.7909 1 0.7909 0.1635 0 0 0 0 95% LCL 1.096 1.345 1.096	0.884 95% U0 1 1 1 1 0.9197 1 0 95% U0 1.475 1.346 1.475		0.0395 Median 1 1 1 1 0.4 0.6 0 Median 1.345 1.345 1.345	Unequal N Normal Di 0.8 1 0.8 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/ariances stribution Max 1 1 1 1 1 0.8 1 0 0 Max 1.345 1.345 1.345	0.05 0 0.05 0.2 0.1633 0.263 0 Std Err 0.05953 0 0.05953	10.53% 0.0% 10.53% 50.0% 81.65% 95.63% 95.63% 9.26% 0.0% 9.26%	0.0% -5.26% 0.0% 15.79% 57.89% 42.11% 100.0% 42.11% 100.0% -4.63% 0.0% 12.51%
96h Survival C-% 0 0.06 0.125 0.25 0.5 1 2 Angular (Cor C-% 0 0.06 0.125 0.25	Shapiro- I Rate Summary Control Type Lab Control rrected) Transfor Control Type	Count 4	Mean 0.95 1 0.95 0.8 0.4 0.55 0 mary Mean 1.286 1.345 1.286 1.125	0.9123 95% LCL 0.7909 1 0.7909 0.1635 0 0 0 0 0 95% LCL 1.096 1.345 1.096 0.4234	0.884 95% U0 1 1 1 1 0.9197 1 0 95% U0 1.475 1.346 1.475 1.826		0.0395 Median 1 1 1 1 1 0.4 0.6 0 Median 1.345 1.345 1.345 1.345 1.345	Unequal N Normal Di 0.8 1 0.8 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/ariances stribution Max 1 1 1 1 1 0.8 1 0 Max 1.345 1.345 1.345 1.345 1.345	0.05 0 0.05 0.2 0.1633 0.263 0 Std Err 0.05953 0 0.05953 0.2204	10.53% 0.0% 10.53% 50.0% 81.65% 95.63% 95.63% 9.26% 0.0% 9.26% 39.19%	0.0% -5.26% 0.0% 15.79% 57.89% 42.11% 100.0% %Effect 0.0% -4.63% 0.0%

Analyst: Ja QA: 4797/12/19

Analyst: Ja QA: 4797/12/19

		tical Repo						•	ort Date: Code:			1:00 (p 1 of 1 21-3010-330
Mysid	96-h Acut	e Survival Tes	st							Nautilus	s Enviro	nmental (CA
Analys Analyz		9-6936-5347 1 Jul-19 13:59		point: lysis:	96h Survival Ra Linear Interpola				S Version: al Results:	CETISv1 Yes	.8.7	
Linear	Interpola	tion Options										
X Tran	sform	Y Transform	See	d	Resamples	Exp 95%	CL Met	nod				
Linear		Linear	8236	603	1000	Yes		-Point Interp	olation			
Point B	Estimates											
Level	%		95% UCL	τu	95% LCL	95% UCL						
EC25	0.3029	0.09827	1.418	330.2	70.51	1018						
EC50	0.4904	0.09014	1.839	203.9	54.37	1109						
96h Sı	Irvival Ra	te Summary				Calcu	lated Varia	ite(A/B)				
C-%	Сог	ntrol Type	Count	Mean	Min	Мах	Std Err	Std Dev	CV%	%Effect	Α	в
0	Lab	Control	4	0.95	0.8	1	0.05	0.1	10.53%	0.0%	19	20
0.06			4	1	1	1	0	0	0.0%	-5.26%	20	20
0.125			4	0.95	0.8	1	0.05	0.1	10.53%	0.0%	19	20
0.25			4	0.8	0.2	1	0.2	0.4	50.0%	15.79%	16	20
0.5			4	0.4	0	0.8	0.1633	0.3266	81.65%	57.89%	8	20
1			4	0.55	0	1	0.263	0.526	95.63%	42.11%	11	20
2			4	0	0	0	0	0		100.0%	0	20
Graphi	1.0 0.9 0.9 0.8 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.4 0.4 0.4 0.3 0.2 0.1		•									

C-%

Marine Acute Bioassay Static-Renewal Conditions

Water Quality Measurements & Test Organism Survival

Client:	Geosynteo /JCO ©	
Sample ID:	Starkist Samoa Co.	opstr
Sample Log-in No.:	19-0711	
Test No.:	1907-5078	

art Date/Time: <u>7/1/2019</u>

 Tech Initials

 0
 24
 48
 72
 96

 2M
 JBSDM
 RT
 RT
 RT

 2M
 RT
 TN
 RT
 RT

 2M
 PM
 PM
 PM

Concentration (%)	Rep			ber o ganis	of Live sms	•	RA	:	Salinii (ppt)		Q.7		Tei	npera (°C)	ture		QS		lved ((mg/L		n			pH (units)	
		0	24	48	72	96	0	24		1	9	0	24	1	7	0.05								1	2	
Lab Control	A	5	5	5	5	5	34.1	34.6	i 34,Z	31.9	35.7	24.2	242	24.6	246	24.5	75	6.2	6.7	6.3	6.4	296	8.11	i 7.82	7.95	8.04
	в	5	5	4	4	4			35.2					24:3	1000				6.3				S.S.Berth	8.04		
	С	5	5	5	5	5																				
	D	5	5	5	5	5					1. 3									1						
0.06%	A	5	5	5	5	5	34.(345	34.4	35.2	36.2	24.1	24.6	243	24.4	24.4	7.5	6.1	4.8	6.4	6.2	788	8.64	1778	8.06	8.05
	в	5	5	5	5	5			35.2					24.4					64				1.	5.04		
	С	5	6	5	5	5				1												(FI)				
	D	5	5	5	5	5																				
0.125%	A	5	5	5	5	5	34.(348	1 34,0	35,4	36.4	2Y, 1	24.1	24.2	24.4	24.2	75	6.3	6.8	6.3	6.2	780	8:09	7.82	7.99	8.04
	в	51	84	4	4	Ч			35.6				4	24.3					f&:Z				ALC: NUMBER OF T	4.96		
	c	5	5	5	5	5		2										1								
	D	5	5	5	5	5						1														
0.25%	A	5	5	5	S	5	34.1	34.5	i 34.2	35.0	359		ZY.1	i 24.3	24.6	24.4	7,5	6.0	6.8	6.0	6.1	766	7.94	7.6	7.95	8.02
	в	5	5	5	5	5			\$5.Z					24.5				1.	¹ 6.3				dales.	f 8.03		
	С	5		1	1	9				172.																
	D	5	5	5	5	5																				
0.5%	A	5	6)	5	4	Z	34.1	344	1 342	353	35.9	24.0	247	243	24.8	24.7	7.4	6.1	6.7	6.2	6.1	743	803	7.38	8.09	8.15
	в	5	5	5	Ż	2			To the					24.7					63	1.5	Sea		NOTE: N	f. Vo		
	С	5	5	5	5	4																				
	D	5	B	0	0	Ò												12.			100					
1.0%	Α	5	B	2	۲	0	34.0	34.5	, 341	35,1	36.1	24.0	24.8	24.2	24.8	248	72	58	i 65	6.0	6.0	712	794	1	7.49	814
	в	5	0	ŝ	5	5			35.2					24.7	1			(T.) (T.) (G.)	5.4					f 7.83		
	С	5	\mathfrak{B}	5	5	5				12-3	14.3															
	D	5	B	4	B	1													and a		124			1		
2.0 ⁶ 7,	Α	5	B	0		¥	34.0	34.3	33.8		~	240	25,0	242	-	-	20	4.1	6.4	~	-	6.73	7.66	673	~	-
	в	5	B	0	S	1			34.8					f 75.0					f 5.8	88	100			f.06		
	с	5(Ê)	Ô	2													22								
	D	5	B)	0									12/1					199								
Initial Counts QC'd by: Initiated by:			18				3 - 97.																			_
Animal Source/Date	Recei	ved:		A	ßS	16	1291	119			Age a	t Initia	ation	1	5 0	ans										
Animal Acclimation	Qualif	iers (circle								22 /			224	C)										
Comments:	-	i = ini	itial re	ading) in fre	esh te	st solu	tion	= final	readir	ng in te	st cha	ambe	prior t	o rene	ewal						1705				
	-	Orga	nisms	fed p	prior to	o initia	ation c		()/	(pay	Ars	- 7/1	6	DE	6.TE	16-	2	q						
QC Check:	14	P.	11	2	9		Ð	G/0		57/5	2)/0		3)Q	134	Ro	dies	101	0	2 Fin					1		
Nautilus Environmental.	4340	/ande	ver Av	епие.	San L)iego,	CA 921	2				4	J			2 6	1									
												12	411													

Chronic Urchin Development

CETIS Summary Report

12 Jul-19 10:59 (p 1 of 1) 1907-S079 | 10-8165-0406

Echinoid Emb	oryo-Larval Dev	elopmen	t Test						Nautilus	s Environm	ental (CA)
Batch ID: Start Date: Ending Date: Duration:	12-0176-2433 01 Jul-19 10:15 04 Jul-19 10:35 72h	5 P 5 S	est Type: rotocol: pecies: ource:	Development EPA/600/R-95/ Strongylocentro Pt. Loma	. ,	tus			Norcitor Applicable Sic Martin - Applickhu		
	18-0334-5456 [®] 2≵ ⁵ Jun-19 10:2 ₀01 Jul-19 08:36 ‰96h (6.8 °C)	5 S	ode: laterial: ource: tation:	19-0711 Effluent Sample Starkist Samoa OD Streams			Clie Proj	nt: Geo ject:	syntec		
Comparison S	Summary			· · · ·							
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
17-5095-6702	Development F	Rate	<0.06	0.06	NA	10.4%	>1667	Steel Man	y-One Rank	Sum Test	
Point Estimat	e Summary							<u> </u>			
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Method			
10-7436-5405	Development F	Rate	EC25 EC50		0.01413 0.02826	0.02308 0.04616	5628 2814	Linear Inte	erpolation (IC	CPIN)	
Test Acceptat	oility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	ts	Overlap	Decision		
10-7436-5405	Development F	Rate	Contr	ol Resp	0.988	0.8 - NL		Yes	Passes Ad	cceptability	Criteria
17-5095-6702	Development F	Rate	Contr	ol Resp	0.988	0.8 - NL		Yes	Passes Ad	cceptability	Criteria
17-5095-6702	Development F	Rate	PMS)	0.1042	NL - 0.25		No	Passes Ad	cceptability	Criteria
Development	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.988	0.9776	0.9984	0.98	1	0.003742	0.008367	0.85%	0.0%
0.06		5	0.154	0	0.3701	0	0.4	0.07782	0.174	113.0%	84.41%
0.125		5	0	0	0	0	0	0	0		100.0%
0.25		5	0	0	0	0	0	0	0		100.0%
0.5		5	0	0	0	0	0	0	0		100.0%
4		5	0	0	0	0	0	0	0		100.0%
1				^	<u> </u>	0	0	0	0		100.0%
		5	0	0	0		0				
2	Rate Detail	5	0		0	0	0				
2 Development C-%	Control Type	Rep 1	Rep 2	2 Rep 3	Rep 4	Rep 5		· · · · · · · · · · · · · · · · · · ·			.8.*
2 Development C-% 0			Rep 2 0.99	2 Rep 3 0.98	Rep 4						
2 Development C-% 0 0.06	Control Type	Rep 1	Rep 2	2 Rep 3	Rep 4	Rep 5			· <u>··</u> ····		
2 Development C-% 0 0.06 0.125	Control Type	Rep 1 0.98	Rep 2 0.99	2 Rep 3 0.98	Rep 4	Rep 5 0.99					
2 Development C-% 0 0.06 0.125	Control Type	Rep 1 0.98 0	Rep 2 0.99 0.11	2 Rep 3 0.98 0.4	Rep 4 1 0.26	Rep 5 0.99 0					
2 Development C-%	Control Type	Rep 1 0.98 0 0	Rep 2 0.99 0.11 0	2 Rep 3 0.98 0.4 0	Rep 4 1 0.26 0	Rep 5 0.99 0 0					
2 Development C-% 0 0.06 0.125 0.25	Control Type	Rep 1 0.98 0 0 0	Rep 2 0.99 0.11 0 0	2 Rep 3 0.98 0.4 0 0	Rep 4 1 0.26 0 0	Rep 5 0.99 0 0 0					

(B) & Q 14 8/15/19

Analyst: JU 04/19/1/2/19

CETIS Ana	alytical Repo	ort					-	ort Date: Code:			59 (p 1 of 1) D-8165-0406
Echinoid Em	bryo-Larval Deve	elopment Te	est						Nautilus	s Environn	nental (CA)
Analysis ID: Analyzed:	17-5095-6702 12 Jul-19 10:58			elopment R		Treatments		IS Version: al Results:		.8.7	
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Res	ult		
Angular (Corre	ected)	NA	C > T	NA	NA		10.4%		elopment rat	e	
Steel Many-O	ne Rank Sum Te	est									
Control	vs C-%		Test Stat	Critical	Ties D	F P-Value	P-Type	Decision	(α:5%)		
Lab Control	0.06*		15	19	0 8	0.0045	Asymp	Significan			
ANOVA Table)										
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision((α:5%)		
Between	3.205751		3.205751		1	77.6	<0.0001	Significan	t Effect		
Error	0.3304844	1	0.0413105	5	8						
Total	3.536235				9						
Distributiona											
Attribute	Test	Detic 5		Test Stat		P-Value	Decision(
Variances Distribution	Variance Shapiro-V	Ratio F Vilk W Norm	ality	56.22 0.9104	23.15 0.7411	0.0018 0.2839	Unequal \ Normal Di				
	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCI	. Median	Min	Max	Std Err	CV%	%Effect
<u> </u>	Lab Control	5	0.988	0.9776	0.9984	0.99	0.98	1	0.003742	0.85%	0.0%
0.06		5	0.154	0	0.3701	0.11	0	0.4	0.07782	113.0%	84.41%
0.125		5	0	0	0	0	0	0	0		100.0%
).25		5	0	0	0	0	0	0	0		100.0%
).5		5	0	0	0	0	0	0	0		100.0%
1		5	0	0	0	0	0	0	0		100.0%
2		5	0	0	0	0	0	0	0		100.0%
Angular (Cori	rected) Transform	med Summa	ary								
C-%	Control Type	Count	Mean	95% LCL	95% UCI	. Median	Min	Max	Std Err	CV%	%Effect
D	Lab Control	5	1.464	1.417	1.511	1.471	1.429	1.521	0.01699	2.6%	0.0%
0.06		5	0.3316	-0.02219	0.6853	0.3381	0.05002	0.6847	0.1274	85.93%	77.35%
0.125		5	0.05002	0.05001	0.05003	0.05002	0.05002	0.05002	0	0.0%	96.58%
0.25		5	0.05002	0.05001	0.05003	0.05002	0.05002	0.05002	0	0.0%	96.58%
0.5		5	0.05002	0.05001	0.05003	0.05002	0.05002	0.05002	0	0.0%	96.58%
1		5	0.05002	0.05001	0.05003	0.05002	0.05002	0.05002	0	0.0%	96.58%
2		5	0.05002	0.05001	0.05003	0.05002	0.05002	0.05002	0	0.0%	96.58%
1.0 0.9 9	0 LC 0.06 0.	125 0.25 C-%	0.5	1 2	A)	0.40 0.35 0.30 0.25 0.15 0.10 0.10 0.10 0.05 0.005 00000000	• • • • • • • •	-1.0 -0.5 0. Rank		1.5 2.0	2.5
100-089-187-3				C	CETIS™ v1	.8.7.20			Analyst:	a a	A:KEP7/12

Natilus Environmentalis Natilus Environmental (C/ CETIS V1.8.7 CETIS V1.8.7 CETIS V1.8.7 V Transform Y Transform Seed Resamples Exp 95% CL Method VTV V Transform Y Transform Seed Resamples Exp 95% CL Method V V Transform Y Transform Seed Resamples Exp 95% CL Method V V Transform V Transform V Transform Seed Resamples Exp 95% CL Method V Transform V Transform V V Transform V V Point Estimate Centrol Type Seed Resamples VICL V Control Type Count Method Method V V/% <th< th=""><th>CETIS</th><th>S Analyt</th><th>ical Repo</th><th>rt</th><th></th><th></th><th></th><th></th><th>-</th><th>rt Date: Code:</th><th></th><th></th><th>):59 (p 1 of 1 10-8165-040</th></th<>	CETIS	S Analyt	ical Repo	rt					-	rt Date: Code:):59 (p 1 of 1 10-8165-040
Analyzed: 12 Jul-19 10:58 Analysis: Linear Interpolation (ICPIN) Official Results: Yes Linear Name Seed Resamples Exp 95% CL Method Image: Second Seco	Echino	id Embryo	-Larval Deve	lopment Te	est					· · · · · · · · · · · · · · · · · · ·	Nautilu	s Enviror	nmental (CA
X Transform Y Transform Seed Resamples Exp 95% CL Method Linear Linear 2093110 1000 Yes Two-Point Interpolation Point Estimates Exp 95% CL 95% UCL 95% UCL 95% UCL 95% UCL Ec25 0.01777 0.01413 0.02308 5628 4332 7078 3539	-											.8.7	
Linear 2093110 1000 Yes Two-Point Interpolation Point Estimates Evel % 95% LCL 95% UCL TU 96% LCL 95% UCL Tuo.Point Interpolation EC25 0.01777 0.01413 0.02308 5628 4332 7078 EC50 0.03554 0.02826 0.04616 2814 2166 3539 Development Rate Summary Calculated Variate(A/B) CV% % Effect A B 0 Lab Control 5 0.988 0.98 1 0.003742 0.008367 0.85% 0.0% 494 500 0.125 5 0 0 0 0 100.0% 0 500 0.25 5 0 0 0 0 0 100.0% 0 500 0.24 5 0 0 0 0 0 0 500 0.25 5 0 0 0 0 0 00.0% 500	Linear	Interpolati	on Options										
Control 95% LCL 95% LCL 95% UCL 950 UCL <t< td=""><td>X Trans</td><td>sform</td><td>Y Transform</td><td>See</td><td>ł</td><td>Resamples</td><td>Exp 95%</td><td>CL Meth</td><td>od</td><td></td><td></td><td></td><td></td></t<>	X Trans	sform	Y Transform	See	ł	Resamples	Exp 95%	CL Meth	od				
Level % 95% LCL 953 953 953 953 953 953 95 950 </td <td>Linear</td> <td></td> <td>Linear</td> <td>2093</td> <td>3110</td> <td>1000</td> <td>Yes</td> <td>Two-</td> <td>Point Interpo</td> <td>olation</td> <td></td> <td></td> <td></td>	Linear		Linear	2093	3110	1000	Yes	Two-	Point Interpo	olation			
EC25 0.01777 0.01413 0.02308 5628 4332 7078 EC50 0.03554 0.02826 0.04616 2814 2166 3539 Calculated Variate(A/B) Calculated Variate(A/B) C-% Control Type Count Mean Min Max Std Err Std Dev CV% %Effect A B 0.0 Lab Control 5 0.988 0.98 1 0.003742 0.08367 0.85% 0.0% 494 500 0.06 5 0.154 0 0.4 0.07782 0.174 113.0% 84.41% 77 500 0.125 5 0 0 0 0 0 0 500 0.25 5 0 0 0 0 0 500 500 0.5 5 0 0 0 0 100.0% 500 2 5 0 0 0 0 100.0% 500 Graphics	Point E	Stimates									<u></u>		
EC50 0.03554 0.02826 0.04616 2814 2166 3539 Calculated Variated	Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
Development Rate Summary Calculated Variate(A/B) C.% Control Type Count Mean Min Max Std Err Std Dev CV% %Effect A B 0 Lab Control 5 0.988 0.98 1 0.003742 0.008367 0.85% 0.0% 494 500 0.06 5 0.154 0 0.4 0.07782 0.174 113.0% 84.41% 77 500 0.125 5 0 0 0 0 0 100.0% 0 500 0.25 5 0 0 0 0 0 500 500 0.5 5 0 0 0 0 100.0% 0 500 2 5 0 0 0 0 100.0% 0 500 2 5 0 0 0 0 100.0% 500 3 0.7 0.8 0.7 0.8	EC25	0.01777	0.01413	0.02308	5628	4332	7078						
C-% Control Type Count Mean Min Max Std Err Std Dev CV% %Effect A B 0 Lab Control 5 0.988 0.98 1 0.003742 0.008367 0.85% 0.0% 494 500 0.06 5 0.154 0 0.4 0.0782 0.174 113.0% 84.41% 77 500 0.125 5 0 0 0 0 0 100.0% 0 500 0.25 5 0 0 0 0 0 100.0% 0 500 0.5 5 0 0 0 0 0 100.0% 0 500 2 5 0 0 0 0 0 500 2 5 0 0 0 0 0 100.0% 500 2 5 0 0 0 0 0 100.0%	EC50	0.03554	0.02826	0.04616	2814	2166	3539						
C-% Control Type Count Mean Min Max Std Err Std Dev CV% %Effect A B 0 Lab Control 5 0.988 0.98 1 0.003742 0.008367 0.85% 0.0% 494 500 0.06 5 0.154 0 0.4 0.07782 0.174 113.0% 84.41% 77 500 0.125 5 0 0 0 0 0 100.0% 0 500 0.25 5 0 0 0 0 0 100.0% 0 500 0.5 5 0 0 0 0 0 500 500 2 5 0 0 0 0 0 500 500 2 5 0 0 0 0 0 100.0% 0 500 2 5 0 0 0 0 0 100.0	Develo	pment Rat	e Summary				Calcu	lated Variat	te(A/B)				
0 Lab Control 5 0.988 0.98 1 0.003742 0.008367 0.85% 0.0% 494 500 0.06 5 0.154 0 0.4 0.07782 0.174 113.0% 84.41% 77 500 0.125 5 0 0 0 0 0 100.0% 0 500 0.25 5 0 0 0 0 0 100.0% 0 500 0.5 5 0 0 0 0 100.0% 0 500 1 5 0 0 0 0 0 100.0% 500 2 5 0 0 0 0 0 500 500 2 5 0 0 0 0 0 500 500 3 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.3 0.7 0.6 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7<	C-%	Cont	trol Type	Count	Mean	Min				CV%	%Effect	А	в
0.06 5 0.154 0 0.4 0.07782 0.174 113.0% 84.41% 77 500 0.125 5 0 0 0 0 0 100.0% 0 500 0.25 5 0 0 0 0 0 100.0% 0 500 0.5 5 0 0 0 0 0 0 500 1 5 0 0 0 0 0 0 500 2 5 0 0 0 0 0 0 500 2 5 0 0 0 0 0 500 500 2 5 0 0 0 0 0 500 500 3 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 <t< td=""><td>0</td><td></td><td></td><td>5</td><td>0.988</td><td>0.98</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0			5	0.988	0.98	1						
0.25 5 0 0 0 0 0 100.0% 0 500 0.5 5 0 0 0 0 0 0 100.0% 0 500 1 5 0 0 0 0 0 0 0 100.0% 0 500 2 5 0 0 0 0 0 0 0 100.0% 0 500 Graphics st unoop 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.06			5	0.154	0	0.4	0.07782	0.174	113.0%	84.41%		
0.5 5 0 0 0 0 0 0 100.0% 0 500 1 5 0 0 0 0 0 0 0 100.0% 0 500 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.125			5	0	0	0	0	0		100.0%	0	500
1 5 0 0 0 0 0 0 100.0% 0 500 2 5 0 0 0 0 0 0 0 100.0% 0 500 Graphics 4 4 0.3	0.25			5	0	0	0	0	0		100.0%	0	500
2 5 0 0 0 0 0 0 0 0 500 Graphics 1.0 0.9 0.8 0.8 0.7 0.6 0.5 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.5			5	0	0	0	0	0		100.0%	0	500
Graphics	1			5	0	0	0	0	0		100.0%	0	500
1.0 0.9 0.8 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.4 0.3	2			5	0	0	0	0	0		100.0%	0	500
	-												

CETIS Test Data Worksheet

Echinoid	Embry	o-Larval	Develo	pment	Test
Lonnoid	LIIDIY	U"Lai vai	Develo	DILICIL	ICSL

Echinoid Em	ıbryo-l	arval	Deve	lopment Te	st			Nautilus E	nvironmental (CA
Start Date: End Date: Sample Date	04 J	lul-19 lul-19 lun-19		Protoc	ol: EPA/600	centrotus purpuratus Sample C (R-95/136 (1995) Sample S ater- Effund Sample S		19- 0711 Geosyntec JCO - Sturkist	Samoa Co
C-%	Code	Rep	Pos	# Counted	# Normal	No	tes	B	apstreams
			36	100	26				
			37	(0				
			38		0				
			39		0				
			40		0				
			41		Õ				
			42		0				
			43		0				
			44		99				
			45		100				
		_	46		0				
			47		0				
			48						
			49		0				
			50		0				
			51		0				
			52		0 99 00 00 08				
			53		0				
			54		0				
			55		0				
			56		98				
			57		Ó				
			58		Õ				
			59		0				
			60		00				
			61						
			62		0				
			63		Ŏ				
			64		98				•
			65		0				
			66		0				
			67		40				
			68		0				
			69		Õ				
			70		Õ				

10 150 0B0 PA 7/2/19 19/19/18/18 7/24/19

Analyst: RT QA: KTP 7/12/19

CETIS Test Data Worksheet

 Report Date:
 29 Jun-19 13:41 (p 1 of 1)

 Test Code:
 (907 - 5079)10-8165-0406/4078ACE6

Echinoid	Embryo-Larval	Development	Test
----------	---------------	-------------	------

Nautilus	Environmental	(CA)

Start Date: End Date: Sample Date	04 J	lul-19 lul-19 lun-19		Protoc	ol: EPA/60	Viocentrotus purpuratus Sample Code: 19-0711 00/R-95/136 (1995) Sample Source: Geosyntec water Effluent Sample Station: 180 - 5to, kish Simon Control Notes ODSTRUMENTS
C-%	Code	Rep	Pos	# Counted	# Normal	Notes (2) ODSTRAMS
0	LC	1	56	100	99	
0	LC	2	52	100		NOZMAL EMPILYS DEVELOPMENT
0	LC	3	64			
0	LC	4	45			
0	LC	5	44			
0.06		1	40	100	0	SOME EMBRYG DELEWPMENT
0.06		2	48	100		JONIE CEMBRY I) FORWARD
0.06		3	67			
0.06		4	36			
0.06		5	37			
0.125		1	66	$(\mathcal{O}\mathcal{O})$	Ô	VERT DUTTLE EPUBLIC DEVENTMENT
0.125		2	47		<u> </u>	
0.125		3	53			2
0.125		4	49			
0.125		5	68			
0.25		1	62	100	0	FERTILIZED EGGS
0.25		2	57			
0.25		3	39			
0.25		4	51			
0.25		5	69			
0.5		1	59	100	0	
0.5		2	54	_		
0.5		3	65			
0.5		4	46			
0.5		5	41			
1		1	70	100	0	
1		2	42			
1		3	63			
1		4	43			
1		5	38			
2		1	58	001	_0	
2		2	55			
2		3	50			
2		4	60			
2		5	61			

@ QUETO 7/6/19

© prpa18-7/24/19

Marine Chronic Bioassay

Client: Geosyntec/JCO

Sample Log No.: <u>19- 0711</u> Test No.: <u>1907 - 5 079</u>

Sample ID: Starkist Samoa Co. ODSTreamS

Water Quality Measurements

Test Species: S. purpuratus

Start Date/Time: 7/1/2	019 1015
End Date/Time: 7/4/2	019 1035

Concentration		Sal	inity			Tempo	erature	Site of Street, Street	D	issolve	d Oxyg	en		p	H	
(% sample)		(p	pt)	_		(°	C)			(m	g/L)			(pH)	units)	
	0	24	48	72	0	24	48	72	0	24	48	72	0	24	48	72
Lab Control	34.0	34.0	34.4	34.Z	14.9	14.8	14.7	14.7	8.9	8,8	8.4	8.3	8,04	8.00	8.01	798
0.06	34.3	34.4	34.4	34.Z	15.0	14,5	14.6	14.5	8.8	8.7	6.6	8.63	7,98	7.97	7.83	7.71
0.125	33.9	34.1	34:7	34,4	15.0	14.5	14.3	14.3	8.8	G.S	4.4	3.9	7.92	7.94	7.7.4	7.48
0.25	33,9	34.5	34.4	34.4	14.9	14.4	14,3	14.2	8,9	8.4	2.3	2.1.	7.79	7.87	7.62	7.41
0.5	34,2	34.1	34.4	34.3	14.9	14.7	14.6	14.5	8,8	8.1	1.4	1.4	1,53	7.76	7.51	7.43
1.0	33,1	34.4	34.3	34.3	147	14.6	14.6	14.6	8,7	7.4	1.)	0.9	7,18	7.54	7.42	7.34
2.0	33.6	34.3	34.2	342	14.6	14.6	14.6	14.6	8.5	5.6	0.8	0.9	6,78	7.13	7.24	7.18
				0	24	48	72									
Technician Initials			adings:		RT	BO	BO									
	Dilut	ions m	ade by:	EG												

Comment	s: 0 hrs:				
	24 hrs:				
	48 hrs:	Do dropped below	4.0 mg/L, see nepert fo	~ additional details	
	72 hrs:	@@18 807/4/19	· · · ·		
QC	Check: PTP	1 1	@19792187/24/1	9 Final Review: 👉	7/24/19

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Marine Chronic Bioassay

Echinoderm Larval Development Worksheet

Client:	Geosyntec	Start Date/Time: 7/1/2019 / 1015
Sample ID:	Starkist Samoa Co. OD STRAMS	End Date/Time: 7/4/2019 / (035
Test No.:	1907-5079	Species: <u>S. purpuratus</u>
Tech initials: Injection Time:	<u>EG</u> 0955	Date Collected: 5/3/19
Sperm Absorbance at 40	00 nm: i_{0} $c \leq 6$ (target range of 0.8 - 1.0 for density of	4x10 ⁶ sperm/ml)
Eggs Counted:	$\begin{array}{c} 42 \\ \hline 46 \\ \hline 71 \\ \hline 62 \\ \hline 72 \end{array}$ Mean: $58.6 \times 50 = 2930$ (target counts of 20 eggs per vertical pass on Sec slide for a final density of 1000 eggs/ml)	
Initial density: Final density:	$\frac{2232}{1000} \text{eggs/ml} = \frac{2.33}{-1.0} \text{ dilution factor} \\ \frac{-1.0}{1.0} \text{ part egg stock} \\ \hline 1.43 \text{ parts seawater} \\ \hline \end{array}$	egg stock <u>5</u> seawater <u>46-5</u> ml

Prepare the egg stock according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

Add 100 µL sperm stock per 100mL of egg stock. For example, if you have 60mL of egg stock, add 60µL sperm stock.

Embryo Stock Fertilization Checks (Initiate test only when fertilization is ≥90%):

Fertilization Time: 100 5 minutes (1st fert.) che		 		No. Fert. 91	No. <u>Unfert.</u>	<u>%</u> 99			
10 minutes (2nd fert. If i	needed)								
Test Initiation Time:	1015	-		Embryo	Stock Added:	0.25 ml			
Test initiation must be w	/ithin 1 hour	of fertilization	time.						
Test Termination:									
	No.	No.	%						
	Normal	Abnormal	Norma	d					
72-hour QC check 1 ^a	100	0	100	-					
QC check 2				-					
Comments:	^a If the em	bryo developr	nent does	s not mee	t the mean test	acceptability of	criterion of 80%	normally	
		, continue the							
QC Check:	KTP-7	1219					Final Paview:	3-7/24/19	
		<u></u>					T III AI INEVIEW.	0 10 11	

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Ammonia Data

Total Ammonia Analysis Marine DC-0

	Urchin Development, Acute Mer				····· ·	
DI Blank		Tes	t Start Date:	7/1/201		Analyst:
SW Blank	0.0				A	nalysis Date:
						N x 1.22
	Sample ID	Nautilus ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)
	Blank Spike (10 mg/L NH ₁)		NA	NA	68	8.3
	Urchin 2%	2	7/1/2019	0	40.7	497
	Urchin 2%	3	7/4/2019	3	*	-
	Mysid 2%	4	7/1/2019	0	41.2	50.3
	Mysid 2%	5	7/3/2019	2	34.4	42.0
	Mysid 1% A rep	6	7/4/2019	4	19.3	23.5
	Mysid 1% B rep	-	7/5/2019	4	20.4	24.9
	Menidia 2%	7	7/1/2019	0	421	51.4
	Menidia 2%	8	7/3/2019	2	399	48.7
	Menidia 1%	9	7/4/2019	4	23.1	28.2
	Spike Check (10 mpl. NH ₁)		NA	NA		
		-		_		
	Batch QA Sande	19-3578	712/19	NA	8.0	9.8
	Sample Duplicate ^a	(9-3078	NA	NA	8-0	98
	Sample Duplicate + Spike ^a		NA	NA	15.3	187
	Spike Check (10 mg/L NH ₃)		NA	NA	68	83
<u>Relative</u>	Percent Difference (RPD) = [sample] (mg/L [average ammonia] (r Percent Recovery = [spiked sample] (mg/L nominal [spike] (mg	ng/L)) - [sample] (mg/L)			Acceptable Ra Acceptable Ra	
Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	0.0	NA	83	10	NA	83
	9.8	9.8	18.7	10	0	89
chQA		tech er		18 167/2	.1	1

ACT 24/19 QC Check: ____

Final Review:

12 7/24/19

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Unionized Ammonia Calculation

Client:	Geosyntec
Test Type:	Acute Inland Silverside, Acute Mysid, Chronic Urchin Development
Test ID:	1907-S077 to S079
Test Date:	7/1/2019 - 7/4/2019

Sample ID	Test Day	Sample Type	Actual Total Ammonia (mg/L)	Temp (C)	Salinity (ppt)	pH	Temp (K)	I	I Rounded	pК	Unionized Ammonia (mg/L)
Urchin 2%	0	Initial test solution	49.7	14.6	33.6	6.78	287.76	7.42962	7	9.33	0.065
Mysid 2%	0	Initial test solution	50.3	24	34.0	6.73	297.16	7.51503	8	9.34	0.116
Mysid 2%	2	Final solution prior to renewal	42.0	24.2	34.8	8.06	297.36	7.68607	8	9.34	2.001
Mysid 1% (A)	4	Final solution prior to termination	23.5	24.8	36.1	8.14	297.96	7.96463	8	9.34	1.390
Mysid 1% (B)	4	Final solution prior to termination	24.9	24.8	36.1	8.14	297.96	7.96463	8	9.34	1.473
Menidia 2%	0	Initial test dilution	51.4	24.2	34.0	6.72	297.36	7.51503	8	9.34	0.117
Menidia 2%	2	Final solution prior to renewal	48.7	24.6	35.4	7.88	297.76	7.81454	8	9.34	1.604
Menidia 1%	4	Final solution prior to termination	28.2	24.6	35.0	7.78	297.76	7.72888	8	9.34	0.743
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000
							273.16	0.5	1	9.26	0.000

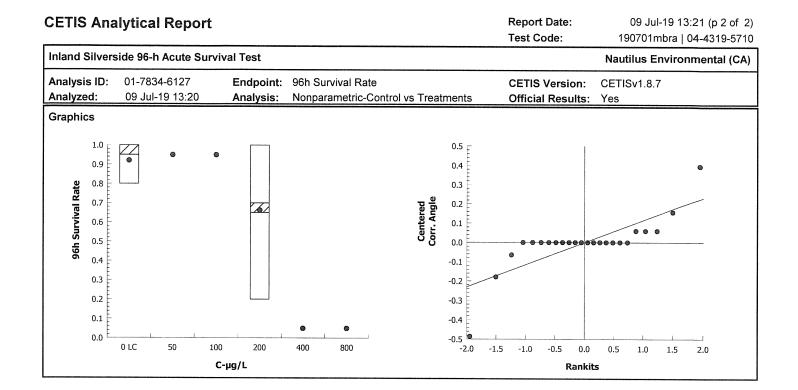
Note in oter quality parameters used for calculation taken from bench sheets

Appendix D Reference Toxicant Test Data Acute Inland Silverside

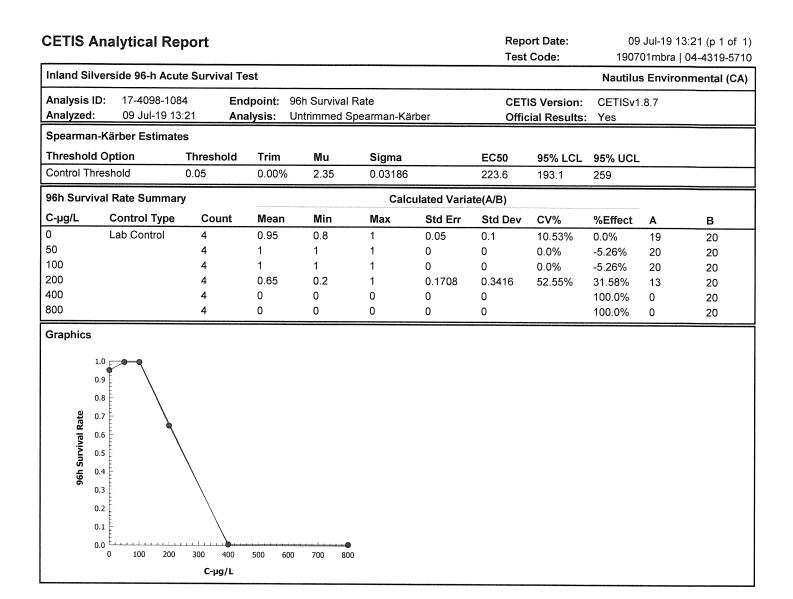
CETIS Summary Report

Report Date: Test Code: 09 Jul-19 13:21 (p 1 of 1) 190701mbra | 04-4319-5710

								Test Code:		1907		+-4019-0/1
Inland Silversi	ide 96-h Acute S	Surviva	l Test							Nautilu	s Environm	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	00-9967-0265 01 Jul-19 15:55 05 Jul-19 13:55 94h		Protocol:	Survival (96h) EPA/821/R-02- Menidia beryllir Aquatic Biosys	. ,	Aquatic Real	iarch ns, NH	Analyst: Diluent: Brine: Age:		ed Natural Applicable	Seawater	
Sample ID: Sample Date: Receive Date: Sample Age:	05 Jul-19		Code: Material: Source: Station:	190701mbra Copper chloride Reference Tox Copper Chlorid	e icant	<u> </u>		Client: Project:	Inter	nal		
Comparison S	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meth	nod			
01-7834-6127	96h Survival Ra	ite	200	400	282.8	28.6%		Stee	l Man	y-One Rank	Sum Test	
Point Estimate	e Summary											
Analysis ID	Endpoint		Level	μg/L	95% LCL	95% UCL	τu	Meth	nod			
17-4098-1084	96h Survival Ra	ite	EC50	223.6	193.1	259		Spea	arman	-Kärber	751 BAR III - III - III - III - IIII	
Test Acceptab	oility											
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	its	Ove	rlan	Decision		
01-7834-6127	96h Survival Rate		Control Resp		0.95	0.9 - NL		Yes			cceptability	Criteria
17-4098-1084	96h Survival Rate		Control Resp		0.95	0.9 - NL		Yes		Passes Acceptability Criteria		
96h Survival R	Rate Summary											
C-µg/L	Control Type	Count	: Mean	95% LCL	95% UCL	Min	Мах	Std I	Err	Std Dev	CV%	%Effect
0	Lab Control	4	0.95	0.7909	1	0.8	1	0.05		0.1	10.53%	0.0%
50		4	1	1	1	1	1	0		0	0.0%	-5.26%
100		4	1	1	1	1	1	0		0	0.0%	-5.26%
200		4	0.65	0.1065	1	0.2	1	0.170	08	0.3416	52.55%	31.58%
400		4	0	0	0	0	0	0		0		100.0%
800		4	0	0	0	0	0	0		0		100.0%
96h Survival R	Rate Detail						*****					
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							
	Lab Control	1	1	1	0.8						·········	
0			1	1	1							
0 50		1	1	•								
-		1 1	1	1	1							
50					1 0.8							
50 100		1	1	1								

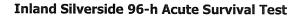

@ Eg Q18 7/11/19

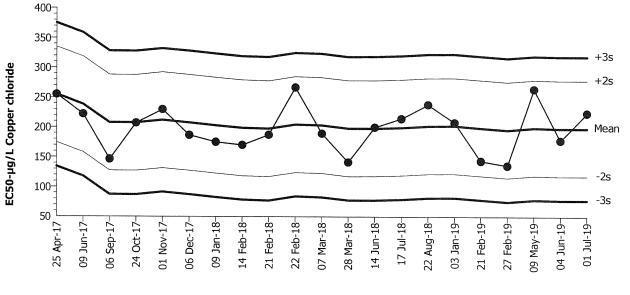
CETIS Analytical Report								Report Date: Test Code:		09 Jul-19 13:21 (p 1 of 2) 190701mbra 04-4319-5710		
Inland Silver	rside 96-h Acute) Survival	Test		B73/2009/2010/00/00/00/00/00/00/00/00/00/00/00/00/				Nautilus	Environn	nental (CA)	
Analysis ID: Analyzed:	01-7834-6127 09 Jul-19 13:2			6h Survival Ra onparametric-	Survival Rate parametric-Control vs Treatments			CETIS Version: Official Results:		CETISv1.8.7 Yes		
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU	
Angular (Corrected) NA C > T				NA	NA		28.6%	200	400	282.8		
Steel Many-C	One Rank Sum ⁻	Test										
Control	vs C-µg/L		Test Sta	t Critical	Ties D	F P-Valu	e P-Type	Decision((α:5%)			
Lab Control	50		20	10	1 6		Asymp		ficant Effect			
	100		20	10	1 6	0.9096	Asymp	0	ficant Effect			
	200		13	10	2 6	0.1689	Asymp	-	ficant Effect			
ANOVA Tabl	le									<u> 19 Martin Marta Dispaksio ming</u>		
Source	Sum Sq	uares	Mean So	uare	DF	F Stat	P-Value	Decision(α:5%)			
Between	0.431099		0.143699		3	3.716	0.0424	Significan				
Error	0.464098	38	0.038674	191	12			5				
Total	0.895198	36			15							
Distributiona	al Tests											
Attribute	Test	Test Stat	Critical	P-Value	e Decision	(α:1%)						
Variances	Mod Lev	e 4.883	5.953	0.0191	Equal Va	riances						
Variances	Levene	6.323	5.953	0.0081	Unequal							
Distribution	Shapiro	0.7953	0.8408	0.0024	Non-norm	Non-normal Distribution						
96h Survival	Rate Summary						ning and the second					
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	. Mediar	Min	Max	Std Err	CV%	%Effect	
С-µg/L 0	Control Type	Count 4	Mean 0.95	95% LCL 0.7909	95% UCL	- Mediar	0.8	Max 1	Std Err	CV% 10.53%	%Effect	
										10.53%	0.0%	
0		4	0.95	0.7909	1	1	0.8	1	0.05			
0 50		4 4	0.95 1	0.7909 1	1	1 1	0.8 1	1 1	0.05 0	10.53% 0.0%	0.0% -5.26%	
0 50 100		4 4 4	0.95 1 1	0.7909 1 1	1 1 1	1 1 1	0.8 1 1	1 1 1	0.05 0 0	10.53% 0.0% 0.0%	0.0% -5.26% -5.26%	
0 50 100 200		4 4 4 4	0.95 1 1 0.65	0.7909 1 1 0.1065	1 1 1 1	1 1 1 0.7	0.8 1 1 0.2	1 1 1 1	0.05 0 0 0.1708	10.53% 0.0% 0.0%	0.0% -5.26% -5.26% 31.58%	
0 50 100 200 400 800		4 4 4 4 4 4	0.95 1 1 0.65 0 0	0.7909 1 1 0.1065 0	1 1 1 1 0	1 1 1 0.7 0	0.8 1 1 0.2 0	1 1 1 1 0	0.05 0 0 0.1708 0	10.53% 0.0% 0.0%	0.0% -5.26% -5.26% 31.58% 100.0%	
0 50 100 200 400 800	Lab Control	4 4 4 4 4 4	0.95 1 1 0.65 0 0	0.7909 1 1 0.1065 0	1 1 1 1 0	1 1 1. 0.7 0	0.8 1 1 0.2 0 0	1 1 1 1 0	0.05 0 0 0.1708 0	10.53% 0.0% 0.0%	0.0% -5.26% -5.26% 31.58% 100.0%	
0 50 100 200 400 800 Аngular (Сог С-µg/L 0	Lab Control	4 4 4 4 4 50000000000000000000000000000	0.95 1 0.65 0 0 nmary	0.7909 1 1 0.1065 0 0	1 1 1 0 0	1 1 1. 0.7 0	0.8 1 1 0.2 0 0	1 1 1 0 0	0.05 0 0.1708 0 0	10.53% 0.0% 0.0% 52.55%	0.0% -5.26% -5.26% 31.58% 100.0% 100.0%	
0 50 100 200 400 800 Аngular (Cor С-µg/L	Lab Control rrected) Transfo Control Type	4 4 4 4 4 ormed Sun Count	0.95 1 0.65 0 0 nmary Mean	0.7909 1 1 0.1065 0 0 9 5% LCL	1 1 1 0 0 95% UCL	1 1 0.7 0 0	0.8 1 0.2 0 0 Min	1 1 1 0 0 0	0.05 0 0.1708 0 0 Std Err	10.53% 0.0% 0.0% 52.55%	0.0% -5.26% -5.26% 31.58% 100.0% 100.0%	
0 50 100 200 400 800 Аngular (Сог С-µg/L 0	Lab Control rrected) Transfo Control Type	4 4 4 4 4 5 ormed Sun Count 4	0.95 1 0.65 0 0 nmary <u>Mean</u> 1.286	0.7909 1 1 0.1065 0 0 95% LCL 1.096	1 1 1 0 0 95% UCL 1.475	1 1 0.7 0 0 - Mediar 1.345	0.8 1 0.2 0 0 Min 1.107	1 1 1 0 0 0 Max 1.345	0.05 0 0.1708 0 0 Std Err 0.05953	10.53% 0.0% 0.0% 52.55% CV% 9.26%	0.0% -5.26% -5.26% 31.58% 100.0% 100.0% %Effect 0.0%	
0 50 100 200 400 800 Angular (Cor C-μg/L 0 50 100 200	Lab Control rrected) Transfo Control Type	4 4 4 4 4 5 7 med Sun Count 4 4	0.95 1 0.65 0 0 nmary <u>Mean</u> 1.286 1.345	0.7909 1 1 0.1065 0 0 95% LCL 1.096 1.345	1 1 1 0 0 95% UCL 1.475 1.346	1 1 0.7 0 0 Mediar 1.345 1.345	0.8 1 0.2 0 0 0 Min 1.107 1.345	1 1 1 0 0 Max 1.345 1.345	0.05 0 0.1708 0 0 Std Err 0.05953 0	10.53% 0.0% 0.0% 52.55% CV% 9.26% 0.0%	0.0% -5.26% -5.26% 31.58% 100.0% 100.0% - %Effect 0.0% -4.63%	
0 50 100 200 400 800 Аngular (Cor С-µg/L 0 50 100	Lab Control rrected) Transfo Control Type	4 4 4 4 4 9 9 9 7 med Sun 4 4 4 4	0.95 1 0.65 0 0 nmary Mean 1.286 1.345 1.345	0.7909 1 1 0.1065 0 0 95% LCL 1.096 1.345 1.345	1 1 1 0 0 95% UCL 1.475 1.346 1.346	1 1 0.7 0 0 Mediar 1.345 1.345 1.345	0.8 1 0.2 0 0 0 Min 1.107 1.345 1.345	1 1 1 0 0 Max 1.345 1.345 1.345	0.05 0 0.1708 0 0 Std Err 0.05953 0 0	10.53% 0.0% 0.0% 52.55% CV% 9.26% 0.0% 0.0%	0.0% -5.26% 31.58% 100.0% 100.0% %Effect 0.0% -4.63% -4.63%	


CETIS™ v1.8.7.20

Analyst: Ja QA: 1977/10/19

n N D


Analyst: Jac QA: KTP7/10/19



Analyst: Ja QA: KAP7/10/19

CETIS QC Plot

Inland Silverside 96-h Acute Survival Test			Nautilus Environmental (CA)
Test Type: Survival (96h)	Organism: Menidia beryllina (Inland Silverside)	Material:	Copper chloride
Protocol: EPA/821/R-02-012 (2002)	Endpoint: 96h Survival Rate	Source:	Reference Toxicant-REF

Mean:	197.9	Count:	20	-2s Warning Limit:	117.6	-3s Action Limit:	77.41
Sigma:	40.16	CV:	20.30%	+2s Warning Limit:	278.2	+3s Action Limit:	318.4

Quality Control Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2017	Apr	25	17:00	254.9	57.01	1.42			20-8848-5762	06-2422-4286
2		Jun	9	17:15	221.9	24.01	0.598			04-5405-2533	13-3732-1084
3		Sep	6	15:50	146.4	-51.49	-1.282			01-8301-6131	10-0799-2130
4		Oct	24	16:10	207.1	9.153	0.2279			10-0714-4627	19-6697-7894
5		Nov	1	10:15	229.7	31.84	0.7928			14-0848-4500	09-3507-0741
5		Dec	6	15:25	186.6	-11.29	-0.2812			17-2716-0280	10-6923-1723
7	2018	Jan	9	16:05	175.2	-22.7	-0.5652			15-9782-4320	14-5127-3080
3		Feb	14	14:50	170.3	-27.63	-0.6879			14-7429-6310	14-6416-7425
Э			21	12:25	187.2	-10.72	-0.267			20-0148-6736	18-8740-2809
0			22	17:20	266.7	68.81	1.713			21-2244-9573	15-2512-9013
11		Mar	7	16:25	189.3	-8.55	-0.2129			06-3891-7579	03-5981-6406
12			28	17:15	141.4	-56.48	-1.406			18-3798-9831	05-5342-2351
13		Jun	14	14:35	200	2.1	0.05229			01-9952-0614	00-3575-1747
4		Jul	17	14:30	214.4	16.45	0.4097			11-1445-3115	12-3693-5336
15		Aug	22	16:25	237.8	39.94	0.9946			08-6172-7555	12-4329-0617
6	2019	Jan	3	16:50	207.9	9.952	0.2478			16-0506-4055	11-1190-1934
17		Feb	21	16:05	143.5	-54.42	-1.355			10-4228-2556	08-7111-9529
18			27	16:25	135.8	-62.13	-1.547			14-0947-0420	00-4247-8099
9		May	9	19:10	263.9	66	1.643			03-9779-6453	09-3747-7536
20		Jun	4	14:50	177.8	-20.15	-0.5016			00-2136-1210	01-4264-5145
21		Jul	1	15:55	223.6	25.72	0.6403			04-4319-5710	17-4098-1084

Marine Acute Bioassay Static-Renewal Conditions

Water Quality Measurements & Test Organism Survival

Client	: Interr	nal							_	т	est Sp	ecies	: M. L	erylli	na								Τe	ech Init	ials	
Sample ID	: CuCl	2							-	Star	t Date	/Time	: 7/1/	2019	1	555	5		_			0	24	48	72	96
Test No.	: 1907	01ml	bra						-	End	d Date	/Time	: 7/5/	2019	_ţ.	35:	5		-	c	ounts	<u>Þr</u>		<u>Son</u>		RT
																					dings		RT	_		RT
																					ade by	000	<u> </u>	BO	1	
																			conc.			: 800 : 17,2		4.3	-	
									Cu st	ock co	oncent	ration	(μg/L):	93	00	0			Final \			2000	12000	2000	-	
·····	·····						11					8			<i>f</i>		-				, (<u>-</u>).	L	1.525076026	1	Land	
Concentration (µg/L)	Rand #			nber o rganis		•		-	Salinit (ppt)	-	-		Tei	npera (°C)	ture			Disso	lved ((mg/L		n			pH (units)	
	ļ	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	19	5	5	5	5	5	29.8	295			20.0	24.2	253	242	25,4	75.(20	51	i 6.6	5.6	5.T	804	7.13	7.86	7:78	7.72
	14	5	5	5	5	5			29.5					25,4					5.4					1 7.41		
	6	5	5	5	5	5		ļ	ļ	ļ										ļ	ļ					
	24	5	4	4	4	4			1									<u> </u>								
50	11	5	5	5	5	5	29.2	29.7	300	29.7	30.1	Z4.1	25.6			256	6.8	4.9		5.6	5.2	8.00			7.76	,7J
	20	5	5	5	5	5			299.9					¹ 253			ļ		f.6			<u> </u>		7.70		
	1	5	5	2	5	5		-				ļ						<u> </u>					L			
	7	5	5	5	5	5	2013							i					1			<u> </u>		i		
100	5 9	5	5	5	5	5	29.5	29,4	29.9 1	60.1	20.7	24.2			25.2	25,9	6.8	5.1	f	5.4	5.2	8.01	7.76	F I	7.72	7.7
	18	5	5	P	5	5			'aq					25.0					55			<u> </u>	<u> </u>	770		
	2	5	5	5	55	S S																				
	21	5	3	17	3	3	די גור	20 -	iaca	200	101	247	nre	i	-	017	13	1	100		10	-		i.		7 2-
200	4	5 5	1		2	3	24,5	129. 1	19.9	101,7	1.42	21.2	15.3	29.2	13.5	0.1	6.0	2.4	9,8 5,5	3.5	5.0	799	1.80	f	7:74	*/0
	17	5	5	5	5	5			<i>v</i> I, (0.000	C.S. of					2'3			\vdash		773		
	22	5	4	ú	4	Ĩ																				
400	10	5	\cap				29.2	293	i 	•	-	24.1	255	i 	-	1	6.8	4.9	i 🖵	10.0000 	•	7.98	173	i 		
	23	5	0					- 1,-	f					: 15	ich			1.	f سور			1.10	1.13	f		
	12	5	\bigcirc	D	1	/							۵	18 101	7/2/	*										
	8	5	Ċ	0	N	/							19.5													
800	16	5	O	P	7		291.Z	29,3	i	-	-	24.0	25,4	i	-	~	6.8	5.3	1	-	-	795	7.74	-	~	-
	13	5	0						f					f					f -					f		
	3	5	0																							
	15	5	Õ/																						1000	in an
Rand # QC: Initial Counts QC'd by:	DM 0	·	14																							
Initiated by:	DM		-	A	RC)																				
Animal Source/Date F	Receive	d:	B	A)	85	16	129	/19			Age a	nt Initia	ation:	1	2	ling	5						Feed	ding Ti	mes	
Animal Acclimation Q	ualifier	s (cir	cle al	ll that	appl	y):				_(a	22]) Q23	10		/ no							0	24	48	72	96
																					AM:		0900	0520	1000 0	ACÒ
Comments:									\sim	1	ng in te								1		PM:	1705				
		Urga	inism:	s ted p	orior t	o initia	ition, c	arcle o	ne(y)/ n) (DRI	\$ Ar	<u>5 2/j</u>	16	رمى	240	218 7	11/19							
QC Check:	KFY	27	10	19															Fir	nal Re	view:	ĒĹ	; =	2/11	119	
Nautilus Environmental.	4340 Van	dever	Aven	ue. Sa	n Die	go, CA	92120.																<u> </u>	-+	┟┽╌╋╌╸	

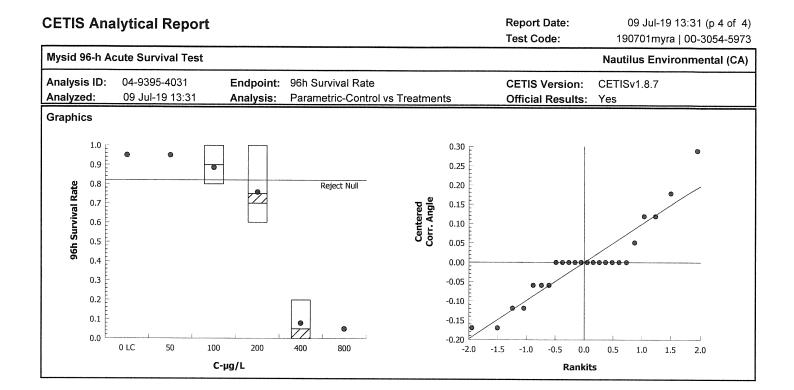
Acute Mysid Shrimp

CETIS Summary Report

Report Date: Test Code: 09 Jul-19 13:31 (p 1 of 1) 190701myra | 00-3054-5973

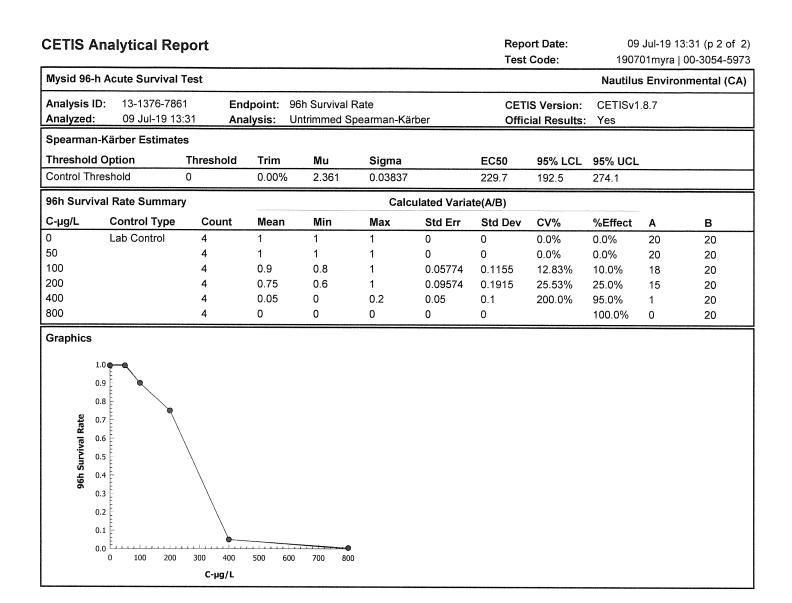
								Test Code:		1907		J-3054-5973
Mysid 96-h Ac	ute Survival Te	st								Nautilu	s Environm	nental (CA)
Batch ID:	14-9760-7969		Test Type:	Survival (96h)				Analyst:				
Start Date:	01 Jul-19 15:20)	Protocol:	EPA/821/R-02-	012 (2002)			Diluent:	Dilut	ed Natural	Seawater	
Ending Date:	05 Jul-19 13:50)	Species:	Americamysis I	bahia			Brine:	Not A	Applicable		
Duration:	94h		Source:	Aquatic Biosyst	ems, CO			Age:	5d			
Sample ID:	18-6400-7568		Code:	190701myra				Client:	Inter	nal		
Sample Date:	01 Jul-19		Material:	Copper chloride	;			Project:				
Receive Date:			Source:	Reference Toxi	cant							
Sample Age:	15h		Station:	Copper Chlorid	e							
Comparison S	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Metl	hod			
06-8016-8631	48h Survival Ra		200	400	282.8	25.0%					parison Tes	
04-9395-4031	96h Survival Ra	ate	100	200	141.4	18.0%		Duni	nett M	ultiple Com	parison Tes	st
Point Estimate	e Summary											
Analysis ID	Endpoint		Level	µg/L	95% LCL	95% UCL	TU	Metl	nod			
12-7174-3681	48h Survival Ra		EC50	282.8	232.8	343.7		Spea	arman	Kärber		
13-1376-7861	96h Survival Ra	ate	EC50	229.7	192.5	274.1		Spea	Spearman-Kärber			
48h Survival F	Rate Summary											
	Control Type	Cour	nt Mean	95% LCL	95% UCL	Min	Max	Std	Err	Std Dev	CV%	%Effect
	Lab Control	4	1	1	1	1	1	0		0	0.0%	0.0%
50		4	1	1	1	1	1	0		0	0.0%	0.0%
100		4	0.95	0.7909	1	0.8	1	0.05		0.1	10.53%	5.0%
200		4	0.8	0.4325	1	0.6	1	0.11		0.2309	28.87%	20.0%
400		4	0.25	0	0.6504	0	0.6	0.12	58	0.2517	100.7%	75.0%
800		4	0	0	0	0	0	0		0	**************************************	100.0%
96h Survival F		C		051(1.0)	0.5%/ 11.01				_		-	
	Control Type Lab Control	Cour 4	nt Mean	95% LCL			Max		Err	Std Dev	CV%	%Effect
50	Lab Control	4 4	1	1 1	1 1	1 1	1 1	0		0	0.0%	0.0%
100		4	0.9	0.7163	1	0.8	1	0 0.05	771	0 0.1155	0.0% 12.83%	0.0% 10.0%
200		4	0.75	0.4453	1	0.6	1	0.00		0.1135	25.53%	25.0%
400		4	0.05	0	0.2091	0	, 0.2	0.05		0.1010	200.0%	95.0%
800		4	0	0	0	0	0	0		0	200.070	100.0%
48h Survival F	Rate Detail	ita ita ani kanang mang ang ang										
	Control Type	Rep	1 Rep 2	Rep 3	Rep 4							
0	Lab Control	1	1	1	1	*************		***********				
50		1	1	1	1							
100		1	1	1	0.8							
200		1	1	0.6	0.6							
400		0.2	0.6	0	0.2							
800		0	0	0	0							
96h Survival F	Rate Detail											
	Control Type	Rep		Rep 3	Rep 4							
	Lab Control	1	1	1	1							
50		1	1	1	1							
100		0.8	1	1	0.8							
200		1	0.8	0.6	0.6							
400		0	0.2	0	0							
800		0	0	0	0							

CETIS An	alytical Rep	ort			-	oort Date: 09 Jul-19 13:31 (p 1 d) t Code: 190701myra 00-3054-					
Mysid 96-h A	Acute Survival Te	est							Nautilus	Environn	nental (CA)
Analysis ID: Analyzed:	06-8016-8631 09 Jul-19 13:3		•	Survival Ra ametric-Con	ite itrol vs Trea	tments		IS Version: cial Results:	CETISv1. Yes	8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C > T	NA	NA		25.0%	200	400	282.8	
Dunnett Mul	Itiple Compariso	n Test									
Control	vs C-µg/L		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	50		0	2.356	0.298 6	0.8000	CDF	Non-Signif	icant Effect	······································	*****
	100		0.4706	2.356	0.298 6	0.6174	CDF	Non-Signif	icant Effect		
	200		1.815	2.356	0.298 6	0.1264	CDF	Non-Signif	icant Effect		
	400*		6.605	2.356	0.298 6	<0.0001	CDF	Significant	Effect		
ANOVA Tabl	le										
Source	Sum Squ	lares	Mean Squ	are	DF	F Stat	P-Value	Decision(a:5%)		
Between	2.005743		0.5014356		4	15.67	<0.0001	Significant	Effect		
Error	0.480064	3	0.0320042	9	15			0			
Total	2.485807				19						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Mod Lev	ene Equalit	y of Variance	3.76	4.893	0.0260	Equal Var	iances			
Variances		Equality of \		7.006	4.893	0.0022	Unequal \				
Distribution		Wilk W Nor		0.9056	0.866	0.0526	Normal D				
48h Survival	I Rate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1	1	1	1	1	1	0	0.0%	0.0%
50		4	1	1	1	1	1	1	0	0.0%	0.0%
100		4	0.95	0.7909	1	1	0.8	1	0.05	10.53%	5.0%
200		4	0.8	0.4325	1	0.8	0.6	1	0.1155	28.87%	20.0%
400		4	0.25	0	0.6504	0.2	0	0.6	0.1258	100.7%	75.0%
800		4	0	0	0	0	0	0	0		100.0%
Angular (Co	rrected) Transfor	rmed Sumr	nary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%
50		4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%
100		4	1.286	1.096	1.475	1.345	1.107	1.345	0.05953	9.26%	4.43%
200		4	1.116	0.6938	1.538	1.116	0.8861	1.345	0.1326	23.76%	17.07%
		4	0.5097	0.07234	0.9471	0.4636	0.2255	0.0061	0 4074	FO 000/	
400		4	0.5097	0.07234	0.9471	0.4050	0.2255	0.8861	0.1374	53.93%	62.11%


Analyst: JCL QA: EG 7/11/19

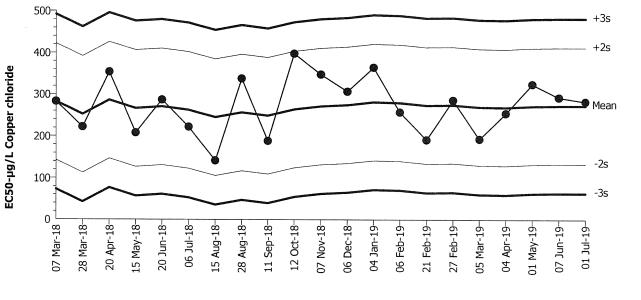
CETIS Analytical Report Report Date: 09 Jul-19 13:31 (p 2 of 4) Test Code: 190701myra | 00-3054-5973 Mysid 96-h Acute Survival Test Nautilus Environmental (CA) Analysis ID: 06-8016-8631 Endpoint: 48h Survival Rate **CETIS Version:** CETISv1.8.7 Analyzed: 09 Jul-19 13:31 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 1.0 0.40 E 4 0.35 0.9 0.30 0.8 0.25 48h Survival Rate 0.20 Reject Null Centered Corr. Angle 0.7 0.15 0.6 0.10 0.05 0.5 0.00 0.4 -0.05 . -0.10 0.3 -0.15 77 0 0.2 -0.20 -0.25 0.1 -0.30 0 0.0 -0.35 0 LC 50 100 200 400 800 -1.5 -2.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 C-µg/L Rankits

CETIS An	alytical Rep	ort						ort Date: Code:			31 (p 3 of 4) 0-3054-5973
Mysid 96-h A	Acute Survival Te	est							Nautilus	Environn	nental (CA)
Analysis ID: Analyzed:	04-9395-4031 09 Jul-19 13:3		•	Survival Ra ametric-Cor	ate itrol vs Treat	tments		IS Version		8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C > T	NA	NA		18.0%	100	200	141.4	
Dunnett Mul	Itiple Compariso	n Test									
Control	vs C-µg/L		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	50		0	2.356	0.212 6	0.8000	CDF	Non-Sign	ificant Effect		
	100		1.322	2.356	0.212 6	0.2599	CDF	Non-Sign	ificant Effect		
	200*		3.211	2.356	0.212 6	0.0098	CDF	Significar	nt Effect		
	400*		11.77	2.356	0.212 6	<0.0001	CDF	Significar	nt Effect		
ANOVA Tabl	le										
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision	(α:5%)		
Between	3.162457		0.7906142		4	48.75	<0.0001	Significar	nt Effect		
Error	0.243287	1	0.0162191	4	15			•			
Total	3.405744				19						
Distribution	al Tests	a									
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Mod Lev	ene Equalit	y of Variance	3.938	4.893	0.0222	Equal Var	iances			
Variances	Levene E	Equality of V	Variance	8.631	4.893	0.0008	Unequal \	/ariances			
Distribution	Shapiro-	Wilk W Nor	mality	0.9183	0.866	0.0921	Normal D	istribution			
96h Surviva	I Rate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1	1	1	1	1	1	0	0.0%	0.0%
50		4	1	1	1	1	1	1	0	0.0%	0.0%
100		4	0.9	0.7163	1	0.9	0.8	1	0.05774	12.83%	10.0%
200		4	0.75	0.4453	1	0.7	0.6	1	0.09574	25.53%	25.0%
400		4	0.05	0	0.2091	0	0	0.2	0.05	200.0%	95.0%
800		4	0	0	0	0	0	0	0		100.0%
Angular (Co	rrected) Transfo	med Sumi	mary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
•	Lab Control	4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%
0		4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%
0 50		4									
		4	1.226	1.007	1.445	1.226	1.107	1.345	0.06874	11.21%	8.85%
50				1.007 0.7075	1.445 1.405	1.226 0.9966	1.107 0.8861	1.345 1.345	0.06874 0.1096	11.21% 20.75%	8.85% 21.49%
50 100		4	1.226								


Analyst: Ja QA: EG 7/11/19

	•	th Survival F Intrimmed S Mu 2.452	pearman-Ká Sigma 0.04231		Offic EC50	S Version: ial Results: 95% LCL	CETISv1 Yes	·	nmental (CA)
13:31 Ana ites Threshold 0 ary ary Count	Trim	ntrimmed Sj Mu	pearman-Ká Sigma 0.04231		Offic EC50	ial Results:	Yes	.8.7	
Threshold 0 ary e Count	0.00%		0.04231			95% LCL	95% UCL		
0 ary e Count	0.00%		0.04231			95% LCL	95% UCL		
ary e Count		2.452			282.8 232.8				
e Count	Mean			0.00% 2.452 0.04231					
	Mean		Cal	culated Varia	ate(A/B)				
4		Min	Max	Std Err	Std Dev	CV%	%Effect	А	в
	1	1	1	0	0	0.0%	0.0%	20	20
4	1	1	1	0	0	0.0%	0.0%	20	20
4	0.95	0.8	1	0.05	0.1	10.53%	5.0%	19	20
4	0.8	0.6	1	0.1155	0.2309	28.87%	20.0%	16	20
4	0.25	0	0.6	0.1258	0.2517	100.7%	75.0%	5	20
4	0	0	0	0	0		100.0%	0	20
0 300 400	500 600	700 800)						
	4	4 0	4 0 0	4 0 0 0	4 0 0 0 0	4 0 0 0 0 0 0	4 0 0 0 0 0 0 300 400 500 600 700 800	4 0 0 0 0 0 0 100.0%	4 0 0 0 0 0 0 100.0% 0

Analyst: Jac QA: EG 7/11/19


Analyst: JU QA: EG 7[11]19

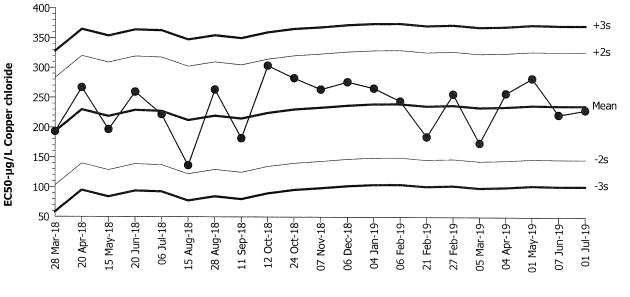
Report Date:	09 Jul-19 13:32 (1 of 1)
--------------	---------------------------

CETIS QC Plot

Mysid 96-h Acute Survival Test			Nautilus Environmental (CA)
Test Type: Survival (96h)	Organism: Americamysis bahia (Opossum Shri	Material:	Copper chloride
Protocol: EPA/821/R-02-012 (2002)	Endpoint: 48h Survival Rate	Source:	Reference Toxicant-REF

Mean:	273.1	Count:	20	-2s Warning Limit:	133.4	-3s Action Limit:	63.53
Sigma:	69.86	CV:	25.60%	+2s Warning Limit:	412.8	+3s Action Limit:	482.7

Quality Control Data


Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2018	Mar	7	16:25	282.8	9.743	0.1395			10-8646-9178	05-6049-9266
2			28	16:10	221.9	-51.19	-0.7327			15-4374-6741	11-5664-4039
3		Apr	20	15:45	353.6	80.48	1.152			10-4473-7155	03-6870-9073
4		May	15	13:50	207.9	-65.25	-0.934			14-4944-1297	06-5339-6371
5		Jun	20	15:30	287	13.86	0.1984			04-4231-0903	07-3012-3160
6		Jul	6	14:55	221.9	-51.19	-0.7327			20-2728-1377	06-2839-1792
7		Aug	15	14:00	141.4	-131.7	-1.885			14-8303-0655	09-9519-6980
8			28	16:10	337.9	64.76	0.9269			21-2933-4468	08-9274-2637
9		Sep	11	16:35	188.5	-84.61	-1.211			16-0699-3926	11-2760-5538
10		Oct	12	15:40	398	124.9	1.788			04-3284-8017	01-9110-2945
11		Nov	7	15:15	348.2	75.12	1.075			05-2361-5235	05-6677-0931
12		Dec	6	15:45	307.1	33.99	0.4865			02-8370-7066	03-1957-0006
13	2019	Jan	4	16:20	365.1	92.03	1.317			15-2358-5025	00-6334-9175
14		Feb	6	15:15	257.5	-15.63	-0.2237			02-9902-9095	09-9328-1865
15			21	15:50	191.3	-81.79	-1.171			08-2049-6233	08-1016-4407
16			27	15:45	286.4	13.27	0.1899			18-0439-0628	11-4083-2551
17		Mar	5	16:25	193.2	-79.91	-1.144			07-2443-9002	20-8635-9036
18		Apr	4	15:45	254.9	-18.19	-0.2603			12-5149-9007	10-6064-9109
19		May	1	14:45	324.9	51.8	0.7415			03-8402-7514	02-0135-9111
20		Jun	7	17:40	292.8	19.72	0.2822			15-0477-0993	04-0710-1520
21		Jul	1	15:20	282.8	9.743	0.1395			00-3054-5973	12-7174-3681

Analyst: JU QA: E47/11/19

CETIS QC Plot

Mysid 96-h Acute Survival Test			Nautilus Environmental (CA)
Test Type: Survival (96h)	Organism: Americamysis bahia (Opossum Shri	Material:	Copper chloride
Protocol: EPA/821/R-02-012 (2002)	Endpoint: 96h Survival Rate	Source:	Reference Toxicant-REF

Mean:	236.7	Count:	20	-2s Warning Limit:	146.7	-3s Action Limit:	101.7
Sigma:	45	CV:	19.00%	+2s Warning Limit:	326.7	+3s Action Limit:	371.7

Quality Control Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2018	Mar	28	16:10	193.2	-43.51	-0.9669			15-4374-6741	15-6199-7890
2		Apr	20	15:45	266.7	30.01	0.6668			10-4473-7155	05-7699-1337
3		May	15	13:50	196.6	-40.14	-0.8919	-		14-4944-1297	02-2365-6992
4		Jun	20	15:30	259.4	22.67	0.5037			04-4231-0903	16-8168-7125
5		Jul	6	14:55	221.9	-14.79	-0.3286			20-2728-1377	02-5699-0099
6		Aug	15	14:00	136.6	-100.1	-2.224	(-)		14-8303-0655	01-5941-7563
7			28	16:10	263.4	26.73	0.5941			21-2933-4468	03-8009-1017
8		Sep	11	16:35	182.1	-54.62	-1.214			16-0699-3926	16-7253-9506
9		Oct	12	15:40	303.7	66.98	1.489			04-3284-8017	12-8637-0903
10			24	15:15	282.8	46.14	1.025			13-1692-3940	19-7279-9581
11		Nov	7	15:15	263.9	27.2	0.6045			05-2361-5235	10-0369-9874
12		Dec	6	15:45	276.3	39.57	0.8794			02-8370-7066	14-9907-2370
13	2019	Jan	4	16:20	265.9	29.17	0.6482			15-2358-5025	06-4259-8181
14		Feb	6	15:15	244.4	7.739	0.172			02-9902-9095	01-2344-0730
15			21	15:50	184.6	-52.07	-1.157			08-2049-6233	21-2714-8308
16			27	15:45	256.2	19.48	0.4328			18-0439-0628	14-6353-1021
17		Mar	5	16:25	174.1	-62.59	-1.391			07-2443-9002	17-5549-2926
18		Apr	4	15:45	257.5	20.77	0.4616			12-5149-9007	02-2336-7586
19		May	1	14:45	282.8	46.14	1.025			03-8402-7514	10-4449-6498
20		Jun	7	17:40	221.9	-14.79	-0.3286			15-0477-0993	15-5135-1118
21		Jul	1	15:20	229.7	-6.96	-0.1547			00-3054-5973	13-1376-7861

Water Quality Measurements & Test Organism Survival

Marine Acute Bioassay **Static-Renewal Conditions**

Client:	t: Internal Test Species: A. bahia											Tech Initials														
Sample ID:	CuCl	2								Star	t Date/	Time	7/1/2	2019	1	520)					0	24	48	72	96
Test No.:	1907	01m	yra						Re	newa	Date/	Time	7/3/2	2019		350				С	ounts:	m	TR	TN	BO	RI
										End	Date/	Time	7/5/2	2019		35				Rea	dings:	pm	RT		BO.	R
																		l	Dilutio	ns ma	de by:	n		BO		
																		High	conc. I	made (μ g/L) :	800		800		
																	v	ol. Cu	stock	added	(mL):	17.2	-	17.2		
									Cu st	ock co	ncentr	ation	(μ g/L) :	93	ΰÛ	0						2000	1.102.049.049	2000		-
Concentration	Rand #			ber of ganis		•		\$	Salinit (ppt)	-			Ten	nperat (°C)	ture			Dissol	ved O (mg/L)		י		I	pH (units))	
		0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	8	5	5	5	5	5	29.4	29.9	1 29.2	29.7	24.9	24.2	242	243	251	25.7	7.0.	4.0	69	5.8	5.4	297	3.1	48 i 7,84	776	7.7
						-	1						75 A	1.00				5.5	f				0 12	e 1		
	7	5	5	5	5	5		6	ISA.				25.0	US.L	-	43.53			6.0				7.51	FR		
	7 15	5 5	55	55	55	5 5			<u>159.</u> 29.8					US.L					6.0				7.81	the	-	
			555	5 5 5	5 5 5	5 5 5								25:1	-				6.0				7.51	77	-	

	7	5	5	5	5	5		0	25.2 29.8				\$P.0	2S.U	F			p.J	6.0				7.81	FA	-	
	15	5	5	5	5	5			29.8																	
	4	5	5	5	5	5																				
50	11	5	5	5	5	5	29.5	29.5	1 30,0	30.0	30.3	24.2	255	i 24,2	25.2	25.7	6.9	5.4	7.3	5.8	6)	7.98	7.90	7.89	7.78	7.7
	12	5	5	5	5	5		1.22232.01	29.9					124.9					6.0					7.77		
	2	5	5	5	5	5							Sure of													
	21	5	5	5	5	5																				
100	10	5	5	5	5	4	29.S	29.5	29.9	20,N	308	242	25.6	i 24.Z	253	26.S	6.8	57	7.3	5.6	52	7.99	7.90	1 7.90	7.78	37.76
	13	5	5	5	5	.S			r 29.9					24.9					f 6.0				03:522:23	7.81		
	1	5	5	5	5	5	2003 1996 1995																			
÷	23	5	5	4	4	4																				
200	20	5	5	5	5	5	29.5	29.5	; 29.9	30.1	303	29.1	25,6	1 24.3	25.5	255	6,8	5.3	7.4	5.4	5.2	798	7.87	i 7.9(7.75	7.70
	14	5	5	5	5	4		alesta al susceità a susceità	29.9				Costantino Costantino Costantino	łs.2				1899	f 6.0					7.82		
	6	5	4	3	3	ż																				
	22	5	5	3	3	3																				
400	3	5	4	Ī	t	0	29.3	29.4	'30.0	30,2	30,5	24.0	25.6	24.4	25.4	255	6,8	5.7	7.3	5.8	5.5	797	7.88	7,90	785	7,85
	19	5	4	3	2	1		1.126.2003	f 29.9					25.1					fig					f 7.80		
	16	5	3	0	-	-0000																				
	9	5	5	1	۱	0																			стара. Ката (8)	
800	5	5	3	θ		/	29.2	29.2	- 29.8	-	1	24.2	25.6	247		1	6.3	5.9	7.3	1	1	795	7.90	7.88	~	~
	24	5	0		ALC	\mathbb{V}			29.4					f 25.5					5.9					7.87		
	18	5	4	0	6	4P	1993) 1997 - Sar																			
	17	5	4	0	10.			0.900																		
Rand # QC: Initial Counts QC'd by: Initiated by:	DM DM DM	\ ∂b⊅	AC.	5	X							Roomania										L			<u></u>	
Animal Source/Date	Recei	ved:		AB	5/	<i>61</i>	291	19	-		Age a	at Initi	ation:	5	de	195							Feed	ding Ti	mes	
Animal Acclimation	Qualif	iers (22 /				/ no	\leq						0	24	48	72	96
															C						AM:	1	0000	085 Û	iudo	5900

i = initial reading in fresh test solution, f = final reading in test chamber prior to renewal

Organisms fed prior to initiation, circle one (y)/ n)

QC Check:

BQ18 KTY/2/19 3918 RT 7/4/19

Final Review:	Faz	(17
		<u> </u>	· · · · · · · · · · · · · · · · · · ·

PM: 1705 1600 1600 1700

Nautilus Environmental. 4340 V	andever Avenue.	San Diego.	CA 92120.
--------------------------------	-----------------	------------	-----------

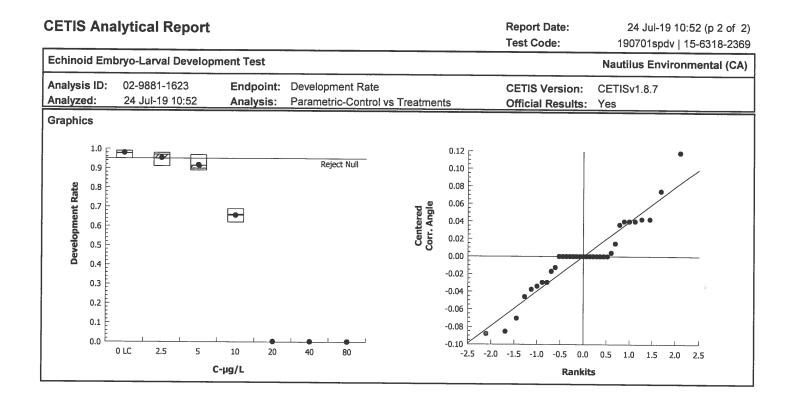
F

(Dats TN7/3/19)

l

Chronic Urchin Development

CETIS Summary Report

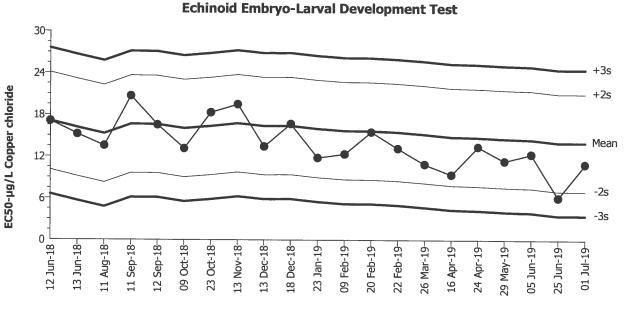

Report Date: Test Code: 24 Jul-19 10:52 (p 1 of 1) 190701spdv | 15-6318-2369

		-									
Echinoid Em	bryo-Larval Dev	elopmen	t Test						Nauti	lus Environ	mental (CA
Batch ID: Start Date: Ending Date: Duration:	13-9115-8417 01 Jul-19 101 04 Jul-19 1 0 72h	5 F 35 S	est Type: Protocol: pecies: Source:	s: Strongylocentrotus purpuratus : Pt. Loma					Natural Seaw Not Applicabl		
Sample ID:	14-8889-5540	C	ode:	190701spdv				Client:	Internal		
Sample Date:		N	laterial:	Copper chloride	e			Project:			
Receive Date		-	iource:	Reference Toxi							
Sample Age:	NA	S	station:	Copper Chlorid	e						0
Comparison	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Metho	bd		
02-9881-1623	Development F	Rate	2.5	5	3.536	2.78%		Dunne	ett Multiple Co	mparison Te	st
Point Estimat	te Summary										· · · · · · · · · · · · · · · · · · ·
Analysis ID	Endpoint		Level	µg/L	95% LCL	95% UCL	τU	Metho	bd		
20-3014-2815	Development F	Rate	EC50	10.92	10.55	11.32	-	Trimm	ed Spearmar	-Kärber	
Test Accepta	bility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	ts	Overla	ap Decisio	n	
02-9881-1623	Development F	Rate	Contro	l Resp	0.978	0.8 - NL		Yes		Acceptability	/ Criteria
20-3014-2815	Development F	Rate	Contro	Resp	0.978	0.8 - NL		Yes		Acceptability	
02-9881-1623	Development F	Rate	PMSD		0.02777	NL - 0.25		No		Acceptability	
Development	Rate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Мах	Std E	r Std Dev	CV%	%Effect
0	Lab Control	5	0.978	0.9558	1	0.95	0.99	0.008	0.01789	1.83%	0.0%
2.5		5	0.95	0.9098	0.9902	0.91	0.98	0.0144	0.0324	3.41%	2.86%
5		5	0.914	0.8742	0.9538	0.89	0.97	0.0143	0.03209	3.51%	6.54%
10		5	0.656	0.6225	0.6895	0.62	0.69	0.0120	0.02702	4.12%	32.92%
		5	0	0	0	0	0	0	0		100.0%
20 40		5	0	0	0 0	0 0		0 0	0 0		100.0% 100.0%
40					-		0	-			
40 80	Rate Detail	5	0	0	0	0	0 0	0	0		100.0%
40 80 Development C-µg/L	Control Type	5 5 Rep 1	0 0 Rep 2	0 0 Rep 3	0 0 Rep 4	0 0 Rep 5	0 0	0	0		100.0%
40 80 Development C-μg/L 0		5 5 Rep 1 0.99	0	0 0	0	0	0 0	0	0		100.0%
40 80 Development C-µg/L 0 2.5	Control Type	5 5 Rep 1 0.99 0.92	0 0 Rep 2 0.95 0.98	0 0 Rep 3	0 0 Rep 4	0 0 Rep 5	0 0	0	0		100.0%
40 80 Development C-μg/L 0 2.5 5	Control Type	5 5 Rep 1 0.99	0 0 Rep 2 0.95	0 0 Rep 3 0.99	0 0 Rep 4 0.99	0 0 Rep 5 0.97	0 0	0	0		100.0%
40 80 Development C-μg/L 0 2.5 5	Control Type	5 5 Rep 1 0.99 0.92	0 0 Rep 2 0.95 0.98	0 0 Rep 3 0.99 0.97	0 0 Rep 4 0.99 0.91	0 0 Rep 5 0.97 0.97	0 0	0	0		100.0%
	Control Type	5 5 Rep 1 0.99 0.92 0.91	0 0 Rep 2 0.95 0.98 0.9	0 0 Rep 3 0.99 0.97 0.97	0 0 Rep 4 0.99 0.91 0.9	0 0 Rep 5 0.97 0.97 0.89	0 0	0	0		100.0%
40 80 Development C-μg/L 0 2.5 5 10	Control Type	5 5 Rep 1 0.99 0.92 0.91 0.66	0 0 Rep 2 0.95 0.98 0.9 0.62	0 0 Rep 3 0.99 0.97 0.97 0.97 0.67	0 0 Rep 4 0.99 0.91 0.9 0.9 0.69	0 0 Rep 5 0.97 0.97 0.89 0.64	0 0	0	0		100.0%

Analyst: JU QA: HEP-124/19

CETIS An	alytical Rep	ort						ort Date: Code:			52 (p 1 of 2) 5-6318-2369
Echinoid En	nbryo-Larval Dev	elopment	Test								mental (CA)
Analysis ID: Analyzed:	02-9881-1623 24 Jul-19 10:5		-	velopment F rametric-Cor		tments		IS Version		.8.7	
Data Transfe	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C > T	NA	NA		2.78%	2.5	5	3.536	
Dunnett Mul	Itiple Compariso	n Test									
Control	vs C-µg/L		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Lab Control	2.5		2.033	2.227	0.084 8	0.0709	CDF		ificant Effect		
	5*		4.053	2.227	0.084 8	0.0013	CDF	Significar			
	10*		12.97	2.227	0.084 8	<0.0001	CDF	Significar			
ANOVA Tabl	le										
Source	Sum Squ	ares	Mean Sq	Jare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.689426	5	0.229808	3	3	65.3	<0.0001	Significan			
Error	0.056304	73	0.003519	045	16			•			
Total	0.745731	3			19						
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	α:1%)			
Variances	Bartlett E	Equality of	Variance	3.07	11.34	0.3809	Equal Var				
Distribution	Shapiro-	Wilk W No	ormality	0.9607	0.866	0.5583	Normal Di				
Developmen	nt Rate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.978	0.9558	1	0.99	0.95	0.99	0.008	1.83%	0.0%
2.5		5	0.95	0.9098	0.9902	0.97	0.91	0.98	0.01449	3.41%	2.86%
5		5	0.914	0.8742	0.9538	0.9	0.89	0.97	0.01435	3.51%	6.54%
10		5	0.656	0.6225	0.6895	0.66	0.62	0.69	0.01208	4.12%	32.92%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
80		5	0	0	0	0	0	0	0		100.0%
Angular (Corrected) Transformed Summary											
Angular (Coi	rrected) Transfor	mea Sum	mary								
Angular (Coi C-µg/L	rrected) Transfor Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
С-µg/L 0			-	95% LCL 1.359	95% UCL						
С-µg/L 0 2.5	Control Type	Count	Mean			Median 1.471 1.397	1.345	1.471	0.02572	4.02%	0.0%
С-µg/L 0 2.5 5	Control Type	Count 5	Mean	1.359	1.502	1.471	1.345 1.266	1.471 1.429	0.02572 0.03307	4.02% 5.46%	0.0% 5.33%
С-µg/L 0 2.5 5 10	Control Type	Count 5 5	Mean 1.431 1.354	1.359 1.263	1.502 1.446	1.471 1.397 1.249	1.345 1.266 1.233	1.471 1.429 1.397	0.02572 0.03307 0.02996	4.02% 5.46% 5.24%	0.0% 5.33% 10.63%
С-µg/L 0 2.5 5 10	Control Type	Count 5 5 5	Mean 1.431 1.354 1.279	1.359 1.263 1.196	1.502 1.446 1.362	1.471 1.397 1.249 0.9483	1.345 1.266 1.233 0.9066	1.471 1.429 1.397 0.9803	0.02572 0.03307 0.02996 0.01272	4.02% 5.46% 5.24% 3.01%	0.0% 5.33% 10.63% 34.0%
С-µg/L 0 2.5	Control Type	Count 5 5 5 5	Mean 1.431 1.354 1.279 0.9443	1.359 1.263 1.196 0.9089	1.502 1.446 1.362 0.9796	1.471 1.397 1.249	1.345 1.266 1.233	1.471 1.429 1.397	0.02572 0.03307 0.02996	4.02% 5.46% 5.24%	0.0% 5.33% 10.63%

Analyst: JCL QA: KTP7/24/19


Analyst: Ja QA: 05707/24/19

	Analytical Re						•	ort Date: Code:):52 (p 1 of 15-6318-236
Echinoid	Embryo-Larval D	evelopment 1	est						Nautilu	s Enviror	nmental (CA
Analysis Analyzed			-	Development I Frimmed Spea		ber		IS Version: al Results:	CETISv1 Yes	.8.7	
Trimmed	Spearman-Kärbe	r Estimates									
Threshol		Threshold	Trim	Mu	Sigma		EC50	95% LCL	95% UCL		
Control Th		0.022	2.86%	1.038	0.00767	'1	10.92	10.55	11.32		
Developn	nent Rate Summa	irv			Cal	culated Varia					
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err		C)/0/	0/ 5554		-
0	Lab Control	5	0.978	0.95	0.99	0.008	Std Dev 0.01789		%Effect 0.0%	A 489	B
2.5		5	0.95	0.91	0.98	0.01449	0.0324	3.41%	2.86%	469 475	500 500
5		5	0.914	0.89	0.97	0.01435	0.03209	3.51%	2.80 <i>%</i> 6.54%	475 457	500 500
10		5	0.656	0.62	0.69	0.01208	0.02702	4.12%	32.92%	457 328	
20		5	0	0	0.00	0	0.02702	4.1270	32.92 <i>%</i> 100.0%	320 0	500 500
40		5	0	0	0	0	0		100.0%	0	500 500
80		5	0	0	0	0	0		100.0%	0	500 500
Development Rate	1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1										
	0.0 E	30 40 С-µg/L	50 60	70 80							

Analyst: JU QA: PEP7/24/19

CETIS QC Plot

Echinoid Embryo-Larval Development Tes	st		Nautilus Environmental (CA)
Test Type: Development Protocol: EPA/600/R-95/136 (1995)		Strongylocentrotus purpuratus (Purpl Development Rate	

Mean:	14.02	Count:	20	-2s Warning Limit:	7.024	-3s Action Limit:	3.525
Sigma:	3.499	CV:	25.00%	+2s Warning Limit:	21.02	+3s Action Limit:	24.52

Quality Control Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2018	Jun	12	11:45	17.1	3.076	0.8791			14-1059-1899	15-2642-9423
2			13	14:50	15.19	1.173	0.3352			18-0381-5742	02-7081-5629
3		Aug	11	18:45	13.53	-0.4944	-0.1413			20-1611-7935	16-4659-9025
4		Sep	11	10:30	20.68	6.66	1.903			16-0634-0120	05-0604-6072
5			12	16:00	16.53	2.506	0.7163			15-4225-8606	10-5374-9889
6		Oct	9	15:15	13.13	-0.8881	-0.2538			03-2545-6769	13-7536-3945
7			23	14:41	18.31	4.291	1.226			07-8982-8813	00-2035-0705
8		Nov	13	15:35	19.48	5.459	1.56			12-1068-1198	13-8500-6380
9		Dec	13	15:40	13.43	-0.5872	-0.1678			18-0887-5478	08-5675-7260
10			18	16:10	16.68	2.66	0.7602			09-1125-6696	11-5924-9340
11	2019	Jan	23	16:45	11.82	-2.203	-0.6295			16-9627-7772	06-9753-3662
12		Feb	9	15:00	12.35	-1.672	-0.4778			03-4551-9020	18-2299-3422
13			20	16:25	15.52	1.5	0.4287			04-5763-2087	07-2228-2240
14			22	10:05	13.16	-0.8551	-0.2444			14-0040-4511	07-9343-7429
15		Mar	26	11:45	10.9	-3.119	-0.8913			11-5844-3421	04-1285-3925
16		Apr	16	16:02	9.409	-4.611	-1.318			10-9005-2409	20-3984-7468
17			24	10:35	13.41	-0.6114	-0.1747			08-2953-1939	18-4850-8813
18		May	29	10:50	11.37	-2.649	-0.7572			01-6601-4847	13-7584-3720
19		Jun	5	16:15	12.34	-1.676	-0.479			03-2581-8812	14-5424-8434
20			25	12:20	6.107	-7.913	-2.261	(-)		13-8876-0205	08-8241-5491
21		Jul	1	0:00	10.92	-3.096	-0.8847			15-6318-2369	20-3014-2815

Analyst: JU QA: 4777/24/19

CETIS Test Data Worksheet

 Report Date:
 29 Jun-19 1

 Test Code:
 15-6318-236

29 Jun-19 13:40 (p 1 of 1) 15-6318-2369/190701spdv

Echinoid Em	bryo-l	arval	Deve	lopment Te	st		Nautilus Environmental (CA)					
Start Date: End Date: Sample Date	04 J	lul-19 lul-19 lul-19		Materi		centrotus purpuratus /R-95/136 (1995) hloride	Sample Code: Sample Source: Sample Station:	190701spdv Reference Toxicant Copper Chloride				
C-µg/L	Code	Rep	Pos	# Counted	# Normal		Notes					
			1	100	0	RT 7/	7.4/19					
			2	1	97							
			3		62							
			4		97							
			5		95							
			6		Ó							
			7		97							
			8		0							
			9		92							
			10		99							
			11		89							
			12		99							
			13		90							
			14		94							
			15		Ô	···· · · · · · · · · · · · · · · · · ·						
			16		0							
			17		90							
			18		0							
			19		0	· · · · · · · · · · · · · · · · · · ·						
			20		0							
			21		0							
			22		64							
			23		0							
			24		0							
			25		66							
			26		0							
			27		97							
			28		0							
			29		0							
			30		91							
			31		69							
			32		91							
			33		qq							
			34		67							
			35	V	Ő		V					

Analyst: FT QA: HTP7/24/19

CETIS Test Data Worksheet

Report Date: Test Code: 29 Jun-19 13:40 (p 1 of 1) 15-6318-2369/190701spdv

Echinoid Em	bryo-l	_arval	Deve	lopment Te	st			Nautilus Environmental (CA)
Start Date: End Date: Sample Date:	04 J 01 J				-	ylocentrotus purpuratus 00/R-95/136 (1995) r chloride	Sample Code: Sample Source: Sample Station:	190701spdv Reference Toxicant Copper Chloride
C-µg/L	Code	Rep	Pos	# Counted	# Normal		Notes	
0	LC	1	12					
0	LC	2	5					
0	LC	3	33	100_	97	TN 769		
0	LC	4	10	1-0-				
0	LC	5	2					
2.5		1	9					
2.5		2	14					
2.5		3	27	100	98	TN Florg		
2.5		4	30					
2.5		5	4					
5		1	32					
5		2	17					
5		3	7	DD	96	TN 7/69		
5		4	13					
5		5	11					
10		1	25					
10		2	3					
10		3	34	100	59	TN 7/6/19		
10		4	31	<u> </u>				
10		5	22					
20		1	6					
20		2	20					
20		3	16	00	0	TN 7/6/19		
20		4	8					
20		5	28					
40		1	24					
40		2	29					
40		3	35	100	0	TN 7/6/19		
40	:	4	21					
40		5	15					
80		1	23					
80		2	18					
80		3	1	100	0	TN 7/6/1C		
80		4	26					
80		5	19					
		~						

ØC=AC

Nautilus Envirc	onmental. 434	0 Vandever	Avenue.	San Diego,	CA 92120.
-----------------	---------------	------------	---------	------------	-----------

Marine Chronic Bioassay

Client: Internal

Sample ID: CuCl₂

Test No.: 190701spdv

Test Species	S. purpuratus
Start Date/Time	7/1/2019 1015
End Date/Time	7/4/2019 1035

Concentration	Salinity					Temp	erature		Dissolved Oxygen				рН				
(µg/L)		(p	pt)			(°C)				(mg/L)				(pH units)			
	0	24	48	72	0	24	48	72	0	24	48	72	0	24	48	72	
Lab Control	33.7	33.8	34.1	34.1	147	151	149	14.7	8.9	8.4	8.4	8.3	7,99	8.00	8.00	7.98	
2.5	33.7	34.4	34.3	34.2	14.6	14.6	14.6	14.6	8.8	8.5	8.4	8.3	8.00	8.00	8.01	7.95	
5	33.8	34.4	34.4	34.3	14.5	14.8	14.5	14.6	8.8	8.5	8.5	8.2	8.00	8.01	8.01	7.95	
10	33.8	34.4	34.4	34.2	145	14.8	14.3	14.7	8.9	8.4	8.5	8.2	8.01	8.01	8.01	7.95	
20	33.8	34.4	34.4	34.3	14.6	15.)	14.7	14.8	8.8	3.4	8.4	8.Z	8.01	8.01	8.01	7.95	
40	33.7	34-3	34.3	34.1	14,5	14.9	14.6	14.8	G. B	8.4	8.4	8.1	8.02	8-0Z	8.01	7.95	
80	33.8	33.9	34.2	34.Z	14.3	14.9	14.6	14.7	8.8	8.4	8.4	8.2	8.03	8.02	8.01	7-95	

Technician Initials:	WQ Reading Dilutions made b	 24 RT -	48 BO 	72 BO 	High conc. made (μg/L): 80 Vol. Cu stock added (mL): 4,5 Final Volume (mL): 500 Cu stock concentration (μg/L): 9000
Comments:	0 hrs: 24 hrs:	 			
	48 hrs: 72 hrs:	 			2
QC Check:	KAP 7/24/19	 			Final Review: _ 🎉 ७/८%/۱۹

Water Quality Measurements

Marine Chronic Bioassay

Echinoderm Larval Development Worksheet

Client: Sample ID: Test No.:	OthernalStart Date/Time:7/1/201911015MOL2End Date/Time:7/4/201910351907015pdVSpecies:S. purpuratus	
Tech initials: Injection Time:	EG 6955 Date Collected: 5/3/19	-
Sperm Absorbance at 40	0 nm: i , 056 (target range of 0.8 - 1.0 for density of 4x10 ⁶ sperm/ml)	
Eggs Counted:	42 Mean: $58.6 \times 50 = 2930$ eggs/ml 46 (target counts of 20 eggs per vertical pass on Sedgwick-Rafter slide for a final density of 1000 eggs/ml) 62 72	
Initial density: Final density:	$\frac{2930}{1000} \text{ eggs/ml} = \frac{2.93}{-1.0} \text{ dilution factor} \text{ egg stock} \frac{500}{-1.0} \text{ ml}$ $\frac{1.93}{-1.0} \text{ part egg stock} \text{ seawater} \frac{1.00}{-1.0} \text{ egg stock} \text{ seawater} \frac{1.00}{-1.0} \text{ egg stock} \text{ seawater} \frac{1.00}{-1.0} \text{ ml}$	
Prepare the egg stock ac part) and 125 ml of dilution	cording to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (n water (1.25 parts).	1

Add 100 μ L sperm stock per 100mL of egg stock. For example, if you have 60mL of egg stock, add 60 μ L sperm stock.

Embryo Stock Fertilization Checks (Initiate test only when fertilization is ≥90%):

Fertilization Time: 100	5	Time		No. Fert.	No. Unfert.	%			
5 minutes (1st fert.) che 10 minutes (2nd fert. If r		1010		91		99			
Test Initiation Time: Test initiation must be w	1015 ithin 1 hour			Embryo S	Stock Added:	0.25 ml			
Test Termination:									
72-hour QC check 1ª QC check 2	No. <u>Normal</u> <u>IOO</u>	No. Abnormal	% Normal 100	!					
Comments:		bryo developr I, continue the			t the mean test TM 1999).	acceptabilit	y criterion of	80% normally	
QC Check:	KAP 7	124/19	_				Final Revi	ew: <u>147/2</u>	1/19

Appendix E Laboratory Qualifier Codes

Glossary of Qualifier Codes:

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was $\leq 110\%$
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% <u>mortality</u> observed upon receipt and/or in holding prior to test initiation. Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test organisms received at a <u>temperature</u> greater than 3°C outside the recommended test temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.

APPENDIX B TestAmerica Laboratory Reports and Data Validation Reports

🔅 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Irvine 17461 Derian Ave

Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

Laboratory Job ID: 440-244608-1

Client Project/Site: Ocean Disposal WW Sample Revision: 1

For:

Geosyntec Consultants, Inc. 295 Hagey Blvd. Suite 290 Waterloo, Ontario N2L 6R5

Attn: Nick Butson

Authorized for release by: 7/25/2019 4:57:35 PM

Lena Davidkova, Project Manager II (949)260-3229 Iena.davidkova@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Review your project results through

LINKS

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	7
Method Summary	14
Lab Chronicle	15
QC Sample Results	19
QC Association Summary	34
Definitions/Glossary	41
Certification Summary	42
Subcontract Data	46
Chain of Custody	59
Receipt Checklists	65
Field Data Sheets	69

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample Job ID: 440-244608-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset II
440-244608-1	0620 BUTCHER	Water	06/20/19 06:11	06/26/19 10:30	
440-244608-2	0620 OD STREAMS	Water	06/20/19 06:33	06/26/19 10:30	
440-244608-3	0621 BUTCHER	Water	06/21/19 06:01	06/26/19 10:30	
440-244608-4	0621 OD STREAMS	Water	06/21/19 06:20	06/26/19 10:30	

Job ID: 440-244608-1

Laboratory: Eurofins TestAmerica, Irvine

Narrative

Job Narrative 440-244608-1

Comments

This it final report. Pyrethrins results were included under this cover

Receipt

The samples were received on 6/26/2019 10:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 4 coolers at receipt time were 11.5° C, 11.9° C, 12.1° C and 16.5° C.

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: 0620 BUTCHER (440-244608-1), 0620 OD STREAMS (440-244608-2), 0621 BUTCHER (440-244608-3) and 0621 OD STREAMS (440-244608-4). Received samples on thawed blue ice. The temperatures recorded were: 16.8/16.5, 12.2/11.9, 12.4/12.1, 11.8/11.5 IR 94 outside the required temperature criteria.

GC/MS VOA

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 440-555513 recovered above the upper control limit for Ethylbenzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: 0620 OD STREAMS (440-244608-2), 0621 OD STREAMS (440-244608-4) and (CCVIS 440-555513/2).

Method(s) 8260B: The following samples were diluted due to the abundance of non-target analytes: 0620 OD STREAMS (440-244608-2) and 0621 OD STREAMS (440-244608-4). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The samples were collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, when verified by the laboratory, the pH was 6 and the following samples were analyzed after 7 days from sampling: 0620 OD STREAMS (440-244608-2) and 0621 OD STREAMS (440-244608-4).

Method(s) 8260B: The following volatile samples were analyzed with significant headspace in the sample container(s): 0620 OD STREAMS (440-244608-2), 0621 BUTCHER (440-244608-3) and 0621 OD STREAMS (440-244608-4). Significant headspace is defined as a bubble greater than 6 mm in diameter.

Method(s) 8260B: The following volatile samples were received and analyzed with significant headspace in the sample vials: 0620 BUTCHER (440-244608-1) and 0621 BUTCHER (440-244608-3). Significant headspace is defined as a bubble greater than 6 mm in diameter.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 625: Surrogate recovery for the following samples were outside control limits: 0620 BUTCHER (440-244608-1), 0620 OD STREAMS (440-244608-2), 0621 BUTCHER (440-244608-3) and 0621 OD STREAMS (440-244608-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 625: The following samples were diluted due to the nature of the sample matrix: 0620 BUTCHER (440-244608-1), 0620 OD STREAMS (440-244608-2), 0621 BUTCHER (440-244608-3) and 0621 OD STREAMS (440-244608-4). Elevated reporting limits (RLs) are provided. Samples could not be run at a lower dilution without risking instrument damage.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method(s) 300.0: The following samples were received outside of holding time: 0620 BUTCHER (440-244608-1), 0620 OD STREAMS (440-244608-2), 0621 BUTCHER (440-244608-3) and 0621 OD STREAMS (440-244608-4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 440-244608-1 (Continued)

Laboratory: Eurofins TestAmerica, Irvine (Continued)

Metals

Method(s) 6010B: The following samples were diluted due to the nature of the sample matrix: 0620 BUTCHER (440-244608-1) and 0621 BUTCHER (440-244608-3). Elevated reporting limits (RLs) are provided.

Method(s) 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision of Aluminum for preparation batch 440-554883 and analytical batch 440-555055 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) precision was within acceptance limits.

The following samples were diluted due to the nature of the sample matrix: 0620 OD STREAMS (440-244608-2) and 0621 OD STREAMS (440-244608-4). Elevated reporting limits (RLs) are provided.

Method(s) 200.7 Rev 4.4, 6010B: The following samples were diluted due to the nature of the sample matrix: 0620 OD STREAMS (440-244608-2) and 0621 OD STREAMS (440-244608-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) 353.2: The following samples were diluted in analytical batch 320-306826 due to the nature of the sample matrix: 0620 BUTCHER (440-244608-1), 0620 OD STREAMS (440-244608-2), 0621 BUTCHER (440-244608-3) and 0621 OD STREAMS (440-244608-4). Samples were a dark brown color, had high sediment, and were extremely difficult to filter Elevated reporting limits (RLs) are provided. Data is being reported with this narration.

Method(s) 365.3: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 440-555362 and analytical batch 440-555384 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 410.4, SM 5220D: The reference method requires samples to be preserved to a pH of <2. The following sample was received with insufficient preservation at a pH of 7: 0621 OD STREAMS (440-244608-4). The sample(s) was preserved to the appropriate pH in the laboratory.

Method(s) 351.2: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 440-555267 and analytical batch 440-555602 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 8315_W_Prep: Sample received was cloudy olive green murky strong odor with a pH of 7. Adjusted pH of 3, after I added DNPH to make the color change. Initial reaction was murky yellow. Heavy emulsion. Method 8315 0621 OD STREAMS (440-244608-4), (440-244608-P-4 MS) and (440-244608-P-4 MSD)

Method(s) 8315_W_Prep: Sample received was cloudy green strong odor with residue, a pH of 7. Adjusted pH of 3, after I added DNPH to make the color change. Initial reaction was murky yellow. Heavy emulsion. Method 8315 0620 OD STREAMS (440-244608-2)

Method(s) 8315_W_Prep: Sample received was cloudy red strong odor with residue, a pH of 7. Adjusted pH of 3, after I added DNPH to make the color change. Initial reaction was murky brown. Heavy emulsion. Method 8315 0620 BUTCHER (440-244608-1)

Method(s) 8315_W_Prep: Sample received was cloudy pink brown murky strong odor with residue, a pH of 7. Adjusted pH of 3, after I added DNPH to make the color change. Initial reaction was murky yellow light brown. Heavy emulsion. Method 8315 0621 BUTCHER (440-244608-3)

Method(s) 8315_W_Prep: The following samples were received outside of holding time: 0620 BUTCHER (440-244608-1), 0620 OD

Job ID: 440-244608-1 (Continued)

Laboratory: Eurofins TestAmerica, Irvine (Continued)

STREAMS (440-244608-2), 0621 BUTCHER (440-244608-3) and 0621 OD STREAMS (440-244608-4).

Method(s) 625: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 440-555027. 625-REG. LCS was performed in duplicate to provide precision of data.

Method(s) 625: Sample has heavy emulsion and precipitate. Possible low surrogate recovery. 0620 BUTCHER (440-244608-1), 0620 OD STREAMS (440-244608-2), 0621 BUTCHER (440-244608-3) and 0621 OD STREAMS (440-244608-4)

Method(s) 1664A: The reference method requires samples to be preserved to a pH of <2. The following samples were received with insufficient preservation at a pH of >2: 0620 OD STREAMS (440-244608-2) and 0621 OD STREAMS (440-244608-4). The samples were preserved to the appropriate pH in the laboratory. Method 1664A.

Method(s) 1664A: The following samples were diluted due to the nature of the sample matrix: 0620 BUTCHER (440-244608-1) and 0621 BUTCHER (440-244608-3) were diluted 5x (200ml sample diluted to 1L). Elevated reporting limits (RLs) are provided. Method 1664A.

Method(s) 1664A: The following samples were diluted due to the nature of the sample matrix: 0620 OD STREAMS (440-244608-2) and 0621 OD STREAMS (440-244608-4) were diluted 10x (100ml sample diluted to 1L). Elevated reporting limits (RLs) are provided. Method 1664A.

Method(s) 1664A, 1664B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 440-555282 and analytical batch 440-555325. The Laboratory Control Sample (LCS) was performed in duplicate to provide precise data for this batch. Method 1664.

Method(s) 8315_W_Prep: The following samples were diluted due to the nature of the sample matrix: 0620 BUTCHER (440-244608-1), 0620 OD STREAMS (440-244608-2), 0621 BUTCHER (440-244608-3) and 0621 OD STREAMS (440-244608-4). Elevated reporting limits (RLs) are provided.

Method(s) 8315_W_Prep: Sample was cloudy light green with residue strong odor. Adjust pH of 3. Heavy emulsion. 0620 OD STREAMS (440-244608-2)

Method(s) 8315_W_Prep: Sample was cloudy green color, strong odor. Adjust pH of 3. Heavy emulsion 0621 OD STREAMS (440-244608-4)

Method(s) 625: Due to the matrix, the following samples could not be concentrated to the final method required volume: 0620 BUTCHER (440-244608-1), 0620 OD STREAMS (440-244608-2), 0621 BUTCHER (440-244608-3) and 0621 OD STREAMS (440-244608-4). The reporting limits (RLs) are elevated proportionately. Method 625-REG.

Method(s) 8315_W_Prep: The following samples were received outside of holding time: 0620 BUTCHER (440-244608-1), 0620 OD STREAMS (440-244608-2), 0621 BUTCHER (440-244608-3) and 0621 OD STREAMS (440-244608-4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

RL

2.0

2.0

2.0

2.0

2.0

5.0

2.0

2.0

2.0

MDL Unit

0.25 ug/L

0.25 ug/L

0.25 ug/L

0.25 ug/L

0.50 ug/L

1.1 ug/L

0.25 ug/L

0.25 ug/L

0.25 ug/L

D

Prepared

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Client Sample ID: 0620 BUTCHER Date Collected: 06/20/19 06:11 Date Received: 06/26/19 10:30

Analyte

Benzene

Chloroform

m,p-Xylene

o-Xylene

Toluene

Xylenes, Total

Ethylbenzene

Methylene Chloride

1,2-Dichloropropane

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

ND

ND

ND

ND

0.50 J

0.83 J

1.6 J

.lob	١D·	440-244608-1
000	· D .	110 211000 1

Lab Sample ID: 440-244608-1

Analyzed

07/02/19 11:30

07/02/19 11:30

07/02/19 11:30

07/02/19 11:30

07/02/19 11:30

07/02/19 11:30

07/02/19 11:30

07/02/19 11:30

07/02/19 11:30

Matrix: Water

Dil Fac

1

1

1

1

1

1

1

1

1

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		80 - 120					07/02/19 11:30	1
Dibromofluoromethane (Surr)	104		76 - 132					07/02/19 11:30	1
Toluene-d8 (Surr)	107		80 - 128					07/02/19 11:30	1
Method: 625 - Semivolatile Org	anic Com	oounds (G	C/MS)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	ND		200	40	ug/L		06/27/19 12:00	07/01/19 07:00	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	46	X	50 - 120				06/27/19 12:00	07/01/19 07:00	5
2-Fluorophenol	54		30 - 120				06/27/19 12:00	07/01/19 07:00	5
2,4,6-Tribromophenol	30	X	40 - 120				06/27/19 12:00	07/01/19 07:00	5
Nitrobenzene-d5	81		45 - 120				06/27/19 12:00	07/01/19 07:00	5
Terphenyl-d14	20		10 - 150				06/27/19 12:00	07/01/19 07:00	5
Phenol-d6	106		35 - 120				06/27/19 12:00	07/01/19 07:00	5
Method: 8315A - Carbonyl Cor	mpounds (H								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Formaldehyde	0.052	н	0.050	0.025	mg/L		06/29/19 05:05	07/01/19 12:41	1
Method: NO3NO2 Calc - Nitrog Analyte		-Nitrite Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND		2.2	1.1				07/01/19 15:00	1
Nitrite as N	ND		3.0		mg/L			07/01/19 15:00	1
Nitrate Nitrite as N	ND		3.0		mg/L			07/01/19 15:00	1
	Total Deer								
Method: 6010B - Metals (ICP) - Analyte		Qualifier	RL	МП	Unit	D	Proparad	Analyzod	Dil Fac
Aluminum	ND	Quaimer	KL		mg/L	D	Prepared 06/26/19 17:58	Analyzed 06/27/19 13:29	10
Arsenic	0.23		0.10		-			06/27/19 13:29	10
	0.23 ND			0.089	-			06/27/19 13:29	
Barium			0.10	0.050					10
Boron	ND		0.50	0.25	0			06/27/19 13:29	10
Cadmium	0.050		0.050	0.025	Ũ			06/27/19 13:29	10
Chromium	ND		0.050	0.025				06/27/19 13:29	10
Copper	0.074	J	0.10	0.050	0			06/27/19 13:29	10
Magnesium	33		0.20		mg/L			06/27/19 13:29	10
Manganese	ND		0.20		mg/L			06/27/19 13:29	10
Nickel	ND		0.10	0.050	-			06/27/19 13:29	10
Selenium	0.16		0.10	0.087	mg/L		06/26/19 17:58	06/27/19 13:29	10
Titanium	ND		0.050	0.025	mg/L		06/26/19 17:58	06/27/19 13:29	10
							Eurofia	c TootAmorios	Invine

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Client Sample ID: 0620 BUTCHER Date Collected: 06/20/19 06:11 Date Received: 06/26/19 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	1.3	·	0.20	0.12	mg/L		06/26/19 17:58	06/27/19 13:29	10
Method: 7470A - Mercury (CVA	AA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0043		0.0010	0.00050	mg/L		07/01/19 16:27	07/02/19 12:25	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
НЕМ	330		25.0	7.0	mg/L		06/28/19 15:07	06/28/19 18:55	1
Total Kjeldahl Nitrogen	1000		50	25	mg/L		06/28/19 14:14	06/28/19 21:47	5
Nitrate Nitrite as N	ND		5.0	0.31	mg/L			07/10/19 10:57	100
Phosphorus, Total	100		50	25	mg/L		06/29/19 08:17	06/29/19 10:49	1
Phenolics, Total Recoverable	0.10		0.050	0.025	mg/L		07/01/19 10:02	07/02/19 10:49	1
Cyanide, Total	ND		0.025	0.013	mg/L		06/27/19 14:53	06/27/19 20:43	1
Ammonia (as N)	62		13	2.5	mg/L		07/02/19 04:00	07/02/19 07:00	1
Ammonia as NH3	75		15	3.0	mg/L		07/02/19 04:00	07/02/19 07:00	1
Chemical Oxygen Demand	12000		1000	500	mg/L			07/01/19 18:37	50
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Volatile Solids	12000		200	200	mg/L			06/26/19 19:05	1
Specific Gravity	0.97		0.010	0.010	No Unit			07/10/19 15:27	1
Total Solids	17000		200	200	mg/L			06/26/19 17:46	1
Nitrogen, Total	1000		0.11	0.11	mg/L			07/03/19 14:08	1

Client Sample ID: 0620 OD STREAMS Date Collected: 06/20/19 06:33 Date Received: 06/26/19 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		20	2.5	ug/L			07/01/19 15:55	10
Benzene	ND		20	2.5	ug/L			07/01/19 15:55	10
Chloroform	ND		20	2.5	ug/L			07/01/19 15:55	10
Ethylbenzene	ND		20	2.5	ug/L			07/01/19 15:55	10
m,p-Xylene	ND		20	5.0	ug/L			07/01/19 15:55	10
Methylene Chloride	ND		50	11	ug/L			07/01/19 15:55	10
o-Xylene	ND		20	2.5	ug/L			07/01/19 15:55	10
Toluene	ND		20	2.5	ug/L			07/01/19 15:55	10
Xylenes, Total	ND		20	2.5	ug/L			07/01/19 15:55	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		80 - 120					07/01/19 15:55	10
Dibromofluoromethane (Surr)	92		76 - 132					07/01/19 15:55	10
Toluene-d8 (Surr)	106		80 - 128					07/01/19 15:55	10

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Analyte Bis(2-ethylhexyl) phthalate	Result ND	Qualifier	RL 830	 Unit ug/L	D	Prepared 06/27/19 12:00	Analyzed 07/01/19 08:14	Dil Fac 20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	X	50 - 120			06/27/19 12:00	07/01/19 08:14	20
2-Fluorophenol	20	X	30 - 120			06/27/19 12:00	07/01/19 08:14	20

Eurofins TestAmerica, Irvine

Job ID: 440-244608-1

Matrix: Water

Lab Sample ID: 440-244608-1

Lab Sample ID: 440-244608-2 Matrix: Water

Client Sample ID: 0620 OD STREAMS Date Collected: 06/20/19 06:33 Date Received: 06/26/19 10:30

Job ID: 440-244608-1

Lab Sample ID: 440-244608-2 Matrix: Water

5

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	0	X	40 - 120				06/27/19 12:00	07/01/19 08:14	20
Nitrobenzene-d5	0	X	45 - 120				06/27/19 12:00	07/01/19 08:14	20
Terphenyl-d14	0	X	10 - 150				06/27/19 12:00	07/01/19 08:14	20
Phenol-d6	0	X	35 - 120				06/27/19 12:00	07/01/19 08:14	20
Method: 8315A - Carbonyl Co	ompounds (H								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Formaldehyde	0.080	H	0.050	0.025	mg/L		06/29/19 05:05	07/01/19 13:02	
Method: NO3NO2 Calc - Nitro	ogen, Nitrate	-Nitrite							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Nitrate as N	ND	Н	11	5.5	mg/L			07/01/19 15:00	
Nitrite as N	ND	Н	15	2.5	mg/L			07/01/19 15:00	
Nitrate Nitrite as N	ND	Н	15	5.5	mg/L			07/01/19 15:00	
Method: 6010B - Metals (ICP)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	490		0.50		mg/L		07/05/19 09:49	07/05/19 19:57	
Arsenic	0.78		0.050	0.045	mg/L		07/05/19 09:49	07/05/19 19:57	1
Barium	0.12		0.050	0.025	mg/L		07/05/19 09:49	07/05/19 19:57	:
Boron	0.81		0.25	0.13	mg/L		07/05/19 09:49	07/05/19 19:57	
Cadmium	0.15		0.025	0.013	0		07/05/19 09:49	07/05/19 19:57	:
Chromium	0.18		0.025	0.013	-		07/05/19 09:49	07/05/19 19:57	:
Copper	0.36		0.050	0.025	mg/L		07/05/19 09:49	07/05/19 19:57	
Magnesium	180		0.10	0.050	mg/L		07/05/19 09:49	07/05/19 19:57	:
Manganese	0.16		0.10	0.075	mg/L		07/05/19 09:49	07/05/19 19:57	4
Nickel	0.064		0.050	0.025	mg/L		07/05/19 09:49	07/05/19 19:57	
Selenium	0.53		0.050	0.044	mg/L		07/05/19 09:49	07/05/19 19:57	
Titanium	0.40		0.025	0.013	mg/L		07/05/19 09:49	07/05/19 19:57	
Zinc	24		0.10	0.060	mg/L		07/05/19 09:49	07/05/19 19:57	
Method: 7470A - Mercury (C\									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.0046		0.0010	0.00050	mg/L		07/01/19 16:27	07/02/19 12:28	į
General Chemistry	Desult	Qualifian	DI.	MDI	11		Duo u o u o d	Awahanad	
Analyte HEM		Qualifier	RL 50.0		Unit mg/L	D	Prepared 06/28/19 15:07	Analyzed 06/28/19 18:55	Dil Fa
	6370 2700								
Total Kjeldahl Nitrogen	3700		100		mg/L		00/20/19 14:14	06/28/19 21:50	10
Nitrate Nitrite as N	ND		5.0		mg/L		06/00/40 00:47	07/10/19 11:01	10
Phosphorus, Total	550		100		mg/L		06/29/19 08:17		
Phenolics, Total Recoverable	7.2		1.0		mg/L		07/01/19 10:02		2
Cyanide, Total	0.045		0.025	0.013			06/27/19 14:53		
Ammonia (as N)	1800		250		mg/L			07/02/19 07:00	
Ammonia as NH3	2200		300		mg/L		07/02/19 04:00	07/02/19 07:00	05
Chemical Oxygen Demand	74000		5000	2500	mg/L			07/01/19 18:37	25
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Total Volatile Solids	21000		500		mg/L			06/26/19 19:05	
Specific Gravity	1.1		0.010		No Unit			07/10/19 15:25	-
Total Solids	35000		500	500	mg/L			06/26/19 17:46	

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample Job ID: 440-244608-1

Client Sample ID: 0620 Date Collected: 06/20/19 06:3 Date Received: 06/26/19 10:3	33	WS				La	ib Sample	ID: 440-244 Matrix	
General Chemistry (Contin		0	-			_	_ .		
Analyte		Qualifier			Unit	D	Prepared	Analyzed	Dil Fa
Nitrogen, Total	3700		0.11	0.11	mg/L			07/03/19 14:08	
Client Sample ID: 0621 late Collected: 06/21/19 06:(late Received: 06/26/19 10:3	01					La	b Sample	ID: 440-244 Matrix	
Method: 8260B - Volatile Or Analyte		unds (GC/ Qualifier	MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dichloropropane	ND		2.0		ug/L			07/01/19 16:23	
Benzene	1.2		2.0		ug/L			07/01/19 16:23	
Chloroform	ND	•	2.0		ug/L			07/01/19 16:23	
m,p-Xylene	ND		2.0		ug/L			07/01/19 16:23	
Methylene Chloride	ND		5.0		ug/L			07/01/19 16:23	
o-Xylene	ND		2.0		ug/L			07/01/19 16:23	
Toluene	1.1	J	2.0		ug/L			07/01/19 16:23	
Xylenes, Total	ND	•	2.0		ug/L			07/01/19 16:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)			80 - 120					07/01/19 16:23	
Dibromofluoromethane (Surr)	88		76 - 132					07/01/19 16:23	
Toluene-d8 (Surr)	110		80 - 128					07/01/19 16:23	
Analyte Ethylbenzene	Result 3.4	Qualifier		MDL 0.25	Unit ug/L	D	Prepared	Analyzed 07/02/19 11:58	Dil F
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	115		80 - 120					07/02/19 11:58	
Dibromofluoromethane (Surr)	101		76 - 132					07/02/19 11:58	
Toluene-d8 (Surr)	110		80 - 128					07/02/19 11:58	
Aethod: 625 - Semivolatile	Organic Com	oounds (G	C/MS)						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Bis(2-ethylhexyl) phthalate	ND		410	82	ug/L		06/27/19 12:00	07/01/19 07:25	
currogate	%Recovery		Limits				Prepared	Analyzed	Dil F
-Fluorobiphenyl		X	50 - 120				06/27/19 12:00	07/01/19 07:25	
P-Fluorophenol	38		30 - 120					07/01/19 07:25	
2,4,6-Tribromophenol		X	40 - 120					07/01/19 07:25	
Nitrobenzene-d5	63		45 - 120					07/01/19 07:25	
Terphenyl-d14		X	10 - 150					07/01/19 07:25	
Phenol-d6	48		35 - 120				06/27/19 12:00	07/01/19 07:25	
Method: 8315A - Carbonyl (•	HPLC) Qualifier	RL	МОІ	Unit	D	Prepared	Analyzed	Dil F
Analyte Formaldehyde	(0.051		0.050	0.025			06/29/19 05:05	-	
-			0.000	0.020	ing/L		00120118 00.00	07/01/18 13.23	
Iethod: NO3NO2 Calc - Nit		-Nitrite Qualifier	RL	וחש	Unit	D	Prepared	Analyzed	Dil F
litrate as N	ND		2.2		mg/L			07/01/19 15:00	
			<u> </u>	1.1	· · · · · · · · · · · · · · · · · · ·				
Nitrite as N	ND	н	3.0		mg/L			07/01/19 15:00	

RL

1.0

0.10

0.10

0.50

0.050

0.050

0.10

0.20

0.20

0.10

0.10

0.050

0.20

RL

0.0010

MDL Unit

0.50 mg/L

0.089 mg/L

0.050 mg/L

0.25 mg/L

0.025 mg/L

0.025 mg/L

0.050 mg/L

0.10 mg/L

0.15 mg/L

0.050 mg/L

0.087 mg/L

0.025 mg/L

0.12 mg/L

MDL Unit

0.11 mg/L

0.00050 mg/L

D

D

Prepared

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Client Sample ID: 0621 BUTCHER Date Collected: 06/21/19 06:01 Date Received: 06/26/19 10:30

Method: 7470A - Mercury (CVAA)

Analyte

Aluminum

Arsenic

Cadmium

Chromium

Magnesium

Manganese

Copper

Nickel

Selenium

Titanium

Analyte

Mercury

Analyte HEM

Cyanide, Total Ammonia (as N) Ammonia as NH3

Analvte

General Chemistry

Total Kjeldahl Nitrogen Nitrate Nitrite as N **Phosphorus**, Total

Phenolics, Total Recoverable

Chemical Oxygen Demand

Total Volatile Solids Specific Gravity Total Solids

Nitrogen, Total

Zinc

Barium

Boron

Method: 6010B - Metals (ICP) - Total Recoverable

Result Qualifier

ND

0.092 J

ND

ND

0.033 J

ND

28

ND

ND

ND

ND

1.1

0.0027

570

Result Qualifier

.1

0.064

Job ID: 440-244608-1

Lab Sample ID: 440-244608-3 Matrix: Water

06/26/19 17:58 06/27/19 13:33

06/26/19 17:58 06/27/19 13:33

06/26/19 17:58 06/27/19 13:33

06/26/19 17:58 06/27/19 13:33

06/26/19 17:58 06/27/19 13:33

06/26/19 17:58 06/27/19 13:33

06/26/19 17:58 06/27/19 13:33

06/26/19 17:58 06/27/19 13:33

06/26/19 17:58 06/27/19 13:33

06/26/19 17:58 06/27/19 13:33

06/26/19 17:58 06/27/19 13:33

06/26/19 17:58 06/27/19 13:33

06/26/19 17:58 06/27/19 13:33

07/01/19 16:27 07/02/19 12:30

Analyzed

07/03/19 14:08

Matrix: Water

Lab Sample ID: 440-244608-4

Prepared

Analyzed

Dil Fac

10

10

10

10

10

10

10

10

10

10

10

10

10

Dil Fac

5	
ac	
1	

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
633		25.0	7.0	mg/L		06/28/19 15:07	06/28/19 18:55	1	
570		20	10	mg/L		06/28/19 14:14	06/28/19 21:50	2	
ND		5.0	0.31	mg/L			07/10/19 11:05	100	
130		100	50	mg/L		06/29/19 08:17	06/29/19 10:49	1	
0.087		0.050	0.025	mg/L		07/01/19 10:02	07/02/19 10:49	1	
ND		0.025	0.013	mg/L		06/27/19 14:53	06/27/19 20:43	1	
120		25	5.0	mg/L		07/02/19 04:00	07/02/19 07:00	1	
140		30	6.0	mg/L		07/02/19 04:00	07/02/19 07:00	1	
11000		4000	2000	mg/L			07/01/19 18:37	200	
Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
7700		200	200	mg/L			06/26/19 19:05	1	
1.0		0.010	0.010	No Unit			07/10/19 15:24	1	
11000		200	200	mg/L			06/26/19 17:46	1	

Client Sample ID: 0621 OD STREAMS Date Collected: 06/21/19 06:20 Date Received: 06/26/19 10:30

Method: 826	60B - Volatile	Organic Com	nounds (GC/MS)
		organic com	pounds (

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND	20	2.5	ug/L			07/01/19 16:51	10
Benzene	ND	20	2.5	ug/L			07/01/19 16:51	10
Chloroform	ND	20	2.5	ug/L			07/01/19 16:51	10
Ethylbenzene	ND	20	2.5	ug/L			07/01/19 16:51	10
m,p-Xylene	ND	20	5.0	ug/L			07/01/19 16:51	10
Methylene Chloride	ND	50	11	ug/L			07/01/19 16:51	10
o-Xylene	ND	20	2.5	ug/L			07/01/19 16:51	10
Toluene	ND	20	2.5	ug/L			07/01/19 16:51	10
Xylenes, Total	ND	20	2.5	ug/L			07/01/19 16:51	10

0.11

Limits

80 - 120

76 - 132

80 - 128

Limits

50 - 120

30 - 120

RL

840

MDL Unit

170 ug/L

Surrogate

Analyte

Surrogate

2-Fluorobiphenyl

2-Fluorophenol

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Bis(2-ethylhexyl) phthalate

Client Sample ID: 0621 OD STREAMS Date Collected: 06/21/19 06:20 Date Received: 06/26/19 10:30

Method: 625 - Semivolatile Organic Compounds (GC/MS)

%Recovery Qualifier

91

93

104

ND

%Recovery Qualifier

0 \overline{X}

0 X

Result Qualifier

Lab Sample ID: 440-244608-4 Matrix: Water

Analyzed

07/01/19 16:51

07/01/19 16:51

07/01/19 16:51

Analyzed

Analyzed

06/27/19 12:00 07/01/19 07:49

06/27/19 12:00 07/01/19 07:49

06/27/19 12:00 07/01/19 07:49

Prepared

Prepared

Prepared

D

5

Dil Fac

Dil Fac

Dil Fac

10

10

10

20

20

20

2 1 1001001101	0	~	00 - 720				00/21/10 12.00	01/01/10 01.40	20
2,4,6-Tribromophenol	0	X	40 - 120				06/27/19 12:00	07/01/19 07:49	20
Nitrobenzene-d5	33	X	45 - 120				06/27/19 12:00	07/01/19 07:49	20
Terphenyl-d14	0	X	10_150				06/27/19 12:00	07/01/19 07:49	20
Phenol-d6	0	X	35 - 120				06/27/19 12:00	07/01/19 07:49	20
Method: 8315A - Carbonyl Co	•		-		11	-	D	• · · · • · · · · · ·	D'I 5
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Formaldehyde	0.069	н	0.050	0.025	mg/L		06/29/19 05:05	07/01/19 13:44	1
Method: NO3NO2 Calc - Nitro	gen. Nitrate	-Nitrite							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND	H	11	5.5	mg/L			07/01/19 15:00	1
Nitrite as N	ND	н	15	2.5	mg/L			07/01/19 15:00	1
Nitrate Nitrite as N	ND	н	15	5.5	mg/L			07/01/19 15:00	1
_									
Method: 6010B - Metals (ICP)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	550		0.50		mg/L		07/05/19 09:49		5
Arsenic	0.74		0.050		mg/L		07/05/19 09:49	07/05/19 19:59	5
Barium	0.14		0.050		mg/L		07/05/19 09:49	07/05/19 19:59	5
Boron	0.71		0.25		mg/L		07/05/19 09:49	07/05/19 19:59	5
Cadmium	0.17		0.025	0.013	mg/L		07/05/19 09:49	07/05/19 19:59	5
Chromium	0.19		0.025		mg/L		07/05/19 09:49	07/05/19 19:59	5
Copper	0.42		0.050		mg/L		07/05/19 09:49	07/05/19 19:59	5
Magnesium	180		0.10	0.050	mg/L		07/05/19 09:49	07/05/19 19:59	5
Manganese	0.14		0.10	0.075	mg/L		07/05/19 09:49	07/05/19 19:59	5
Nickel	0.062		0.050	0.025	mg/L		07/05/19 09:49	07/05/19 19:59	5
Selenium	0.42		0.050	0.044	mg/L		07/05/19 09:49	07/05/19 19:59	5
Titanium	0.45		0.025	0.013	mg/L		07/05/19 09:49	07/05/19 19:59	5
Zinc	29		0.10	0.060	mg/L		07/05/19 09:49	07/05/19 19:59	5
Method: 7470A - Mercury (CV Analyte		Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fac
_	0.0044	Quaimer	0.0010	0.00050			07/01/19 16:27	07/02/19 12:32	5
Mercury	0.0044		0.0010	0.00050	iiig/L		07/01/19 10.27	01/02/19 12.32	5
General Chemistry									
A second a s	D	Overlifter		MP	11	-	Due a sus d'	Amelianad	D11 E

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM	7090		50.0	14.0	mg/L		06/28/19 15:07	06/28/19 18:55	1
Total Kjeldahl Nitrogen	4000		100	50	mg/L		06/28/19 14:14	06/28/19 21:50	10
Nitrate Nitrite as N	ND		5.0	0.31	mg/L			07/10/19 11:09	100
Phosphorus, Total	980		100	50	mg/L		06/29/19 08:17	06/29/19 10:50	1

Client Sample ID: 0621 OD STREAMS Date Collected: 06/21/19 06:20 Date Received: 06/26/19 10:30

General Chemistry (Continued	1)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenolics, Total Recoverable	11		2.5	1.3	mg/L		07/01/19 10:02	07/02/19 10:54	50
Cyanide, Total	0.037		0.025	0.013	mg/L		06/27/19 14:53	06/27/19 20:43	1
Ammonia (as N)	2200		250	50	mg/L		07/02/19 04:00	07/02/19 07:00	1
Ammonia as NH3	2600		300	60	mg/L		07/02/19 04:00	07/02/19 07:00	1
Chemical Oxygen Demand	65000		4000	2000	mg/L			07/01/19 18:37	200
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Volatile Solids	16000		500	500	mg/L			06/26/19 19:05	1
Specific Gravity	1.1		0.010	0.010	No Unit			07/10/19 15:22	1
Total Solids	31000		500	500	mg/L			06/26/19 17:46	1
Nitrogen, Total	4000		0.11	0.11	mg/L			07/03/19 14:08	1

Lab Sample ID: 440-244608-4 Matrix: Water

5

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

		1
Job	ID: 440-244608-1	2
rotocol	Laboratory	3
W846	TAL IRV	
0CFR136A	TAL IRV	4
W846	TAL IRV	
PA	TAL IRV	5
W846	TAL IRV	
W846	TAL IRV	6
664A	TAL IRV	
М	TAL IRV	7
ICAWW	TAL IRV	
ICAWW	TAL SAC	8
PA	TAL IRV	
ICAWW	TAL SAV	9
STM	TAL PIT	
М	TAL IRV	10
М	TAL IRV	
M	TAL IRV	44
М	TAL IRV	
PA	TAL IRV	12
664A	TAL IRV	

1	3

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
625	Semivolatile Organic Compounds (GC/MS)	40CFR136A	TAL IRV
8315A	Carbonyl Compounds (HPLC)	SW846	TAL IRV
NO3NO2 Calc	Nitrogen, Nitrate-Nitrite	EPA	TAL IRV
6010B	Metals (ICP)	SW846	TAL IRV
7470A	Mercury (CVAA)	SW846	TAL IRV
1664A	HEM and SGT-HEM	1664A	TAL IRV
2540E	Solids, Volatile and Fixed (VS)	SM	TAL IRV
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL IRV
353.2	Nitrogen, Nitrate-Nitrite	MCAWW	TAL SAC
365.3	Phosphorus, Total	EPA	TAL IRV
420.1	Phenolics, Total Recoverable	MCAWW	TAL SAV
ASTM D5057-90	Specific Gravity and Bulk Density (Screening)	ASTM	TAL PIT
SM 2540B	Solids, Total	SM	TAL IRV
SM 4500 CN E	Cyanide, Total	SM	TAL IRV
SM 4500 NH3 D	Ammonia	SM	TAL IRV
SM 5220D	COD	SM	TAL IRV
Total Nitrogen	Nitrogen, Total	EPA	TAL IRV
1664A	HEM and SGT-HEM (Aqueous)	1664A	TAL IRV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL IRV
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL IRV
365.2/365.3/365	Phosphorus, Total	MCAWW	TAL IRV
5030B	Purge and Trap	SW846	TAL IRV
625	Liquid-Liquid Extraction	40CFR136A	TAL IRV
7470A	Preparation, Mercury	SW846	TAL IRV
8315_W_Prep	Liquid-Liquid Extraction (Carbonyl Compounds)	SW846	TAL IRV
Distill/CN	Distillation, Cyanide	None	TAL IRV
Distill/Phenol	Distillation, Phenolics	None	TAL SAV
SM 4500 NH3 B	Distillation, Ammonia	SM	TAL IRV

Protocol References:

1664A = EPA-821-98-002

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

ASTM = ASTM International

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = Eurofins TestAmerica, Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Client Sample ID: 0620 BUTCHER Date Collected: 06/20/19 06:11 Date Received: 06/26/19 10:30

Lab Sample ID: 440-244608-1 Matrix: Water

Prop Type Total/NAType AnalysisMethod Bub B200BRun< Factor B200BFactor 100mLAmount 10mLNumber 555721or Analyzed Or10/191030Analysis TAL IRVTotal/NAPrep Analysis6251005 mL4.0 mL55572106/27/19120HCK TAL IRVTotal/NAPrep Analysis8315.W_Prep520 mL1 mL55534007/01/19 07:00PIRTAL IRVTotal/NAAnalysis815.W_Prep20 mL1 mL55554206/29/19 05:05FDTAL IRVTotal/NAAnalysisN30NQ2 Calc1555562807/01/19 15:00NUTAL IRVTotal RecoverablePrep3005A25 mL25 mL55648806/26/19 17:58FWTAL IRVTotal RecoverablePrep7470A520 mL55564207/01/19 16:27DBTAL IRVTotal/NAAnalysis7470A520 mL55583407/02/19 12:82DBTAL IRVTotal/NAAnalysis7470A520 mL55584206/26/19 17:58JHTAL IRVTotal/NAAnalysis1664A15mL5558206/26/19 19:55JHTAL IRVTotal/NAAnalysis351.2500.5528706/26/19 19:55JHTAL IRVTotal/NAAnalysis351.25506/26/19 19:55JHTAL IRVTotal/NAAnalysis351.25506/26/19 10:59JLTAL IRV<	Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA Analysis 625 5 555490 07/01/19 07.00 P1R TAL IRV Total/NA Analysis 8315_W_Prep 20 mL 1 mL 55542 06/29/19 05.05 FTD TAL IRV Total/NA Analysis NO3NO2 Calc 1 55562 07/01/19 12.41 D1D TAL IRV Total/NA Analysis NO3NO2 Calc 1 55562 06/29/19 15.07 NN TAL IRV Total Recoverable Analysis 00108 25 mL 26 d883 06/26/19 17.58 BV TAL IRV Total/NA Prep 3005A 25 mL 20 mL 55562 06/28/19 15.07 AJH TAL IRV Total/NA Prep 1470A 20 mL 20 mL 55582 06/28/19 15.07 AJH TAL IRV Total/NA Prep 1664A 20 mL 55525 06/28/19 15.07 AJH TAL IRV Total/NA Analysis 351.2 5<	Total/NA	Analysis	8260B		1	10 mL	10 mL	555721	07/02/19 11:30	DCI	TAL IRV
Total/NA Prep 8315_W_Prep 20 mL 1 mL 55343 06/29/19 05:05 FTD TAL IRV Total/NA Analysis 8315_A 1 55542 07/01/19 12:41 D1D TAL IRV Total/NA Analysis N03NO2 Calc 1 555628 07/01/19 15:00 NN TAL IRV Total Recoverable Prep 3005A 25 mL 25 mL 55483 06/28/19 07:58 BV TAL IRV Total Recoverable Analysis 6010B 10 555654 07/01/19 16:27 DB TAL IRV Total/NA Prep 1664A 200 mL 20 mL 555847 07/02/19 12:25 DB TAL IRV Total/NA Analysis 1664A 200 mL 1000 mL 555825 06/28/19 15:07 AJH TAL IRV Total/NA Analysis 1664A 1 100 mL 555825 06/28/19 14:55 AJH TAL IRV Total/NA Analysis 351.2 0.5 mL 5mL 555826 06/28/19 19	Total/NA	Prep	625			1005 mL	4.0 mL	555027	06/27/19 12:00	HCK	TAL IRV
Total/NA Analysis 8315A 1 555542 07/01/19 12:41 D1D TAL IRV Total/NA Analysis NO3NO2 Calc 1 555628 07/01/19 15:00 NN TAL IRV Total Recoverable Prep 3005A 25 mL 25 mL 556828 06/26/19 17:58 BV TAL IRV Total Recoverable Analysis 6010B 10 555654 07/01/19 16:27 DB TAL IRV Total/NA Prep 7470A 20 mL 20 mL 555844 07/02/19 12:25 DB TAL IRV Total/NA Prep 1664A 200 mL 1000 mL 55525 06/28/19 15:07 AJH TAL IRV Total/NA Analysis 1664A 1 1000 mL 55525 06/28/19 19:05 HTL TAL IRV Total/NA Analysis 351.2 0.5 mL 100 mL 558267 06/28/19 19:05 HTL TAL IRV Total/NA Analysis 353.2 100 555362 06/28/19 10:05 TAL IR	Total/NA	Analysis	625		5			555490	07/01/19 07:00	P1R	TAL IRV
Total/NA Analysis NO3NO2 Calc 1 555628 07/01/19 15:00 NN TAL IRV Total Recoverable Prep 3005A 25 mL 25 mL 554883 06/26/19 17:58 BV TAL IRV Total Recoverable Analysis 6010B 10 555055 06/27/19 13:29 TQN TAL IRV Total/NA Prep 7470A 5 07 55583 07/02/19 12:25 DB TAL IRV Total/NA Prep 1664A 200 mL 1000 mL 555282 06/28/19 15:07 AJH TAL IRV Total/NA Prep 1664A 1 555282 06/28/19 16:05 AJH TAL IRV Total/NA Analysis 351.2 5 5 06/28/19 14:14 TAL IRV Total/NA Analysis 351.2 5 0.5 mL 55562 06/28/19 14:14 TAL IRV Total/NA Analysis 351.2 5 0.5 mL 55562 06/29/19 04:17 MMP TAL IRV Total/N	Total/NA	Prep	8315_W_Prep			20 mL	1 mL	555345	06/29/19 05:05	FTD	TAL IRV
Total Recoverable Total Recoverable Total RecoverablePrep Analysis3005A 6010B 25 mL 25 mL 554833 555055 $06/27/19 13.29$ $06/27/19 13.29$ TAL IRV TAL IRV TAL IRV TAL IRVTotal/NAPrep7470A 20 mL 20 mL 20 mL 555647 $07/01/19 16.27$ $06/27/19 12.25$ DBTAL IRV TAL IRVTotal/NAPrep1664A 200 mL 1000 mL 55528 $06/28/19 15.07$ AJHTAL IRV TAL IRVTotal/NAPrep1664A 200 mL 1000 mL 555287 $06/28/19 18.05$ AJHTAL IRVTotal/NAAnalysis2540E1 5 mL 100 mL 55488 $06/28/19 19.05$ HTLTAL IRVTotal/NAAnalysis 351.2 5 0.5 mL 25 mL 555602 $06/28/19 14.14$ HTLTAL IRVTotal/NAAnalysis 353.2 100 5 mL 555602 $06/28/19 12.47$ HTLTAL IRVTotal/NAPrep $365.2/365.3/365$ 0.050 mL 50 mL 55562 $06/28/19 10.47$ MMPTAL IRVTotal/NAPrepDistil/Phenol 6 mL 6 mL 57647 $07/01/19 10.57$ TCSTAL SAVTotal/NAPrepDistil/Phenol 6 mL 6 mL 57647 $07/01/19 10.57$ TAMTAL IRVTotal/NAAnalysisAM D5057-901 50 mL 557647 $06/29/19 10.49$ MMPTAL	Total/NA	Analysis	8315A		1			555542	07/01/19 12:41	D1D	TAL IRV
Total Recoverable Analysis 6010B 10 555055 06/27/19 13:29 TQN TAL IRV Total/NA Prep 7470A 5 20 mL 20 mL 555647 07/01/19 16:27 DB TAL IRV Total/NA Analysis 7470A 5 20 mL 20 mL 555843 07/02/19 12:25 DB TAL IRV Total/NA Prep 1664A 1 1000 mL 55525 06/28/19 15:07 AJH TAL IRV Total/NA Analysis 1664A 1 5mL 1000 mL 55582 06/28/19 19:05 HTL TAL IRV Total/NA Analysis 351.2 0.5 mL 25 mL 55567 06/28/19 19:15 HTL TAL IRV Total/NA Analysis 351.2 5 0.5 mL 25 mL 55567 06/28/19 11:14 HTL TAL IRV Total/NA Analysis 351.2 5 0.5 mL 555862 06/28/19 11:07 TAU TAL IRV Total/NA Analysis	Total/NA	Analysis	NO3NO2 Calc		1			555628	07/01/19 15:00	NN	TAL IRV
Total/NA Total/NA Prep Analysis 7470A 20 mL 20 mL 55567 07/01/19 16:27 DB TAL IRV TAL IRV Total/NA Prep 1664A 200 mL 1000 mL 555282 06/28/19 15:07 AJH TAL IRV Total/NA Analysis 1664A 1 555325 06/28/19 18:55 AJH TAL IRV Total/NA Analysis 2540E 1 5 mL 100 mL 55282 06/28/19 19:05 HTL TAL IRV Total/NA Analysis 2540E 1 5 mL 100 mL 55282 06/28/19 19:05 HTL TAL IRV Total/NA Analysis 351.2 5 5 05 06/28/19 14:14 HTL TAL IRV Total/NA Analysis 353.2 100 308826 07/10/19 10:57 TCS TAL IRV Total/NA Prep 365.3 1 555842 06/29/19 00:41 MMP TAL IRV Total/NA Analysis 420.1 1 6 mL 6 mL 555842 06/29/19 10:49 MVF TAL IRV	Total Recoverable	Prep	3005A			25 mL	25 mL	554883	06/26/19 17:58	BV	TAL IRV
Total/NA Analysis 7470A 5 55834 07/02/19 12:25 DB TAL IRV Total/NA Prep 1664A 200 mL 1000 mL 555282 06/28/19 15:07 AJH TAL IRV Total/NA Analysis 1664A 1 5mL 0.00 mL 555325 06/28/19 18:55 AJH TAL IRV Total/NA Analysis 2540E 1 5mL 100 mL 555267 06/28/19 18:55 AJH TAL IRV Total/NA Analysis 351.2 0.5 mL 25 mL 555602 06/28/19 14:14 HTL TAL IRV Total/NA Analysis 353.2 100 306826 07/10/19 10:57 TCS TAL IRV Total/NA Prep 365.2/365.3/365 0.050 mL 50 mL 55584 06/29/19 08:17 MMP TAL IRV Total/NA Analysis 365.3 1 6mL 6mL 576470 07/01/19 10:20 NVF TAL IRV Total/NA Analysis ASTM D5057-90 <t< td=""><td>Total Recoverable</td><td>Analysis</td><td>6010B</td><td></td><td>10</td><td></td><td></td><td>555055</td><td>06/27/19 13:29</td><td>TQN</td><td>TAL IRV</td></t<>	Total Recoverable	Analysis	6010B		10			555055	06/27/19 13:29	TQN	TAL IRV
Total/NA Prep 1664A 200 mL 1000 mL 55528 06/28/19 15:57 AJH TAL IRV Total/NA Analysis 1664A 1 5mL 100 mL 555325 06/28/19 15:57 AJH TAL IRV Total/NA Analysis 2540E 1 5mL 100 mL 55484 06/26/19 19:05 HTL TAL IRV Total/NA Prep 351.2 0.5 mL 25 mL 555267 06/28/19 14:14 HTL TAL IRV Total/NA Analysis 351.2 5 0.5 mL 25 mL 555602 06/28/19 21:47 HTL TAL IRV Total/NA Analysis 353.2 100 306826 07/10/19 10:57 TCS TAL IRV Total/NA Prep 365.2/365.3/365 0.050 mL 50 mL 555362 06/29/19 08:17 MMP TAL IRV Total/NA Analysis 365.3 1 6 mL 6 mL 576870 07/01/19 10:02 NVF TAL SAV Total/NA Analysis </td <td>Total/NA</td> <td>Prep</td> <td>7470A</td> <td></td> <td></td> <td>20 mL</td> <td>20 mL</td> <td>555647</td> <td>07/01/19 16:27</td> <td>DB</td> <td>TAL IRV</td>	Total/NA	Prep	7470A			20 mL	20 mL	555647	07/01/19 16:27	DB	TAL IRV
Total/NA Analysis 1664A 1 555325 06/28/19 18:55 AJH TAL IRV Total/NA Analysis 2540E 1 5 mL 100 mL 55484 06/26/19 19:05 HTL TAL IRV Total/NA Prep 351.2 0.5 mL 25 mL 555267 06/28/19 14:14 HTL TAL IRV Total/NA Analysis 351.2 5 0.5 mL 25 mL 555602 06/28/19 14:14 HTL TAL IRV Total/NA Analysis 353.2 100 306826 07/10/19 10:57 TCS TAL SAC Total/NA Prep 365.3/365 0.050 mL 50 mL 555362 06/29/19 10:49 MMP TAL IRV Total/NA Analysis 365.3 1 6 mL 6 mL 576470 07/01/19 10:02 NVF TAL SAV Total/NA Analysis ASTM D5057-90 1 6 mL 6 mL 576857 07/02/19 10:49 NVF TAL SAV Total/NA Analysis SM 2540	Total/NA	Analysis	7470A		5			555834	07/02/19 12:25	DB	TAL IRV
Total/NA Analysis 2540E 1 5 mL 100 mL 554894 06/26/19 19:05 HTL TAL IRV Total/NA Prep 351.2 0.5 mL 25 mL 555267 06/28/19 14:14 HTL TAL IRV Total/NA Analysis 351.2 5 0 25 mL 555602 06/28/19 21:47 HTL TAL IRV Total/NA Analysis 353.2 100 306826 07/10/19 10:57 TCS TAL IRV Total/NA Analysis 365.2/365.3/365 0.050 mL 50 mL 55584 06/29/19 0.817 MMP TAL IRV Total/NA Prep 365.2/365.3/365 0.050 mL 50 mL 55584 06/29/19 0.817 MMP TAL IRV Total/NA Analysis 365.3 1 6 mL 6 mL 576470 07/01/19 10:02 NVF TAL SAV Total/NA Analysis ASTM D5057-90 1 6 mL 6 mL 576857 07/02/19 0.49 NVF TAL SAV Total/NA	Total/NA	Prep	1664A			200 mL	1000 mL	555282	06/28/19 15:07	AJH	TAL IRV
Total/NA Prep 351.2 0.5 mL 25 mL 555267 06/28/19 14:14 HTL TAL IRV Total/NA Analysis 351.2 5 0 555602 06/28/19 21:47 HTL TAL IRV Total/NA Analysis 353.2 100 306826 07/10/19 10:57 TCS TAL SAC Total/NA Prep 365.2/365 0.050 mL 50 mL 555362 06/29/19 08:17 MMP TAL IRV Total/NA Prep 365.3 1 5 555384 06/29/19 10:49 MMP TAL IRV Total/NA Prep Distill/Phenol 6 mL 6 mL 576470 07/01/19 10:02 NVF TAL SAV Total/NA Analysis 420.1 1 6 mL 6 mL 576857 07/02/19 10:49 NVF TAL SAV Total/NA Analysis ASTM D5057-90 1 50 g 50 mL 576857 07/02/19 10:49 NVF TAL IRV Total/NA Analysis SM 2540B 1	Total/NA	Analysis	1664A		1			555325	06/28/19 18:55	AJH	TAL IRV
Total/NA Analysis 351.2 5 55602 06/28/19 21:47 HTL TAL IRV Total/NA Analysis 353.2 100 306826 07/10/19 10:57 TCS TAL SAC Total/NA Prep 365.2/365.3/365 0.050 mL 50 mL 555362 06/29/19 08:17 MMP TAL IRV Total/NA Analysis 365.3 1 555384 06/29/19 10:49 MMP TAL IRV Total/NA Analysis 365.3 1 6 mL 6 mL 576470 07/01/19 10:02 NVF TAL SAV Total/NA Analysis 420.1 1 6 mL 6 mL 576857 07/02/19 10:49 NVF TAL SAV Total/NA Analysis ASTM D5057-90 1 50 g 50 mL 284432 07/10/19 15:27 TAM TAL IRV Total/NA Analysis SM 2540B 1 5 mL 100 mL 555847 06/26/19 17:46 HTL TAL IRV Total/NA Analysis SM 4500 CN E	Total/NA	Analysis	2540E		1	5 mL	100 mL	554894	06/26/19 19:05	HTL	TAL IRV
Total/NA Analysis 353.2 100 306826 07/10/19 10:57 TCS TAL SAC Total/NA Prep 365.2/365.3/365 0.050 mL 50 mL 555362 06/29/19 08:17 MMP TAL SAC Total/NA Analysis 365.3 1 555384 06/29/19 08:17 MMP TAL IRV Total/NA Prep Distill/Phenol 6 mL 6 mL 576470 07/01/19 10:20 NVF TAL SAV Total/NA Analysis 420.1 1 6 mL 6 mL 576857 07/02/19 10:49 NVF TAL SAV Total/NA Analysis ASTM D5057-90 1 50 g 50 mL 284432 07/10/19 15:27 TAM TAL PIT Total/NA Analysis SM 2540B 1 5mL 100 mL 554877 06/26/19 17:46 HTL TAL IRV Total/NA Prep Distil/CN 50 mL 50 mL 55514 06/27/19 14:53 QTN TAL IRV Total/NA Analysis SM 4500 NH3	Total/NA	Prep	351.2			0.5 mL	25 mL	555267	06/28/19 14:14	HTL	TAL IRV
Total/NA Prep 365.2/365.3/365 0.050 mL 50 mL 555362 06/29/19 08:17 MMP TAL IRV Total/NA Analysis 365.3 1 555384 06/29/19 10:49 MMP TAL IRV Total/NA Prep Distill/Phenol 6 mL 6 mL 576470 07/01/19 10:02 NVF TAL IRV Total/NA Analysis 420.1 1 6 mL 6 mL 576857 07/02/19 10:49 NVF TAL SAV Total/NA Analysis ASTM D5057-90 1 50 g 50 mL 284432 07/10/19 15:27 TAM TAL IRV Total/NA Analysis SM 2540B 1 5 mL 100 mL 554877 06/26/19 17:46 HTL TAL IRV Total/NA Prep Distil/CN 50 mL 50 mL 555144 06/27/19 14:53 QTN TAL IRV Total/NA Prep Distil/CN 50 mL 50 mL 555144 06/27/19 14:53 QTN TAL IRV Total/NA Analysis SM 4500 NH3 B 2.0 mL 50 mL 555710 07/02/19 04:00 YZ </td <td>Total/NA</td> <td>Analysis</td> <td>351.2</td> <td></td> <td>5</td> <td></td> <td></td> <td>555602</td> <td>06/28/19 21:47</td> <td>HTL</td> <td>TAL IRV</td>	Total/NA	Analysis	351.2		5			555602	06/28/19 21:47	HTL	TAL IRV
Total/NA Analysis 365.3 1 555384 06/29/19 10:49 MMP TAL IRV Total/NA Prep Distill/Phenol 6 mL 6 mL 6 mL 576470 07/01/19 10:02 NVF TAL IRV Total/NA Analysis 420.1 1 6 mL 6 mL 6 mL 576857 07/02/19 10:49 NVF TAL SAV Total/NA Analysis ASTM D5057-90 1 50 g 50 mL 284432 07/10/19 15:27 TAM TAL IRV Total/NA Analysis SM 2540B 1 5 mL 100 mL 554877 06/26/19 17:46 HTL TAL IRV Total/NA Prep Distill/CN 50 mL 50 mL 555064 06/27/19 14:53 QTN TAL IRV Total/NA Prep Distill/CN 50 mL 50 mL 555114 06/27/19 20:43 QTN TAL IRV Total/NA Analysis SM 4500 CN E 1 2.0 mL 50 mL 555710 07/02/19 04:00 YZ TAL IRV Total/NA Analysis SM 4500 NH3 B 2.0 mL 50 mL	Total/NA	Analysis	353.2		100			306826	07/10/19 10:57	TCS	TAL SAC
Total/NAPrepDistill/Phenol6 mL6 mL57647007/01/19 10:02NVFTAL SAVTotal/NAAnalysis420.116 mL6 mL57685707/02/19 10:49NVFTAL SAVTotal/NAAnalysisASTM D5057-90150 g50 mL28443207/10/19 15:27TAMTAL PITTotal/NAAnalysisSM 2540B15 mL100 mL55487706/26/19 17:46HTLTAL IRVTotal/NAPrepDistill/CN50 mL50 mL55506406/27/19 14:53QTNTAL IRVTotal/NAAnalysisSM 4500 CN E1-50 mL55511406/27/19 20:43QTNTAL IRVTotal/NAPrepSM 4500 NH3 B2.0 mL50 mL55571007/02/19 04:00YZTAL IRVTotal/NAAnalysisSM 4500 NH3 D1-55573507/02/19 07:00YZTAL IRVTotal/NAAnalysisSM 520D502.5 mL2.5 mL55568107/01/19 18:37KYPTAL IRV	Total/NA	Prep	365.2/365.3/365			0.050 mL	50 mL	555362	06/29/19 08:17	MMP	TAL IRV
Total/NAAnalysis420.116 mL6 mL57685707/02/19 10:49 NVFTAL SAVTotal/NAAnalysisASTM D5057-90150 g50 mL28443207/10/19 15:27 TAMTAL PITTotal/NAAnalysisSM 2540B15 mL100 mL55487706/26/19 17:46 HTLTAL IRVTotal/NAPrepDistill/CN50 mL50 mL55506406/27/19 14:53 QTNTAL IRVTotal/NAAnalysisSM 4500 CN E1-55511406/27/19 20:43 QTNTAL IRVTotal/NAPrepSM 4500 NH3 B2.0 mL50 mL55571007/02/19 04:00 YZTAL IRVTotal/NAAnalysisSM 4500 NH3 D1-55573507/02/19 07:00 YZTAL IRVTotal/NAAnalysisSM 520D502.5 mL2.5 mL55568107/01/19 18:37 KYPTAL IRV	Total/NA	Analysis	365.3		1			555384	06/29/19 10:49	MMP	TAL IRV
Total/NA Analysis ASTM D5057-90 1 50 g 50 mL 284432 07/10/19 15:27 TAM TAL PIT Total/NA Analysis SM 2540B 1 5 mL 100 mL 554877 06/26/19 17:46 HTL TAL IRV Total/NA Prep Distil/CN 50 mL 50 mL 555064 06/27/19 14:53 QTN TAL IRV Total/NA Analysis SM 4500 CN E 1 - 50 mL 555114 06/27/19 20:43 QTN TAL IRV Total/NA Prep SM 4500 NH3 B 2.0 mL 50 mL 555710 07/02/19 04:00 YZ TAL IRV Total/NA Analysis SM 4500 NH3 D 1 - 555735 07/02/19 07:00 YZ TAL IRV Total/NA Analysis SM 520D 50 2.5 mL 2.5 mL 555681 07/01/19 18:37 KYP TAL IRV Total/NA Analysis SM 5220D 50 2.5 mL 2.5 mL 555681 07/01/19 18:37 KYP TAL IRV	Total/NA	Prep	Distill/Phenol			6 mL	6 mL	576470	07/01/19 10:02	NVF	TAL SAV
Total/NA Analysis SM 2540B 1 5 mL 100 mL 554877 06/26/19 17:46 HTL TAL IRV Total/NA Prep Distill/CN 50 mL 50 mL 555064 06/27/19 14:53 QTN TAL IRV Total/NA Analysis SM 4500 CN E 1	Total/NA	Analysis	420.1		1	6 mL	6 mL	576857	07/02/19 10:49	NVF	TAL SAV
Total/NA Prep Distill/CN 50 mL 50 mL 555064 06/27/19 14:53 QTN TAL IRV Total/NA Analysis SM 4500 CN E 1 555114 06/27/19 20:43 QTN TAL IRV Total/NA Prep SM 4500 NH3 B 2.0 mL 50 mL 555710 07/02/19 04:00 YZ TAL IRV Total/NA Analysis SM 4500 NH3 D 1 555735 07/02/19 04:00 YZ TAL IRV Total/NA Analysis SM 4500 NH3 D 1 555735 07/02/19 07:00 YZ TAL IRV Total/NA Analysis SM 5220D 50 2.5 mL 2.5 mL 555681 07/01/19 18:37 KYP TAL IRV	Total/NA	Analysis	ASTM D5057-90		1	50 g	50 mL	284432	07/10/19 15:27	TAM	TAL PIT
Total/NA Analysis SM 4500 CN E 1 555114 06/27/19 20:43 QTN TAL IRV Total/NA Prep SM 4500 NH3 B 2.0 mL 50 mL 555710 07/02/19 04:00 YZ TAL IRV Total/NA Analysis SM 4500 NH3 D 1 555735 07/02/19 07:00 YZ TAL IRV Total/NA Analysis SM 520D 50 2.5 mL 2.5 mL 555681 07/01/19 18:37 KYP TAL IRV	Total/NA	Analysis	SM 2540B		1	5 mL	100 mL	554877	06/26/19 17:46	HTL	TAL IRV
Total/NA Prep SM 4500 NH3 B 2.0 mL 50 mL 555710 07/02/19 04:00 YZ TAL IRV Total/NA Analysis SM 4500 NH3 D 1 555735 07/02/19 07:00 YZ TAL IRV Total/NA Analysis SM 520D 50 2.5 mL 2.5 mL 555681 07/01/19 18:37 KYP TAL IRV	Total/NA	Prep	Distill/CN			50 mL	50 mL	555064	06/27/19 14:53	QTN	TAL IRV
Total/NA Analysis SM 4500 NH3 D 1 555735 07/02/19 07:00 YZ TAL IRV Total/NA Analysis SM 5220D 50 2.5 mL 2.5 mL 555681 07/01/19 18:37 KYP TAL IRV	Total/NA	Analysis	SM 4500 CN E		1			555114	06/27/19 20:43	QTN	TAL IRV
Total/NA Analysis SM 5220D 50 2.5 mL 2.5 mL 555681 07/01/19 18:37 KYP TAL IRV	Total/NA	Prep	SM 4500 NH3 B			2.0 mL	50 mL	555710	07/02/19 04:00	YZ	TAL IRV
	Total/NA	Analysis	SM 4500 NH3 D		1			555735	07/02/19 07:00	ΥZ	TAL IRV
Total/NA Analysis Total Nitrogen 1 556060 07/03/19 14:08 NN TAL IRV	Total/NA	Analysis	SM 5220D		50	2.5 mL	2.5 mL	555681	07/01/19 18:37	KYP	TAL IRV
	Total/NA	Analysis	Total Nitrogen		1			556060	07/03/19 14:08	NN	TAL IRV

Client Sample ID: 0620 OD STREAMS Date Collected: 06/20/19 06:33 Date Received: 06/26/19 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		10	10 mL	10 mL	555513	07/01/19 15:55	MML	TAL IRV
Total/NA	Prep	625			965 mL	4.0 mL	555027	06/27/19 12:00	HCK	TAL IRV
Total/NA	Analysis	625		20			555490	07/01/19 08:14	P1R	TAL IRV
Total/NA	Prep	8315_W_Prep			20 mL	1 mL	555345	06/29/19 05:05	FTD	TAL IRV
Total/NA	Analysis	8315A		1			555542	07/01/19 13:02	D1D	TAL IRV
Total/NA	Analysis	NO3NO2 Calc		1			555628	07/01/19 15:00	NN	TAL IRV
Total Recoverable	Prep	3005A			25 mL	25 mL	556202	07/05/19 09:49	EP	TAL IRV
Total Recoverable	Analysis	6010B		5			556398	07/05/19 19:57	VS	TAL IRV

Lab Sample ID: 440-244608-2

Matrix: Water

Initial

Amount

20 mL

100 mL

2 mL

0.5 mL

0.025 mL

6 mL

6 mL

50 g

2 mL

50 mL

0.1 mL

2.5 mL

Final

Amount

20 mL

1000 mL

100 mL

25 mL

50 mL

6 mL

6 mL

50 mL

100 mL

50 mL

50 mL

2.5 mL

Batch

Number

555647

555834

555282

555325

554894

555267

555602

306826

555362

555384

576470

576857

284432

554877

555064

555114

555710

555735

555681

556060

Dil

5

1

1

10

100

1

20

1

1

1

1

1

250

Factor

Run

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Batch

Туре

Prep

Prep

Prep

Analysis

Prep

Prep

Prep

Prep

Prep Type

Total/NA

Client Sample ID: 0620 OD STREAMS Date Collected: 06/20/19 06:33 Date Received: 06/26/19 10:30

Batch

7470A

7470A

1664A

1664A

2540E

351.2

351.2

353.2

365.3

420.1

365.2/365.3/365

ASTM D5057-90

SM 4500 CN E

SM 4500 NH3 B

SM 4500 NH3 D

Distill/Phenol

SM 2540B

Distill/CN

SM 5220D

Total Nitrogen

Method

Lab

TAL IRV

TAL SAC

TAL IRV

TAL IRV

TAL SAV

Lab Sample ID: 440-244608-2 Matrix: Water

Analyst

DB

Prepared

or Analyzed

07/01/19 16:27

07/02/19 12:28 DB

06/28/19 15:07 AJH

06/28/19 18:55 AJH

06/26/19 19:05 HTL

06/28/19 14:14 HTL

06/28/19 21:50 HTL

07/10/19 11:01 TCS

06/29/19 08:17 MMP

06/29/19 10:49 MMP

07/01/19 10:02 NVF

07/02/19 10:54 NVF

07/10/19 15:25 TAM

06/26/19 17:46 HTL

06/27/19 14:53 QTN

06/27/19 20:43 QTN

07/02/19 04:00 YZ

8
9
3

TAL SAV	
TAL PIT	
TAL IRV	
TAL IRV	13
TAL IRV	
TAL IRV	
TAL IRV	

07/02/19 07:00 YZ TAL IRV 07/01/19 18:37 KYP TAL IRV 07/03/19 14:08 NN TAL IRV

Client Sample ID: 0621 BUTCHER Date Collected: 06/21/19 06:01 Date Received: 06/26/19 10:30

Lab Sample ID: 440-244608-3

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	RA	1	10 mL	10 mL	555721	07/02/19 11:58	DCI	TAL IRV
Total/NA	Analysis	8260B		1	10 mL	10 mL	555513	07/01/19 16:23	MML	TAL IRV
Total/NA	Prep	625			975 mL	4.0 mL	555027	06/27/19 12:00	HCK	TAL IRV
Total/NA	Analysis	625		10			555490	07/01/19 07:25	P1R	TAL IRV
Total/NA	Prep	8315_W_Prep			20 mL	1 mL	555345	06/29/19 05:05	FTD	TAL IRV
Total/NA	Analysis	8315A		1			555542	07/01/19 13:23	D1D	TAL IRV
Total/NA	Analysis	NO3NO2 Calc		1			555628	07/01/19 15:00	NN	TAL IRV
Total Recoverable	Prep	3005A			25 mL	25 mL	554883	06/26/19 17:58	BV	TAL IRV
Total Recoverable	Analysis	6010B		10			555055	06/27/19 13:33	TQN	TAL IRV
Total/NA	Prep	7470A			20 mL	20 mL	555647	07/01/19 16:27	DB	TAL IRV
Total/NA	Analysis	7470A		5			555834	07/02/19 12:30	DB	TAL IRV
Total/NA	Prep	1664A			200 mL	1000 mL	555282	06/28/19 15:07	AJH	TAL IRV
Total/NA	Analysis	1664A		1			555325	06/28/19 18:55	AJH	TAL IRV
Total/NA	Analysis	2540E		1	5 mL	100 mL	554894	06/26/19 19:05	HTL	TAL IRV
Total/NA	Prep	351.2			0.5 mL	25 mL	555267	06/28/19 14:14	HTL	TAL IRV
Total/NA	Analysis	351.2		2			555602	06/28/19 21:50	HTL	TAL IRV
Total/NA	Analysis	353.2		100			306826	07/10/19 11:05	TCS	TAL SAC

Initial

Amount

0.025 mL

6 mL

6 mL

50 g

5 mL

50 mL

1.0 mL

2.5 mL

Final

Amount

50 mL

6 mL

6 mL

50 mL

100 mL

50 mL

50 mL

2.5 mL

Batch

Number

555362

555384

576470

576857

284432

554877

555064

555114

555710

555735

555681

556060

555384

576470

576857

284432

554877

555064

555114

6 mL

6 mL

50 mL

100 mL

50 mL

06/29/19 10:50 MMP

07/01/19 10:02 NVF

07/02/19 10:54 NVF

07/10/19 15:22 TAM

06/26/19 17:46 HTL

06/27/19 14:53 QTN

06/27/19 20:43 QTN

Dil

1

1

1

1

1

1

1

200

Factor

Run

Client Sample ID: 0621 BUTCHER Date Collected: 06/21/19 06:01 Date Received: 06/26/19 10:30

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Date Collected: 06/21/19 06:20

Client Sample ID: 0621 OD STREAMS

Prep

Prep

Prep Type

Total/NA

Batch

365.3

420.1

Method

365.2/365.3/365

ASTM D5057-90

SM 4500 CN E

SM 4500 NH3 B

SM 4500 NH3 D

Distill/Phenol

SM 2540B

Distill/CN

SM 5220D

365.3

420.1

Distill/Phenol

SM 2540B

Distill/CN

ASTM D5057-90

SM 4500 CN E

Analysis

Analysis

Analysis

Analysis

Analysis

Prep

Prep

Total Nitrogen

Lab

TAL IRV

TAL IRV

TAL SAV

TAL SAV

TAL PIT

TAL IRV

Lab Sample ID: 440-244608-3 Matrix: Water

Analyst

MMP

MMP

Prepared

or Analyzed

06/29/19 08:17

06/29/19 10:49

07/01/19 10:02 NVF

07/02/19 10:49 NVF

07/10/19 15:24 TAM

06/26/19 17:46 HTL

06/27/19 14:53 QTN

06/27/19 20:43 QTN

07/02/19 04:00 YZ

07/02/19 07:00 YZ

07/01/19 18:37 KYP

07/03/19 14:08 NN

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		10	10 mL	10 mL	555513	07/01/19 16:51	MML	TAL IRV
Total/NA	Prep	625			955 mL	4.0 mL	555027	06/27/19 12:00	HCK	TAL IRV
Total/NA	Analysis	625		20			555490	07/01/19 07:49	P1R	TAL IRV
Total/NA	Prep	8315_W_Prep			20 mL	1 mL	555345	06/29/19 05:05	FTD	TAL IRV
Total/NA	Analysis	8315A		1			555542	07/01/19 13:44	D1D	TAL IRV
Total/NA	Analysis	NO3NO2 Calc		1			555628	07/01/19 15:00	NN	TAL IRV
Total Recoverable	Prep	3005A			25 mL	25 mL	556202	07/05/19 09:49	EP	TAL IRV
Total Recoverable	Analysis	6010B		5			556398	07/05/19 19:59	VS	TAL IRV
Total/NA	Prep	7470A			20 mL	20 mL	555647	07/01/19 16:27	DB	TAL IRV
Total/NA	Analysis	7470A		5			555834	07/02/19 12:32	DB	TAL IRV
Total/NA	Prep	1664A			100 mL	1000 mL	555282	06/28/19 15:07	AJH	TAL IRV
Total/NA	Analysis	1664A		1			555325	06/28/19 18:55	AJH	TAL IRV
Total/NA	Analysis	2540E		1	2 mL	100 mL	554894	06/26/19 19:05	HTL	TAL IRV
Total/NA	Prep	351.2			0.5 mL	25 mL	555267	06/28/19 14:14	HTL	TAL IRV
Total/NA	Analysis	351.2		10			555602	06/28/19 21:50	HTL	TAL IRV
Fotal/NA	Analysis	353.2		100			306826	07/10/19 11:09	TCS	TAL SAC
Total/NA	Prep	365.2/365.3/365			0.025 mL	50 mL	555362	06/29/19 08:17	MMP	TAL IRV

Lab Sample ID: 440-244608-4 Matrix: Water

Eurofins TestAmerica, Irvine

1

50

1

1

1

6 mL

6 mL

50 g

2 mL

50 mL

TAL IRV

TAL SAV

TAL SAV

TAL PIT

TAL IRV

TAL IRV

TAL IRV

Client Sample ID: 0621 OD STREAMS Date Collected: 06/21/19 06:20 Date Received: 06/26/19 10:30

				Ma	trix: Wa	: Water	
Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab		

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SM 4500 NH3 B			0.1 mL	50 mL	555710	07/02/19 04:00	YZ	TAL IRV
Total/NA	Analysis	SM 4500 NH3 D		1			555735	07/02/19 07:00	YZ	TAL IRV
Total/NA	Analysis	SM 5220D		200	2.5 mL	2.5 mL	555681	07/01/19 18:37	KYP	TAL IRV
Total/NA	Analysis	Total Nitrogen		1			556060	07/03/19 14:08	NN	TAL IRV

Laboratory References:

TAL IRV = Eurofins TestAmerica, Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022 TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058 TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600 TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 Job ID: 440-244608-1

Lab Sample ID: 440-244608-4

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-555513/4 Matrix: Water Analysis Batch: 555513

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 440-244608-1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		2.0	0.25	ug/L			07/01/19 08:48	1
Benzene	ND		2.0	0.25	ug/L			07/01/19 08:48	1
Chloroform	ND		2.0	0.25	ug/L			07/01/19 08:48	1
Ethylbenzene	ND		2.0	0.25	ug/L			07/01/19 08:48	1
m,p-Xylene	ND		2.0	0.50	ug/L			07/01/19 08:48	1
Methylene Chloride	ND		5.0	1.1	ug/L			07/01/19 08:48	1
o-Xylene	ND		2.0	0.25	ug/L			07/01/19 08:48	1
Toluene	ND		2.0	0.25	ug/L			07/01/19 08:48	1
Xylenes, Total	ND		2.0	0.25	ug/L			07/01/19 08:48	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		80 - 120					07/01/19 08:48	1
Dibromofluoromethane (Surr)	92		76 - 132					07/01/19 08:48	1
Toluene-d8 (Surr)	105		80 - 128					07/01/19 08:48	1

Lab Sample ID: LCS 440-555513/5 Matrix: Water Analysis Batch: 555513

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichloropropane	10.0	9.86		ug/L		99	67 - 130
Benzene	10.0	10.3		ug/L		103	68 - 130
Chloroform	10.0	10.3		ug/L		103	70 - 130
Ethylbenzene	10.0	11.5		ug/L		115	70 - 130
m,p-Xylene	10.0	11.3		ug/L		113	70 - 130
Methylene Chloride	10.0	8.32		ug/L		83	52 - 130
o-Xylene	10.0	11.1		ug/L		111	70 - 130
Toluene	10.0	11.4		ug/L		114	70 - 130
loluene	10.0	11.4		ug/L		114	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		80 - 120
Dibromofluoromethane (Surr)	92		76 - 132
Toluene-d8 (Surr)	100		80 - 128

Lab Sample ID: LCSD 440-555513/7 **Matrix: Water** Analysis Batch: 555513

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloropropane	10.0	9.86		ug/L		99	67 - 130	0	20
Benzene	10.0	10.5		ug/L		105	68 - 130	1	20
Chloroform	10.0	10.6		ug/L		106	70 - 130	3	20
Ethylbenzene	10.0	11.4		ug/L		114	70 - 130	1	20
m,p-Xylene	10.0	11.2		ug/L		112	70 - 130	0	20
Methylene Chloride	10.0	8.64		ug/L		86	52 - 130	4	20
o-Xylene	10.0	10.8		ug/L		108	70 - 130	2	20
Toluene	10.0	11.3		ug/L		113	70 - 130	1	20

QC Sample Results

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 440-555513/7 **Matrix: Water** Analysis Batch: 555513

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		80 - 120
Dibromofluoromethane (Surr)	94		76 - 132
Toluene-d8 (Surr)	99		80 - 128

Lab Sample ID: 550-124860-N-1 MS **Matrix: Water** Analysis Batch: 555513

Analysis Datch. 555515	Sample	Sample	Spike	MS	MS			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D %Rec	Limits	
1,2-Dichloropropane	ND		10.0	8.42		ug/L	84	69 - 130	
Benzene	ND		10.0	9.45		ug/L	94	66 - 130	
Chloroform	1.9	J	10.0	11.2		ug/L	93	70 - 130	
Ethylbenzene	ND		10.0	11.5		ug/L	115	70 - 130	
m,p-Xylene	ND		10.0	11.1		ug/L	111	70 - 133	
Methylene Chloride	ND		10.0	7.08		ug/L	71	52 - 130	
o-Xylene	ND		10.0	10.4		ug/L	104	70 - 133	
Toluene	ND		10.0	11.4		ug/L	114	70 - 130	
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		80 - 120
Dibromofluoromethane (Surr)	85		76 - 132
Toluene-d8 (Surr)	107		80 - 128

Lab Sample ID: 550-124860-N-1 MSD Matrix: Water Analysis Batch: 555513

·····,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloropropane	ND		10.0	9.02		ug/L		90	69 - 130	7	20
Benzene	ND		10.0	10.3		ug/L		103	66 - 130	9	20
Chloroform	1.9	J	10.0	11.9		ug/L		100	70 - 130	7	20
Ethylbenzene	ND		10.0	12.0		ug/L		120	70 - 130	4	20
m,p-Xylene	ND		10.0	11.9		ug/L		119	70 - 133	7	25
Methylene Chloride	ND		10.0	7.70		ug/L		77	52 - 130	8	20
o-Xylene	ND		10.0	11.1		ug/L		111	70 - 133	6	20
Toluene	ND		10.0	12.1		ug/L		121	70 - 130	6	20
	MSD	MSD									

	MSD	W3D	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		80 - 120
Dibromofluoromethane (Surr)	86		76 - 132
Toluene-d8 (Surr)	106		80 - 128

Lab Sample ID: MB 440-555721/4 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 555721 MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 2.0 07/02/19 08:23 1,2-Dichloropropane ND 0.25 ug/L 1

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Client Sample ID: Matrix Spike
Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-555721/4 Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water Analysis Batch: 555721

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.0	0.25	ug/L			07/02/19 08:23	1
Chloroform	ND		2.0	0.25	ug/L			07/02/19 08:23	1
Ethylbenzene	ND		2.0	0.25	ug/L			07/02/19 08:23	1
m,p-Xylene	ND		2.0	0.50	ug/L			07/02/19 08:23	1
Methylene Chloride	ND		5.0	1.1	ug/L			07/02/19 08:23	1
o-Xylene	ND		2.0	0.25	ug/L			07/02/19 08:23	1
Toluene	ND		2.0	0.25	ug/L			07/02/19 08:23	1
Xylenes, Total	ND		2.0	0.25	ug/L			07/02/19 08:23	1
	МВ	МВ							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		80 - 120		07/02/19 08:23	1
Dibromofluoromethane (Surr)	104		76 - 132		07/02/19 08:23	1
Toluene-d8 (Surr)	107		80 - 128		07/02/19 08:23	1

Lab Sample ID: LCS 440-555721/5 Matrix: Water Analysis Batch: 555721

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichloropropane	10.0	9.20		ug/L		92	67 - 130
Benzene	10.0	9.62		ug/L		96	68 - 130
Chloroform	10.0	10.3		ug/L		103	70 - 130
Ethylbenzene	10.0	9.47		ug/L		95	70 - 130
m,p-Xylene	10.0	9.61		ug/L		96	70 - 130
Methylene Chloride	10.0	10.6		ug/L		106	52 - 130
o-Xylene	10.0	10.2		ug/L		102	70 - 130
Toluene	10.0	9.37		ug/L		94	70 - 130

LCS	LCS	
%Recovery	Qualifier	Limits
92		80 - 120
105		76 - 132
104		80 - 128
	%Recovery 92 105	105

Lab Sample ID: 440-244488-B-3 MS Matrix: Water Analysis Batch: 555721

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloropropane	ND		10.0	8.65		ug/L		86	69 - 130	
Benzene	ND		10.0	9.62		ug/L		96	66 - 130	
Chloroform	ND		10.0	10.6		ug/L		106	70 - 130	
Ethylbenzene	ND		10.0	8.85		ug/L		89	70 - 130	
m,p-Xylene	ND		10.0	9.38		ug/L		94	70 - 133	
Methylene Chloride	ND		10.0	10.6		ug/L		106	52 - 130	
o-Xylene	ND		10.0	10.1		ug/L		101	70 - 133	
Toluene	ND		10.0	9.06		ug/L		91	70 - 130	

Eurofins TestAmerica, Irvine

Client Sample ID: Matrix Spike

Prep Type: Total/NA

5

8

QC Sample Results

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Prep Type: Total/NA

Drew Detaks CCC007

Client Sample ID: Matrix Spike Prep Type: Total/NA

Lab Sample ID: 440-244488-B-3 MS **Matrix: Water** Analysis Batch: 555721

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		80 - 120
Dibromofluoromethane (Surr)	103		76 - 132
Toluene-d8 (Surr)	101		80 - 128

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-244488-B-3 MSD **Matrix: Water** Analysis Batch: 555721

Analysis Batch: 555/21											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloropropane	ND		10.0	9.40		ug/L		94	69 - 130	8	20
Benzene	ND		10.0	10.4		ug/L		104	66 - 130	7	20
Chloroform	ND		10.0	11.5		ug/L		115	70 - 130	8	20
Ethylbenzene	ND		10.0	9.85		ug/L		99	70 - 130	11	20
m,p-Xylene	ND		10.0	9.97		ug/L		100	70 - 133	6	25
Methylene Chloride	ND		10.0	12.2		ug/L		122	52 - 130	14	20
o-Xylene	ND		10.0	10.9		ug/L		109	70 - 133	7	20
Toluene	ND		10.0	10.0		ug/L		100	70 - 130	10	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	95		80 - 120								
Dibromofluoromethane (Surr)	109		76 - 132								
Toluene-d8 (Surr)	101		80 - 128								

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-555027/1-A **Matrix: Water** Analysia Potoby 555400

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	ND		20	4.0	ug/L		06/27/19 12:00	06/30/19 19:08	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	71		50 - 120				06/27/19 12:00	06/30/19 19:08	1
2-Fluorophenol	63		30 - 120				06/27/19 12:00	06/30/19 19:08	1
2,4,6-Tribromophenol	76		40 - 120				06/27/19 12:00	06/30/19 19:08	1
Nitrobenzene-d5	71		45 - 120				06/27/19 12:00	06/30/19 19:08	1
Terphenyl-d14	77		10 - 150				06/27/19 12:00	06/30/19 19:08	1
Phenol-d6	66		35 - 120				06/27/19 12:00	06/30/19 19:08	1

I	Lab Sample ID: LCS 440-555027/2-A				Cli	ent Sar	nple ID	: Lab Control Sample
	Matrix: Water							Prep Type: Total/NA
	Analysis Batch: 555490							Prep Batch: 555027
		Spike	LCS	LCS				%Rec.
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
	Bis(2-ethylhexyl) phthalate	100	100		ug/L		100	10 - 150

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440- Matrix: Water Analysis Batch: 555490	555027/2-A					Clie	nt Sa	nple ID	: Lab Cor Prep Tyj Prep Ba	pe: Tot	al/NA
Surrogate	LCS %Recovery	LCS Qualifier	Limits								
2-Fluorobiphenyl	73		50 - 120								
2-Fluorophenol	64		30 - 120								
2,4,6-Tribromophenol	89		40 - 120								
Nitrobenzene-d5	76		45 - 120								
Terphenyl-d14	77		10_150								
Phenol-d6	70		35 - 120								
Lab Sample ID: LCSD 440)-555027/3-A				c	Client Sa	ample	ID: Lat	o Control	Sample	e Dup
Matrix: Water		-							Prep Ty		
Analysis Batch: 555490									Prep Ba		
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bis(2-ethylhexyl) phthalate			100	103		ug/L		103	10 - 150	3	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
2-Fluorobiphenyl	83		50 - 120								
	70		30 - 120								
2-Fluorophenol	70		30 - 120								

45 - 120 10 - 150

35 - 120

└── Method: 8315A - Carbonyl Compounds (HPLC)

81

81 77

Nitrobenzene-d5

Terphenyl-d14

Phenol-d6

Lab Sample ID: MB 440-555 Matrix: Water Analysis Batch: 555542	5345/1-А мв	МВ							Cli	ent Sam	ple ID: Metho Prep Type: T Prep Batch:	otal/NA
Analyte	Result	Qualifier		RL	I	MDL I	Unit		D P	repared	Analyzed	Dil Fac
Formaldehyde	ND			0.010	0.0	0050	mg/L		06/2	29/19 05:05	5 07/01/19 10:55	1
Lab Sample ID: LCS 440-55 Matrix: Water Analysis Batch: 555542	5345/2-A		Spike		LCS	LCS		Clie	ent Sa	mple ID:	: Lab Control Prep Type: T Prep Batch: %Rec.	otal/NA
Analyte			Added		Result	Quali	ifier	Unit	D	%Rec	Limits	
Formaldehyde			0.0500		0.0518			mg/L		104	70 - 129	
Lab Sample ID: 440-244801 Matrix: Water Analysis Batch: 555542	-A-1-A MS Sample Sar	nple	Spike		MS	MS			С	lient Saı	mple ID: Matri Prep Type: T Prep Batch: %Rec.	otal/NA
Analyte	Result Qu	•	Added		Result	Quali	ifier	Unit	D	%Rec	Limits	
Formaldehyde	0.0085 J		0.0500		0.0615			mg/L		106	50 - 150	

Client Sample ID: Method Blank

5

8

Method: 8315A - Carbonyl Compounds (HPLC) (Continued)

Lab Sample ID: 440-24480	1-A-1-B MS	D				Client	Samp	le ID: N	latrix Spil	ke Dup	licate
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 555542									Prep Ba	atch: 5	55345
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Formaldehyde	0.0085	J	0.0500	0.0629		mg/L		109	50 - 150	2	20

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 440-554883/1-A

Matrix: Water Analysis Batch: 555055								e: Total Recov Prep Batch: {	
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.10	0.050	mg/L		06/26/19 17:58	06/27/19 12:56	1
Arsenic	ND		0.010	0.0089	mg/L		06/26/19 17:58	06/27/19 12:56	1
Barium	ND		0.010	0.0050	mg/L		06/26/19 17:58	06/27/19 12:56	1
Boron	ND		0.050	0.025	mg/L		06/26/19 17:58	06/27/19 12:56	1
Cadmium	ND		0.0050	0.0025	mg/L		06/26/19 17:58	06/27/19 12:56	1
Chromium	ND		0.0050	0.0025	mg/L		06/26/19 17:58	06/27/19 12:56	1
Copper	ND		0.010	0.0050	mg/L		06/26/19 17:58	06/27/19 12:56	1
Magnesium	ND		0.020	0.010	mg/L		06/26/19 17:58	06/27/19 12:56	1
Manganese	ND		0.020	0.015	mg/L		06/26/19 17:58	06/27/19 12:56	1
Nickel	ND		0.010	0.0050	mg/L		06/26/19 17:58	06/27/19 12:56	1
Selenium	ND		0.010	0.0087	mg/L		06/26/19 17:58	06/27/19 12:56	1
Titanium	ND		0.0050	0.0025	mg/L		06/26/19 17:58	06/27/19 12:56	1
Zinc	ND		0.020	0.012	mg/L		06/26/19 17:58	06/27/19 12:56	1

Lab Sample ID: LCS 440-554883/2-A **Matrix: Water**

Analysis Batch: 555055

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 554883

r malyele Batern eeeeee	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	1.00	1.02		mg/L		102	80 - 120
Arsenic	1.00	1.03		mg/L		103	80 - 120
Barium	1.00	1.02		mg/L		102	80 - 120
Boron	1.00	1.02		mg/L		102	80 - 120
Cadmium	1.00	1.02		mg/L		102	80 - 120
Chromium	1.00	1.03		mg/L		103	80 - 120
Copper	1.00	1.04		mg/L		104	80 - 120
Magnesium	5.00	5.13		mg/L		103	80 - 120
Manganese	1.00	1.03		mg/L		103	80 - 120
Nickel	1.00	1.02		mg/L		102	80 - 120
Selenium	1.00	0.988		mg/L		99	80 - 120
Titanium	1.00	1.04		mg/L		104	80 - 120
Zinc	1.00	1.01		mg/L		101	80 - 120

Lab Sample ID: 440-244629-K-1-B MS ^10 Matrix: Water Analysis Batch: 555055

Analysis Batch: 555055	Sample	Sample	Spike	MS	MS				•	atch: 554883
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	ND	F2	1.00	1.19		mg/L		119	75 - 125	
Arsenic	ND		1.00	0.943		mg/L		94	75 - 125	

Eurofins TestAmerica, Irvine

Client Sample ID: Matrix Spike

Prep Type: Total Recoverable

Client Sample ID: Matrix Spike

Prep Type: Total Recoverable

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 440-244629-K-1-B MS ^10 Matrix: Water Analysis Batch: 555055

Analysis Batch: 555055	Sample	Sample	Spike	MS	MS				Prep Batch: 554883 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Barium	0.056	J	1.00	1.02		mg/L		96	75 - 125
Boron	1.7		1.00	2.75		mg/L		102	75 - 125
Cadmium	ND		1.00	0.968		mg/L		97	75 - 125
Chromium	ND		1.00	0.982		mg/L		98	75 - 125
Copper	0.065	J	1.00	1.07		mg/L		101	75 - 125
Magnesium	230		5.00	245	4	mg/L		228	75 - 125
Manganese	4.9		1.00	6.04	4	mg/L		117	75 - 125
Nickel	ND		1.00	1.03		mg/L		103	75 - 125
Selenium	ND		1.00	0.982		mg/L		98	75 - 125
Titanium	ND		1.00	1.11		mg/L		111	75 - 125
Zinc	ND		1.00	0.944		mg/L		94	75 - 125

Lab Sample ID: 440-244629-K-1-C MSD ^10 Matrix: Water

Client Sample ID: Matrix Spike Duplicate Prep Type: Total Recoverable Prop Batch: 554893

Analysis Batch: 555055									Prep Ba	atch: 5	54883
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	ND	F2	1.00	0.919	J F2	mg/L		92	75 - 125	26	20
Arsenic	ND		1.00	1.08		mg/L		108	75 - 125	13	20
Barium	0.056	J	1.00	1.09		mg/L		103	75 - 125	7	20
Boron	1.7		1.00	2.81		mg/L		108	75 - 125	2	20
Cadmium	ND		1.00	1.03		mg/L		103	75 - 125	6	20
Chromium	ND		1.00	1.05		mg/L		105	75 - 125	7	20
Copper	0.065	J	1.00	1.14		mg/L		107	75 - 125	6	20
Magnesium	230		5.00	246	4	mg/L		248	75 - 125	0	20
Manganese	4.9		1.00	6.06	4	mg/L		119	75 - 125	0	20
Nickel	ND		1.00	1.09		mg/L		109	75 - 125	6	20
Selenium	ND		1.00	1.05		mg/L		105	75 - 125	7	20
Titanium	ND		1.00	1.08		mg/L		108	75 - 125	3	20
Zinc	ND		1.00	1.01		mg/L		101	75 - 125	6	20

Lab Sample ID: MB 440-556202/1-A Matrix: Water Analysis Batch: 556398

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.10	0.050	mg/L		07/05/19 09:49	07/05/19 18:57	1
Arsenic	ND		0.010	0.0089	mg/L		07/05/19 09:49	07/05/19 18:57	1
Barium	ND		0.010	0.0050	mg/L		07/05/19 09:49	07/05/19 18:57	1
Boron	ND		0.050	0.025	mg/L		07/05/19 09:49	07/05/19 18:57	1
Cadmium	ND		0.0050	0.0025	mg/L		07/05/19 09:49	07/05/19 18:57	1
Chromium	ND		0.0050	0.0025	mg/L		07/05/19 09:49	07/05/19 18:57	1
Copper	ND		0.010	0.0050	mg/L		07/05/19 09:49	07/05/19 18:57	1
Magnesium	ND		0.020	0.010	mg/L		07/05/19 09:49	07/05/19 18:57	1
Manganese	ND		0.020	0.015	mg/L		07/05/19 09:49	07/05/19 18:57	1
Nickel	ND		0.010	0.0050	mg/L		07/05/19 09:49	07/05/19 18:57	1
Selenium	ND		0.010	0.0087	mg/L		07/05/19 09:49	07/05/19 18:57	1
Titanium	ND		0.0050	0.0025	mg/L		07/05/19 09:49	07/05/19 18:57	1
Zinc	ND		0.020	0.012	mg/L		07/05/19 09:49	07/05/19 18:57	1

Eurofins TestAmerica, Irvine

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 556202

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 440-556202/2-A
Matrix: Water
Analysis Batch: 556398

Analysis Batch: 556398	Spike	LCS	LCS				Prep Batch: 556202 %Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Aluminum	1.00	0.983		mg/L		98	80 - 120
Arsenic	1.00	0.980		mg/L		98	80 - 120
Barium	1.00	0.980		mg/L		98	80 - 120
Boron	1.00	0.975		mg/L		98	80 - 120
Cadmium	1.00	0.985		mg/L		98	80 - 120
Chromium	1.00	0.986		mg/L		99	80 - 120
Copper	1.00	0.993		mg/L		99	80 - 120
Magnesium	5.00	4.87		mg/L		97	80 - 120
Manganese	1.00	0.983		mg/L		98	80 - 120
Nickel	1.00	0.980		mg/L		98	80 - 120
Selenium	1.00	0.950		mg/L		95	80 - 120
Titanium	1.00	0.991		mg/L		99	80 - 120
Zinc	1.00	0.989		mg/L		99	80 - 120

Lab Sample ID: 440-244965-Y-1-B MS Matrix: Water Analysis Batch: 556398

Analysis Baten. 000000	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	ND		1.00	1.10		mg/L		110	75 - 125	
Arsenic	ND		1.00	1.06		mg/L		106	75 - 125	
Barium	0.080		1.00	1.05		mg/L		97	75 - 125	
Boron	0.15		1.00	1.21		mg/L		106	75 - 125	
Cadmium	ND		1.00	0.990		mg/L		99	75 - 125	
Chromium	ND		1.00	1.02		mg/L		102	75 - 125	
Copper	ND		1.00	1.05		mg/L		105	75 - 125	
Magnesium	37		5.00	41.9	4	mg/L		102	75 - 125	
Manganese	0.26		1.00	1.27		mg/L		101	75 - 125	
Nickel	ND		1.00	0.967		mg/L		97	75 - 125	
Selenium	ND		1.00	0.999		mg/L		100	75 - 125	
Titanium	0.0025	J	1.00	1.04		mg/L		104	75 - 125	
Zinc	ND		1.00	0.976		mg/L		98	75 - 125	

Lab Sample ID: 440-244965-Y-1-C MSD Matrix: Water

Analysis Batch: 556398									Prep Ba	atch: 5	56202
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	ND		1.00	1.10		mg/L		110	75 - 125	0	20
Arsenic	ND		1.00	1.06		mg/L		106	75 - 125	0	20
Barium	0.080		1.00	1.05		mg/L		97	75 - 125	0	20
Boron	0.15		1.00	1.19		mg/L		104	75 - 125	1	20
Cadmium	ND		1.00	0.983		mg/L		98	75 - 125	1	20
Chromium	ND		1.00	1.01		mg/L		101	75 - 125	0	20
Copper	ND		1.00	1.05		mg/L		105	75 - 125	0	20
Magnesium	37		5.00	41.0	4	mg/L		85	75 - 125	2	20
Manganese	0.26		1.00	1.26		mg/L		99	75 - 125	1	20
Nickel	ND		1.00	0.960		mg/L		96	75 - 125	1	20
Selenium	ND		1.00	1.00		mg/L		100	75 - 125	0	20

Eurofins TestAmerica, Irvine

Client Sample ID: Matrix Spike Prep Type: Total Recoverable

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total Recoverable

Prep Batch: 556202

QC Sample Results

Job ID: 440-244608-1

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 440-244965 Matrix: Water	5-Y-1-C MS	D				Client Sample ID: Matrix Spike Du Prep Type: Total Recov						
Analysis Batch: 556398	0	0	0						Prep Ba	atch: 5		
• • •	•	Sample	Spike		MSD		_	a/ 5	%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Titanium	0.0025	J	1.00	1.02		mg/L		102	75 - 125	2	20	
Zinc	ND		1.00	0.971		mg/L		97	75 - 125	1	20	
lethod: 7470A - Mercu	ry (CVAA	()										
Lab Sample ID: MB 440-55	5647/1-A						Clie	ent San	nple ID: M			
Matrix: Water									Prep Ty	pe: Tot	al/NA	
Analysis Batch: 555834									Prep Ba	atch: 5	55647	

-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00010	mg/L		07/01/19 16:27	07/02/19 12:06	1
Lab Sample ID: LCS 440-5556	47/2-A					Clien	t Sample ID:	Lab Control S	Sample
Matrix: Water								Prep Type: To	otal/NA
Analysia Potaby 555924								Drop Potoby	EEEC A7

Analysis Datch. 555054							гіер ве	atch. 555047	
	Spike	LCS	LCS				%Rec.		ī
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury	0.00400	0.00440		mg/L		110	80 - 120		ī

Lab Sample ID: 720-93762-	A-1-G MSC)				Client	Samp	le ID: N	Aatrix Spil	ke Dup	licate
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 555834									Prep Ba	atch: 5	55647
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		0.00400	0.00433		mg/L		108	75 - 125	0	20

Method: 1664A - HEM and SGT-HEM

 Lab Sample ID: MB 440-55528	32/1-A								C	Clie	nt Samp	ole ID: Method	d Blank
Matrix: Water												Prep Type: T	otal/NA
Analysis Batch: 555325												Prep Batch:	
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Pi	repared	Analyzed	Dil Fac
HEM	ND			5.0		1.4	mg/L		— c)6/2	8/19 15:07	06/28/19 18:55	1
Lab Sample ID: LCS 440-5552	282/2-A							Clie	ent s	Sar	nple ID:	Lab Control	Sample
Matrix: Water	-											Prep Type: T	
Analysis Batch: 555325			Spike		LCS	1.09						Prep Batch: %Rec.	
Analyte			Added		Result			Unit		D	%Rec	Limits	
HEM			20.0		19.20			mg/L		_	96	78 - 114	
Lab Sample ID: LCSD 440-55	5282/3-A						c	lient Sa	amp	ole		Control Samp	
Matrix: Water												Prep Type: T	
Analysis Batch: 555325												Prep Batch:	555282

Analysis Batch: 555325							Prep Ba	itch: 55	55282	
	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
HEM	20.0	19.70		mg/L		99	78 - 114	3	11	

QC Sample Results

Job ID: 440-244608-1

Method: 2540E - Solids, Volatile and Fixed (VS)

Lab Sample ID: MB 440-5548 Matrix: Water	94/1									(Clie	nt Sam	ole ID: M Prep Ty		
Analysis Batch: 554894															
	_		MB							_	_	_			
Analyte	Re		Qualifier		RL			Unit		D	P	repared	Analyz		Dil
Total Volatile Solids		ND			10		10	mg/L					06/26/19	19:05	
Lab Sample ID: 440-244608-1 Matrix: Water	DU									CI	ien	t Sample	e ID: 062 Prep Ty		
Analysis Batch: 554894															
	Sample		-				DU								F
Analyte	Result	Qua	lifier			Result	Qua	lifier	Unit		D			RPD	
Total Volatile Solids	12000					13500			mg/L					10	
lethod: 351.2 - Nitrogen,	, Total P	(jel	dahl												
Lab Sample ID: MB 440-5552	67/3-A										Clie	nt Sam	ole ID: M		
Matrix: Water													Prep Ty		
Analysis Batch: 555602		MR	мв										Prep Ba)552
Analyte	Po		Qualifier		RL		וחא	Unit		D	D	repared	Analyz	red	Dil
Total Kjeldahl Nitrogen		ND	auannei		0.20			mg/L				8/19 14:14	-		
rotal Njoldali Mitogoli		ND			0.20		0.10	iiig/L			00/2	0/10 14.14	00/20/10	20.02	
Lab Sample ID: LCS 440-555	267/4-A								Cli	ent	Sar	nple ID:	Lab Cor	trol S	am
Matrix: Water													Prep Ty	pe: To	otal/
Analysis Batch: 555602													Prep Ba	tch:	5552
				Spike		LCS	LCS	;					%Rec.		
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Total Kjeldahl Nitrogen				5.00		4.85			mg/L			97	90 - 110		
Lab Sample ID: LCSD 440-55	5267/5-A							С	lient S	am	ple	ID: Lab	Control		
Matrix: Water													Prep Ty	oe: To)tal/
Analysis Batch: 555602															
				0		1.000							Prep Ba		5552
Analyta				Spike		LCSD			Unit		P	% Boo	%Rec.	itch:	5552 F
· · · · · · · · · · · · · · · · · · ·				Added		Result			Unit		D	%Rec	%Rec. Limits	RPD	5 552 F
•				•		-			Unit mg/L		D	%Rec	%Rec.	itch:	5 552 F
Total Kjeldahl Nitrogen	(-1-B MS			Added		Result					_	98	%Rec. Limits 90 - 110	RPD	5552 F
Total Kjeldahl Nitrogen Lab Sample ID: 440-244619-4	(-1-B MS			Added		Result					_	98 ient San	%Rec. Limits 90 - 110	RPD 1 1 Watrix	5552 F L Sp
Total Kjeldahl Nitrogen Lab Sample ID: 440-244619-P Matrix: Water	(-1-B MS			Added		Result					_	98 ient San	%Rec. Limits 90 - 110 nple ID: I Prep Ty	Natrix pe: To	5552 F L Sp otal/
Matrix: Water	C-1-B MS Sample		 1ple	Added		Result 4.88					_	98 ient San	%Rec. Limits 90 - 110	Natrix pe: To	5552 F L Sp otal/
Total Kjeldahl Nitrogen Lab Sample ID: 440-244619-P Matrix: Water		Sam		Added 5.00		Result 4.88	Qua	lifier			CI	98 ient San	%Rec. Limits 90 - 110 nple ID: I Prep Typ Prep Ba	Natrix pe: To	5552 F L Sp otal/
Total Kjeldahl Nitrogen Lab Sample ID: 440-244619-k Matrix: Water Analysis Batch: 555602 Analyte	Sample	Sam Qua		Added 5.00 Spike		Result 4.88 MS	Qua MS Qua	lifier	mg/L		CI	98 ient San	%Rec. Limits 90 - 110 Prep Ty Prep Ba %Rec.	Natrix pe: To	5552 F L Sp otal/
Total Kjeldahl Nitrogen Lab Sample ID: 440-244619-F Matrix: Water Analysis Batch: 555602 Analyte Total Kjeldahl Nitrogen Lab Sample ID: 440-244619-F	Sample Result ND	Sam Qua F1		Added 5.00 Spike Added		Result 4.88 MS Result	Qua MS Qua	lifier	mg/L Unit mg/L	t Sa	CI	<u>98</u> ient San <u>%Rec</u> 46	%Rec. Limits 90-110 Prep ID: I Prep Typ Prep Ba %Rec. Limits 90-110 atrix Spil	Matrix PD Matrix pe: To tch: (ce Du	5552 F L Sp otal/ 5552
Total Kjeldahl Nitrogen Lab Sample ID: 440-244619-P Matrix: Water Analysis Batch: 555602 Analyte Total Kjeldahl Nitrogen Lab Sample ID: 440-244619-P Matrix: Water	Sample Result ND	Sam Qua F1		Added 5.00 Spike Added		Result 4.88 MS Result	Qua MS Qua	lifier	mg/L Unit mg/L	 t Sa	CI	<u>98</u> ient San <u>%Rec</u> 46	%Rec. Limits 90-110 Prep Ty Prep Ba %Rec. Limits 90-110 atrix Spil Prep Ty	Matrix pe: To tch: { ce Du pe: To	55522 F L Sp tal/ 55522 plic: ptal/
Total Kjeldahl Nitrogen Lab Sample ID: 440-244619-P Matrix: Water Analysis Batch: 555602 Analyte Total Kjeldahl Nitrogen Lab Sample ID: 440-244619-P Matrix: Water	Sample Result ND	San Qua F1	lifier	Added 5.00 Spike Added 5.00		Result 4.88 MS Result 2.31	Qua MS Qua F1	lifier	mg/L Unit mg/L	t Sa	CI	<u>98</u> ient San <u>%Rec</u> 46	%Rec. Limits 90-110 Prep Ty Prep Ba %Rec. Limits 90-110 atrix Spil Prep Ty Prep Ba	Matrix pe: To tch: { ce Du pe: To	55552 F L Sp otal/ 55552 plic: otal/
Total Kjeldahl Nitrogen Lab Sample ID: 440-244619-P Matrix: Water Analysis Batch: 555602 Analyte Total Kjeldahl Nitrogen Lab Sample ID: 440-244619-P	Sample Result ND	Sam Qua F1 D	lifier	Added 5.00 Spike Added		Result 4.88 MS Result	Qua MS Qua F1	lifier lifier	mg/L Unit mg/L	t Sa	CI	<u>98</u> ient San <u>%Rec</u> 46	%Rec. Limits 90-110 Prep Ty Prep Ba %Rec. Limits 90-110 atrix Spil Prep Ty	Matrix pe: To tch: { ce Du pe: To	55522 F L Sp tal/ 55522 Plica tal/ 55522 F

Job ID: 440-244608-1

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 320-306 Matrix: Water	38 <mark>26/15</mark>						Clie	nt Samp	ole ID: Metho Prep Type: T	
Analysis Batch: 306826										•••••
		MB MB								
Analyte	Re	sult Qualifier	RL		MDL Unit	D	P	repared	Analyzed	Dil Fac
Nitrate Nitrite as N		ND	0.050	0.0	0031 mg/L				07/10/19 10:35	1
Lab Sample ID: LCS 320-30)6826/16					Clien	t Sar	nple ID:	Lab Control	Sample
Matrix: Water									Prep Type: T	
Analysis Batch: 306826										
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate Nitrite as N			1.00	1.02		mg/L		102	90 - 110	
Lab Sample ID: 440-244710)-A-1 MS						CI	ient San	nple ID: Matri	x Spik
Matrix: Water									Prep Type: T	-
Analysis Batch: 306826									Trop Type. I	
Analysis Baten. 000020	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	•	Qualifier	Added	-	Qualifier	Unit	D	%Rec	Limits	
Nitrate Nitrite as N	0.19		1.00	1.23		mg/L		104	90 - 110	
Lab Sample ID: 440-244710 Matrix: Water Analysis Batch: 306826						Client S	amp	le ID: Ma	atrix Spike Du Prep Type: T	
	Sample	Sample	Spike	MSD	MSD				%Rec.	RPE
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits RP	
Nitrate Nitrite as N	0.19		1.00	1.19		mg/L		100	90 - 110	4 20
Method: 365.3 - Phosph	orus, To	tal								
_	5362/1-A						Clie	nt Sam	ole ID: Metho	d Blanl
Lab Sample ID: MB 440-555 Matrix: Water	5362/1-A						Clie	nt Samp	ole ID: Metho Prep Type: T	
Lab Sample ID: MB 440-555 Matrix: Water	5362/1-A						Clie	ent Samp	Prep Type: T	otal/NA
Lab Sample ID: MB 440-555	5362/1-A	МВ МВ					Clie	nt Samp		otal/NA
Lab Sample ID: MB 440-555 Matrix: Water		MB MB esult Qualifier	RL		MDL Unit	D		ent Samp	Prep Type: T	otal/NA 555362
Lab Sample ID: MB 440-555 Matrix: Water Analysis Batch: 555384					MDL Unit	D	P		Prep Type: T Prep Batch: Analyzed	otal/NA 555362 Dil Fac
Lab Sample ID: MB 440-555 Matrix: Water Analysis Batch: 555384 Analyte	Re	sult Qualifier					P 1 06/2	repared 9/19 08:17	Prep Type: T Prep Batch: Analyzed	otal/NA 555362 Dil Fac
Lab Sample ID: MB 440-555 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total	Re	sult Qualifier					P 1 06/2	repared 9/19 08:17 nple ID:	Prep Type: T Prep Batch: Analyzed 06/29/19 10:47 Lab Control	otal/NA 555362 Dil Fac Sample
Lab Sample ID: MB 440-555 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total Lab Sample ID: LCS 440-55 Matrix: Water	Re	sult Qualifier					P 1 06/2	repared 9/19 08:17 nple ID:	Prep Type: T Prep Batch: Analyzed 06/29/19 10:47 Lab Control Prep Type: T	otal/NA 555362 Dil Fac Sample otal/NA
Lab Sample ID: MB 440-555 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total Lab Sample ID: LCS 440-55	Re	sult Qualifier		0			P 1 06/2	repared 9/19 08:17 nple ID:	Prep Type: T Prep Batch: Analyzed 06/29/19 10:47 Lab Control	otal/NA 555362 Dil Fac Sample otal/NA
Lab Sample ID: MB 440-555 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total Lab Sample ID: LCS 440-55 Matrix: Water	Re	sult Qualifier	0.050	LCS	1.025 mg/L		Pr 06/2 t Sar	repared 9/19 08:17 nple ID:	Prep Type: T Prep Batch: Analyzed 06/29/19 10:47 Lab Control Prep Type: T Prep Batch:	otal/N/ 555362 Dil Fa Sample otal/N/
Lab Sample ID: MB 440-558 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total Lab Sample ID: LCS 440-55 Matrix: Water Analysis Batch: 555384	Re	sult Qualifier	0.050	LCS	0.025 mg/L	Clien	Pr 06/2 t Sar	repared 9/19 08:17 nple ID:	Prep Type: T Prep Batch: 06/29/19 10:47 Lab Control Prep Type: T Prep Batch: %Rec.	otal/NA 555362 Dil Fac Sample otal/NA
Lab Sample ID: MB 440-555 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total Lab Sample ID: LCS 440-55 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total	Re 55362/2-A	ND Qualifier	Spike Added	LCS Result	0.025 mg/L	Clien	Pi 06/2 t Sar	repared 9/19 08:17 nple ID: <u>%Rec</u> 100 -	Prep Type: T Prep Batch: 06/29/19 10:47 Lab Control Prep Type: T Prep Batch: %Rec. Limits 80 - 120	otal/N/ 555362 Dil Fa Sample otal/N/ 555362
Lab Sample ID: MB 440-555 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total Lab Sample ID: LCS 440-55 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total Lab Sample ID: 440-244457	Re 55362/2-A	ND Qualifier	Spike Added	LCS Result	0.025 mg/L	Clien	Pi 06/2 t Sar	repared 9/19 08:17 nple ID: <u>%Rec</u> 100 -	Prep Type: T Prep Batch: 06/29/19 10:47 Lab Control Prep Type: T Prep Batch: %Rec. Limits 80 - 120	otal/N/ 555362 Dil Fa Sample otal/N/ 555362 x Spike
Lab Sample ID: MB 440-555 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total Lab Sample ID: LCS 440-55 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total Lab Sample ID: 440-244457 Matrix: Water	Re 55362/2-A	ND Qualifier	Spike Added	LCS Result	0.025 mg/L	Clien	Pi 06/2 t Sar	repared 9/19 08:17 nple ID: <u>%Rec</u> 100 -	Prep Type: T Prep Batch: 06/29/19 10:47 Lab Control Prep Type: T Prep Batch: %Rec. Limits 80 - 120 nple ID: Matri Prep Type: T	otal/NA 555362 Dil Fac Sample otal/NA 555362 x Spike otal/NA
Lab Sample ID: MB 440-555 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total Lab Sample ID: LCS 440-55 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total Lab Sample ID: 440-244457	Re 55362/2-A 7-B-1-B MS	ND Qualifier	0.050 Spike Added 0.501	LCS Result 0.502	LCS Qualifier	Clien	Pi 06/2 t Sar	repared 9/19 08:17 nple ID: <u>%Rec</u> 100 -	Prep Type: T Prep Batch: <u>Analyzed</u> 06/29/19 10:47 Lab Control Prep Type: T Prep Batch: %Rec. Limits 80 - 120 nple ID: Matri Prep Type: T Prep Batch:	otal/NA 555362 Dil Fac Sample otal/NA 555362 x Spike otal/NA
Lab Sample ID: MB 440-555 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total Lab Sample ID: LCS 440-55 Matrix: Water Analysis Batch: 555384 Analyte Phosphorus, Total Lab Sample ID: 440-244457 Matrix: Water	Re 55362/2-A 7-B-1-B MS Sample	ND Qualifier	Spike Added	LCS Result 0.502	0.025 mg/L	Clien	Pi 06/2 t Sar	repared 9/19 08:17 nple ID: <u>%Rec</u> 100 -	Prep Type: T Prep Batch: 06/29/19 10:47 Lab Control Prep Type: T Prep Batch: %Rec. Limits 80 - 120 nple ID: Matri Prep Type: T	otal/NA 555362 Dil Fac Sample otal/NA 555362 x Spike otal/NA

Job ID: 440-244608-1

Method: 365.3 - Phosphorus, Total (Continued)

Lab Sample ID: 440-24445	7-B-1-C MS	D				Client	Samp	le ID: N	latrix Spil	ke Dup	licate
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 555384									Prep Ba	atch: 5	55362
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Phosphorus, Total	0.15	F1	0.501	0.217	F1	mg/L		13	75 - 125	4	20

Method: 420.1 - Phenolics, Total Recoverable

Lab Sample ID: MB 680-576	470/1-A							(Clie	nt Samp	ole ID: Met	thod	Blank
Matrix: Water											Prep Type	e: Tot	tal/NA
Analysis Batch: 576857											Prep Bat		
-		MB MB											
Analyte	Re	sult Quali	fier	RL	MDL	Unit		D	Pr	repared	Analyze	d	Dil Fac
Phenolics, Total Recoverable		ND	0.	.050	0.025	mg/L		_ (07/0 <i>°</i>	1/19 10:02	07/02/19 10	0:49	
Lab Sample ID: LCS 680-576	6470/2-A						Clie	ent	San	nple ID:	Lab Cont	rol Sa	ample
Matrix: Water											Prep Type		
Analysis Batch: 576857											Prep Bat		
•			Spike	LCS	LCS						%Rec.		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Phenolics, Total Recoverable			0.100	0.0868			mg/L		_	87	75 - 125		
Lab Sample ID: 440-244688-	-J-1-B MS								Cli	ient San	nple ID: M	atrix	Spike
Matrix: Water											Prep Type		
Analysia Potoby 576957											Prep Bat		
Analysis Daluii: 3/003/	<u> </u>	Sample	Spike	MS	MS						%Rec.		
Analysis Daten: 5/005/	Sample												
Analysis Batch: 576857 Analyte	•	Qualifier	Added	Result	_	lifier	Unit		D	%Rec	Limits		
-	•	•	•	Resul 0.102	Qua	lifier	Unit mg/L		D	%Rec 102	Limits 75 - 125		
Analyte Phenolics, Total Recoverable	Result ND	Qualifier	Added		Qua	lifier	mg/L	t Sa	_	102	75 - 125	e Dup	licate
Analyte Phenolics, Total Recoverable Lab Sample ID: 440-244688-	Result ND	Qualifier	Added		Qua	lifier	mg/L	t Sa	_	102	75 - 125	_	
Analyte Phenolics, Total Recoverable Lab Sample ID: 440-244688- Matrix: Water	Result ND	Qualifier	Added		Qua	lifier	mg/L	t Sa	_	102	75 - 125 Atrix Spike Prep Type	e: Tot	tal/NA
Analyte Phenolics, Total Recoverable Lab Sample ID: 440-244688- Matrix: Water	Result ND	Qualifier	Added	0.102	Qua		mg/L	t Sa	_	102	75 - 125	e: Tot	tal/NA
Analyte Phenolics, Total Recoverable Lab Sample ID: 440-244688-	Result ND -J-1-C MSI Sample	Qualifier	Added 0.100	0.102	Qua)	mg/L	t Sa	_	102	75 - 125 atrix Spike Prep Type Prep Bate	e: Tot	tal/NA 7647(

Method: ASTM D5057-90 - Specific Gravity and Bulk Density (Screening)

Lab Sample ID: 180-92006- Matrix: Water Analysis Batch: 284432	A-1 DU					C	Client Sample ID: Dup Prep Type: Tot	
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Specific Gravity	1.0		0.986		No Unit		2	20

Method: SM 2540B - Solids, Total

Lab Sample ID: MB 440-554877/1 Matrix: Water Analysis Batch: 554877 MB MB							Client Sarr	ple ID: Method Prep Type: To	
	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Solids	ND		10	10	mg/L			06/26/19 17:46	1

Eurofins TestAmerica, Irvine

8 9

Job ID: 440-244608-1

Method: SM 2540B - Solids, Total (Continued)

Lab Sample ID: LCS 440-55 Matrix: Water Analysis Batch: 554877	54877/2							Cli	ent	Sar		Lab Contr Prep Type		
Analysis Baten. coverr			Spike		LCS	LCS	5					%Rec.		
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Total Solids			1000		1020			mg/L		_	102	90 - 110		
Lab Sample ID: 440-244608 Matrix: Water	8-1 DU								Cli	ien		e ID: 0620 Prep Type		
Analysis Batch: 554877	Comula	Comula			DU	DU								RPD
Analyta		Sample Qualifier			Result		lifior	Unit		D			RPD	Limit
Analyte Total Solids	17000				17700	Qua	liner	mg/L		_			6	10
– Method: SM 4500 CN E	- Cvanid	e Total												
_		o, rotar												
Lab Sample ID: MB 440-558 Matrix: Water	5064/1-A								0	Clie		ole ID: Met Prep Type		
Analysis Batch: 555114												Prep Bato		
		MB MB										Trop Date		
Analyte	Re	sult Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	1	Dil Fac
Cyanide, Total		ND		0.025	C	.013	mg/L		- (06/2	7/19 14:53	06/27/19 20	:43	1
Lab Sample ID: LCS 440-55	55064/2-A							Cli	ent	Sar	nple ID:	Lab Contr	ol S	ample
Matrix: Water												Prep Type		
Analysis Batch: 555114												Prep Bato		
-			Spike		LCS	LCS	5					%Rec.		
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Cyanide, Total			0.200		0.201			mg/L			100	80 - 120		
 Lab Sample ID: 720-93715-	K-1-B MS									СІ	ient San	nple ID: Ma	ıtrix	Spike
Matrix: Water												Prep Type		
Analysis Batch: 555114												Prep Bato		
	Sample	Sample	Spike		MS	MS						%Rec.		
Analyte	Result	Qualifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Cyanide, Total	ND		0.200		0.198			mg/L		_	99	75 - 125		
	K-1-C MSD)						Client	t Sa	mp	le ID: Ma	atrix Spike	Dup	olicate
Matrix: Water												Prep Type	: To	tal/NA
Analysis Batch: 555114												Prep Bato		
-	Sample	Sample	Spike		MSD	MSI	כ					%Rec.		RPD
Analyte	Result	Qualifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Cyanide, Total	ND		0.200		0.200			mg/L			100	75 - 125	1	20
Method: SM 4500 NH3 E) - Ammo	onia												
_ Lab Sample ID: MB 440-555 Matrix: Water	5710/2-A								(Clie		ole ID: Met Prep Type		
Analysis Batch: 555735												Prep Bate		
Awalista	-	MB MB		_ .			11 14		-	_		A I		
Analyte	Re	Sult Qualifier		RL			Unit		D - 7		repared	Analyzec		Dil Fac
Ammonia (as N)		ND		0.50			mg/L				2/19 04:00			1
Ammonia as NH3		ND		0.60		0.12	mg/L		C	57/02	2/19/04:00	07/02/19 07	.00	1

QC Sample Results

Job ID: 440-244608-1

Method: SM 4500 NH3 D - Ammonia (Continued)

Lab Sample ID: LCS 440-5	55710/1-A					Clie	nt Sai	mple ID	: Lab Con	trol Sa	ample
Matrix: Water									Prep Typ		
Analysis Batch: 555735									Prep Ba	tch: 5	55710
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ammonia (as N)			2.50	2.29		mg/L		92	85 - 115		
Ammonia as NH3			3.04	2.78		mg/L		92	85 - 115		
Lab Sample ID: MRL 440-5	55710/3-A					Clie	nt Sai	mple ID	: Lab Con	trol Sa	ample
Matrix: Water								- C.	Prep Typ		
Analysis Batch: 555735									Prep Ba		
			Spike	MRL	MRL				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ammonia (as N)			0.500	0.503		mg/L		101	10 - 200		
Ammonia as NH3			0.607	0.611		mg/L		101	10 - 200		
_ Lab Sample ID: 440-244729	9-A-6-B MS						C	lient Sa	mple ID: N	/latrix 3	Spike
Matrix: Water									· Prep Typ		
Analysis Batch: 555735									Prep Ba		
· ·····, · ··· · · · · · · · · · · · ·	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	-	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ammonia (as N)	0.13		2.50	2.57		mg/L		97	75 - 125		
Ammonia as NH3	0.16		3.04	3.12		mg/L		97	75 - 125		
						U U					
Lab Sample ID: 440-244729	9-A-6-C MS	D				Client	Samp	le ID: N	latrix Spik		
Matrix: Water									Prep Typ		
Analysis Batch: 555735									Prep Ba	tch: 5	
		Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ammonia (as N)	0.13		2.50	2.66		mg/L		101	75 - 125	4	15
Ammonia as NH3 _	0.16	J	3.04	3.24		mg/L		101	75 - 125	4	15
 Lab Sample ID: 440-244608	8-1 DU						Clien	t Samp	le ID: 0620) BUT	CHER
Matrix: Water									Prep Typ		
Analysis Batch: 555735									Prep Ba		
Analysis Baten. 660100	Sample	Sample		DU	DU				Перва		RPD
Analyte	•	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Ammonia (as N)	62			64.1		mg/L				4	15
Ammonia as NH3	75			77.9		mg/L				4	15
Method: SM 5220D - CC	DD										
_ Lab Sample ID: MB 440-55	5681/3						Clie	ent Sam	nple ID: Me	ethod I	Blank
Matrix: Water									Prep Typ		
Analysis Batch: 555681											
Awalista	-	MB MB	_			-			.		
Analyte	Re	esult Qualifie	e r		MDL Unit		D P	repared	Analyz		Dil Fac
Chemical Oxygen Demand		ND		20	10 mg/L				07/01/19	18:36	1
	EEC04/4					Clie	nt Sai	mple ID	: Lab Con	trol Sa	ample
Lab Sample ID: LCS 440-5	55001/4							-			tal/NA
	55001/4									<i>i</i> e. 101	
Matrix: Water	55001/4								гер тур	. 100	
	5566 1/4		Spike	LCS	LCS				%Rec.	<i>.</i> 100	
Matrix: Water	5500 1/4		Spike Added		LCS Qualifier	Unit	D	%Rec		<i>.</i> 100	

Method: SM 5220D - COD (Continued)

Lab Sample ID: 440-24447 Matrix: Water Analysis Batch: 555681	2-I-1 MS						C	lient Sa	mple ID: Prep Ty			
Analysis Datch. 555001	Sample	Sample	Spike	MS	MS				%Rec.			
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits			2
Chemical Oxygen Demand	29		200	210		mg/L		90	70 - 120			
Lab Sample ID: 440-24447 Matrix: Water Analysis Batch: 555681	2-I-1 MSD					Client	Samp	ole ID: N	latrix Spi Prep Ty			
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chemical Oxygen Demand	29		200	210		mg/L		90	70 - 120	0	15	

Prep Type

Total/NA

Matrix

Water

Client Sample ID

0620 OD STREAMS

Lab Control Sample Dup

Prep Batch

Method

8260B

	Dava Detek	14
lethod	Prep Batch	
25		15
25		
25		

GC/MS VOA

Lab Sample ID

440-244608-2

440 Z44000 Z			viator	02000	
440-244608-3	0621 BUTCHER	Total/NA	Water	8260B	
440-244608-4	0621 OD STREAMS	Total/NA	Water	8260B	
MB 440-555513/4	Method Blank	Total/NA	Water	8260B	
LCS 440-555513/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 440-555513/7	Lab Control Sample Dup	Total/NA	Water	8260B	
550-124860-N-1 MS	Matrix Spike	Total/NA	Water	8260B	
550-124860-N-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	
analysis Batch: 555	721				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	8260B	
440-244608-3 - RA	0621 BUTCHER	Total/NA	Water	8260B	
MB 440-555721/4	Method Blank	Total/NA	Water	8260B	
LCS 440-555721/5	Lab Control Sample	Total/NA	Water	8260B	
440-244488-B-3 MS	Matrix Spike	Total/NA	Water	8260B	
440-244488-B-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	
Prep Batch: 555027	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	625	
440-244608-2	0620 OD STREAMS	Total/NA	Water	625	
440-244608-3	0621 BUTCHER	Total/NA	Water	625	
440-244608-4	0621 OD STREAMS	Total/NA	Water	625	
MB 440-555027/1-A	Method Blank	Total/NA	Water	625	
LCS 440-555027/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 440-555027/3-A	Lab Control Sample Dup	Total/NA	Water	625	
Analysis Batch: 5554	490				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	625	55502
440-244608-2	0620 OD STREAMS	Total/NA	Water	625	555027
440-244608-3	0621 BUTCHER	Total/NA	Water	625	55502
440-244608-4	0621 OD STREAMS	Total/NA	Water	625	55502
MB 440-555027/1-A	Method Blank	Total/NA	Water	625	55502
LCS 440-555027/2-A	Lab Control Sample	Total/NA	Water	625	555027

HPLC/IC

Prep Batch: 555345

LCSD 440-555027/3-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	8315_W_Prep	
440-244608-2	0620 OD STREAMS	Total/NA	Water	8315_W_Prep	
440-244608-3	0621 BUTCHER	Total/NA	Water	8315_W_Prep	
440-244608-4	0621 OD STREAMS	Total/NA	Water	8315_W_Prep	
MB 440-555345/1-A	Method Blank	Total/NA	Water	8315_W_Prep	
LCS 440-555345/2-A	Lab Control Sample	Total/NA	Water	8315_W_Prep	
440-244801-A-1-A MS	Matrix Spike	Total/NA	Water	8315_W_Prep	
440-244801-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	8315_W_Prep	

Total/NA

Eurofins TestAmerica, Irvine

625

Water

555027

3 4 5 6 7 8 9

HPLC/IC

Analysis Batch: 555542

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	8315A	555345
440-244608-2	0620 OD STREAMS	Total/NA	Water	8315A	555345
440-244608-3	0621 BUTCHER	Total/NA	Water	8315A	555345
440-244608-4	0621 OD STREAMS	Total/NA	Water	8315A	555345
MB 440-555345/1-A	Method Blank	Total/NA	Water	8315A	555345
LCS 440-555345/2-A	Lab Control Sample	Total/NA	Water	8315A	555345
440-244801-A-1-A MS	Matrix Spike	Total/NA	Water	8315A	555345
440-244801-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	8315A	555345

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	NO3NO2 Calc	
440-244608-2	0620 OD STREAMS	Total/NA	Water	NO3NO2 Calc	
440-244608-3	0621 BUTCHER	Total/NA	Water	NO3NO2 Calc	
440-244608-4	0621 OD STREAMS	Total/NA	Water	NO3NO2 Calc	

Metals

Prep Batch: 554883

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total Recoverable	Water	3005A	
440-244608-3	0621 BUTCHER	Total Recoverable	Water	3005A	
MB 440-554883/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 440-554883/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
440-244629-K-1-B MS ^10	Matrix Spike	Total Recoverable	Water	3005A	
440-244629-K-1-C MSD ^10	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Analysis Batch: 555055

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total Recoverable	Water	6010B	554883
440-244608-3	0621 BUTCHER	Total Recoverable	Water	6010B	554883
MB 440-554883/1-A	Method Blank	Total Recoverable	Water	6010B	554883
LCS 440-554883/2-A	Lab Control Sample	Total Recoverable	Water	6010B	554883
440-244629-K-1-B MS ^10	Matrix Spike	Total Recoverable	Water	6010B	554883
440-244629-K-1-C MSD ^10	Matrix Spike Duplicate	Total Recoverable	Water	6010B	554883

Prep Batch: 555647

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	7470A	
440-244608-2	0620 OD STREAMS	Total/NA	Water	7470A	
440-244608-3	0621 BUTCHER	Total/NA	Water	7470A	
440-244608-4	0621 OD STREAMS	Total/NA	Water	7470A	
MB 440-555647/1-A	Method Blank	Total/NA	Water	7470A	
LCS 440-555647/2-A	Lab Control Sample	Total/NA	Water	7470A	
720-93762-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 555834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	7470A	555647
440-244608-2	0620 OD STREAMS	Total/NA	Water	7470A	555647
440-244608-3	0621 BUTCHER	Total/NA	Water	7470A	555647

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample Job ID: 440-244608-1

8
9

12 13 14

15

556202

Metals (Continued)

Analysis Batch: 555834 (Continued)

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
40-244608-4	0621 OD STREAMS	Total/NA	Water	7470A	555647
IB 440-555647/1-A	Method Blank	Total/NA	Water	7470A	555647
CS 440-555647/2-A	Lab Control Sample	Total/NA	Water	7470A	555647
20-93762-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	555647
ep Batch: 556202					
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
40-244608-2	0620 OD STREAMS	Total Recoverable	Water	3005A	
40-244608-4	0621 OD STREAMS	Total Recoverable	Water	3005A	
IB 440-556202/1-A	Method Blank	Total Recoverable	Water	3005A	
CS 440-556202/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
40-244965-Y-1-B MS	Matrix Spike	Total Recoverable	Water	3005A	
40-244965-Y-1-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	
alysis Batch: 5563	98				
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
40-244608-2	0620 OD STREAMS	Total Recoverable	Water	6010B	55620
40-244608-4	0621 OD STREAMS	Total Recoverable	Water	6010B	55620
IB 440-556202/1-A	Method Blank	Total Recoverable	Water	6010B	55620
CS 440-556202/2-A	Lab Control Sample	Total Recoverable	Water	6010B	55620
40-244965-Y-1-B MS	Matrix Spike	Total Recoverable	Water	6010B	55620

General Chemistry

Matrix Spike Duplicate

440-244965-Y-1-C MSD

Analysis Batch: 284432

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	ASTM D5057-90
440-244608-2	0620 OD STREAMS	Total/NA	Water	ASTM D5057-90
440-244608-3	0621 BUTCHER	Total/NA	Water	ASTM D5057-90
440-244608-4	0621 OD STREAMS	Total/NA	Water	ASTM D5057-90
180-92006-A-1 DU	Duplicate	Total/NA	Water	ASTM D5057-90

Total Recoverable

Water

6010B

Analysis Batch: 306826

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	353.2	
440-244608-2	0620 OD STREAMS	Total/NA	Water	353.2	
440-244608-3	0621 BUTCHER	Total/NA	Water	353.2	
440-244608-4	0621 OD STREAMS	Total/NA	Water	353.2	
MB 320-306826/15	Method Blank	Total/NA	Water	353.2	
LCS 320-306826/16	Lab Control Sample	Total/NA	Water	353.2	
440-244710-A-1 MS	Matrix Spike	Total/NA	Water	353.2	
440-244710-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	353.2	

Analysis Batch: 554877

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	SM 2540B	
440-244608-2	0620 OD STREAMS	Total/NA	Water	SM 2540B	
440-244608-3	0621 BUTCHER	Total/NA	Water	SM 2540B	
440-244608-4	0621 OD STREAMS	Total/NA	Water	SM 2540B	
MB 440-554877/1	Method Blank	Total/NA	Water	SM 2540B	

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

General Chemistry (Continued)

Analysis Batch: 554877 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 440-554877/2	Lab Control Sample	Total/NA	Water	SM 2540B	
440-244608-1 DU	0620 BUTCHER	Total/NA	Water	SM 2540B	

Analysis Batch: 554894

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	2540E	
440-244608-2	0620 OD STREAMS	Total/NA	Water	2540E	
440-244608-3	0621 BUTCHER	Total/NA	Water	2540E	
440-244608-4	0621 OD STREAMS	Total/NA	Water	2540E	
MB 440-554894/1	Method Blank	Total/NA	Water	2540E	
440-244608-1 DU	0620 BUTCHER	Total/NA	Water	2540E	

Prep Batch: 555064

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	Distill/CN	
440-244608-2	0620 OD STREAMS	Total/NA	Water	Distill/CN	
440-244608-3	0621 BUTCHER	Total/NA	Water	Distill/CN	
440-244608-4	0621 OD STREAMS	Total/NA	Water	Distill/CN	
MB 440-555064/1-A	Method Blank	Total/NA	Water	Distill/CN	
LCS 440-555064/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
720-93715-K-1-B MS	Matrix Spike	Total/NA	Water	Distill/CN	
720-93715-K-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	Distill/CN	

Analysis Batch: 555114

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	SM 4500 CN E	555064
440-244608-2	0620 OD STREAMS	Total/NA	Water	SM 4500 CN E	555064
440-244608-3	0621 BUTCHER	Total/NA	Water	SM 4500 CN E	555064
440-244608-4	0621 OD STREAMS	Total/NA	Water	SM 4500 CN E	555064
MB 440-555064/1-A	Method Blank	Total/NA	Water	SM 4500 CN E	555064
LCS 440-555064/2-A	Lab Control Sample	Total/NA	Water	SM 4500 CN E	555064
720-93715-K-1-B MS	Matrix Spike	Total/NA	Water	SM 4500 CN E	555064
720-93715-K-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 CN E	555064

Prep Batch: 555267

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	351.2	
440-244608-2	0620 OD STREAMS	Total/NA	Water	351.2	
440-244608-3	0621 BUTCHER	Total/NA	Water	351.2	
440-244608-4	0621 OD STREAMS	Total/NA	Water	351.2	
MB 440-555267/3-A	Method Blank	Total/NA	Water	351.2	
LCS 440-555267/4-A	Lab Control Sample	Total/NA	Water	351.2	
LCSD 440-555267/5-A	Lab Control Sample Dup	Total/NA	Water	351.2	
440-244619-K-1-B MS	Matrix Spike	Total/NA	Water	351.2	
440-244619-K-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	351.2	

Prep Batch: 555282

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	1664A	
440-244608-2	0620 OD STREAMS	Total/NA	Water	1664A	
440-244608-3	0621 BUTCHER	Total/NA	Water	1664A	

7/25/2019 (Rev. 1)

Job ID: 440-244608-1

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

General Chemistry (Continued)

Prep Batch: 555282 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-4	0621 OD STREAMS	Total/NA	Water	1664A	
MB 440-555282/1-A	Method Blank	Total/NA	Water	1664A	
LCS 440-555282/2-A	Lab Control Sample	Total/NA	Water	1664A	
LCSD 440-555282/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	

Analysis Batch: 555325

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	1664A	555282
440-244608-2	0620 OD STREAMS	Total/NA	Water	1664A	555282
440-244608-3	0621 BUTCHER	Total/NA	Water	1664A	555282
440-244608-4	0621 OD STREAMS	Total/NA	Water	1664A	555282
MB 440-555282/1-A	Method Blank	Total/NA	Water	1664A	555282
LCS 440-555282/2-A	Lab Control Sample	Total/NA	Water	1664A	555282
LCSD 440-555282/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	555282

Prep Batch: 555362

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	365.2/365.3/365	
440-244608-2	0620 OD STREAMS	Total/NA	Water	365.2/365.3/365	
440-244608-3	0621 BUTCHER	Total/NA	Water	365.2/365.3/365	
440-244608-4	0621 OD STREAMS	Total/NA	Water	365.2/365.3/365	
MB 440-555362/1-A	Method Blank	Total/NA	Water	365.2/365.3/365	
LCS 440-555362/2-A	Lab Control Sample	Total/NA	Water	365.2/365.3/365	
440-244457-B-1-B MS	Matrix Spike	Total/NA	Water	365.2/365.3/365	
440-244457-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	365.2/365.3/365	

Analysis Batch: 555384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	365.3	555362
440-244608-2	0620 OD STREAMS	Total/NA	Water	365.3	555362
440-244608-3	0621 BUTCHER	Total/NA	Water	365.3	555362
440-244608-4	0621 OD STREAMS	Total/NA	Water	365.3	555362
MB 440-555362/1-A	Method Blank	Total/NA	Water	365.3	555362
LCS 440-555362/2-A	Lab Control Sample	Total/NA	Water	365.3	555362
440-244457-B-1-B MS	Matrix Spike	Total/NA	Water	365.3	555362
440-244457-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	365.3	555362

Analysis Batch: 555602

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	351.2	555267
440-244608-2	0620 OD STREAMS	Total/NA	Water	351.2	555267
440-244608-3	0621 BUTCHER	Total/NA	Water	351.2	555267
440-244608-4	0621 OD STREAMS	Total/NA	Water	351.2	555267
MB 440-555267/3-A	Method Blank	Total/NA	Water	351.2	555267
LCS 440-555267/4-A	Lab Control Sample	Total/NA	Water	351.2	555267
LCSD 440-555267/5-A	Lab Control Sample Dup	Total/NA	Water	351.2	555267
440-244619-K-1-B MS	Matrix Spike	Total/NA	Water	351.2	555267
440-244619-K-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	351.2	555267

General Chemistry

Analysis Batch: 555681

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	SM 5220D	
440-244608-2	0620 OD STREAMS	Total/NA	Water	SM 5220D	
440-244608-3	0621 BUTCHER	Total/NA	Water	SM 5220D	
440-244608-4	0621 OD STREAMS	Total/NA	Water	SM 5220D	
MB 440-555681/3	Method Blank	Total/NA	Water	SM 5220D	
LCS 440-555681/4	Lab Control Sample	Total/NA	Water	SM 5220D	
440-244472-I-1 MS	Matrix Spike	Total/NA	Water	SM 5220D	
440-244472-I-1 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 5220D	

Prep Batch: 555710

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	SM 4500 NH3 B	
440-244608-2	0620 OD STREAMS	Total/NA	Water	SM 4500 NH3 B	
440-244608-3	0621 BUTCHER	Total/NA	Water	SM 4500 NH3 B	
440-244608-4	0621 OD STREAMS	Total/NA	Water	SM 4500 NH3 B	
MB 440-555710/2-A	Method Blank	Total/NA	Water	SM 4500 NH3 B	
LCS 440-555710/1-A	Lab Control Sample	Total/NA	Water	SM 4500 NH3 B	
MRL 440-555710/3-A	Lab Control Sample	Total/NA	Water	SM 4500 NH3 B	
440-244729-A-6-B MS	Matrix Spike	Total/NA	Water	SM 4500 NH3 B	
440-244729-A-6-C MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 NH3 B	
440-244608-1 DU	0620 BUTCHER	Total/NA	Water	SM 4500 NH3 B	

Analysis Batch: 555735

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	SM 4500 NH3 D	555710
440-244608-2	0620 OD STREAMS	Total/NA	Water	SM 4500 NH3 D	555710
440-244608-3	0621 BUTCHER	Total/NA	Water	SM 4500 NH3 D	555710
440-244608-4	0621 OD STREAMS	Total/NA	Water	SM 4500 NH3 D	555710
MB 440-555710/2-A	Method Blank	Total/NA	Water	SM 4500 NH3 D	555710
LCS 440-555710/1-A	Lab Control Sample	Total/NA	Water	SM 4500 NH3 D	555710
MRL 440-555710/3-A	Lab Control Sample	Total/NA	Water	SM 4500 NH3 D	555710
440-244729-A-6-B MS	Matrix Spike	Total/NA	Water	SM 4500 NH3 D	555710
440-244729-A-6-C MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 NH3 D	555710
440-244608-1 DU	0620 BUTCHER	Total/NA	Water	SM 4500 NH3 D	555710

Analysis Batch: 556060

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch	I
440-244608-1	0620 BUTCHER	Total/NA	Water	Total Nitrogen	
440-244608-2	0620 OD STREAMS	Total/NA	Water	Total Nitrogen	
440-244608-3	0621 BUTCHER	Total/NA	Water	Total Nitrogen	
440-244608-4	0621 OD STREAMS	Total/NA	Water	Total Nitrogen	

Prep Batch: 576470

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	Distill/Phenol	
440-244608-2	0620 OD STREAMS	Total/NA	Water	Distill/Phenol	
440-244608-3	0621 BUTCHER	Total/NA	Water	Distill/Phenol	
440-244608-4	0621 OD STREAMS	Total/NA	Water	Distill/Phenol	
MB 680-576470/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 680-576470/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
440-244688-J-1-B MS	Matrix Spike	Total/NA	Water	Distill/Phenol	

Eurofins TestAmerica, Irvine

General Chemistry (Continued)

Prep Batch: 576470 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244688-J-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	Distill/Phenol	
Analysis Batch: 5768	57				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244608-1	0620 BUTCHER	Total/NA	Water	420.1	576470
440-244608-2	0620 OD STREAMS	Total/NA	Water	420.1	576470
440-244608-3	0621 BUTCHER	Total/NA	Water	420.1	576470
440-244608-4	0621 OD STREAMS	Total/NA	Water	420.1	576470
MB 680-576470/1-A	Method Blank	Total/NA	Water	420.1	576470
LCS 680-576470/2-A	Lab Control Sample	Total/NA	Water	420.1	576470
440-244688-J-1-B MS	Matrix Spike	Total/NA	Water	420.1	576470
440-244688-J-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	420.1	576470

Job ID: 440-244608-1

Qualifiers

	/ntec Consultants, Inc. Job ID: 440-244608-1 Ocean Disposal WW Sample	
Qualifiers		
GC/MS VOA Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
GC/MS Semi Qualifier	VOA Qualifier Description	5
X	Surrogate is outside control limits	
HPLC/IC Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time	
<mark>Metals</mark> Qualifier	Qualifier Description	8
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	9
F2	MS/MSD RPD exceeds control limits	1
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
General Che	mistry	
Qualifier	Qualifier Description	
F1	MS and/or MSD Recovery is outside acceptance limits.	
Glossary		1
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 440-244608-1

Laboratory: Eurofins TestAmerica, Irvine

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Program		EPA Region	Identification Number	Expiration Date
California	State Program		9	CA ELAP 2706	06-30-19 *
The following analytes the agency does not o		, but the laboratory	/ is not certified by the	e governing authority. This	list may include analytes for whic
Analysis Method	Prep Method	Matrix	Analyt	e	
6010B	3005A	Water	Alumir	num	
6010B	3005A	Water	Boron		
6010B	3005A	Water	Magnesium		
6010B	3005A	Water	Manga	anese	
6010B	3005A	Water	Titaniu	um	
8260B		Water	m,p-X	ylene	
8260B		Water	Xylene	es, Total	
NO3NO2 Calc		Water	Nitrate	e as N	
NO3NO2 Calc		Water	Nitrite	as N	
SM 2540B		Water	Total S	Solids	
SM 4500 NH3 D	SM 4500 NH3 B	Water	Ammo	onia as NH3	
Total Nitrogen		Water	Nitrog	en, Total	

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State		19-033-0	06-27-20
Arkansas DEQ	State Program	6	88-0690	06-27-20
California	State		2891	04-30-20
California	State Program	9	2891	04-30-20
Connecticut	State		PH-0688	09-30-20
Connecticut	State Program	1	PH-0688	09-30-20
Florida	NELAP	4	E871008	06-30-20
Florida	NELAP		E871008	06-30-20
Illinois	NELAP	5	200005	06-30-20
Illinois	NELAP		004375	06-30-20
Kansas	NELAP	7	E-10350	01-31-20
Kansas	NELAP		E-10350	03-31-20
Kentucky (UST)	State Program	4	162013	04-30-20
Kentucky (WW)	State Program	4	KY98043	12-31-19
Louisiana	NELAP	6	04041	06-30-20
Minnesota	NELAP Secondary AB	5	042-999-482	12-31-19
Nevada	State		PA00164	07-31-19
Nevada	State Program	9	PA00164	07-31-19
New Hampshire	NELAP	1	2030	04-04-20
New Jersey	NELAP	2	PA005	06-30-20
New Jersey	NELAP		PA005	06-30-20
New York	NELAP	2	11182	03-31-20
New York	NELAP		11182	04-01-20
North Carolina (WW/SW)	State Program	4	434	12-31-19
Oregon	NELAP	10	PA-2151	02-06-20
Oregon	NELAP		PA-2151	02-06-20
Pennsylvania	NELAP	3	02-00416	04-30-20
Pennsylvania	NELAP		02-00416	04-30-20
Rhode Island	State		LAO00362	12-30-19

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Job ID: 440-244608-1

Laboratory: Eurofins TestAmerica, Pittsburgh (Continued) All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Rhode Island	State Program	1	LAO00362	12-30-19
South Carolina	State Program	4	89014	04-30-20
Texas	NELAP	6	T104704528-15-2	03-31-20
Texas	NELAP		T104704528	03-31-20
US Fish & Wildlife	Federal		LE94312A-1	07-31-19
US Fish & Wildlife	US Federal Programs		058448	07-31-20
USDA	Federal		P-Soil-01	06-26-22
Utah	NELAP	8	PA001462015-4	05-31-20
Utah	NELAP		PA001462019-8	05-31-20
Virginia	NELAP	3	460189	09-14-19
Virginia	NELAP		10043	09-14-19
West Virginia DEP	State		142	01-31-20
West Virginia DEP	State Program	3	142	01-31-20
Wisconsin	State		998027800	08-31-19
Wisconsin	State Program	5	998027800	08-31-19

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Job ID: 440-244608-1

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-020	01-20-21
ANAB	DoD		L2468	01-20-21
ANAB	DOE		L2468.01	01-20-21
Arizona	State Program	9	AZ0708	08-11-19
Arkansas DEQ	State Program	6	88-0691	06-17-20
California	State Program	9	2897	01-31-20
Colorado	State Program	8	CA00044	08-31-19
Connecticut	State		PH-0691	06-30-21
Connecticut	State Program	1	PH-0691	06-30-21
Florida	NELAP	4	E87570	06-30-20
Florida	NELAP		E87570	06-30-20
Hawaii	State Program	9	N/A	01-29-20
Illinois	NELAP	5	200060	03-17-19 *
Kansas	NELAP	7	E-10375	10-31-19
Louisiana	NELAP	6	30612	06-30-20
Maine	State Program	1	CA0004	04-14-20
Michigan	State Program	5	9947	01-31-20
Nevada	State Program	9	CA00044	07-31-19
New Hampshire	NELAP	1	2997	04-20-20
New York	NELAP	2	11666	04-01-20
Oregon	NELAP	10	4040	01-29-20
Oregon	NELAP		4040	01-29-20
Pennsylvania	NELAP	3	68-01272	03-31-20
Pennsylvania	NELAP		68-01272	03-31-20
Texas	NELAP	6	T104704399	05-31-20
US Fish & Wildlife	Federal		LE148388-0	07-31-19
USDA	Federal		P330-18-00239	01-17-21
USEPA UCMR	Federal	1	CA00044	12-31-20
Utah	NELAP	8	CA00044	02-29-20
/ermont	State Program	1	VT-4040	04-16-20
Virginia	NELAP	3	460278	03-14-20
Washington	State Program	10	C581	05-05-20
West Virginia (DW)	State Program	3	9930C	12-31-19
Wyoming	State Program	8	8TMS-L	01-28-19 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample Job ID: 440-244608-1

Laboratory: Eurofins TestAmerica, Savannah

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
	AFCEE		SAVLAB	
Alabama	State Program	4	41450	06-30-19 *
laska	State Program	10		06-30-20
laska (UST)	State Program	10	UST-104	09-22-19
NAB	DoD		L2463	09-22-19
NAB	ISO/IEC 17025		L2463.01	09-22-19
izona	State Program	9	AZ0808	12-14-19
rkansas DEQ	State Program	6	88-0692	02-01-20
alifornia	State Program	9	2939	06-30-19 *
olorado	State Program	8	N/A	12-31-19
onnecticut	State Program	1	PH-0161	03-31-21
orida	NELAP	4	E87052	06-30-20
eorgia	State Program	4	803	06-30-20
Jam	State Program	9	15-005r	04-17-20
awaii	State Program	9	N/A	06-30-20
nois	NELAP	5	200022	11-30-19
diana	State Program	5	N/A	06-30-20
Wa	State Program	7	353	06-30-20
entucky (DW)	State Program	4	90084	12-31-19
entucky (UST)	State Program	4	18	06-30-20
ntucky (WW)	State Program	4	90084	12-31-19
isiana	NELAP	6	30690	06-30-20
	NELAP	6	LA160019	12-31-19
isiana (DW) ne				
	State Program	1	GA00006	09-25-20
yland	State Program	3	250	12-31-19
ssachusetts	State Program	1	M-GA006	06-30-20
higan	State Program	5	9925	06-30-20
sissippi	State Program	4	N/A	06-30-19 *
oraska	State Program	7	TestAmerica-Savannah	06-30-19 *
v Jersey	NELAP	2	GA769	06-30-20
v Mexico	State Program	6	N/A	06-30-20
v York	NELAP	2	10842	04-01-20
th Carolina (DW)	State Program	4	13701	07-31-19 *
rth Carolina (WW/SW)	State Program	4	269	12-31-19
lahoma	State Program	6	9984	08-31-19
nnsylvania	NELAP	3	68-00474	06-30-20
erto Rico	State Program	2	GA00006	01-01-20
outh Carolina	State Program	4	98001	06-30-19 *
ennessee	State Program	4	TN02961	06-30-20
xas	NELAP	6	T104704185-19-13	11-30-19
xas (DW)	State Program	1	T104704185	06-30-20
Fish & Wildlife	Federal		LE058448-0	07-31-19
ginia	NELAP	3	460161	06-14-20
ashington	State Program	10	C805	06-10-20
est Virginia (DW)	State Program	3	9950C	12-31-19
est Virginia DEP	State Program	3	094	06-30-19 *
isconsin	State Program	5	999819810	08-31-19 *
yoming	State Program	8	8TMS-L	06-30-16 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

July 25, 2019

Lena Davidkova TestAmerica 17461 Derian Avenue Suite 100 Irvine, CA 92614-

Project Name: Ocean Disposal WW Sample 44022550 Physis Project ID: 1803004-003

Dear Lena,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 6/27/2019. A total of 4 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Organics Pyrethrins by EPA 625

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards, Misty Mercier 714 602-5320 Extension 202 mistymercier@physislabs.com

PROJECT SAMPLE LIST

TestAme	rica		PHYSIS Project ID: 1803004-003			
Ocean Dis	posal WW Sample 44022550		Total Samples: 4			
PHYSIS I	D Sample ID	Description	Date	Time	Matrix	
64823	0620 BUTCHER (440-244608-1)		6/20/2019	6:11	Liquid	
64824)620 OD STREAMS (440-244608-2		6/20/2019	6:33	Liquid	
64825	0621 BUTCHER (440-244608-3)		6/21/2019	6:01	Liquid	
64826)621 OD STREAMS (440-244608-4		6/21/2019	6:20	Liquid	

i - 2 of 6

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

i - 4 of 6

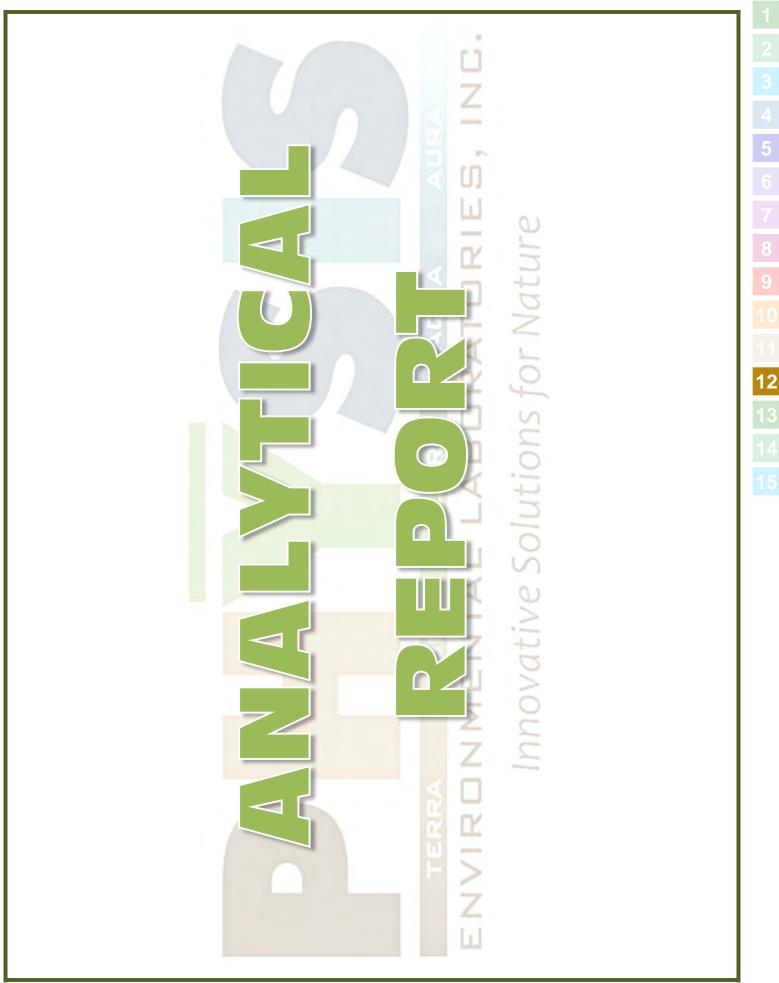
the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

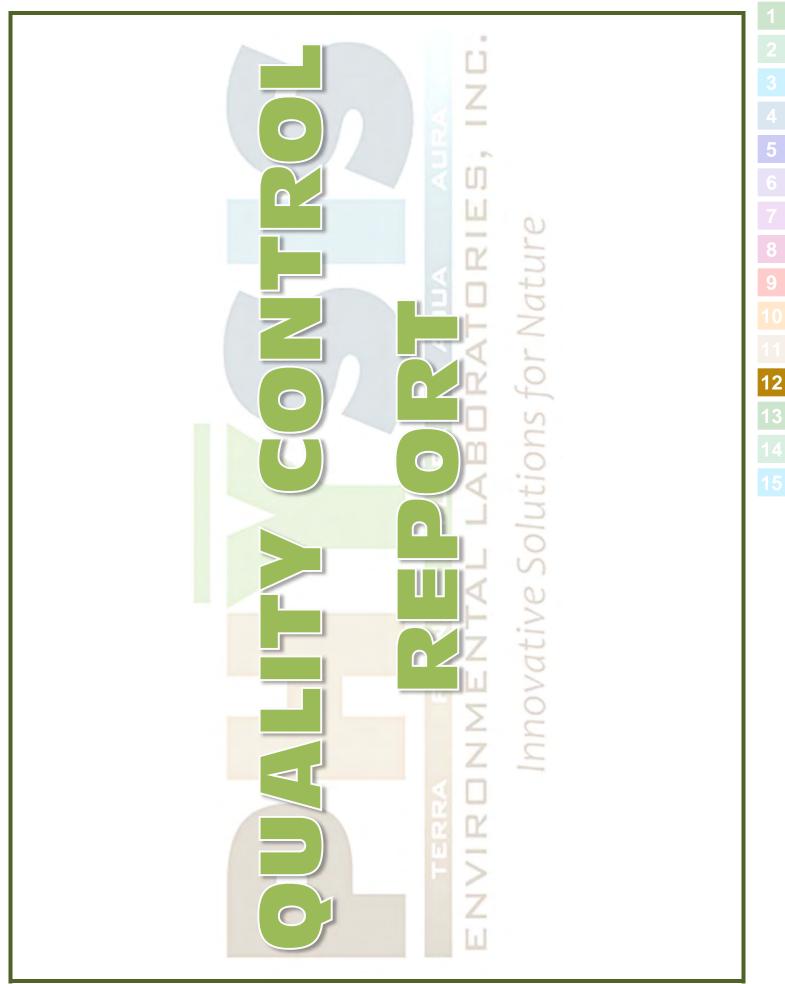
i - 5 of 6



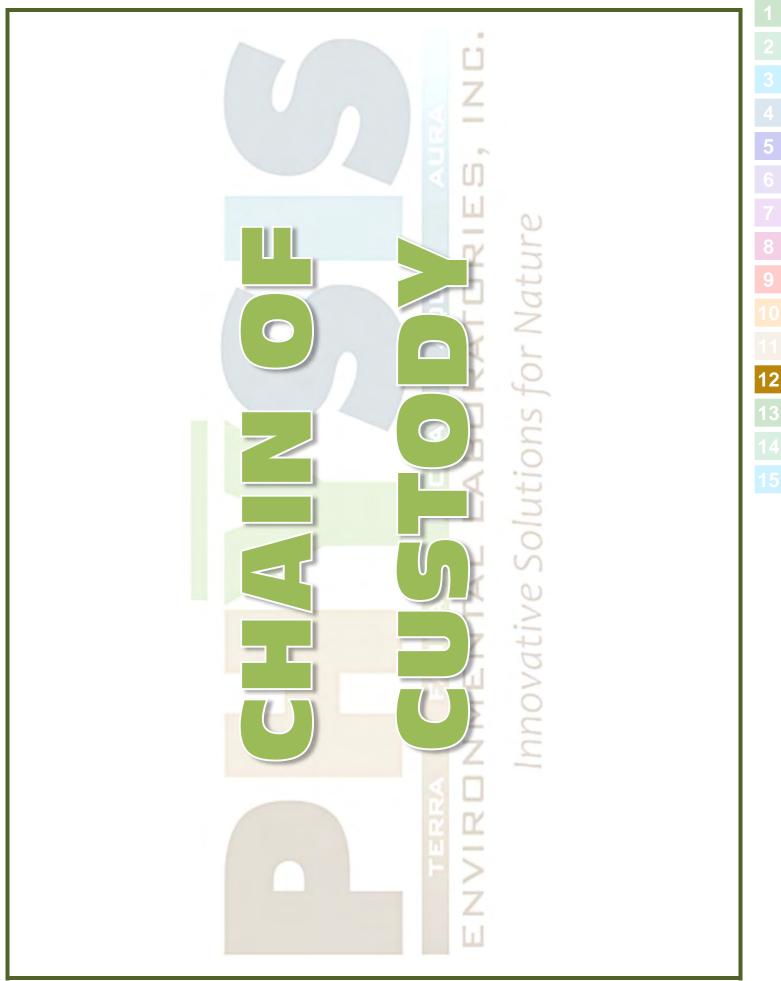
PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDI
E	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
Ν	insufficient sample, analysis could not be performed
М	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

i - 6 of 6


1904 E. Wright Circle Anaheim, CA 92806 (714) 602-5320 fax (714) 602-5321 www.phy Page 51 of 69

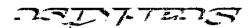
PHYSIS Project ID: 1803004-003 Client: TestAmerica Project: Ocean Disposal WW Sample 44022550


			P	yrethroid	S				
ANALYTE	Method	Units	RESUL	T MDL	RL	Fraction QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 64823-R1	0620 BUTCHER (4	140-244608-1)		Matrix: Liquid		Sampled: 20-Jun-19	6:11	Received: 27	Jun-19
Pyrethrins	EPA 625-NCI	ng/L	ND	100	200	Total	0-23068	27-Jun-19	18-Jul-19
Sample ID: 64824-R1	0620 OD STREAN	IS (440-24460	8-2)	Matrix: Liquid		Sampled: 20-Jun-19	6:33	Received: 27	Jun-19
Pyrethrins	EPA 625-NCI	ng/L	ND	100	200	Total	0-23068	27-Jun-19	18-Jul-19
Sample ID: 64825-R1	0621 BUTCHER (4	40-244608-3)		Matrix: Liquid		Sampled: 21-Jun-19	6:01	Received: 27	Jun-19
Pyrethrins	EPA 625-NCI	ng/L	ND	100	200	Total	0-23068	27-Jun-19	18-Jul-19
Sample ID: 64826-R1	0621 OD STREAM	S (440-24460)	8-4)	Matrix: Liquid		Sampled: 21-Jun-19	6:20	Received: 27	Jun-19
Pyrethrins	EPA 625-NCI	ng/L	ND	100	200	Total	O-23068	27-Jun-19	18-Jul-19

Innovative Solutions for Nature

1904 E. W	/right Circle, Anal	neim CA 92806	main: (714)	602-5320	fax: (714)	602-5321	www.p	hysislabs.com	info@physislab	os.com CA ELAP #276	9
Ру	rethroi	ds						QUAL	ITY CONT	ROL REPORT	-
ANALYTE	FRACTI	ON RESULT	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT		URACY LIMITS	PRECISION % LIMITS	QA CODE
Sample ID: 6	4822-B1	QAQC Procedura Method: EPA 625-N				C: DI Water D: 0-23068		Sampled: Prepared: 27	-Jun-19	Received: Analyzed: 17-Jul-14	9
Pyrethrins	Total	ND	100	200	ng/L						
Sample ID: 6 Pyrethrins	9 4822-BS1 Total	QAQC Procedura Method: EPA 625-N 508		200		c: DI Water D: O-23068 500	0	Sampled: Prepared: 27 102	-Jun-19 50 - 150% PASS	Received: Analyzed: 17-Jul-1	9
Sample ID: 6	4822-BS2	QAQC Procedura Method: EPA 625-N				c: DI Water D: 0-23068		Sampled: Prepared: 27	Jun-19	Received: Analyzed: 17-Jul-14	9
Pyrethrins	Total	508	100	200	ng/L	500	0	102	50 - 150% PASS	0 30 PASS	

Primary Deliverable Requested: I, II, III, IV, Other (specify) Primary Deliverable Rank: 2 Deliverable Requested: I, II, III, IV, Other (specify) Primary Deliverable Rank: 2 Empty Kit Relinquished by: Date: Relinquished by: Date:	Requested: I, II, III, IV, Other (specify) Inquished by:	requested: I. II, III, IV, Other (specify) Inquished by:	, III, IV, Other (specify)	, III, IV, Other (specify)	, ill, IV, Other (specify)			ssible Hazard Identification	Note: Since laboratory accreditations are subject to change, TestAmerica Laboratories. Inc. places the ownership of method, analyle & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not Laboratories, inc. attention immediately, if all requested accreditations are current to date, return the signed Chain of Custody attesting to add to the TestAmerica laboratory or while the provided. Any changes to accreditation status should be brought to TestAmerica laboratories. Inc. attention immediately, if all requested accreditations are current to date, return the signed Chain of Custody attesting to add compliance to TestAmerica laboratories. Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to add compliance to TestAmerica laboratories. This sample shipment is forwarded to the testAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica laboratories.		BLITZIO	8-4) 6/21/19	BUTCHER (440-244608-3) 6/20/19	81/02/0		Sample Identification - Client ID (Lab ID) Sample Date		oue. SSOW#	rruject vame: Project # Project # 44022550	Email: WO #:	PO #	State, Zbr 2A, 92806		1904 Wright Circle, , 713/2019	Physics Physics Environmental Laboratories	Shipping/Receiving Company	ion (Sub Contract Lab)	1.0
			1450			Rank: 2		a chain of custody a	lership of method, an the samples must be d Chain of Custody a		Pacific	Pacific 06:20	Pacific	Pacific	06:11 Preser	Time G=grab)							s):					Chain of Custody Record
	Company	Company	N		T			ttesting to said comp	alyte & accreditation shipped back to the ttesting to said come		Water	Water	Water	Water	Preservation Code:	O=waste/oil, BT=Tissue, A=Air)	Matrix (W=water, S=solid,									E-Mail: lena.c	Lab	ustody F
	Received by:	Received by: 1	+ mount	_	Time:	Requiren	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client	plicance to TestAmerica Laboratories, Inc.	n compliance upon cut subcontract laborator 9 TestAmerica laboratory or other instructions plicance to TestAmerica Laboratorica Line		×	×	×	×		Perf	Filtered prm MS/M (Pyrethrins	SD (Ye	s or N	or No) o)			Analysis	Company Company	Accreditations Required (See note); State Program - California	testamericaino co	Lab PM: Davidkova, Lena	
Conlar Temperatural to and an	Date/Time:	Date/Time!	Date/Time: 2:	Menior of Sublident	-		Assessed if samples are ret	and the section of the section of the	ies. This sample shipment is forward swill be provided. Any changes to ac														Requested		valioma	State of Origin:	Carrier Tracking No(s):	
	Company	Company	+/19 0920 Company C.			Archive For Months	ained longer than 1 month)	coregization status should be brought to TestA	led under chain-of-custody. If the laboratory i coreditation status should be brought to TestA		N	2	2	2	Contraining and a second secon		Number o	Other:		H - Ascorbic Acid T - TSP Dodecahydrate		D - Nacetate O - AsNaO2 D - Nitric Acid P - Na2O4S	00	440-244608-1	Page 1 of 1 Job #:	Page:	COC No:	eurofins Environment Testing


1803004-003

Sample Receipt Summary

Client: TestAmerica	Date Received: 6/27	/2019 Received B	y: MN Inspected By: RGH
Courier:	Cooler:		Temperature:
🗌 Physis 🗹 FEDEX 🗌 UPS 🔲 Client	Cooler Box T	Total #: 1	□ BLUE ✔ WET □ DRY
Start End Other:	Other:		□ None 0.9°C
	Sample Integrity Upon Rec	eipt:	
1. COC(s) included and completely filled	out		Yes
2. All sample containers arrived intact			
3. All samples listed on COC(s) are prese			
4. Information on containers consistent			
5. Correct containers and volume for all	analyses indicated		Yes
6. All samples received within method h	olding time		Yes
7. Correct preservation used for all anal	yses indicated		Yes
8. Name of sampler included on COC(s)			<u>N</u> o

Notes:

Политики	Image: NUCL 2017-573-41.0.0 Полово, Lett <	Irvine, CA 92614-5817 Phone (949) 261-1022 Fax (949) 260-3297											
The Signame is the second of the s	Image: Section of the section of t	ent Information	Sampler NICK BUT		Lab PM Davidkova,	Lena			Carrier 1	racking No(s)		COC No 440-163988-2989	1.1
00 Дата Рассост Алта Руча (В сертивания) Алта Руча (В сертивания) <t< th=""><th>Image: Image: Image:</th><th>nt Contact K Butson</th><th>2</th><th>0016</th><th>E-Mail lena.davidko</th><th>ova@testa</th><th>mencainc</th><th>com</th><th></th><th></th><th></th><th>Page 1 of 1</th><th></th></t<>	Image:	nt Contact K Butson	2	0016	E-Mail lena.davidko	ova@testa	mencainc	com				Page 1 of 1	
State 200 Des Calific Properties Des Calific Properties Processes 0 0 Microareal (Brw); Microareal (Brw); Microareal (Brw); Microareal (Brw); 0 0 Microareal (Brw); Microareal (Brw); Microareal (Brw); Microareal (Brw); 0 0 Microareal (Brw); Microareal (Brw); Microareal (Brw); Microareal (Brw); Microareal (Brw); 0 0 Microareal (Brw); Microareal (Brw	Suppose Data Reference Procession Procession Procession 0 Procession Procession Procession Procession Procession 0 Procession Procession Procession Procession Procession Procession 0 Procession Pro	npany osvritec Consultants, Inc					Ana		queste	75		# qof	
No. Display of the control and t	Полнование Полновани Полновани Полнован	ress 5 Hagev Bivd. Suite 290	Due Date Requested:			-0-8						80	;;;
Biology Development Development Development Development (a) Profiles Order for for equicity (a) Profiles Profiles Profiles Profiles Profiles Profiles (a) Profiles Profiles Profiles Profiles Profiles Profiles Profiles (a) Profiles Profiles Profiles Profiles Profiles Profiles Profiles Profiles (a) Profiles Profiles Profiles Profiles Profiles Profiles <td>Bit Distriction (a) (b) (b) (b) (c) (b) (c) (b) (c) (b) (c) (b) (c) (c) (c) <</td> <td>tierloo</td> <td></td> <td></td> <td></td> <td>HN009</td> <td>S</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N - None 0 - AsNaO2</td>	Bit Distriction (a) (b) (b) (b) (c) (b) (c) (b) (c) (b) (c) (b) (c) (c) (c) <	tierloo				HN009	S						N - None 0 - AsNaO2
Bit Distribution Distribution Inflaction Wost Wost Wost Inflaction Wost Annotation March All Properties Inflaction Bit Annotation March All Properties March All Properties Inflaction Bit Annotation March All Properties March All Properties March All Properties Inflaction Bit Sample from All Properties March All Properties March All Properties March All Properties Inflaction Bit Sample from All Properties March All Properties March All Properties March All Properties Inflaction Bit Bit Sample from All Properties March All Properties March All Properties Inflaction Bit Bit Bit Bit Bit Bit	(1) (1)<	e, Zip I, N2L GR5	er Dr	r Sol		7WS '0							P - Na204S 0 - Na2S03 B - Na2S03
Пли солт Works Manual Manua Manua<	Infliction 008 <th< td=""><td>ne 9-514-2253(Tel)</td><td>Purchase Order not require</td><td>q</td><td>{o</td><td>00-00</td><td></td><td></td><td></td><td></td><td></td><td>Ţ</td><td>T - TSP Dodecahydra</td></th<>	ne 9-514-2253(Tel)	Purchase Order not require	q	{o	00-00						Ţ	T - TSP Dodecahydra
MUSample	RUL (ST SAMPA (MACSING) Processo RUL (ST SAMPA (MACSING) Processo Processo (MACSING) RUL (ST SAMPA (MACSING) Processo (MACSING) Processo (MACSING) RUL (ST Processo (MACSING) Processo (MACSING) Processo (MACSING) RUL (ST Processo (MACSING) Processo (MACSING) Processo (MACSING) RUL (ST <td>al stron@geosyntec.com</td> <td>#OM</td> <td></td> <td></td> <td></td> <td></td> <td>əts</td> <td>0.49rah</td> <td></td> <td></td> <td>I - Ice J - DI Water</td> <td>U - Acetone V - MCAA</td>	al stron@geosyntec.com	#OM					əts	0.49rah			I - Ice J - DI Water	U - Acetone V - MCAA
R.L.I.S.T. SAWOA Stoma Mattra red Mattr	Ruch (ST Style) Sample One Sample One Ruch (ST Style) Colo Sample One	ect Name ean Disposal WW Sample	Project #- 44022550						al Rec			K - EUIA L - EDA	W - pH 4-5 Z - other (specify)
Control Sample Metrix Norm	Column Sample Table Table Table Table Table Table Table Table Table	STAPICIS7	#MOSS		and the second								
D BUTCHEIL Ocl_20/19 dc: 11 C Water N	D BUTCHER 66/by/19 6/cm 7<	mula Irlantific stion			benetili i blei	261.2-TKN, 365	9M (8307-8010)	1∕tH∃-2)si8-925		fablemro3-8101	·····		tructions/Note .
0 BUTCHEL 06/b20/19 dc: Water N <td>0 BUTCHEIL 06/30/19 dc: 11 C Water N<</td> <td></td> <td>P</td> <td></td> <td>1</td> <td>Ø</td> <td></td> <td>Z</td> <td>8</td> <td>Z</td> <td></td> <td></td> <td></td>	0 BUTCHEIL 06/30/19 dc: 11 C Water N<		P		1	Ø		Z	8	Z			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 BUTCHEZ CL/30/19 Oc/30/19 Oc/30/1	NG 20 RUTCHER	0	$\left \cdot \right $		XX	ÍZ X	XXX	X	XX			
TEARTCHEE CL/31/IP Ob. cl Water Wither Model Mo	TEATCHEZ CU/31/P CE/31/P	20 ON STREI	19 QC.		e	XX		XXX	Ŕ	KX K			67
P O.D. STEEAMS C6/21/1/q OCL Water X	P OD STREAMS C6/21/19 O6/20 C Water N <td>21 BUTC</td> <td>121/19 06</td> <td></td> <td>-ia</td> <td>X</td> <td></td> <td>K K</td> <td>於</td> <td>XX</td> <td></td> <td></td> <td></td>	21 BUTC	121/19 06		-ia	X		K K	於	XX			
→ 1 Water Water Water Water H	Old Water Water Water Water Water Water Mater	5	1/12	с U	er	XX				JXX	- X	-	0
Image: State of the state o	Indefinition Indefinition Nater Nater Nater Indefinition Indentification Nater Nater Nater Indefinition Indefinition Indentification Nater Nater Indentification Indentification Indentification Indentification Indentification Nater Indentification Indentification Indentification Indentification Indentification Indentification Indentification Indentification Indentification Indentification Indentification <	0621			er		 	1					?
Water Water Water Water Water Water Mater Water Water Water Water Mater Mater Mater Water Water Water Water Mater Mater Mater Water Noter Water Noter Mater Mater Mater Water Noter Noter Noter Noter Mater Mater Mater Noter Noter Noter Noter Mater Mater Mater Noter Noter Noter Noter Noter Noter Mater Noter Noter Noter Noter Noter	Image: Skin intrant Mater Nater N			Wat	Gr		 						
Water Multication 440-244608 Chain of Custody d Defentitication Defentication Defentication De	ad Identification addition water water water addition ad Identification water water water addition addition ad Identification water water bit addition addition ad Identification water bit bit bit bit bit ad Identification bit bit bit bit b			Wat	er								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	didentification didentification water			Wat	er								
a) Identification Water Water Water 440:244603 Chain of Custody a) Identification a) Interviewer a) Interviewer a) Interviewer a) Interviewer a) $\Box Flammable$ $\Box Skin Intant \Box Sample Sample$	a) Definition Water			Wat	er								
d Identification d Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 m d □ Flammable Skin Intlant Poison B Unknown Radiological Return To Client Disposal By Lab Archive For uested. 1, II, IV, Other (specify) DeterTime Date: Disposal By Lab Disposal By Lab Archive For unshod by: Date: Date: Image: Image: Image: Image: Image: duished by: Date: Date: Image: Image: Image: Image: Image: duished by: Date: Date: Image: Image: Image: Image: Image: duished by: Date: Date: Image: Image: Image: Image: Image: duished by: Date: Image: Image: Image: Image: Image: Image: duished by: Date: Date: Image: Image: Image: Image: Image: duished by: Date: Image: Image: Image: Image: Image: Image: display: Date: Image: Image: Image: Image: Image: Image: disto: Image: <td>didentification didentification didentification didentification d Flammable Skin Imtant Poison B Unknown Return Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) utested. 1, II, IN. Other (specify) Utestice Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) Return To Client Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) utested. 1, II, IN. Other (specify) Utestice Date: Date: Disposal (A fee may be assessed if samples are retained tonger) utested by: Date: Image Date: Date: Date: Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) utested by: Date: Image Date: Image Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) utested by: Date: Image Image Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) utested for Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) Disposal (A fee may be assessed if samples are retained tonger tonger thant) Mote <t< td=""><td></td><td></td><td>Wat</td><td>5</td><td></td><td></td><td></td><td></td><td>440-2</td><td>44608 Ch</td><td>ain of Custody</td><td></td></t<></td>	didentification didentification didentification didentification d Flammable Skin Imtant Poison B Unknown Return Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) utested. 1, II, IN. Other (specify) Utestice Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) Return To Client Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) utested. 1, II, IN. Other (specify) Utestice Date: Date: Disposal (A fee may be assessed if samples are retained tonger) utested by: Date: Image Date: Date: Date: Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) utested by: Date: Image Date: Image Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) utested by: Date: Image Image Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) utested for Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) Disposal (A fee may be assessed if samples are retained tonger than 1 mtant) Disposal (A fee may be assessed if samples are retained tonger tonger thant) Mote <t< td=""><td></td><td></td><td>Wat</td><td>5</td><td></td><td></td><td></td><td></td><td>440-2</td><td>44608 Ch</td><td>ain of Custody</td><td></td></t<>			Wat	5					440-2	44608 Ch	ain of Custody	
differition definition Bather in model Sample Disposal (A fee may be assessed if samples are retained longer than 1 mc d Flammable Skin Inntant Poison B Unknown Radiological ulested. I, II, IN, Other (specify) Skin Inntant Disposal By Lab Archive For ulested. I, II, IN, Other (specify) Method of Supment Archive For ulested. I, II, IN, Other (specify) Date: Instructions/OC Requirements: ulested. I, II, IN, Other (specify) Date: Instructions/OC Requirements: ulested. I, II, IN, Other (specify) Date: Instructions/OC Requirements: ulested. I Date Disposal By Lab Archive For Juished by: Date: Inne: Method of Supment Date:Time Date:Time Company Received by Date:Time Company Received by Date:Time Date:Time Company Received by Date:Time	didentification diffication Barnable Sample Disposal (A fee may be assessed if samples are retained longer than 1 mc d Flammable Skin Intrant Poison B Unknown Radiological Return To Client Disposal By Lab Archive For ulushed by: Disposal by the second by Method of Shipment Method of Shipment Oily for the second by Method of Shipment Dister fine Date: Date: Time: Method of Shipment Oily for for forments: Dister fine Date: Date: Time: Method of Shipment 0 Date: fine Company Received by Date: fine Oily for						;						
Inested. I., III, IV, Other (specify) Determents: guilished by: Date: Date: Company Received by Date: Date: Time Company Received by Date: Time Date: Time Company Received by Date: Time	Inested. I., III, IV, Other (specify), U.E. C Date: Instructions/QC Requirements: Juilehed by: Date: Image: Company Method of Shpment Juilehed by: Date: Date: Time: Method of Shpment Juilehed by: Date: Time: Date: Time: Method of Shpment Juilehed by: Date: Time: Date: Time: Method of Shpment Juilehed by: Date: Time: Date: Time: Method of Shpment Juilehed by: Date: Time: Date: Time: Method of Shpment Juilehed by: Date: Time: Date: Time: Method of Shpment Juilehed by: Date: Time: Date: Time: Method of Shpment S Intact: Custody Seal No: Tho weak Method Shure: Contentions, C.e. M. Contentions, C.e.	Skin Imtant	Unknown	Padiological		nple Disp	osal (A fe To Client	e may be	assesse Disposal	d if sample Bv Lab		lined longer than 1 r chive For	month) Months
quished by: Date: Date: Method of Shipment Additional of Shipment DateTime DateTime DateTime Additional of Shipment DateTime DateTime DateTime DateTime DateTime Company Received by DateTime DateTime DateTime Company Received by DateTime DateTime Company Received by DateTime DateTime	quished by: Date: Time: Method of Shipment Quicked by: Date/Time Date/Time Date/Time Company Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Indict: Custody Seal No:: Date/Time Date/Time No T/A w ed/Time Company Received by Date/Time No T/A w ed/Time Company Received by Date/Time	Other (specify)			Spe	cial Instru	ctions/QC	Requireme	ints:				
DateTime DateTime Company Received by 2019/06/24 11 · 42.cm/662%) TEC Received by DateTime DateTime company Received by Company DateTime company Received by Company	Endert Date/Time Date/Time Date/Time Date/Time 2019/06/24 11.42.cut GOTATEC Received by Date/Time Date/Time Date/Time Company Received by Date/Time Date/Time Company Received by S Intact: Custody Seal No.: Date/Time Date/Time Tho weak March March March	quished by:			Time:				Me	thod of Shipm	art		
Date/Time Company Received by Date/Time Date/Time Company Received by 6/26/19 030	Date/Time Date/Time Company Received by Date/Time Pate/Time Date/Time Company Received by \bigcirc \bigcirc Pate/Time Company Received by \bigcirc \bigcirc \bigcirc Pate/Time Conternative(s)* C and Other Remarks \bigcirc \bigcirc \bigcirc A No That due detection (s) \bigcirc \bigcirc \bigcirc \bigcirc		20			Received by				Date	em		Company
Date/Time Company Received by C Date/Time 030	pate Intact: Custody Seal No.: Date/Time Company Received by Company Bage Time A No Custody Seal No.: Tho weak $b/u \in S_1$ $b/u \in S_1$ $b/u \in S_1$ $b/u \in S_1$	nquished by		Company		Received by				Date	emi		Company
	Custody Seal No.: Custody Seal No.: Tho weak $b/ueb = b/ueb =$		Date/Time	Company		Received by	2	Q	h_{\parallel}	Date	/192	0	Company P 1/
		<u>)</u>		3			à 2		10	8		4 5 6	2

COMMERCIAL INVOICE

5tarKist Samoa Co. P.O. Box 368 96739 24, 036799

Phone: 684-733-4385
Department: Environmental Compliance
Sender: Nick Butson

Date: 6/24/19


001\$			Þ	Totals
\$25	12 kg ea.	52" × 12" × 14"	4	Water Samples
əuleV jinU	Weight (kg)	Dimensions	Coolers	ltem Description (Contents)

:Buiddid2

* = **********************************		
	fished Cargo Support	Օther (Specify)։
0		USPS: Priority or Express
Tracking #		gniqqid2 to sboM

:oT qid2

# ənord	(6+6) 561-1022
City, State, Zip	Irvine, CA 92614-5817
Address	17461 Derian Ave., Suite 100
Sontact Name	Lena Davidkova
Сотралу	Test America Irvine

Eurofins TestAmerica, Irvine												ofins		
1/401 Denan Ave Suite 100 Dirvine, CA 92614-6517 Dirvine, CAD 361-1675	CP	hain o	of Cus	ain of Custody Record	ecord									Environment Testing TestAmerica
Client Information (Sub Contract Lab)	Sampler:			Lab PM: Davidk	Lab PM: Davidkova, Lena		440-2	44608 C	440-244608 Chain of Custody	todv		0381.1	5	
	Phone:			E-Mait	avidkoval	Otostameric	aine com	2	ICalifornia		-	Page 1 of 1		
company. Company: TestAmarica I aboratoriae Inc					Accreditations	Accreditations Required (See note): Stata Procram - California	be note):				Γ	Job #:	.	
Address Ribe Bark. 301 Aloha Drive. RIDC Park.	Due Date Requested: 7/3/2019	÷			n2		Analysis Requested	s Reque	sted			Preservation Codes	Code	
	TAT Requested (days)	ys):								-		A - HCL B - NaOH C - Zn Acetate		M - Hexane N - None O - AsNa02
State, Zo: PA, 15238												D - Nitric Acid E - NaHSO4		2045
Phene: 412-963-7058(Tel) 412-963-2468(Fax)	PO#:				(0							F - MeOH G - Amchlor H - Ascorbic A	S-H S-H T-TS	R - Na2S203 S - H2SO4 T - TSP Dodecatvotrate
Emait	WO#:				(ON							I - Ice J - Di Water		U - Acetone V - MCAA
Project Name: Ocean Disposal WW Sample	Project #: 44022550				JO SO				_		ionist	K-EDTA L-EDA	W-P	W - pH 4-5 Z - other (specify)
Ster	SSOW#:				A) as						of con	Other:		
		Sample	Sample Type (C=comp.	Matrix (www.snotd	riorm MS/M MS/ Buik Dei						redmuN let			
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) Preserva	BT-Tissue, A-AU	N b						24	Speck	al Instruc	Special Instructions/Note:
0620 BUTCHER (440-244608-1)	6/20/19	06:11 Dacks		Water	×						-			
0620 OD STREAMS (440-244608-2)	6/20/19	06:33		Water	×	-	F	F		-	-			
0621 BUTCHER (440-244608-3)	6/21/19	06:01 Dacific		Water	×		F	F			-			
0621 OD STREAMS (440-244608-4)	6/21/19	06:20 Pacific		Water	×		F	1			-			
							-							
							_							
Note: Since laboratory accreditations are subject to change, TestMmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontact laboratories. This sample shipment is ferwarded under chain-or-custory. If the laboratory does not currently meintain accreditation in the State of Origin Isted above for analysis/betstimatic being analyzed, the samples must be shipped back to the TestAmerica laboratories. Mit be provided. Any changes to accreditation status should be brought to TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica laboratories, inc.	coratories, Inc. places the /thets/matrix being analy intent to date, return the	e ownership o zed, the samp signed Chain	f method, and ples must be of Custody al	hyte & accreditati phipped back to 1 besting to said co	on compliand testAmeri mplicance to	e upon out su ca laboratory TestAmerica	theomtract lat or other instr Laboratories	boratories. victoris will	his sample s e provided.	hipment is I Any change	forwarded u as to accred	Inder chain-of-o	custody. If th hould be bro	e laboratory does not ught to TestAmerica
Possible Hazard Identification					Sample	Disposal	(Afeem	ay be ass	essed If su	e saldme	re retain	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	tan 1 mon	th)
Unconfirmed Deliverable Reguested: L.II. III. IV. Other (specify)	Primary Deliverable Rank:	ble Rank:	2		Soecial	Return To Client Disp Special Instructions/OC Requirements:	lient s/OC Reg	uirements	Disposal By Lab	0	Archi	Archive For	×	Months
									ł					
Empty Kit Relinquished by		Date:			ii ii				Method of	thod of Shipment:				
Reinquished by	6/26/10	1 6	150	COMPANY	2	Racol Dy:				Date/Time	27	19 Fw	Con	Company
Reinquished by:	Date/Time: C			Company	Reo	Received by:				Date/Time	~		Company	pany
Relinquished by:	Date/Time:			Company	Reo	Received by:				Date/Time			Com	Company
Custody Seals Intact: Custody Seal No ::					8	Cooler Temperature(s) °C and Other Remarks:	re(s) °C and	Other Rem	irks:					
1													Ver	Ver: 01/16/2019

Irvine	
nerica,	000
estAm	- 0.44
ofins T	and and and
Irofi	

17461 Derian Ave Suite 100 Invine, CA 92614-5817 Phone: 949-261-1022 Fax: 949-260-3297	0	chain o	of Cus	Chain of Custody Record	cord					Environment Testing TestAmerica
Client Information (Sub Contract Lab)	Sampler:			Lab PM Davidk	Lab PM Davidkova, Lena		Carrier Tracking No(s)	ng No(s):	COC No: 440-140382.1	
Client Contact: Shipping/Receiving	Phone:			E-Mait: lena.d	avidkova@te	E-Mait: lena.davidkova@testamericainc.com	m California		Page 1 of 1	
Company. TestAmerica Laboratories, Inc.				207	conditations Re tate Program	Accreditations Required (See note): State Program - California			Job #: 440-244608-1	
Address: 880 Riverside Parkway.	Due Date Requested: 7/3/2019	:pa				Analysis	sis Requested		Preservation Codes:	odes:
City: West Sacramento	TAT Requested (days):	ays):							B- NaOH C - Zh Acetate	N - None 0 - AsNa02
State, Zp: CA, 95805						_	_	_	E - Nario Acid E - Narroot	P - Na204S Q - Na2SO3
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	;#04				1	_	_	_	G - Amchior G - Amchior H - Ascorbic Acie	R - Na25203 S - H2SO4 T - TSP Dodocahvdrato
	:#O#:				(0)	_		_		U - Acetone V - MCAA
Project Name: Ocean Disposal WW Sample	Project #: 44022550				10 68		_	-	K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Site.	SSOWS:				N) as		_		of cor	
I Mi de la Mi de la Mi de la Mineral de la Mi	Canacia Data	Sample	Sample Type (C=comp,	Matrix (www.sweed.	ield Filtered Perform MS/M MS/2 Presi Nit				otal Number	and and Materia
Sample Identification - Crient ID (Lab ID)	Sampie Date	X	Preserva	tion Code:		SALE STORES	の町の町町町の町町	Statistics of		opecial instructionsmore:
0620 BUTCHER (440-244608-1)	6/20/19	06:11 Pacific		Water	×				-	
0620 OD STREAMS (440-244608-2)	6/20/19	06:33		Water	×				•	
0621 BUTCHER (440-244608-3)	6/21/19	06:01 Pacific		Water	×				1	
0621 OD STREAMS (440-244608-4)	6/21/19	06:20 Pacific		Water	×				Ŧ	
							-		1	
					-	-		+		
								+		
Note: Since laboratories are subject to change. TestAmerica Laboratories, inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shament is forwarded under chain-of-custody. If the laboratory does no currently maintain accreditation in the State of Origin listed above for analystabletetishmitric brind analyzed, the samples to shalped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation to state accreditation of the state of Origin listed above for analystabletetishmitric brind to the samples to shalped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, inc. attendion immediatory. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, inc.	rica Laboratories, Inc. places Ib malysisfects/matrix being anal s are current to date, return the	e ownership o rzed, lihe semi signed Chain	f method, and lies must be to of Custody at	liyte & accreditatio shipped back to th itesting to said con	n compliance up TestAmerica li plicance to Tes	oon out subcontract sboratory or other in Mmerica Laboratori	aboratories. This sample tructions will be provided is, Inc.	shipment is forw . Any changes to	arded under chain-of-cust accreditation status shou	This sample shipment is forwarded under chain-of-custody. If the laboratory does not be provided. Any changes to accreditation status should be brought to TestArmerica.
Possible Hazard Identification					Sample D	Return To Client	nay be assessed if sar	samples are r	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 1 month) Monthe
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	able Rank:	~		Special Ins	Special Instructions/QC Requirements	quirements:		in course	CLUD CLUD
Empty Kit Relinquished by:		Date:		-	Time:		Method	Method of Shipment.		
Reinquished by:	DateTime.	1 6	1450	Company	Receive	AD CH	11	Date/Time:	we 19 093	25 Company Sec
Reinquished by:	Date/Time:			Company	Received by:	d by:		Date/Time:		Company
Custody Seals Intact: Custody Seal No .:					Cooler 1	Cooler Temperature(s) °C and Other Remarks:	d Other Remarks:	010		

5

13 14

Ver: 01/16/2019

•
-
.=
5
-
-
_
_
3
0
.=
-
db.
=
5
-
Test
10
*
0
-
-
10
ns n
~
-
0
~
-
-
ш

-

17461 Derian Ave Suite 100 Irvine, CA 92614-5817

Chain of Custody Record

Client Information (Sub Contract Lab)	Sampler:			Lab PM David	Lab PM. Davidkova, Lena		8	Carrier Tracking No(s)	0(s):	COC No: 440-140383.1	
Client Contact Shipping/Receiving	Phone:			E-Mail: liena.d	davidkova@	E-Mait. lena.davidkova@testamericainc.com		State of Origin: California		Page 1 of 1	
Company: TestAmerica Laboratories, Inc.					Accreditations State Progr	Accreditations Required (See note): State Program - California	(e):			Job #: 440-244608-1	
Address: 5102 LaRoche Avenue.	Due Date Requested: 7/3/2019	ed:				Ana	Analysis Requested	ested		Preservation Codes	des: M - House
Cay: Savannah	TAT Requested (days	ays):			ple					B - NaOH C - Zn Acetate	N - None 0 - AsNa02 B - Ma2046
State, Zp: GA, 31404					EJBAO:		_	_	_	E - NaHSO4 F - MaCH	0 - Na2SO3 R - Na2S2O3
Phone: 912-354-7858(Tel) 912-352-0165(Fax)	PO#:				20			_		G - Amchior H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
Emait	MO#				(ON		_	_			U - Acetone V - MCAA
Project Name: Ocean Disposal WW Sample	Project #: 44022550				10 50				_	K-EDIA L-EDA	W - pH 4-5 Z - other (specify)
Ste	SSOWs:				r) as	_	_		_	of Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (www.s-wide, Orwariek, B1-Town, Arde)	Heid Field Field M/SM mohed M2011/014/01					Total Number Special	Special Instructions/Note:
	X	X	Preserva	Preservation Code:	XX	102 012 001	Check Control		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		V
0620 BUTCHER (440-244608-1)	6/20/19	06:11 Pacific		Water	×					2	
0620 OD STREAMS (440-244608-2)	6/20/19	06:33 Pacific		Water	×					2	
0621 BUTCHER (440-244608-3)	6/21/19	06:01 Pacific		Water	×					2	
0621 OD STREAMS (440-244608-4)	6/21/19	06:20 Pacific		Water	×					2	
					_		_		-	1	
					_				-	(1)	
					_	_	-	_	-		
					_		_		-		
Note: Since laboratory accreditations are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample showarded under chain-of-custody. If the laboratory does no currently maxima accreditation in the State of Origin Islee above for analysis/institute being analyzed, the samples that the shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, Inc.	ca Laboratories, Inc. places 1 valysis/tests/matrix being anal are current to date, return the	he ownership lyzed, the sam r signed Chain	of method, and ples must be t of Custody at	hyte & accredita thipped back to testing to said o	tion compliant the TestAmen omplicance to	ce upon out subcon sca laboratory or oth TestAmerica Labor	tract laboratories. Ner instructions will ratories, Inc.	This sample sh be provided. A	ipment is forw my changes to	arded under chain-of-cush accreditation status shou	weership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not d, the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica pred Chain of Custody attesting to said complicance to TestAmerica Laboratories. Inc.
Possible Hazard Identification					Sample	e Disposal (A I	fee may be as	sessed if sai	mples are	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 month)
Unconfirmed						Return To Client	Dis	Disposal By Lab		Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverab	rable Rank:	2		Specia	Special Instructions/QC Requirements	C Requirement	10			
Empty Kit Relinquished by:		Date:			Time:			Method of Shipment	Shipment		
Reinquished by Mh	Oato/Time	61	1450	Company	RAV Rec	Received by:			Date/Time:		Company
Reinquished by:	Date/Time:			Company	Rec	Received by:			Date/Time:		Company
	Date/Time:			Company	Rec	Received by	V		C127/15	110 850	Company
Custody Seals Intact: Custody Seal No.: A Yes A No.					Coo	Cooler Temperature(s)	"C and Other Remarks.	1	5.0		
ALL IN AND IN								4			Ver 01/16/2019

Client: Geosyntec Consultants, Inc.

Login Number: 244608 List Number: 1 Creator: Bonta, Lucia F

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	Not Present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thawed blue ice
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 440-244608-1

List Source: Eurofins TestAmerica, Irvine

Client: Geosyntec Consultants, Inc.

Login Number: 244608 List Number: 2 Creator: Say, Thomas C

QuestionAnswerCommentRadioactivity wasn't checked or is = background as measured by a survey<br/ meter.TrueTrueThe cooler's custody seal, if present, is intact.TrueTrueSample custody seals, if present, are intact.TrueTrueThe cooler or samples do not appear to have been compromised or tampered with.TrueTrueSamples were received on ice.TrueTrueCooler Temperature is acceptable.TrueTrueCooler Temperature is recorded.TrueTrueCOC is present.TrueTrueCOC is filled out in ink and legible.TrueTrueCOC is filled out with all pertinent information.TrueTrueIs the Field Sampler's name present on COC?TrueTrueThere are no discrepancies between the containers received and the COC.True
meter.TrueThe cooler's custody seal, if present, is intact.TrueSample custody seals, if present, are intact.TrueThe cooler or samples do not appear to have been compromised or tampered with.TrueSamples were received on ice.TrueCooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?True
Sample custody seals, if present, are intact.TrueThe cooler or samples do not appear to have been compromised or tampered with.TrueSamples were received on ice.TrueCooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?True
The cooler or samples do not appear to have been compromised or tampered with.TrueSamples were received on ice.TrueCooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?True
tampered with.TrueSamples were received on ice.TrueCooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?True
Cooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?True
Cooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?True
COC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?True
COC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?True
COC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?True
Is the Field Sampler's name present on COC? True
There are no discrementiates between the containers received and the COC True
There are no discrepancies between the containers received and the obo. The
Samples are received within Holding Time (excluding tests with immediate True HTs)
Sample containers have legible labels. True
Containers are not broken or leaking. True
Sample collection date/times are provided. True
Appropriate sample containers are used. True
Sample bottles are completely filled. True
Sample Preservation Verified. True
There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs
Containers requiring zero headspace have no headspace or bubble is True <6mm (1/4").
Multiphasic samples are not present. True
Samples do not require splitting or compositing. True
Residual Chlorine Checked. N/A

Job Number: 440-244608-1

List Creation: 06/27/19 01:48 PM

List Source: Eurofins TestAmerica, Pittsburgh

Client: Geosyntec Consultants, Inc.

Appropriate sample containers are used.

There is sufficient vol. for all requested analyses, incl. any requested

Containers requiring zero headspace have no headspace or bubble is

Sample bottles are completely filled.

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Sample Preservation Verified.

Residual Chlorine Checked.

MS/MSDs

<6mm (1/4").

Login Number: 244608 List Number: 3

Job Number: 440-244608-1	
List Source: Eurofins TestAmerica, Sacramento	
List Creation: 06/28/19 09:03 AM	5
Comment	
	8
	9
0.6c	
Received project as a subcontract.	13
	14
	15

	List Creation: 06/28/19 09:03 AM
Answer	Comment
True	
N/A	
N/A	
True	
True	
True	
True	0.6c
True	
True	
True	
N/A	Received project as a subcontract.
True	
	/ True N/A N/A True True True True True True True N/A True True True True

True

True

N/A

True

True

True

True

N/A

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Login Number: 244608

List Number: 4

Job Number: 440-244608-1

List Creation: 07/01/19 10:18 AM

List Source: Eurofins TestAmerica, Savannah

	ļ		
	8	3	
		9	
1		2	

Creator: Flanagan, Naomi V Answer Comment Question Radioactivity wasn't checked or is </= background as measured by a survey meter. The cooler's custody seal, if present, is intact. Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). Multiphasic samples are not present. Samples do not require splitting or compositing.

Residual Chlorine Checked.

Environment Testing TestAmerica	Sacramento Sample Receiving Notes
440-244608 Field Sheet	Tracking #: <u>U5383732</u> <u>5201</u> SO(P) / FO / 2-Day / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other dy Seal, Temperature & corrected Temperature & other observations.
in the job folder with the COC. Notes:	Therm. ID: IAL-1D Corr. Factor: Ice Wet Gel Other Cooler Custody Seal:
	Cooler ID: Temp Observed: 0.6°C From: Temp Blank D Sample D NCM Filed: Yes D No D
	YesNoNAPerchlorate has headspace? (Methods 314, 331, 6850)□□Alkalinity has no headspace?□□CoC is complete w/o discrepancies?□□Samples received within holding time?□□Sample preservatives verified?□□Cooler compromised/tampered with?□□Samples compromised/tampered with?□□Samples w/o discrepancies?□□Sample containers have legible labels?□□Containers are not broken or leaking?□□Sample bottles are completely filled?□□Zero headspace?*□□Multiphasic samples are not present?□□Sample temp OK?□□Sample out of temp?□□

IITACORPICORPIQAIQA_FACILITIES\SACRAMENTO-QAIDOCUMENT-MANAGEMENT\FORMS\QA-812 SAMPLE RECEIVING NOTES.DOC QA-812 TGT 06/19/2019

Ocean Disposal Wastewater Sample Validation

July 23, 2019

Laboratory Report 440-244608-1

Introduction:

The samples were reported to the method detection limit (MDL) and validated at a Stage 2A level. The samples were received outside of the 0-6 degree Celsius (°C) temperature range at 11.5 °C, 11.9 °C, 12.1 °C, and 16.5 °C. Qualifications were applied to the majority of the data based on the temperature exceedance indicating that the reported values are considered estimated (J) or the non-detect values are considered as estimated less than the MDL (UJ). The metals data were unaffected by the temperature exceedances. Additionally, a subset of the non-detect volatile organic compounds and non-detect nitrite, nitrate, and nitrate/nitrite results were R qualified as rejected due to holding time exceedances. The remaining data are considered usable within the limitation of the qualifications. The results for the associated laboratory quality control (QC) samples e.g. method blanks and laboratory control samples, were within the laboratory acceptance for all of the tests listed below. Batch matrix spike/matrix spike duplicate pairs were reported with the data. Since these were batch QC the results had no impact on the project samples and qualifications were not applied to the data based on these results.

Method 8260 B Volatile Qualifications

Reason Codes

1 = preservation (received outside of temperature >10 degrees Celsius, significant head space)

2 = holding times (pH was greater than 2 and analyzed greater than 7 days past collection

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason
	Test		Result		Result*	Code**
0620 BUTCHER	8260B	1,2-				
		Dichloropropane	0.25 U	ug/L	0.25 UJ	1
		Benzene	0.83 J	ug/L	0.83 J	1
		Chloroform	0.25 U	ug/L	0.25 UJ	1
		Ethylbenzene	1.6 J	ug/L	1.6 J	1
		m,p-Xylene	0.50 U	ug/L	0.25 UJ	1
		Methylene				
		Chloride	1.1 U	ug/L	0.50 UJ	1
		o-Xylene	0.25 U	ug/L	0.25 UJ	1
		Toluene	0.5 J	ug/L	0.5 J	1
		Xylenes, Total	0.25 U	ug/L	0.25 UJ	1
0620 OD		1,2-				1,2
STREAMS		Dichloropropane	2.5 U	ug/L	2.5 R	
		Benzene	2.5 U	ug/L	2.5 R	1,2
		Chloroform	2.5 U	ug/L	2.5 R	1,2
		Ethylbenzene	2.5 U	ug/L	2.5 R	1,2
		m,p-Xylene	5 U	ug/L	5 R	1,2
		Methylene				1,2
		Chloride	11 U	ug/L	11 R	
		o-Xylene	2.5 U	ug/L	2.5 R	1,2
		Toluene	2.5 U	ug/L	2.5 R	1,2
		Xylenes, Total	2.5 U	ug/L	2.5 R	1,2

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason
_	Test		Result		Result*	Code**
0621 BUTCHER	8260B	1,2-				1
		Dichloropropane	0.25 U	ug/L	0.25 UJ	
		Benzene	1.2 J	ug/L	1.2 J	1
		Chloroform	0.25 U	ug/L	0.25 UJ	1
		Ethylbenzene	3.4	ug/L	3.4 J	1
		m,p-Xylene	0.50 U	ug/L	0.50 UJ	1
		Methylene				1
		Chloride	1.1 U	ug/L	1.1 UJ	
		o-Xylene	0.25 U	ug/L	0.25 UJ	1
		Toluene	1.1 J	ug/L	1.1 J	1
		Xylenes, Total	0.25 U	ug/L	0.25 UJ	1
0621 OD	8260B	1,2-				1,2
STREAMS		Dichloropropane	2.5 U	ug/L	2.5 R	
		Benzene	2.5 U	ug/L	2.5 R	1,2
		Chloroform	2.5 U	ug/L	2.5 R	1,2
		Ethylbenzene	2.5 U	ug/L	2.5 R	1,2
		m,p-Xylene	5 U	ug/L	5 R	1,2
		Methylene				1,2
		Chloride	11 U	ug/L	11 R	
		o-Xylene	2.5 U	ug/L	2.5 R	1,2
		Toluene	2.5 U	ug/L	2.5 R	1,2
		Xylenes, Total	2.5 U	ug/L	2.5 R	1,2

*Validation qualifier definitions are included in Attachment 1 of this report

**Reason code definitions are included in Attachment 2 of this report

ug/L – microgram per liter

U – the analyte was not detected at or above the reported value

J -laboratory flag; result is less than the reporting limit but greater than the method detection limit and the concentration is an approximate value.

Method 625 Semi-Volatiles Qualifications

Reason Codes

1 = preservation (received outside of temperature >10 degrees Celsius)

2 = holding times (pH was greater than	2 and analyzed greater than	7 days past collection
---------------------	---------------------	-----------------------------	------------------------

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason Code
	Test		Result		Result	
0620 BUTCHER	625	Bis(2-ethylhexyl)				
		phthalate	40 U	ug/L	40 UJ	1
0620 OD	625	Bis(2-ethylhexyl)				1
STREAMS		phthalate	179 U	ug/L	179 UJ	
0621 BUTCHER	625	Bis(2-ethylhexyl)				1
		phthalate	82 U	ug/L	82 UJ	
0621 OD	625	Bis(2-ethylhexyl)				1
STREAMS		phthalate	170 U	ug/L	170 UJ	

ug/L – microgram per liter

U - the analyte was not detected at or above the reported value

Method 8315 Carbonyl Compounds Qualifications

Reason Codes

1 = preservation (received outside of temperature >10 degrees Celsius)

2= holding time exceedance

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason Code
	Test		Result		Result	
0620 BUTCHER	8315	Formaldehyde				
			0.052 H	mg/L	0.052 J	1,2
0620 OD	8315	Formaldehyde				1,2
STREAMS			0.080 H	mg/L	0.080 J	
0621 BUTCHER	8315	Formaldehyde	0.051 H	mg/L	0.051 J	1,2
0621 OD	8315	Formaldehyde				1,2
STREAMS		_	0.069 H	mg/L	0.069 J	

ug/L – microgram per liter

H – Lab flag; Sample was prepped or analyzed beyond the specified holding time

Method 6010B Metals Qualifications - None

Method 7470A Mercury Qualifications - None

Wet Chemistry Parameters

Reason Code

1 = preservation (received outside of temperature >10 degrees Celsius and pH >2 upon receipt, COD and HEM)

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason Code
	Test		Result		Result	
0620 BUTCHER	1664A	HEM	330	mg/L	330 J	1
	351.2	Total Kjeldahl		mg/L		1
		Nitrogen	1000		1000 J	
	353.2	Nitrate Nitrite as	0.31 U	mg/L	0.31 UJ	1
	365.3	Phosphorous,	100	mg/L	100 J	1
	420.1	Phenolics, Total	0.10	mg/L	0.10	1
	4500 CN E	Cyanide, Total	0.013 U	mg/L	0.013 UJ	1
		Ammonia (as N)	62	mg/L	62 J	1
	4500 NH3	Ammonia as	75	mg/L	75 J	1
	5220D	Chemical	12000	mg/L	12000 J	1
	2540E	Total Volatile	12000	mg/L	12000 J	1
	2540B	Total Solids	17000	mg/L	17000 J	1
		Total Nitrogen	1000	mg/L	1000 J	1
0620 OD	1664A	HEM	6370	mg/L	6370 J	1
STREAMS	351.2	Total Kjeldahl		mg/L		1
		Nitrogen	3700		3700 J	
	353.2	Nitrate Nitrite as		mg/L		1
		Ν	0.31 U		0.31 UJ	
	365.3	Phosphorous,		mg/L		1
		Total	550		550 J	
	420.1	Phenolics, Total		mg/L		1
		Recoverable	7.2		7.2 J	

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason Code
	Test		Result		Result	
	4500 CN E	Cyanide, Total	0.045	mg/L	0.045 J	1
		Ammonia (as N)	1800	mg/L	1800 J	1
	4500 NH3	Ammonia as		mg/L		1
	D	NH3	2200	-	2200 J	
	5220D	Chemical		mg/L		1
		Oxygen Demand	74000		74000 J	
	2540E	Total Volatile		mg/L		1
		Solids	21000		21000 J	
	2540B	Total Solids	35000	mg/L	35000 J	1
		Total Nitrogen	3700	mg/L	3700 J	1
0621 BUTCHER	1664A	HEM	633	mg/L	633 J	1
	351.2	Total Kjeldahl		mg/L		1
		Nitrogen	570		570 J	
	353.2	Nitrate Nitrite as		mg/L		1
		Ν	0.31 U		0.31 UJ	
	365.3	Phosphorous,		mg/L		1
		Total	130		130 J	
	420.1	Phenolics, Total		mg/L		1
		Recoverable	0.087		0.087 J	
	4500 CN E	Cyanide, Total	0.013 U	mg/L	0.013 UJ	1
		Ammonia (as N)	120	mg/L	120 J	1
	4500 NH3	Ammonia as		mg/L		1
	D	NH3	140		140 J	
	5220D	Chemical		mg/L		1
		Oxygen Demand	11000		11000 J	
	2540E	Total Volatile		mg/L		1
		Solids	7700		7700 J	
	2540B	Total Solids	11000	mg/L	11000 J	1
		Total Nitrogen	570	mg/L	570 J	1
	1664A	HEM	7090	mg/L	7090 J	1

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason Code
-	Test	-	Result		Result	
0621 OD	351.2	Total Kjeldahl		mg/L		1
STREAMS		Nitrogen	4000		4000 J	
	353.2	Nitrate Nitrite as		mg/L		1
		Ν	0.31 U		0.31 UJ	
	365.3	Phosphorous,	980	mg/L	980 J	1
		Total				
	420.1	Phenolics, Total		mg/L		1
		Recoverable	11		11 J	
	4500 CN E	Cyanide, Total	0.037	mg/L	0.037 J	1
		Ammonia (as N)	2200	mg/L	2200 J	1
	4500 NH3	Ammonia as		mg/L		1
	D	NH3	2600		2600 J	
	5220D	Chemical		mg/L		1
		Oxygen Demand	65000		65000 J	
	2540E	Total Volatile		mg/L		1
		Solids	16000	_	16000 J	
	2540B	Total Solids	31000	mg/L	31000 J	1
		Total Nitrogen	4000	mg/L	4000 J	1

mg/L – milligram per liter

U – the analyte was not detected at or above the reported value

J -laboratory flag; result is less than the reporting limit but greater than the method detection limit and the concentration is an approximate value.

Method NO3NO2 Calc - Nitrogen, Nitrate-Nitrite Qualifications

Reason Codes

1 = preservation (received outside of temperature >10 degrees Celsius)

2= holding time exceedance

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason Code
	Test		Result		Result	
0620 BUTCHER	NO3NO2	Nitrate as N	1.1 U H	mg/L	1.1 R	1,2
	Calc	Nitrite as N		mg/L		1,2
		Nitrate Nitrite as N	1.1 U H	mg/L	1.1 R	1,2
0620 OD	NO3NO2	Nitrate as N	5.5 U H	mg/L	5.5 R	1,2
STREAMS	Calc	Nitrite as N	2.5 U H	mg/L	2.5 R	1,2
		Nitrate Nitrite as N	5.5 U H	mg/L	5.5 R	1,2
0621 BUTCHER	NO3NO2	Nitrate as N	1.1 U H	mg/L	1.1 R	1,2
	Calc	Nitrite as N	0.50 U H	mg/L	0.50 R	1,2
		Nitrate Nitrite as N	1.1 U H	mg/L	1.1 R	1,2
0621 OD	NO3NO2	Nitrate as N	5.5 U H	mg/L	5.5 R	1,2
STREAMS	Calc	Nitrite as N	2.5 U H	mg/L	2.5 R	1,2
		Nitrate Nitrite as N		mg/L	5.5 R	1,2

mg/L – milligram per liter

U – the analyte was not detected at or above the reported value

H - Lab flag; Sample was prepped or analyzed beyond the specified holding time

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
	Matrix spike/matrix spike duplicate recovery or RPD outside
4	limits
5	LCS recovery outside limits
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other

RPD-relative percent difference

🔅 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Irvine 17461 Derian Ave

Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

Laboratory Job ID: 440-245042-1

Client Project/Site: Ocean Disposal WW Sample Revision: 1

For:

Geosyntec Consultants, Inc. 295 Hagey Blvd. Suite 290 Waterloo, Ontario N2L 6R5

Attn: Nick Butson

Authorized for release by: 7/31/2019 12:03:48 PM

Lena Davidkova, Project Manager II (949)260-3229 Iena.davidkova@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Review your project results through

LINKS

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	9
Method Summary	20
Lab Chronicle	21
QC Sample Results	27
QC Association Summary	45
Definitions/Glossary	54
Certification Summary	56
Subcontract Data	60
Chain of Custody	86
Receipt Checklists	93
Field Data Sheets	98

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample Job ID: 440-245042-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
0-245042-1	06 25 BUTCH	Water	06/25/19 08:15	07/02/19 10:10
0-245042-2	06 25 OD STREAMS	Water	06/25/19 08:24	07/02/19 10:10
40-245042-3	06 25 BUTCH DUP	Water	06/25/19 08:15	07/02/19 10:10
40-245042-4	BUTCHER	Water	06/26/19 06:06	07/02/19 10:10
0-245042-5	OD STREAMS	Water	06/26/19 06:19	07/02/19 10:10
10-245042-6	BUTCHER	Water	06/27/19 06:09	07/02/19 10:10
40-245042-7	OD STREAMS	Water	06/27/19 06:22	07/02/19 10:10

Job ID: 440-245042-1

Laboratory: Eurofins TestAmerica, Irvine

Narrative

Job Narrative 440-245042-1

Comments

This it final report. Pyrethrins results were included under this cover

Receipt

The samples were received on 7/2/2019 10:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 7 coolers at receipt time were 18.1° C, 18.3° C, 20.5° C, 20.6° C, 20.6° C, 21.4° C and 26.0° C.

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: 06 25 BUTCH (440-245042-1), 06 25 OD STREAMS (440-245042-2), 06 25 BUTCH DUP (440-245042-3), BUTCHER (440-245042-4), OD STREAMS (440-245042-5), BUTCHER (440-245042-6) and OD STREAMS (440-245042-7). Received samples on thawed blue ice. The temperatures recorded were 20.9/20.6 ,21.7/21.4,18.6/18.3,18.4/18.1,20.8/20.5,20.9/20.6 IR 94 outside the required temperature criteria.

The following sample(s) was received with headspace in the sample container. This sample container was received with headspace. 06 25 BUTCH (440-245042-1), 06 25 OD STREAMS (440-245042-2), 06 25 BUTCH DUP (440-245042-3), BUTCHER (440-245042-6) and OD STREAMS (440-245042-7). All voa vials HCL that were received have headspace more than 6 mm including sample # 4 and # 5.

GC/MS VOA

Method(s) 8260B: The sample was collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, when verified by the laboratory, the pH was 7 and the following sample was analyzed after 7 days from sampling: 06 25 OD STREAMS (440-245042-2).

Method(s) 8260B: The following sample was diluted due to the abundance of non-target analytes: 06 25 OD STREAMS (440-245042-2). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The laboratory control sample (LCS) for analytical batch 440-556388 recovered outside control limits for the following analyte: Ethylbenzene. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

Method(s) 8260B: Internal standard (ISTD) response for TBA-d9 for the following sample was outside acceptance criteria: (CCVIS 440-556388/2). This ISTD does not correspond to any of the requested target compounds; therefore, the data have been reported.

Method(s) 8260B: The following volatile samples were received and analyzed with significant headspace in the sample container(s): 06 25 OD STREAMS (440-245042-2) and 06 25 BUTCH DUP (440-245042-3). Significant headspace is defined as a bubble greater than 6 mm in diameter. All VOA vials had headspace.

Method(s) 8260B: The sample was collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, when verified by the laboratory, the pH was 7 and the following samples were analyzed after 7 days from sampling: OD STREAMS (440-245042-5) and OD STREAMS (440-245042-7).

Method(s) 8260B: The following volatile sample was received and analyzed with significant headspace in the sample container(s): OD STREAMS (440-245042-5). Significant headspace is defined as a bubble greater than 6 mm in diameter. All VOA vials had headspace.

Method(s) 8260B: The following samples were diluted due to the abundance of non-target analytes: OD STREAMS (440-245042-5) and OD STREAMS (440-245042-7). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) precision for analytical batch 440-556394 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected.

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 440-556543 recovered above the upper control limit for Chloroform and 1,2-Dichloropropane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the

Laboratory: Eurofins TestAmerica, Irvine (Continued)

data have been reported. The following samples are impacted: 06 25 BUTCH (440-245042-1) and (CCVIS 440-556543/3).

Method(s) 8260B: *The following volatile samples were received and analyzed with significant headspace in the sample vials: 06 25 BUTCH (440-245042-1) and 06 25 BUTCH DUP (440-245042-3). Significant headspace is defined as a bubble greater than 6 mm in diameter. All VOA vials had headspace.

Method(s) 8260B: Surrogate 4-Bromofluorobenzene recovery for the following sample was outside the upper control limits: 06 25 BUTCH (440-245042-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8260B: The following volatile samples were received and analyzed with significant headspace in the sample container(s): BUTCHER (440-245042-4) and BUTCHER (440-245042-6). Significant headspace is defined as a bubble greater than 6 mm in diameter.

Method(s) 8260B: Surrogate 4-Bromofluorobenzene recovery for the following sample(s) was outside the upper control limits: BUTCHER (440-245042-6). Re-analysis was performed with concurring results. This analysis has been reported.

Method(s) 8260B: Internal standard (ISTD) 1,4-Dichlorobenzene-d4 response for the following sample(s) was outside the lower control limits: BUTCHER (440-245042-6). The sample(s) was re-analyzed with concurring results, this set of data has been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 625: The following samples were diluted due to the abundance of non-target analytes: 06 25 BUTCH (440-245042-1), 06 25 OD STREAMS (440-245042-2), 06 25 BUTCH DUP (440-245042-3), BUTCHER (440-245042-4), OD STREAMS (440-245042-5), BUTCHER (440-245042-6) and OD STREAMS (440-245042-7). Elevated reporting limits (RLs) are provided.

Method(s) 625: The following samples required a dilution due to the nature of the sample matrix: 06 25 OD STREAMS (440-245042-2), OD STREAMS (440-245042-5) and OD STREAMS (440-245042-7). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method(s) 300.0: The following samples were diluted due to the nature of the sample matrix: 06 25 BUTCH (440-245042-1), 06 25 OD STREAMS (440-245042-2), 06 25 BUTCH DUP (440-245042-3), BUTCHER (440-245042-4), OD STREAMS (440-245042-5), BUTCHER (440-245042-6) and OD STREAMS (440-245042-7). Elevated reporting limits (RLs) are provided. Due to fishy samples.

Method(s) NO3NO2 Calc: The following samples were received outside of holding time for Nitrate Nitrite as N: 06 25 BUTCH (440-245042-1), 06 25 OD STREAMS (440-245042-2), 06 25 BUTCH DUP (440-245042-3), BUTCHER (440-245042-4), OD STREAMS (440-245042-5), BUTCHER (440-245042-6) and OD STREAMS (440-245042-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

The reference method requires samples to be preserved to a pH of <2. The following samples were received with insufficient preservation at a pH of 4 and 6: 06 25 BUTCH DUP (440-245042-3) and OD STREAMS (440-245042-5). The sample(s) was preserved to the appropriate pH in the laboratory.

Method(s) 6010B: The continuing calibration blank (CCB) for 440-556566 contained Titanium above the method detection limit (MDL). This target analyte concentration was less than the reporting limit (RL).(CCB 440-556566/15), (CCB 440-556566/27), (CCB 440-556566/39) and (CCB 440-556566/51)

Method(s) 6010B: The method blank for preparation batch 440-556431 and analytical batch 440-556566 contained Chromium above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Laboratory: Eurofins TestAmerica, Irvine (Continued)

Method(s) 6010B: The serial dilution performed for the following sample associated with batch 440-556566 was outside control limits for Magnesium, Manganese and Titanium: (440-245154-J-1-A SD ^5)

Method(s) 6010B: The post digestion spike % recovery for Manganese and Titanium associated with batch 440-556566 was outside of control limits.

Method(s) 6010B: The following samples were diluted due to the nature of the sample matrix: 06 25 OD STREAMS (440-245042-2), 06 25 BUTCH DUP (440-245042-3), OD STREAMS (440-245042-5) and OD STREAMS (440-245042-7). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) 353.2: The following samples were diluted in analytical batch 320-306826 due to the nature of the sample matrix: 06 25 BUTCH (440-245042-1), 06 25 OD STREAMS (440-245042-2), 06 25 BUTCH DUP (440-245042-3), BUTCHER (440-245042-4), OD STREAMS (440-245042-5), BUTCHER (440-245042-6) and OD STREAMS (440-245042-7). Samples were a dark brown color, had high sediment, and were extremely difficult to filter Elevated reporting limits (RLs) are provided. Data is being reported with this narration.

Method(s) 365.3: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 440-556226 and analytical batch 440-556268 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) SM 5220D: The reference method requires samples to be preserved to a pH of <2. The following samples were received with insufficient preservation at a pH of 7: 06 25 OD STREAMS (440-245042-2) and OD STREAMS (440-245042-7). The sample(s) was preserved to the appropriate pH in the laboratory.

Method(s) Distill/Phenol: Sample was received with a pH of >2. Container was preserved with sulfuric acid, then prepped for analysis.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 8315_W_Prep: The following samples were received outside of holding time: 06 25 BUTCH (440-245042-1), 06 25 OD STREAMS (440-245042-2), 06 25 BUTCH DUP (440-245042-3), BUTCHER (440-245042-4), OD STREAMS (440-245042-5), BUTCHER (440-245042-6) and OD STREAMS (440-245042-7). Method 8315

Method(s) 8315_W_Prep: Sample received was cloudy red color, strong odor with residue with pH of 7. After added DNPH to make the color change initial reaction was murky brown. Method 8315 06 25 BUTCH (440-245042-1)

Method(s) 8315_W_Prep: Sample received was cloudy green color strong odor with pH of 7. Adjusted pH of 3. After added DNPH to make the color change initial reaction was murky green. Method 8315 06 25 OD STREAMS (440-245042-2)

Method(s) 8315_W_Prep: sample received was cloudy red color strong odor with pH of 7. After added DNPH to make the color change initial reaction was murky brown. Method 8315 06 25 BUTCH DUP (440-245042-3)

Method(s) 8315_W_Prep: Sample received was cloudy red color strong odor with pH of 7. After added DNPH to make the color change initial reaction was murky brown. Method 8315 BUTCHER (440-245042-4)

Method(s) 8315_W_Prep: Sample received was cloudy olive green color strong odor with pH of 7. Adjusted pH of 3. After added DNPH to make the color change initial reaction was murky yellow. Method 8315 OD STREAMS (440-245042-5)

Laboratory: Eurofins TestAmerica, Irvine (Continued)

Method(s) 8315_W_Prep: Sample received was cloudy red pink color strong odor with residue with pH of 7. After added DNPH to make the color change initial reaction was murky brown. Method 8315 BUTCHER (440-245042-6)

Method(s) 8315_W_Prep: Sample received was cloudy green color strong odor with pH of 7. Adjusted pH of 3. After added DNPH to make the color change initial reaction was murky yellow. Method 8315 OD STREAMS (440-245042-7)

Method(s) 8315_W_Prep: The following samples were diluted due to the nature of the sample matrix: 20 mL. Elevated reporting limits (RLs) are provided. Method 8315

Method(s) 8315_W_Prep: Sample was cloudy light pink color strong odor with residue. After added DNPH to make the color change initial reaction was murky yellow. Heavy emulsion. Method 8315 06 25 BUTCH (440-245042-1)

Method(s) 8315_W_Prep: Sample was cloudy light green color strong odor. Adjusted pH of 3. After added DNPH to make the color change initial reaction was murky yellow.Heavy emulsion. Method 8315 06 25 OD STREAMS (440-245042-2)

Method(s) 8315_W_Prep: Sample was cloudy light pink color strong odor. After added DNPH to make the color change initial reaction was murky yellow. Heavy emulsion. Method 8315 06 25 BUTCH DUP (440-245042-3)

Method(s) 8315_W_Prep: Sample was cloudy light brown color strong odor. After added DNPH to make the color change initial reaction was murky yellow. Heavy emulsion. Method 8315 BUTCHER (440-245042-4)

Method(s) 8315_W_Prep: sample was cloudy light green color strong odor. Adjusted pH of 3. After added DNPH to make the color change initial reaction was murky yellow. Heavy emulsion. Method 8315 OD STREAMS (440-245042-5)

Method(s) 8315_W_Prep: Sample was cloudy light brown color strong odor with residue. After added DNPH to make the color change initial reaction was murky yellow. Heavy emulsion. Method 8315 BUTCHER (440-245042-6)

Method(s) 8315_W_Prep: Sample was cloudy light green color strong odor. Adjusted pH of 3. After added DNPH to make the color change initial reaction was murky yellow. Heavy emulsion. Method 8315 OD STREAMS (440-245042-7)

Method(s) 625: The following samples were diluted due to the abundance of non-target analytes: 06 25 BUTCH (440-245042-1), 06 25 OD STREAMS (440-245042-2), 06 25 BUTCH DUP (440-245042-3), BUTCHER (440-245042-4), OD STREAMS (440-245042-5) and OD STREAMS (440-245042-7) at 100 ml. Elevated reporting limits (RLs) are provided. Method 625-REG. LCS was performed in duplicate to provide precision of data.

Method(s) 625: The following sample was diluted due to the abundance of non-target analytes: BUTCHER (440-245042-6) at 200 ml. Elevated reporting limits (RLs) are provided. Method 625-REG.

Method(s) 625: The following samples were prepared outside of preparation holding time : 06 25 BUTCH (440-245042-1), 06 25 OD STREAMS (440-245042-2), 06 25 BUTCH DUP (440-245042-3), BUTCHER (440-245042-4), OD STREAMS (440-245042-5), BUTCHER (440-245042-6) and OD STREAMS (440-245042-7).

Method(s) 3520C, 625: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with 8270 preparation batch 440-556176. LCS was performed in duplicate to maintain precision of data.

Method(s) 1664A, 1664B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated

Laboratory: Eurofins TestAmerica, Irvine (Continued)

with preparation batch 440-556396 and analytical batch 440-556472.1664 The Laboratory Control Sample (LCS) was performed in duplicate to provide precision data for this batch

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Client Sample ID: 06 25 BUTCH Date Collected: 06/25/19 08:15 Date Received: 07/02/19 10:10

Job	١D·	440-245042-1
000	ID.	TTU-2TUUT2-1

Lab Sample ID: 440-245042-1 Matrix: Water

Matrix: Water

5

Method: 8260B - Volatile Or Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
,2-Dichloropropane	ND		2.0	0.25	ug/L			07/09/19 05:59	
Benzene	2.0		2.0	0.25	ug/L			07/09/19 05:59	
Chloroform	ND		2.0	0.25	ug/L			07/09/19 05:59	
Ethylbenzene	10		2.0	0.25	ug/L			07/09/19 05:59	
n,p-Xylene	ND		2.0		ug/L			07/09/19 05:59	
Methylene Chloride	ND		5.0		ug/L			07/09/19 05:59	
p-Xylene	ND		2.0		ug/L			07/09/19 05:59	
Foluene	0.81	J	2.0		ug/L			07/09/19 05:59	
Kylenes, Total	ND	•	2.0		ug/L			07/09/19 05:59	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil I
-Bromofluorobenzene (Surr)	134	X	80 - 120					07/09/19 05:59	
Dibromofluoromethane (Surr)	111		76 - 132					07/09/19 05:59	
oluene-d8 (Surr)	110		80 - 128					07/09/19 05:59	
Method: 625 - Semivolatile (Organic Com	oounds (G	C/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Bis(2-ethylhexyl) phthalate	ND	Н	400	80	ug/L		07/05/19 08:23	07/09/19 07:20	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
-Fluorobiphenyl	88		50 - 120				07/05/19 08:23	07/09/19 07:20	
-Fluorophenol	97		30 - 120				07/05/19 08:23	07/09/19 07:20	
,4,6-Tribromophenol	71		40 - 120				07/05/19 08:23	07/09/19 07:20	
litrobenzene-d5	97		45 - 120				07/05/19 08:23	07/09/19 07:20	
Ferphenyl-d14	49		10 - 150				07/05/19 08:23	07/09/19 07:20	
Phenol-d6	109		35 - 120				07/05/19 08:23	07/09/19 07:20	
Method: 8315A - Carbonyl C	Compounds (H	HPLC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Formaldehyde	0.091	Н	0.050	0.025	mg/L		07/03/19 08:09	07/03/19 16:53	
Method: NO3NO2 Calc - Niti									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
litrate as N	ND	Н	2.2	1.1	mg/L			07/09/19 16:07	
litrite as N	ND	Н	3.0	0.50	mg/L			07/09/19 16:07	
litrate Nitrite as N	ND	Н	3.0	1.1	mg/L			07/09/19 16:07	
Nethod: 6010B - Metals (ICF									
nalyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil I
luminum	0.38		0.10	0.050	-		07/03/19 08:03	07/05/19 12:09	
Arsenic	0.16		0.010	0.0089	mg/L		07/03/19 08:03	07/05/19 12:09	
Barium	0.014		0.010	0.0050	mg/L		07/03/19 08:03	07/05/19 12:09	
Boron	0.13		0.050	0.025	mg/L		07/03/19 08:03	07/05/19 12:09	
Cadmium	0.042		0.0050	0.0025	mg/L		07/03/19 08:03	07/05/19 12:09	
Chromium	0.029		0.0050	0.0025	-		07/03/19 08:03	07/05/19 12:09	
Copper	0.053		0.010	0.0050			07/03/19 08:03		
lagnesium	26		0.020	0.010	-		07/03/19 08:03		
langanese	0.018	J	0.020	0.015	-		07/03/19 08:03		
lickel	0.015		0.010	0.0050			07/03/19 08:03		
				0.0087	-		07/03/19 08:03		
Selenium	0.13		0.010		mali				

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Client Sample ID: 06 25 BUTCH Date Collected: 06/25/19 08:15 Date Received: 07/02/19 10:10

Method: 6010B - Metals (ICP) -	Total Reco	overable (C	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	1.1		0.020	0.012	mg/L		07/03/19 08:03	07/05/19 12:09	1
_ Method: 7470A - Mercury (CVA	AA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0039		0.0020	0.0010	mg/L		07/05/19 13:01	07/06/19 10:40	10
_ General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM	79.2		5.4	1.5	mg/L		07/08/19 06:52	07/08/19 13:23	1
Total Kjeldahl Nitrogen	750		50	25	mg/L		07/05/19 14:00	07/09/19 21:47	5
Nitrate Nitrite as N	ND		5.0	0.31	mg/L			07/10/19 11:13	100
Phosphorus, Total	63		25	13	mg/L		07/05/19 18:05	07/06/19 13:33	1
Phenolics, Total Recoverable	0.14		0.050	0.025	mg/L		07/09/19 12:53	07/09/19 17:37	1
Cyanide, Total	ND		0.025	0.013	mg/L		07/03/19 10:24	07/03/19 12:39	1
Ammonia (as N)	82		25	5.0	mg/L		07/05/19 04:00	07/05/19 06:00	1
Ammonia as NH3	100		30	6.0	mg/L		07/05/19 04:00	07/05/19 06:00	1
Chemical Oxygen Demand	8600		400	200	mg/L			07/10/19 16:46	20
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Volatile Solids	7100		200	200	mg/L			07/02/19 19:36	1
Specific Gravity	0.98		0.010	0.010	No Unit			07/10/19 15:21	1
Total Solids	10000		200	200	mg/L			07/02/19 19:36	1
Nitrogen, Total	750		0.11	0.11	mg/L			07/11/19 15:16	1

Client Sample ID: 06 25 OD STREAMS Date Collected: 06/25/19 08:24 Date Received: 07/02/19 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		10	1.3	ug/L			07/08/19 17:00	5
Benzene	ND		10	1.3	ug/L			07/08/19 17:00	5
Chloroform	ND		10	1.3	ug/L			07/08/19 17:00	5
Ethylbenzene	ND	*	10	1.3	ug/L			07/08/19 17:00	5
m,p-Xylene	ND		10	2.5	ug/L			07/08/19 17:00	5
Methylene Chloride	ND		25	5.5	ug/L			07/08/19 17:00	5
o-Xylene	ND		10	1.3	ug/L			07/08/19 17:00	5
Toluene	ND		10	1.3	ug/L			07/08/19 17:00	5
Xylenes, Total	ND		10	1.3	ug/L			07/08/19 17:00	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		80 - 120					07/08/19 17:00	5
Dibromofluoromethane (Surr)	100		76 - 132					07/08/19 17:00	5
Toluene-d8 (Surr)	103		80 - 128					07/08/19 17:00	5

Method: 625 - Semivolatile	Organic Com	oounds (G	C/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	ND	Н	2000	400	ug/L		07/05/19 08:23	07/09/19 07:44	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac
	,, j		Emmeo				ricpurcu	Analyzea	Birruc
2-Fluorobiphenyl	103		50 - 120					07/09/19 07:44	10

Eurofins TestAmerica, Irvine

Matrix: Water

5

12 13

Lab Sample ID: 440-245042-1 Matrix: Water

Lab Sample ID: 440-245042-2

7/31/2019 (Rev. 1)

Client Sample ID: 06 25 OD STREAMS Date Collected: 06/25/19 08:24 Date Received: 07/02/19 10:10

Lab Sample ID: 440-245042-2 **Matrix: Water**

5

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol			40 - 120				07/05/19 08:23	07/09/19 07:44	1
Vitrobenzene-d5	106		45 - 120					07/09/19 07:44	
Terphenyl-d14	40		10 - 150					07/09/19 07:44	1
Phenol-d6	73		35 - 120					07/09/19 07:44	1
									-
Method: 8315A - Carbonyl C	ompounds (H	HPLC)							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Formaldehyde	0.096	Н	0.050	0.025	mg/L		07/03/19 08:09	07/03/19 17:14	
Method: NO3NO2 Calc - Nitro	ogon Nitrato	-Nitrito							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
vitrate as N			1	5.5	mg/L			07/09/19 16:07	
Nitrite as N	ND	Н	15		mg/L			07/09/19 16:07	
Nitrate Nitrite as N	ND	н	15		mg/L			07/09/19 16:07	
					0				
Method: 6010B - Metals (ICP	•								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Numinum	180		1.0		mg/L			07/08/19 18:23	
Arsenic	0.27		0.10	0.089	0			07/08/19 18:23	
Barium	0.063		0.10	0.050				07/08/19 18:23	
Boron	0.32	J	0.50		mg/L			07/08/19 18:23	
Cadmium	0.077		0.050	0.025	0			07/08/19 18:23	
Chromium	0.080	В	0.050	0.025				07/08/19 18:23	
Copper	0.22		0.10	0.050	0			07/08/19 18:23	
lagnesium	100		0.20		mg/L			07/08/19 18:23	
langanese	ND		0.20		mg/L			07/08/19 18:23	
lickel	0.054	J	0.10	0.050	0			07/08/19 18:23	
Selenium	0.20		0.10	0.087	-			07/08/19 18:23	
itanium	0.18		0.050	0.025	0			07/08/19 18:23	
linc	11		0.20	0.12	mg/L		07/08/19 09:56	07/08/19 18:23	
Method: 7470A - Mercury (C)									
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
lercury	0.0023		0.0020	0.0010	mg/L		07/05/19 13:01	07/06/19 10:43	
Seneral Chemistry									
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
IEM	11.2		5.3		mg/L		07/08/19 06:52	•	
otal Kjeldahl Nitrogen	3700		100		mg/L			07/09/19 21:47	
litrate Nitrite as N	ND		5.0		mg/L			07/10/19 11:23	1
hosphorus, Total	570		100		mg/L		07/05/19 12:08	07/05/19 14:39	
Phenolics, Total Recoverable	2.5		0.50		mg/L		07/09/19 12:53		
Syanide, Total	0.018	J	0.025	0.013	-			07/03/19 12:39	
Ammonia (as N)	1700		250		mg/L			07/05/19 06:00	
Ammonia as NH3	2100		300		mg/L			07/05/19 06:00	
Chemical Oxygen Demand	51000		5000		mg/L			07/10/19 16:46	2
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
otal Volatile Solids	15000		500		mg/L			07/02/19 19:36	
Specific Gravity	1.0		0.010		No Unit			07/10/19 15:19	
Fotal Solids	33000		500		mg/L			07/02/19 19:36	

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample Job ID: 440-245042-1

Client Sample ID: 06 25 Date Collected: 06/25/19 08:2 Date Received: 07/02/19 10:1	24	MS				La	b Sample	ID: 440-245 Matrix	
General Chemistry (Contin		Qualifian			11		Duran and	Amelyneed	
Analyte Nitrogen, Total		Qualifier	RL 0.11		Unit mg/L	D	Prepared	Analyzed 07/11/19 15:16	Dil Fa
	5700		0.11	0.11	mg/L			07/11/19 13.10	
Client Sample ID: 06 25	BUTCH DU	Ρ				La	b Sample	ID: 440-245	5042-3
Date Collected: 06/25/19 08: Date Received: 07/02/19 10:1	15							Matrix	
Method: 8260B - Volatile O			MS)						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,2-Dichloropropane	ND		2.0		ug/L			07/08/19 17:29	
Benzene	1.5	J	2.0		ug/L			07/08/19 17:29	
Chloroform	ND		2.0		ug/L			07/08/19 17:29	
m,p-Xylene	ND		2.0		ug/L			07/08/19 17:29	
Methylene Chloride	ND		5.0	1.1	ug/L			07/08/19 17:29	
o-Xylene	ND		2.0		ug/L			07/08/19 17:29	
Toluene	0.67	J	2.0		ug/L			07/08/19 17:29	
Xylenes, Total	ND		2.0	0.25	ug/L			07/08/19 17:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	119		80 - 120					07/08/19 17:29	
Dibromofluoromethane (Surr)	99		76 - 132					07/08/19 17:29	
Toluene-d8 (Surr)	113		80 - 128					07/08/19 17:29	
Method: 8260B - Volatile O				MDI	11		Durananad	A seals sead	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Ethylbenzene	5.6		2.0	0.25	ug/L			07/09/19 06:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)		·	80 - 120				·	07/09/19 06:29	
Dibromofluoromethane (Surr)	112		76 - 132					07/09/19 06:29	
Toluene-d8 (Surr)	109		80 - 128					07/09/19 06:29	
Method: 625 - Semivolatile	Organic Com	oounds (G	C/MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bis(2-ethylhexyl) phthalate	ND	Н	400	80	ug/L		07/05/19 08:23	07/09/19 08:09	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	93		50 - 120				07/05/19 08:23	-	
2-Fluorophenol	95		30 - 120					07/09/19 08:09	
2,4,6-Tribromophenol	79		40 - 120					07/09/19 08:09	
Nitrobenzene-d5	99		45 - 120					07/09/19 08:09	
Terphenyl-d14	41		10 - 150					07/09/19 08:09	
Phenol-d6	118		35 - 120					07/09/19 08:09	
Method: 8315A - Carbonyl (
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Formaldehyde	0.057	н	0.050	0.025	mg/L	_	07/03/19 08:09	07/03/19 17:35	
Method: NO3NO2 Calc - Nit									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Nitrate as N	ND		2.2		mg/L	_		07/09/19 16:07	
Nitrite as N	ND		3.0	0.50	mg/L			07/09/19 16:07	
Nitrate Nitrite as N	ND		3.0		mg/L			07/09/19 16:07	

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Client Sample ID: 06 25 BUTCH DUP Date Collected: 06/25/19 08:15 Date Received: 07/02/19 10:10

Lab Sample ID: 440-245042-3 **Matrix: Water**

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		2.0	1.0	mg/L		07/08/19 09:56	07/08/19 18:33	10
Arsenic	0.23		0.20	0.18	mg/L		07/08/19 09:56	07/08/19 18:33	10
Barium	ND		0.20	0.10	mg/L		07/08/19 09:56	07/08/19 18:33	10
Boron	ND		1.0	0.50	mg/L		07/08/19 09:56	07/08/19 18:33	10
Cadmium	0.084	J	0.10	0.050	mg/L		07/08/19 09:56	07/08/19 18:33	10
Chromium	0.060	JB	0.10	0.050	mg/L		07/08/19 09:56	07/08/19 18:33	10
Copper	ND		0.20	0.10	mg/L		07/08/19 09:56	07/08/19 18:33	10
Magnesium	55		0.40	0.20	mg/L		07/08/19 09:56	07/08/19 18:33	10
Manganese	ND		0.40	0.30	mg/L		07/08/19 09:56	07/08/19 18:33	10
Nickel	ND		0.20	0.10	mg/L		07/08/19 09:56	07/08/19 18:33	10
Selenium	0.17	J	0.20	0.17	mg/L		07/08/19 09:56	07/08/19 18:33	10
Titanium	0.064	J	0.10	0.050	mg/L		07/08/19 09:56	07/08/19 18:33	10
Zinc	2.1		0.40	0.24	mg/L		07/08/19 09:56	07/08/19 18:33	10
Method: 7470A - Mercury (CVA	AA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0034		0.0020	0.0010	mg/L		07/05/19 13:01	07/06/19 10:45	10
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM	203		5.3	1.5	mg/L		07/08/19 06:52	07/08/19 13:23	1
Total Kjeldahl Nitrogen	820		50	25	mg/L		07/05/19 14:00	07/10/19 17:40	5
Nitrate Nitrite as N	10		5.0	0.31	mg/L			07/10/19 11:27	100
Phosphorus, Total	66		25	13	mg/L		07/05/19 18:05	07/06/19 13:33	1
Phenolics, Total Recoverable	0.18		0.050	0.025	mg/L		07/09/19 12:53	07/09/19 17:41	1
Cyanide, Total	ND		0.025	0.013	mg/L		07/03/19 10:24	07/03/19 12:39	1
Ammonia (as N)	82		25	5.0	mg/L		07/05/19 04:00	07/05/19 06:00	1
Ammonia as NH3	100		30	6.0	mg/L		07/05/19 04:00	07/05/19 06:00	1
Chemical Oxygen Demand	9100		1000	500	mg/L			07/10/19 16:46	50
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Volatile Solids	5600		200		mg/L			07/02/19 19:36	1
Specific Gravity	0.98		0.010		No Unit			07/10/19 15:18	1
Total Solids	8500		200		mg/L			07/02/19 19:36	1
Nitrogen, Total	820		0.11		mg/L			07/11/19 15:16	1

Client Sample ID: BUTCHER Date Collected: 06/26/19 06:06 Date Received: 07/02/19 10:10

Lab Sample ID:	440-245042-4
	Matrix: Water

o-Xylene

Toluene

Xylenes, Total

Method: 8260B - Volatile			S)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared
1,2-Dichloropropane	ND		2.0	0.25	ug/L		
Benzene	0.93	J	2.0	0.25	ug/L		
Chloroform	ND		2.0	0.25	ug/L		
Ethylbenzene	1.2	J	2.0	0.25	ug/L		
m,p-Xylene	ND		2.0	0.50	ug/L		
Methylene Chloride	ND		5.0	1.1	ug/L		

ND

ND

0.33 J

Eurofins TestAmerica, Irvine

Analyzed

07/09/19 09:28

07/09/19 09:28

07/09/19 09:28

07/09/19 09:28

07/09/19 09:28

07/09/19 09:28

07/09/19 09:28

07/09/19 09:28

07/09/19 09:28

Dil Fac

1

1

1

1

1

1

1

1

1

2.0

2.0

2.0

0.25 ug/L

0.25 ug/L

0.25 ug/L

Client Sample ID: BUTCHER Date Collected: 06/26/19 06:06 Date Received: 07/02/19 10:10

Lab Sample ID: 440-245042-4 Matrix: Water

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	119		80 - 120					07/09/19 09:28	1
Dibromofluoromethane (Surr)	112		76 - 132					07/09/19 09:28	1
Toluene-d8 (Surr)	104		80 - 128					07/09/19 09:28	1
_ Method: 625 - Semivolatile	organic Com	oounds (G	C/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	ND	Н	400	80	ug/L		07/05/19 08:23	07/09/19 08:33	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95		50 - 120				07/05/19 08:23	07/09/19 08:33	2
2-Fluorophenol	95		30 - 120				07/05/19 08:23	07/09/19 08:33	2
2,4,6-Tribromophenol	100		40 - 120				07/05/19 08:23	07/09/19 08:33	2
Nitrobenzene-d5	104		45 - 120				07/05/19 08:23	07/09/19 08:33	2
Terphenyl-d14	41		10 - 150					07/09/19 08:33	2
Phenol-d6 _	96		35 - 120				07/05/19 08:23	07/09/19 08:33	2
Method: 8315A - Carbonyl									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Formaldehyde	0.052	н	0.050	0.025	mg/L	_	07/03/19 08:09	07/03/19 17:56	1
Method: NO3NO2 Calc - N									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND		1.1		mg/L			07/09/19 16:07	1
Nitrite as N	ND	Н	1.5		mg/L			07/09/19 16:07	1
Nitrate Nitrite as N	ND	Н	1.5	0.55	mg/L			07/09/19 16:07	1
Method: 6010B - Metals (IC					1114	-	Due	A wak	
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.20		0.10	0.050	-		07/03/19 08:03	07/05/19 12:11	1
Arsenic	0.083		0.010	0.0089	mg/L		07/03/19 08:03	07/05/19 12:11	1
Arsenic Barium	0.083 0.0085	J	0.010 0.010	0.0089 0.0050	mg/L mg/L		07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11	1
Arsenic Barium Boron	0.083 0.0085 0.090	J	0.010 0.010 0.050	0.0089 0.0050 0.025	mg/L mg/L mg/L		07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11 07/05/19 12:11	1 1 1
Arsenic Barium Boron Cadmium	0.083 0.0085 0.090 0.018	J	0.010 0.010 0.050 0.0050	0.0089 0.0050 0.025 0.0025	mg/L mg/L mg/L mg/L		07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11	1 1 1 1
Arsenic Barium Boron Cadmium Chromium	0.083 0.0085 0.090 0.018 0.0098	J	0.010 0.010 0.050 0.0050 0.0050	0.0089 0.0050 0.025 0.0025 0.0025	mg/L mg/L mg/L mg/L mg/L		07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11	1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper	0.083 0.0085 0.090 0.018 0.0098 0.031	J	0.010 0.010 0.050 0.0050 0.0050 0.010	0.0089 0.0050 0.025 0.0025 0.0025 0.0025	mg/L mg/L mg/L mg/L mg/L mg/L		07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper Magnesium	0.083 0.0085 0.090 0.018 0.0098 0.031 20	J	0.010 0.010 0.050 0.0050 0.0050 0.010 0.020	0.0089 0.0050 0.025 0.0025 0.0025 0.0050 0.010	mg/L mg/L mg/L mg/L mg/L mg/L		07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese	0.083 0.0085 0.090 0.018 0.0098 0.031 20 ND		0.010 0.010 0.050 0.0050 0.0050 0.010 0.020 0.020	0.0089 0.0050 0.025 0.0025 0.0025 0.0050 0.010 0.015	mg/L mg/L mg/L mg/L mg/L mg/L mg/L		07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel	0.083 0.0085 0.090 0.018 0.0098 0.031 20 ND 0.0063		0.010 0.050 0.0050 0.0050 0.010 0.020 0.020 0.010	0.0089 0.0050 0.025 0.0025 0.0025 0.0050 0.010 0.015 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel Selenium	0.083 0.0085 0.090 0.018 0.0098 0.031 20 ND 0.0063 0.091		0.010 0.050 0.0050 0.0050 0.010 0.020 0.020 0.010 0.010	0.0089 0.0050 0.025 0.0025 0.0025 0.0050 0.010 0.015 0.0050 0.0087	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1 1 1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel	0.083 0.0085 0.090 0.018 0.0098 0.031 20 ND 0.0063		0.010 0.050 0.0050 0.0050 0.010 0.020 0.020 0.010	0.0089 0.0050 0.025 0.0025 0.0025 0.0050 0.010 0.015 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel Selenium Titanium Zinc	0.083 0.0085 0.090 0.018 0.0098 0.031 20 ND 0.0063 0.091 0.0083 0.51		0.010 0.050 0.0050 0.0050 0.010 0.020 0.020 0.010 0.010 0.010 0.0050	0.0089 0.0050 0.025 0.0025 0.0025 0.0050 0.010 0.015 0.0050 0.0087 0.0025	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1 1 1 1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel Selenium Titanium	0.083 0.0085 0.090 0.018 0.0098 0.031 20 ND 0.0063 0.091 0.0083 0.51 (CVAA) Result	J Qualifier	0.010 0.050 0.0050 0.0050 0.010 0.020 0.010 0.010 0.010 0.0050 0.020	0.0089 0.0050 0.025 0.0025 0.0050 0.010 0.015 0.0050 0.0087 0.0025 0.012 MDL	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1 1 1 1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel Selenium Titanium Zinc Method: 7470A - Mercury (0.083 0.0085 0.090 0.018 0.0098 0.031 20 ND 0.0063 0.091 0.0083 0.51 (CVAA)	J Qualifier	0.010 0.050 0.0050 0.0050 0.010 0.020 0.010 0.010 0.010 0.0050 0.020	0.0089 0.0050 0.025 0.0025 0.0050 0.010 0.015 0.0050 0.0087 0.0025 0.012	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel Selenium Titanium Zinc Method: 7470A - Mercury (Analyte Mercury General Chemistry	0.083 0.0085 0.090 0.018 0.0098 0.031 20 ND 0.0063 0.091 0.0083 0.51 (CVAA) Result 0.0012	J Qualifier J	0.010 0.050 0.0050 0.0050 0.010 0.020 0.010 0.010 0.010 0.0050 0.020 RL 0.0020	0.0089 0.0050 0.025 0.0025 0.0050 0.010 0.015 0.0050 0.0087 0.0025 0.012 MDL 0.0010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		07/03/19 08:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel Selenium Titanium Zinc Method: 7470A - Mercury (Analyte Mercury General Chemistry Analyte	0.083 0.0085 0.090 0.018 0.0098 0.031 20 ND 0.0063 0.091 0.0083 0.51 (CVAA) <u>Result</u>	J Qualifier	0.010 0.050 0.0050 0.0050 0.010 0.020 0.010 0.010 0.010 0.0050 0.020 RL 0.0020	0.0089 0.0050 0.025 0.0025 0.0050 0.010 0.015 0.0050 0.0087 0.0025 0.012 MDL 0.0010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	07/03/19 08:03 07/03/19 19:03 07/03/19 08:03	07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel Selenium Titanium Zinc Method: 7470A - Mercury (Analyte Mercury General Chemistry	0.083 0.0085 0.090 0.018 0.0098 0.031 20 ND 0.0063 0.091 0.0083 0.51 (CVAA) Result 0.0012 Result 120	J Qualifier J	0.010 0.050 0.0050 0.0050 0.010 0.020 0.010 0.010 0.010 0.010 0.0050 0.020 RL 0.0020 RL 5.1	0.0089 0.0050 0.025 0.0025 0.0050 0.010 0.015 0.0050 0.0087 0.0025 0.012 MDL 0.0010 MDL	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		07/03/19 08:03 07/03/19 13:01	07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel Selenium Titanium Zinc Method: 7470A - Mercury (Analyte Mercury General Chemistry Analyte HEM Total Kjeldahl Nitrogen	0.083 0.0085 0.090 0.018 0.0098 0.031 20 ND 0.0063 0.091 0.0083 0.51 (CVAA) <u>Result</u> 120 470	J Qualifier J	0.010 0.050 0.0050 0.0050 0.010 0.020 0.020 0.010 0.010 0.010 0.0050 0.020 RL 0.0020 RL 5.1 10	0.0089 0.0050 0.025 0.0025 0.0050 0.010 0.015 0.0050 0.0087 0.0025 0.012 MDL 1.4 5.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		07/03/19 08:03 07/03/19 13:01	07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel Selenium Titanium Zinc Method: 7470A - Mercury (Analyte Mercury General Chemistry Analyte HEM	0.083 0.0085 0.090 0.018 0.0098 0.031 20 ND 0.0063 0.091 0.0083 0.51 (CVAA) Result 0.0012 Result 120	J Qualifier J	0.010 0.050 0.0050 0.0050 0.010 0.020 0.010 0.010 0.010 0.010 0.0050 0.020 RL 0.0020 RL 5.1	0.0089 0.0050 0.025 0.0025 0.0050 0.010 0.015 0.0050 0.0050 0.0025 0.012 MDL 0.0010 MDL 1.4 5.0 0.31	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		07/03/19 08:03 07/03/19 13:01 Prepared 07/05/19 13:01	07/05/19 12:11 07/05/19 12:11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Client Sample ID: BUTCHER Date Collected: 06/26/19 06:06 Date Received: 07/02/19 10:10

General Chemistry (Continued	•								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenolics, Total Recoverable	0.088		0.050	0.025	mg/L		07/09/19 12:53	07/09/19 17:45	1
Cyanide, Total	ND		0.025	0.013	mg/L		07/03/19 10:24	07/03/19 12:39	1
Ammonia (as N)	28		13	2.5	mg/L		07/05/19 04:00	07/05/19 06:00	1
Ammonia as NH3	34		15	3.0	mg/L		07/05/19 04:00	07/05/19 06:00	1
Chemical Oxygen Demand	6000		400	200	mg/L			07/10/19 16:46	20
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Volatile Solids	2300		200	200	mg/L			07/02/19 19:37	1
Specific Gravity	0.99		0.010	0.010	No Unit			07/10/19 15:16	1
Total Solids	5000		200	200	mg/L			07/02/19 19:36	1
Nitrogen, Total	470		0.11	0.11	mg/L			07/11/19 15:16	1

Client Sample ID: OD STREAMS Date Collected: 06/26/19 06:19 Date Received: 07/02/19 10:10

Method: 8260B - Volatile O	rganic Compour	nds (GC/M	S)						
Analyte	Result Q		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		10	1.3	ug/L			07/08/19 16:56	5
Benzene	ND		10	1.3	ug/L			07/08/19 16:56	5
Chloroform	ND		10	1.3	ug/L			07/08/19 16:56	5
Ethylbenzene	ND		10	1.3	ug/L			07/08/19 16:56	5
m,p-Xylene	ND		10	2.5	ug/L			07/08/19 16:56	5
Methylene Chloride	ND		25	5.5	ug/L			07/08/19 16:56	5
o-Xylene	ND		10	1.3	ug/L			07/08/19 16:56	5
Toluene	ND		10	1.3	ug/L			07/08/19 16:56	5
Xylenes, Total	ND		10	1.3	ug/L			07/08/19 16:56	5
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		80 - 120			-		07/08/19 16:56	5

4-Bromofluorobenzene (Surr)	108	80 - 120
Dibromofluoromethane (Surr)	113	76 - 132
Toluene-d8 (Surr)	100	80 - 128

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	ND	Н	2000	400	ug/L		07/05/19 08:23	07/09/19 08:58	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	87		50 - 120				07/05/19 08:23	07/09/19 08:58	10
2-Fluorophenol	91		30 - 120				07/05/19 08:23	07/09/19 08:58	10
2,4,6-Tribromophenol	86		40 - 120				07/05/19 08:23	07/09/19 08:58	10
Nitrobenzene-d5	93		45 - 120				07/05/19 08:23	07/09/19 08:58	10
Terphenyl-d14	40		10 - 150				07/05/19 08:23	07/09/19 08:58	10
Phenol-d6	44		35 - 120				07/05/19 08:23	07/09/19 08:58	10
_ Method: 8315A - Carbony	/I Compounds (I								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Formaldehyde	0.11	Н	0.050	0.025	mg/L		07/03/19 08:09	07/03/19 18:17	1
_ Method: NO3NO2 Calc - I	Nitrogen, Nitrate	-Nitrite							
Analyte	· · · · · · · · · · · · · · · · · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND	Н	11	5.5	mg/L			07/09/19 16:07	1

Job ID: 440-245042-1

Lab Sample ID: 440-245042-4 Matrix: Water

Lab Sample ID: 440-245042-5

Matrix: Water

5

Eurofins TestAmerica, Irvine

07/08/19 16:56

07/08/19 16:56

5

5

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Client Sample ID: OD STREAMS Date Collected: 06/26/19 06:19 Date Received: 07/02/19 10:10

Method: NO3NO2 Calc - Nitroge Analyte		-Nitrite (Co Qualifier	ntinued) _{RL}	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrite as N	ND		15		mg/L			07/09/19 16:07	
Nitrate Nitrite as N	ND	н	15		mg/L			07/09/19 16:07	1
Method: 6010B - Metals (ICP) - T	otal Reco	overable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	740		2.0	1.0	mg/L		07/08/19 09:56	07/08/19 18:35	10
Arsenic	1.3		0.20	0.18	mg/L		07/08/19 09:56	07/08/19 18:35	10
Barium	0.23		0.20	0.10	mg/L		07/08/19 09:56	07/08/19 18:35	10
Boron	1.2		1.0	0.50	mg/L		07/08/19 09:56	07/08/19 18:35	1(
Cadmium	0.37		0.10	0.050	mg/L		07/08/19 09:56	07/08/19 18:35	10
Chromium	0.27	В	0.10	0.050	mg/L		07/08/19 09:56	07/08/19 18:35	10
Copper	0.86		0.20	0.10	mg/L		07/08/19 09:56	07/08/19 18:35	1(
Magnesium	330		0.40	0.20	mg/L		07/08/19 09:56	07/08/19 18:35	10
Manganese	ND		0.40	0.30	mg/L		07/08/19 09:56	07/08/19 18:35	10
Nickel	0.14	J	0.20	0.10	mg/L		07/08/19 09:56	07/08/19 18:35	1
Selenium	0.73		0.20	0.17	mg/L		07/08/19 09:56	07/08/19 18:35	1
Titanium	0.58		0.10	0.050	mg/L		07/08/19 09:56	07/08/19 18:35	1
Zinc	43		0.40	0.24	mg/L		07/08/19 09:56	07/08/19 18:35	1
Method: 7470A - Mercury (CVAA Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.0045		0.0020	0.0010	mg/L		07/05/19 13:01	07/06/19 10:49	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
HEM	8.8		5.2	1.5	mg/L		07/08/19 06:52	07/08/19 13:23	
Total Kjeldahl Nitrogen	4200		100	50	mg/L		07/05/19 14:00	07/10/19 17:40	1
Nitrate Nitrite as N	ND		5.0	0.31	mg/L			07/10/19 11:35	10
Phosphorus, Total	630		100	50	mg/L		07/05/19 12:08	07/05/19 14:40	
Phenolics, Total Recoverable	3.3		0.50	0.25	mg/L		07/09/19 12:53	07/10/19 05:44	1
Cyanide, Total	0.021	J	0.025	0.013	mg/L		07/03/19 19:20	07/05/19 15:10	
Ammonia (as N)	2400		250	50	mg/L		07/05/19 04:00	07/05/19 06:00	
Ammonia as NH3	2900		300	60	mg/L		07/05/19 04:00	07/05/19 06:00	
Chemical Oxygen Demand	42000		5000	2500	mg/L			07/10/19 16:46	25
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Total Volatile Solids	17000		500		mg/L			07/02/19 19:37	
Specific Gravity	1.0		0.010	0.010	No Unit			07/10/19 15:15	
Total Solids	33000		500	500	mg/L			07/02/19 19:36	
Nitrogen, Total	4200		0.11	0.11	mg/L			07/11/19 15:16	
Client Sample ID: BUTCHER ate Collected: 06/27/19 06:09 ate Received: 07/02/19 10:10	R					La	ab Sample	ID: 440-245 Matrix	

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared ND 2.0 1,2-Dichloropropane 0.25 ug/L 07/09/19 09:58 1 Benzene 1.1 J 2.0 0.25 ug/L 07/09/19 09:58 1 Chloroform ND 2.0 0.25 ug/L 07/09/19 09:58 1 0.25 ug/L Ethylbenzene 2.0 2.0 07/09/19 09:58 1

Eurofins TestAmerica, Irvine

7/31/2019 (Rev. 1)

Job ID: 440-245042-1

Lab Sample ID: 440-245042-5 Matrix: Water

/ater

Client Sample ID: BUTCHER Date Collected: 06/27/19 06:09 Date Received: 07/02/19 10:10

Lab Sample ID: 440-245042-6

Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
n,p-Xylene	ND		2.0	0.50	ug/L			07/09/19 09:58	1
lethylene Chloride	ND		5.0	1.1	ug/L			07/09/19 09:58	1
o-Xylene	ND		2.0	0.25	ug/L			07/09/19 09:58	1
Foluene	0.40	J	2.0	0.25	ug/L			07/09/19 09:58	1
(ylenes, Total	ND		2.0	0.25	ug/L			07/09/19 09:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-Bromofluorobenzene (Surr)	124	X *	80 - 120					07/09/19 09:58	1
Dibromofluoromethane (Surr)	110		76 - 132					07/09/19 09:58	1
oluene-d8 (Surr)	107		80 - 128					07/09/19 09:58	1
Aethod: 625 - Semivolatile	Organic Com	oounds (G	C/MS)						
Analyte		Qualifier	Í RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	ND	Н	200	40	ug/L		07/05/19 08:23	07/09/19 09:22	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-Fluorobiphenyl	83		50 - 120				07/05/19 08:23	07/09/19 09:22	
-Fluorophenol	77		30 - 120				07/05/19 08:23	07/09/19 09:22	2
,4,6-Tribromophenol	49		40 - 120				07/05/19 08:23	07/09/19 09:22	2
litrobenzene-d5	84		45 - 120				07/05/19 08:23	07/09/19 09:22	
erphenyl-d14	55		10 - 150				07/05/19 08:23	07/09/19 09:22	:
Phenol-d6	82		35 - 120				07/05/19 08:23	07/09/19 09:22	2
Method: 8315A - Carbonyl (Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Formaldehyde	0.13	H	0.050	0.025	mg/L		07/03/19 08:09	07/03/19 18:38	
Method: NO3NO2 Calc - Nit	rogen, Nitrate	-Nitrite							
Analyte		Qualifier	ы	мы	Unit	D	Prepared	Analyzed	Dil Fac
11 GI Y LO	Result	Quaimer	RL						
	ND				mg/L			07/09/19 16:07	
litrate as N		H		1.1	mg/L mg/L			07/09/19 16:07 07/09/19 16:07	1
Nitrate as N Nitrite as N	ND	H H	2.2	1.1 0.50	0				
Jitrate as N Jitrite as N Jitrate Nitrite as N	ND ND ND	H H H	2.2 3.0	1.1 0.50	mg/L			07/09/19 16:07	
litrate as N litrite as N litrate Nitrite as N flethod: 6010B - Metals (IC	ND ND ND P) - Total Reco	H H H	2.2 3.0	1.1 0.50 1.1 MDL	mg/L mg/L Unit	 D	Prepared	07/09/19 16:07	
litrate as N litrite as N litrate Nitrite as N /lethod: 6010B - Metals (IC Inalyte	ND ND ND P) - Total Reco	н н н verable	2.2 3.0 3.0	1.1 0.50 1.1	mg/L mg/L Unit	D	Prepared 07/03/19 08:03	07/09/19 16:07 07/09/19 16:07	Dil Fa
litrate as N litrate as N litrate Nitrite as N Aethod: 6010B - Metals (IC Nalyte Numinum	ND ND ND P) - Total Reco Result	н н н verable	2.2 3.0 3.0 RL	1.1 0.50 1.1 MDL	mg/L mg/L Unit mg/L	D	07/03/19 08:03	07/09/19 16:07 07/09/19 16:07 Analyzed	Dil Fa
litrate as N litrite as N litrate Nitrite as N Aethod: 6010B - Metals (IC nalyte Numinum Arsenic	P) - Total Reco Result 0.30	н н н verable	2.2 3.0 3.0 RL 0.10	1.1 0.50 1.1 MDL 0.050 0.0089 0.0050	mg/L mg/L mg/L mg/L mg/L	D	07/03/19 08:03 07/03/19 08:03	07/09/19 16:07 07/09/19 16:07 Analyzed 07/05/19 12:14	Dil Fa
litrate as N litrite as N litrate Nitrite as N Aethod: 6010B - Metals (IC Malyte Numinum Arsenic Barium	P) - Total Reco Result 0.30 0.086	н н н verable	2.2 3.0 3.0 RL 0.10 0.010	1.1 0.50 1.1 MDL 0.050 0.0089	mg/L mg/L mg/L mg/L mg/L	D	07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/09/19 16:07 07/09/19 16:07 Analyzed 07/05/19 12:14 07/05/19 12:14	Dil Fa
litrate as N litrite as N litrite as N Aethod: 6010B - Metals (IC Inalyte Numinum Arsenic Barium Boron	P) - Total Reco Result 0.30 0.086 0.016	н н н verable	2.2 3.0 3.0 .0 .0 0.10 0.010 0.010	1.1 0.50 1.1 MDL 0.050 0.0089 0.0050	mg/L mg/L Mg/L mg/L mg/L mg/L	D	07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/09/19 16:07 07/09/19 16:07 Analyzed 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14	Dil Fa
iitrate as N litrite as N litrate Nitrite as N lethod: 6010B - Metals (IC nalyte Juminum vrsenic Barium Boron Cadmium	P) - Total Reco Result 0.30 0.086 0.016 0.14	н н н verable	2.2 3.0 3.0 RL 0.10 0.010 0.010 0.050	1.1 0.50 1.1 MDL 0.050 0.0089 0.0050 0.025	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/09/19 16:07 07/09/19 16:07 Analyzed 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14	Dil Fa
litrate as N litrite as N litrite as N fethod: 6010B - Metals (IC nalyte luminum trsenic Barium Boron cadmium chromium	P) - Total Reco Result 0.30 0.086 0.016 0.14 0.022	н н н verable	2.2 3.0 3.0 RL 0.10 0.010 0.010 0.050 0.0050	1.1 0.50 1.1 MDL 0.050 0.0089 0.0050 0.025 0.025	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/09/19 16:07 07/09/19 16:07 Analyzed 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14	Dil Fa
litrate as N litrite as N litrite as N Aethod: 6010B - Metals (ICI nalyte Suminum Arsenic Barium Boron Cadmium Chromium	P) - Total Reco Result 0.30 0.086 0.016 0.14 0.022 0.020	н н н verable	2.2 3.0 3.0 0.10 0.010 0.010 0.050 0.0050 0.0050	1.1 0.50 1.1 0.050 0.0089 0.0050 0.0025 0.0025 0.0025	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/09/19 16:07 07/09/19 16:07 Analyzed 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14	Dil Fa
litrate as N litrate as N litrate Nitrite as N Aethod: 6010B - Metals (IC Nalyte Numinum Arsenic Barium Boron Cadmium Chromium Copper Magnesium	P) - Total Reco Result 0.30 0.086 0.016 0.14 0.022 0.020 0.042	H H Qualifier	2.2 3.0 3.0 0.10 0.010 0.010 0.050 0.0050 0.0050 0.010	1.1 0.50 1.1 0.050 0.0050 0.0050 0.0055 0.0025 0.0025 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/09/19 16:07 07/09/19 16:07 Analyzed 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14	Dil Fa
litrate as N litrate as N litrate Nitrite as N Aethod: 6010B - Metals (IC Nalyte Numinum Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese	P) - Total Reco Result 0.30 0.086 0.016 0.14 0.022 0.020 0.042 29 0.016	H H Qualifier	2.2 3.0 3.0 RL 0.10 0.010 0.010 0.050 0.0050 0.0050 0.010 0.020	1.1 0.50 1.1 0.050 0.0089 0.0050 0.0025 0.0025 0.0025 0.0050 0.010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/09/19 16:07 07/09/19 16:07 Analyzed 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14	<u>Dil Fa</u>
litrate as N litrate as N litrate Nitrite as N Aethod: 6010B - Metals (IC Nalyte Numinum Arsenic Barium Boron Cadmium Chromium Chromium Copper Magnesium Manganese lickel	P) - Total Reco Result 0.30 0.086 0.016 0.14 0.022 0.020 0.042 29 0.016 0.015	H H Qualifier	2.2 3.0 3.0 RL 0.10 0.010 0.010 0.050 0.0050 0.0050 0.0050 0.010 0.020 0.020	1.1 0.50 1.1 MDL 0.050 0.0089 0.0050 0.0025 0.0025 0.0025 0.0050 0.010 0.015 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/09/19 16:07 07/09/19 16:07 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14	<u>Dil Fa</u>
Nitrate as N Nitrate as N Nitrate Nitrite as N Method: 6010B - Metals (ICI Analyte Aluminum Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel Selenium Titanium	P) - Total Reco Result 0.30 0.086 0.016 0.14 0.022 0.020 0.042 29 0.016	H H Qualifier	2.2 3.0 3.0 RL 0.10 0.010 0.010 0.050 0.0050 0.0050 0.0050 0.010 0.020 0.020 0.010	1.1 0.50 1.1 0.050 0.0089 0.0050 0.0025 0.0025 0.0025 0.0050 0.010 0.015	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03 07/03/19 08:03	07/09/19 16:07 07/09/19 16:07 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14 07/05/19 12:14	

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Client Sample ID: BUTCHER Date Collected: 06/27/19 06:09 Date Received: 07/02/19 10:10

Method: 7470A - Mercury

Analyte

Mercury

)								
 Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	
 0.0013	J	0.0020	0.0010	mg/L		07/05/19 13:01	07/06/19 10:52	

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM	138		5.4	1.5	mg/L		07/08/19 06:52	07/08/19 13:23	1
Total Kjeldahl Nitrogen	450		10	5.0	mg/L		07/05/19 14:00	07/09/19 21:47	1
Nitrate Nitrite as N	ND		5.0	0.31	mg/L			07/10/19 11:39	100
Phosphorus, Total	50		25	13	mg/L		07/05/19 18:05	07/06/19 13:33	1
Phenolics, Total Recoverable	0.083		0.050	0.025	mg/L		07/09/19 12:53	07/09/19 17:45	1
Cyanide, Total	ND		0.025	0.013	mg/L		07/03/19 19:20	07/05/19 15:10	1
Ammonia (as N)	35		13	2.5	mg/L		07/05/19 04:00	07/05/19 06:00	1
Ammonia as NH3	43		15	3.0	mg/L		07/05/19 04:00	07/05/19 06:00	1
Chemical Oxygen Demand	5500		400	200	mg/L			07/10/19 16:47	20
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Volatile Solids	6900		200	200	mg/L			07/02/19 19:37	1
Specific Gravity	0.97		0.010	0.010	No Unit			07/10/19 15:13	1
Total Solids	12000		200	200	mg/L			07/02/19 19:36	1
Nitrogen, Total	450		0.11	0.11	mg/L			07/11/19 15:16	1

Client Sample ID: OD STREAMS Date Collected: 06/27/19 06:22

Lab Sample ID: 440-245042-7

Matrix: Water

Date Received: 07/02/19 10:10

Method: 8260B - Volatile O	-	•				_	_ .		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		10	1.3	ug/L			07/08/19 17:56	5
Benzene	ND		10	1.3	ug/L			07/08/19 17:56	5
Chloroform	ND		10	1.3	ug/L			07/08/19 17:56	5
Ethylbenzene	ND		10	1.3	ug/L			07/08/19 17:56	5
m,p-Xylene	ND		10	2.5	ug/L			07/08/19 17:56	5
Methylene Chloride	ND		25	5.5	ug/L			07/08/19 17:56	5
o-Xylene	ND		10	1.3	ug/L			07/08/19 17:56	5
Toluene	ND		10	1.3	ug/L			07/08/19 17:56	5
Xylenes, Total	ND		10	1.3	ug/L			07/08/19 17:56	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		80 - 120			-		07/08/19 17:56	5
Dibromofluoromethane (Surr)	107		76 - 132					07/08/19 17:56	5
Toluene-d8 (Surr)	101		80 - 128					07/08/19 17:56	5

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	ND	Н	2000	400	ug/L		07/05/19 08:23	07/09/19 09:47	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	90		50 - 120				07/05/19 08:23	07/09/19 09:47	10
2-Fluorophenol	86		30 - 120				07/05/19 08:23	07/09/19 09:47	10
2,4,6-Tribromophenol	92		40 - 120				07/05/19 08:23	07/09/19 09:47	10
Nitrobenzene-d5	86		45 - 120				07/05/19 08:23	07/09/19 09:47	10
Terphenyl-d14	74		10 - 150				07/05/19 08:23	07/09/19 09:47	10
Phenol-d6	48		35 - 120				07/05/19 08:23	07/09/19 09:47	10

Eurofins TestAmerica, Irvine

Matrix: Water

Dil Fac

10

5

Lab Sample ID: 440-245042-6

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Client Sample ID: OD STREAMS

Date Collected: 06/27/19 06:22

Date Received: 07/02/19 10:10

Specific Gravity

Nitrogen, Total

Total Solids

Lab Sample ID: 440-245042

Matrix: Wa

2-7 ater	
Fac	5
1	
Fac 1	
1 1	8
_	9
Fac	
10	
10	
10	
10	
10	
10	
10	4.0
10	13
10	
10	
10	
10	
10	

1

1

1

Method: 8315A - Carbonyl Cor Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Formaldehyde	0.15	н	0.050	0.025	mg/L		07/03/19 08:09	07/03/19 18:59	1
Method: NO3NO2 Calc - Nitrog	gen, Nitrate	-Nitrite							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND	Н	11	5.5	mg/L			07/09/19 16:07	
Nitrite as N	ND	Н	15	2.5	mg/L			07/09/19 16:07	
Nitrate Nitrite as N	ND	Н	15	5.5	mg/L			07/09/19 16:07	
Method: 6010B - Metals (ICP)	- Total Reco	overable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	160		1.0	0.50	mg/L		07/08/19 09:56	07/08/19 18:38	10
Arsenic	0.32		0.10	0.089	mg/L		07/08/19 09:56	07/08/19 18:38	1(
Barium	0.055	J	0.10	0.050	mg/L		07/08/19 09:56	07/08/19 18:38	10
Boron	0.57		0.50	0.25	mg/L		07/08/19 09:56	07/08/19 18:38	1(
Cadmium	0.081		0.050	0.025	mg/L		07/08/19 09:56	07/08/19 18:38	1(
Chromium	0.083	В	0.050	0.025	mg/L		07/08/19 09:56	07/08/19 18:38	10
Copper	0.21		0.10	0.050	mg/L		07/08/19 09:56	07/08/19 18:38	1(
Magnesium	97		0.20	0.10	mg/L		07/08/19 09:56	07/08/19 18:38	10
Manganese	ND		0.20	0.15	mg/L		07/08/19 09:56	07/08/19 18:38	10
Nickel	ND		0.10	0.050	mg/L		07/08/19 09:56	07/08/19 18:38	1(
Selenium	0.20		0.10	0.087	mg/L		07/08/19 09:56	07/08/19 18:38	1(
Titanium	0.15		0.050	0.025	mg/L		07/08/19 09:56	07/08/19 18:38	10
Zinc	10		0.20	0.12	mg/L		07/08/19 09:56	07/08/19 18:38	1(
Method: 7470A - Mercury (CV/	AA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0036		0.0020	0.0010	mg/L		07/05/19 13:01	07/06/19 10:54	10
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
HEM	52.0		5.3	1.5	mg/L		07/08/19 06:52	07/08/19 13:23	
Total Kjeldahl Nitrogen	4200		100	50	mg/L		07/05/19 14:00	07/10/19 17:40	10
Nitrate Nitrite as N	ND		5.0	0.31	mg/L			07/10/19 11:49	100
Phosphorus, Total	690		100	50	mg/L		07/05/19 12:08	07/05/19 14:40	
Phenolics, Total Recoverable	7.5		1.0	0.50	mg/L		07/09/19 12:53	07/10/19 06:10	20
Cyanide, Total	0.032		0.025	0.013	mg/L		07/03/19 19:20	07/05/19 15:10	
Ammonia (as N)	2400		250	50	mg/L		07/05/19 04:00	07/05/19 06:00	
Ammonia as NH3	3000		300	60	mg/L		07/05/19 04:00	07/05/19 06:00	
Chemical Oxygen Demand	43000		5000	2500	mg/L			07/10/19 16:47	250
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Volatile Solids	15000		500	500	mg/L			07/02/19 19:37	1

07/10/19 15:12

07/02/19 19:36

07/11/19 15:16

0.010

200

0.11

1.0

13000

4200

0.010 No Unit

200 mg/L

0.11 mg/L

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ocea n Die

Method 8260B 625

8315A NO3NO2 Calc 6010B

7470A 1664A 2540E 351.2 353.2 365.3 420.1

ASTM D5057-90 SM 2540B SM 4500 CN E SM 4500 NH3 D SM 5220D **Total Nitrogen** Subcontract 1664A 3005A 351.2

365.2/365.3/365

5030B 625 7470A 8315_W_Prep Distill/CN Distill/Phenol SM 4500 NH3 B

Method Description	Protocol	Laboratory
Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
Semivolatile Organic Compounds (GC/MS)	40CFR136A	TAL IRV
Carbonyl Compounds (HPLC)	SW846	TAL IRV
Nitrogen, Nitrate-Nitrite	EPA	TAL IRV
Metals (ICP)	SW846	TAL IRV
Mercury (CVAA)	SW846	TAL IRV
HEM and SGT-HEM	1664A	TAL IRV
Solids, Volatile and Fixed (VS)	SM	TAL IRV
Nitrogen, Total Kjeldahl	MCAWW	TAL IRV
Nitrogen, Nitrate-Nitrite	MCAWW	TAL SAC
Phosphorus, Total	EPA	TAL IRV
Phenolics, Total Recoverable	MCAWW	TAL SAV
Specific Gravity and Bulk Density (Screening)	ASTM	TAL PIT
Solids, Total	SM	TAL IRV
Cyanide, Total	SM	TAL IRV
Ammonia	SM	TAL IRV
COD	SM	TAL IRV
Nitrogen, Total	EPA	TAL IRV
Pyrethrins	None	Physis Env
HEM and SGT-HEM (Aqueous)	1664A	TAL IRV
Preparation, Total Recoverable or Dissolved Metals	SW846	TAL IRV
Nitrogen, Total Kjeldahl	MCAWW	TAL IRV
Phosphorus, Total	MCAWW	TAL IRV
Purge and Trap	SW846	TAL IRV
Liquid-Liquid Extraction	40CFR136A	TAL IRV
Preparation, Mercury	SW846	TAL IRV
Liquid-Liquid Extraction (Carbonyl Compounds)	SW846	TAL IRV
Distillation, Cyanide	None	TAL IRV
Distillation, Phenolics	None	TAL SAV
	014	TAL (D)

Protocol References:

1664A = EPA-821-98-002

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

ASTM = ASTM International

EPA = US Environmental Protection Agency

Distillation, Ammonia

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

Physis Env = Physis Environmental Laboratories, 1904 Wright Circle, Anaheim, CA 92806

TAL IRV = Eurofins TestAmerica, Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TAL IRV

SM

Client Sample ID: 06 25 BUTCH Date Collected: 06/25/19 08:15 Date Received: 07/02/19 10:10

Lab Sample ID: 440-245042-1 Matrix: Water

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	- 8260B	- <u> </u>	1	10 mL	10 mL	556543	07/09/19 05:59	-	TAL IRV
Total/NA	Prep	625			100 mL	2.0 mL	556176	07/05/19 08:23	JAA	TAL IRV
Total/NA	Analysis	625		2			556467	07/09/19 07:20	L1B	TAL IRV
Total/NA	Prep	8315_W_Prep			20 mL	1 mL	555931	07/03/19 08:09	FTD	TAL IRV
Total/NA	Analysis	8315A		1			556054	07/03/19 16:53	D1D	TAL IRV
Total/NA	Analysis	NO3NO2 Calc		1			556718	07/09/19 16:07	NN	TAL IRV
Total Recoverable	Prep	3005A			25 mL	25 mL	555968	07/03/19 08:03	BV	TAL IRV
Total Recoverable	Analysis	6010B		1			556263	07/05/19 12:09	P1R	TAL IRV
Total/NA	Prep	7470A			20 mL	20 mL	556247	07/05/19 13:01	EMS	TAL IRV
Total/NA	Analysis	7470A		10			556352	07/06/19 10:40	EMS	TAL IRV
Total/NA	Prep	1664A			930 mL	1000 mL	556396	07/08/19 06:52		TAL IRV
Total/NA	Analysis	1664A		1			556472	07/08/19 13:23	JC1	TAL IRV
Total/NA	Analysis	2540E		1	5 mL	100 mL	555904	07/02/19 19:36	HTL	TAL IRV
Total/NA	Prep	351.2			0.5 mL	25 mL	556300	07/05/19 14:00		TAL IRV
Total/NA	Analysis	351.2		5			556894	07/09/19 21:47	HTL	TAL IRV
Total/NA	Analysis	353.2		100			306826	07/10/19 11:13	TCS	TAL SAC
Total/NA	Prep	365.2/365.3/365			0.100 mL	50 mL	556299	07/05/19 18:05	MMP	TAL IRV
Total/NA	Analysis	365.3		1			556353	07/06/19 13:33	MMP	TAL IRV
Total/NA	Prep	Distill/Phenol			6 mL	6 mL	577256	07/09/19 12:53		TAL SAV
Total/NA	Analysis	420.1		1	6 mL	6 mL	577344	07/09/19 17:37	NVF	TAL SAV
Total/NA	Analysis	ASTM D5057-90		1	50 g	50 mL	284432	07/10/19 15:21	TAM	TAL PIT
Total/NA	Analysis	SM 2540B		1	5 mL	100 mL	555974	07/02/19 19:36	XL	TAL IRV
Total/NA	Prep	Distill/CN			50 mL	50 mL	556015	07/03/19 10:24	KMY	TAL IRV
Total/NA	Analysis	SM 4500 CN E		1			556040	07/03/19 12:39	KMY	TAL IRV
Total/NA	Prep	SM 4500 NH3 B			1.0 mL	50 mL	556152	07/05/19 04:00		TAL IRV
Total/NA	Analysis	SM 4500 NH3 D		1			556165	07/05/19 06:00	ΥZ	TAL IRV
Total/NA	Analysis	SM 5220D		20	2 mL	2 mL	556931	07/10/19 16:46	KYP	TAL IRV
Total/NA	Analysis	Total Nitrogen		1			557104	07/11/19 15:16	TLN	TAL IRV

Client Sample ID: 06 25 OD STREAMS Date Collected: 06/25/19 08:24 Date Received: 07/02/19 10:10

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		5	10 mL	10 mL	556388	07/08/19 17:00	TCN	TAL IRV
Total/NA	Prep	625			100 mL	2.0 mL	556176	07/05/19 08:23	JAA	TAL IRV
Total/NA	Analysis	625		10			556467	07/09/19 07:44	L1B	TAL IRV
Total/NA	Prep	8315_W_Prep			20 mL	1 mL	555931	07/03/19 08:09	FTD	TAL IRV
Total/NA	Analysis	8315A		1			556054	07/03/19 17:14	D1D	TAL IRV
Total/NA	Analysis	NO3NO2 Calc		1			556718	07/09/19 16:07	NN	TAL IRV
Total Recoverable	Prep	3005A			25 mL	25 mL	556431	07/08/19 09:56	BV	TAL IRV
Total Recoverable	Analysis	6010B		10			556566	07/08/19 18:23	P1R	TAL IRV

Eurofins TestAmerica, Irvine

Lab Sample ID: 440-245042-2

Matrix: Water

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Client Sample ID: 06 25 OD STREAMS Date Collected: 06/25/19 08:24 Date Received: 07/02/19 10:10

5

7

13

Lab Sample ID: 440-245042-2 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			20 mL	20 mL	556247	07/05/19 13:01	EMS	TAL IRV
Total/NA	Analysis	7470A		10			556352	07/06/19 10:43	EMS	TAL IRV
Total/NA	Prep	1664A			945 mL	1000 mL	556396	07/08/19 06:52	JC1	TAL IRV
Total/NA	Analysis	1664A		1			556472	07/08/19 13:23	JC1	TAL IRV
Total/NA	Analysis	2540E		1	2 mL	100 mL	555904	07/02/19 19:36	HTL	TAL IRV
Total/NA	Prep	351.2			0.5 mL	25 mL	556300	07/05/19 14:00	HTL	TAL IRV
Total/NA	Analysis	351.2		10			556894	07/09/19 21:47	HTL	TAL IRV
Total/NA	Analysis	353.2		100			306826	07/10/19 11:23	TCS	TAL SAC
Total/NA	Prep	365.2/365.3/365			0.025 mL	50 mL	556226	07/05/19 12:08	MMP	TAL IRV
Total/NA	Analysis	365.3		1			556268	07/05/19 14:39	MMP	TAL IRV
Total/NA	Prep	Distill/Phenol			6 mL	6 mL	577256	07/09/19 12:53	NVF	TAL SAV
Total/NA	Analysis	420.1		10	6 mL	6 mL	577344	07/10/19 05:44	NVF	TAL SAV
Total/NA	Analysis	ASTM D5057-90		1	50 g	50 mL	284432	07/10/19 15:19	TAM	TAL PIT
Total/NA	Analysis	SM 2540B		1	2 mL	100 mL	555974	07/02/19 19:36	XL	TAL IRV
Total/NA	Prep	Distill/CN			50 mL	50 mL	556015	07/03/19 10:24	KMY	TAL IRV
Total/NA	Analysis	SM 4500 CN E		1			556040	07/03/19 12:39	KMY	TAL IRV
Total/NA	Prep	SM 4500 NH3 B			0.1 mL	50 mL	556152	07/05/19 04:00	ΥZ	TAL IRV
Total/NA	Analysis	SM 4500 NH3 D		1			556165	07/05/19 06:00	YZ	TAL IRV
Total/NA	Analysis	SM 5220D		250	2 mL	2 mL	556931	07/10/19 16:46	KYP	TAL IRV
Total/NA	Analysis	Total Nitrogen		1			557104	07/11/19 15:16	TLN	TAL IRV

Client Sample ID: 06 25 BUTCH DUP Date Collected: 06/25/19 08:15 Date Received: 07/02/19 10:10

Lab Sample ID: 440-245042-3

Matrix: Water

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	10 mL	10 mL	556388	07/08/19 17:29	TCN	TAL IRV
Total/NA	Analysis	8260B	RA	1	10 mL	10 mL	556543	07/09/19 06:29	JB	TAL IRV
Total/NA	Prep	625			100 mL	2.0 mL	556176	07/05/19 08:23	JAA	TAL IRV
Total/NA	Analysis	625		2			556467	07/09/19 08:09	L1B	TAL IRV
Total/NA	Prep	8315_W_Prep			20 mL	1 mL	555931	07/03/19 08:09	FTD	TAL IRV
Total/NA	Analysis	8315A		1			556054	07/03/19 17:35	D1D	TAL IRV
Total/NA	Analysis	NO3NO2 Calc		1			556718	07/09/19 16:07	NN	TAL IRV
Total Recoverable	Prep	3005A			12.5 mL	25 mL	556431	07/08/19 09:56	BV	TAL IRV
Total Recoverable	Analysis	6010B		10			556566	07/08/19 18:33	P1R	TAL IRV
Total/NA	Prep	7470A			20 mL	20 mL	556247	07/05/19 13:01	EMS	TAL IRV
Total/NA	Analysis	7470A		10			556352	07/06/19 10:45	EMS	TAL IRV
Total/NA	Prep	1664A			950 mL	1000 mL	556396	07/08/19 06:52	JC1	TAL IRV
Total/NA	Analysis	1664A		1			556472	07/08/19 13:23	JC1	TAL IRV
Total/NA	Analysis	2540E		1	5 mL	100 mL	555904	07/02/19 19:36	HTL	TAL IRV
Total/NA	Prep	351.2			0.5 mL	25 mL	556300	07/05/19 14:00	HTL	TAL IRV
Total/NA	Analysis	351.2		5			556947	07/10/19 17:40	HTL	TAL IRV
Total/NA	Analysis	353.2		100			306826	07/10/19 11:27	TCS	TAL SAC

Client Sample ID: 06 25 BUTCH DUP Date Collected: 06/25/19 08:15 Date Received: 07/02/19 10:10

Lab Sample ID: 440-245042-3 Matrix: Water

6 7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	365.2/365.3/365			0.100 mL	50 mL	556299	07/05/19 18:05	MMP	TAL IRV
Total/NA	Analysis	365.3		1			556353	07/06/19 13:33	MMP	TAL IRV
Total/NA	Prep	Distill/Phenol			6 mL	6 mL	577256	07/09/19 12:53	NVF	TAL SAV
Total/NA	Analysis	420.1		1	6 mL	6 mL	577344	07/09/19 17:41	NVF	TAL SAV
Total/NA	Analysis	ASTM D5057-90		1	50 g	50 mL	284432	07/10/19 15:18	TAM	TAL PIT
Total/NA	Analysis	SM 2540B		1	5 mL	100 mL	555974	07/02/19 19:36	XL	TAL IRV
Total/NA	Prep	Distill/CN			50 mL	50 mL	556015	07/03/19 10:24	KMY	TAL IRV
Total/NA	Analysis	SM 4500 CN E		1			556040	07/03/19 12:39	KMY	TAL IRV
Total/NA	Prep	SM 4500 NH3 B			1.0 mL	50 mL	556152	07/05/19 04:00	ΥZ	TAL IRV
Total/NA	Analysis	SM 4500 NH3 D		1			556165	07/05/19 06:00	YZ	TAL IRV
Total/NA	Analysis	SM 5220D		50	2 mL	2 mL	556931	07/10/19 16:46	KYP	TAL IRV
Total/NA	Analysis	Total Nitrogen		1			557104	07/11/19 15:16	TLN	TAL IRV

Client Sample ID: BUTCHER Date Collected: 06/26/19 06:06 Date Received: 07/02/19 10:10

Lab Sample ID: 440-245042-4 **Matrix: Water**

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type Total/NA	Analysis	- Method 8260B	Run	Factor	Amount 10 mL	Amount 10 mL	Number 556591	or Analyzed	Analyst TCN	TAL IR
	,			1						
Total/NA Total/NA	Prep Analysis	625 625		2	100 mL	2.0 mL	556176 556467	07/05/19 08:23 07/09/19 08:33		TAL IR TAL IR
				2	00 I					
Γotal/NA Γotal/NA	Prep	8315_W_Prep 8315A		1	20 mL	1 mL	555931 556054	07/03/19 08:09 07/03/19 17:56		TAL IR' TAL IR'
	Analysis			-						
Total/NA	Analysis	NO3NO2 Calc		1			556718	07/09/19 16:07	NN	TAL IR
Total Recoverable	Prep	3005A			25 mL	25 mL	555968	07/03/19 08:03	BV	TAL IR\
Total Recoverable	Analysis	6010B		1			556263	07/05/19 12:11	P1R	TAL IR
Total/NA	Prep	7470A			20 mL	20 mL	556247	07/05/19 13:01	EMS	TAL IR
Total/NA	Analysis	7470A		10			556352	07/06/19 10:47	EMS	TAL IR
Total/NA	Prep	1664A			985 mL	1000 mL	556396	07/08/19 06:52	JC1	TAL IR
Total/NA	Analysis	1664A		1			556472	07/08/19 13:23	JC1	TAL IR
Total/NA	Analysis	2540E		1	5 mL	100 mL	555904	07/02/19 19:37	HTL	TAL IR
Total/NA	Prep	351.2			0.5 mL	25 mL	556300	07/05/19 14:00	HTL	TAL IR
Total/NA	Analysis	351.2		1			556894	07/09/19 21:47	HTL	TAL IR
Total/NA	Analysis	353.2		100			306826	07/10/19 11:31	TCS	TAL SA
Total/NA	Prep	365.2/365.3/365			0.100 mL	50 mL	556299	07/05/19 18:05	MMP	TAL IR
Total/NA	Analysis	365.3		1			556353	07/06/19 13:33	MMP	TAL IR
Total/NA	Prep	Distill/Phenol			6 mL	6 mL	577256	07/09/19 12:53	NVF	TAL SA
Total/NA	Analysis	420.1		1	6 mL	6 mL	577344	07/09/19 17:45	NVF	TAL SA
Total/NA	Analysis	ASTM D5057-90		1	50 g	50 mL	284432	07/10/19 15:16	ТАМ	TAL PI
Total/NA	Analysis	SM 2540B		1	5 mL	100 mL	555974	07/02/19 19:36	XL	TAL IR
Total/NA	Prep	Distill/CN			50 mL	50 mL	556015	07/03/19 10:24	KMY	TAL IR
Total/NA	Analysis	SM 4500 CN E		1			556040	07/03/19 12:39	KMY	TAL IR

Client Sample ID: BUTCHER Date Collected: 06/26/19 06:06 Date Received: 07/02/19 10:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SM 4500 NH3 B			2.0 mL	50 mL	556152	07/05/19 04:00	YZ	TAL IRV
Total/NA	Analysis	SM 4500 NH3 D		1			556165	07/05/19 06:00	YZ	TAL IRV
Total/NA	Analysis	SM 5220D		20	2 mL	2 mL	556931	07/10/19 16:46	KYP	TAL IRV
Total/NA	Analysis	Total Nitrogen		1			557104	07/11/19 15:16	TLN	TAL IRV

Client Sample ID: OD STREAMS Date Collected: 06/26/19 06:19 Date Received: 07/02/19 10:10

Lab Sample ID: 440-245042-4 Matrix: Water

Lab Sample ID: 440-245042-5

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		5	10 mL	10 mL	556394	07/08/19 16:56	TCN	TAL IRV
Total/NA	Prep	625			100 mL	2.0 mL	556176	07/05/19 08:23	JAA	TAL IRV
Total/NA	Analysis	625		10			556467	07/09/19 08:58	L1B	TAL IRV
Total/NA	Prep	8315_W_Prep			20 mL	1 mL	555931	07/03/19 08:09	FTD	TAL IRV
Total/NA	Analysis	8315A		1			556054	07/03/19 18:17	D1D	TAL IRV
Total/NA	Analysis	NO3NO2 Calc		1			556718	07/09/19 16:07	NN	TAL IRV
Total Recoverable	Prep	3005A			12.5 mL	25 mL	556431	07/08/19 09:56	BV	TAL IRV
Total Recoverable	Analysis	6010B		10			556566	07/08/19 18:35	P1R	TAL IRV
Total/NA	Prep	7470A			20 mL	20 mL	556247	07/05/19 13:01	EMS	TAL IRV
Total/NA	Analysis	7470A		10			556352	07/06/19 10:49	EMS	TAL IRV
Total/NA	Prep	1664A			955 mL	1000 mL	556396	07/08/19 06:52	JC1	TAL IRV
Total/NA	Analysis	1664A		1			556472	07/08/19 13:23	JC1	TAL IRV
Total/NA	Analysis	2540E		1	2 mL	100 mL	555904	07/02/19 19:37	HTL	TAL IRV
Total/NA	Prep	351.2			0.5 mL	25 mL	556300	07/05/19 14:00	HTL	TAL IRV
Total/NA	Analysis	351.2		10			556947	07/10/19 17:40	HTL	TAL IRV
Total/NA	Analysis	353.2		100			306826	07/10/19 11:35	TCS	TAL SAC
Total/NA	Prep	365.2/365.3/365			0.025 mL	50 mL	556226	07/05/19 12:08	MMP	TAL IRV
Total/NA	Analysis	365.3		1			556268	07/05/19 14:40	MMP	TAL IRV
Total/NA	Prep	Distill/Phenol			6 mL	6 mL	577256	07/09/19 12:53	NVF	TAL SAV
Total/NA	Analysis	420.1		10	6 mL	6 mL	577344	07/10/19 05:44	NVF	TAL SAV
Total/NA	Analysis	ASTM D5057-90		1	50 g	50 mL	284432	07/10/19 15:15	ТАМ	TAL PIT
Total/NA	Analysis	SM 2540B		1	2 mL	100 mL	555974	07/02/19 19:36	XL	TAL IRV
Total/NA	Prep	Distill/CN			50 mL	50 mL	556121	07/03/19 19:20	QTN	TAL IRV
Total/NA	Analysis	SM 4500 CN E		1			556276	07/05/19 15:10	QTN	TAL IRV
Total/NA	Prep	SM 4500 NH3 B			0.1 mL	50 mL	556152	07/05/19 04:00	YZ	TAL IRV
Total/NA	Analysis	SM 4500 NH3 D		1			556165	07/05/19 06:00	ΥZ	TAL IRV
Total/NA	Analysis	SM 5220D		250	2 mL	2 mL	556931	07/10/19 16:46	KYP	TAL IRV
Total/NA	Analysis	Total Nitrogen		1			557104	07/11/19 15:16	TLN	TAL IRV
_										

Client Sample ID: BUTCHER Date Collected: 06/27/19 06:09 Date Received: 07/02/19 10:10

Lab Sample ID: 440-245042-6 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	10 mL	10 mL	556591	07/09/19 09:58	TCN	TAL IRV
Total/NA	Prep	625			200 mL	2.0 mL	556176	07/05/19 08:23	JAA	TAL IRV
Total/NA	Analysis	625		2			556467	07/09/19 09:22	L1B	TAL IRV
Total/NA	Prep	8315_W_Prep			20 mL	1 mL	555931	07/03/19 08:09	FTD	TAL IRV
Total/NA	Analysis	8315A		1			556054	07/03/19 18:38	D1D	TAL IRV
Total/NA	Analysis	NO3NO2 Calc		1			556718	07/09/19 16:07	NN	TAL IRV
Total Recoverable	Prep	3005A			25 mL	25 mL	555968	07/03/19 08:03	BV	TAL IRV
Total Recoverable	Analysis	6010B		1			556263	07/05/19 12:14	P1R	TAL IRV
Total/NA	Prep	7470A			20 mL	20 mL	556247	07/05/19 13:01	EMS	TAL IRV
Total/NA	Analysis	7470A		10			556352	07/06/19 10:52	EMS	TAL IRV
Total/NA	Prep	1664A			925 mL	1000 mL	556396	07/08/19 06:52	JC1	TAL IRV
Total/NA	Analysis	1664A		1			556472	07/08/19 13:23	JC1	TAL IRV
Total/NA	Analysis	2540E		1	5 mL	100 mL	555904	07/02/19 19:37	HTL	TAL IRV
Total/NA	Prep	351.2			0.5 mL	25 mL	556300	07/05/19 14:00	HTL	TAL IRV
Total/NA	Analysis	351.2		1			556894	07/09/19 21:47	HTL	TAL IRV
Total/NA	Analysis	353.2		100			306826	07/10/19 11:39	TCS	TAL SAC
Total/NA	Prep	365.2/365.3/365			0.100 mL	50 mL	556299	07/05/19 18:05	MMP	TAL IRV
Total/NA	Analysis	365.3		1			556353	07/06/19 13:33	MMP	TAL IRV
Total/NA	Prep	Distill/Phenol			6 mL	6 mL	577256	07/09/19 12:53	NVF	TAL SAV
Total/NA	Analysis	420.1		1	6 mL	6 mL	577344	07/09/19 17:45	NVF	TAL SAV
Total/NA	Analysis	ASTM D5057-90		1	50 g	50 mL	284432	07/10/19 15:13	TAM	TAL PIT
Total/NA	Analysis	SM 2540B		1	5 mL	100 mL	555974	07/02/19 19:36	XL	TAL IRV
Total/NA	Prep	Distill/CN			50 mL	50 mL	556121	07/03/19 19:20	QTN	TAL IRV
Total/NA	Analysis	SM 4500 CN E		1			556276	07/05/19 15:10	QTN	TAL IRV
Total/NA	Prep	SM 4500 NH3 B			2.0 mL	50 mL	556152	07/05/19 04:00	YZ	TAL IRV
Total/NA	Analysis	SM 4500 NH3 D		1			556165	07/05/19 06:00	YZ	TAL IRV
Total/NA	Analysis	SM 5220D		20	2 mL	2 mL	556931	07/10/19 16:47	KYP	TAL IRV
Total/NA	Analysis	Total Nitrogen		1			557104	07/11/19 15:16	TLN	TAL IRV

Client Sample ID: OD STREAMS Date Collected: 06/27/19 06:22 Date Received: 07/02/19 10:10

Lab Sample ID: 440-245042-7 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		5	10 mL	10 mL	556394	07/08/19 17:56	TCN	TAL IRV
Total/NA	Prep	625			100 mL	2.0 mL	556176	07/05/19 08:23	JAA	TAL IRV
Total/NA	Analysis	625		10			556467	07/09/19 09:47	L1B	TAL IRV
Total/NA	Prep	8315_W_Prep			20 mL	1 mL	555931	07/03/19 08:09	FTD	TAL IRV
Total/NA	Analysis	8315A		1			556054	07/03/19 18:59	D1D	TAL IRV
Total/NA	Analysis	NO3NO2 Calc		1			556718	07/09/19 16:07	NN	TAL IRV
Total Recoverable	Prep	3005A			25 mL	25 mL	556431	07/08/19 09:56	BV	TAL IRV
Total Recoverable	Analysis	6010B		10			556566	07/08/19 18:38	P1R	TAL IRV

Client Sample ID: OD STREAMS Date Collected: 06/27/19 06:22 Date Received: 07/02/19 10:10

Lab Sample ID: 440-245042-7 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			20 mL	20 mL	556247	07/05/19 13:01	EMS	TAL IRV
Total/NA	Analysis	7470A		10			556352	07/06/19 10:54	EMS	TAL IRV
Total/NA	Prep	1664A			940 mL	1000 mL	556396	07/08/19 06:52	JC1	TAL IRV
Total/NA	Analysis	1664A		1			556472	07/08/19 13:23	JC1	TAL IRV
Total/NA	Analysis	2540E		1	2 mL	100 mL	555904	07/02/19 19:37	HTL	TAL IRV
Total/NA	Prep	351.2			0.5 mL	25 mL	556300	07/05/19 14:00	HTL	TAL IRV
Total/NA	Analysis	351.2		10			556947	07/10/19 17:40	HTL	TAL IRV
Total/NA	Analysis	353.2		100			306826	07/10/19 11:49	TCS	TAL SAC
Total/NA	Prep	365.2/365.3/365			0.025 mL	50 mL	556226	07/05/19 12:08	MMP	TAL IRV
Total/NA	Analysis	365.3		1			556268	07/05/19 14:40	MMP	TAL IRV
Total/NA	Prep	Distill/Phenol			6 mL	6 mL	577256	07/09/19 12:53	NVF	TAL SAV
Total/NA	Analysis	420.1		20	6 mL	6 mL	577344	07/10/19 06:10	NVF	TAL SAV
Total/NA	Analysis	ASTM D5057-90		1	50 g	50 mL	284432	07/10/19 15:12	TAM	TAL PIT
Total/NA	Analysis	SM 2540B		1	5 mL	100 mL	555974	07/02/19 19:36	XL	TAL IRV
Total/NA	Prep	Distill/CN			50 mL	50 mL	556121	07/03/19 19:20	QTN	TAL IRV
Total/NA	Analysis	SM 4500 CN E		1			556276	07/05/19 15:10	QTN	TAL IRV
Total/NA	Prep	SM 4500 NH3 B			0.1 mL	50 mL	556152	07/05/19 04:00	ΥZ	TAL IRV
Total/NA	Analysis	SM 4500 NH3 D		1			556165	07/05/19 06:00	ΥZ	TAL IRV
Total/NA	Analysis	SM 5220D		250	2 mL	2 mL	556931	07/10/19 16:47	KYP	TAL IRV
Total/NA	Analysis	Total Nitrogen		1			557104	07/11/19 15:16	TLN	TAL IRV

Laboratory References:

Physis Env = Physis Environmental Laboratories, 1904 Wright Circle, Anaheim, CA 92806

TAL IRV = Eurofins TestAmerica, Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Dil Fac

1

1

1

1

1

1

1

1

1

8

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-556388/4 **Matrix: Water**

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analyzed

Analysis Batch: 556388 MB MB Analyte **Result Qualifier** RL MDL Unit Prepared D 1,2-Dichloropropane 2.0 0.25 ug/L 07/08/19 08:22 ND Benzene ND 2.0 0.25 ug/L 07/08/19 08:22 Chloroform ND 2.0 0.25 ug/L 07/08/19 08:22 Ethylbenzene 2.0 ND 0.25 ug/L 07/08/19 08:22 m,p-Xylene ND 2.0 0.50 ug/L 07/08/19 08:22 ND Methylene Chloride 5.0 1.1 ug/L 07/08/19 08:22 ND 2.0 07/08/19 08:22 o-Xylene 0.25 ug/L Toluene ND 2.0 0.25 ug/L 07/08/19 08:22 Xylenes, Total ND 2.0 0.25 ug/L 07/08/19 08:22

	MB	МВ					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	100		80 - 120		07/08/19 08:22	1	
Dibromofluoromethane (Surr)	90		76 - 132		07/08/19 08:22	1	
Toluene-d8 (Surr)	114		80 - 128		07/08/19 08:22	1	

Lab Sample ID: LCS 440-556388/5 **Matrix: Water** Analysis Batch: 556388

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichloropropane	10.0	10.7		ug/L		107	67 _ 130
Benzene	10.0	11.5		ug/L		115	68 - 130
Chloroform	10.0	10.8		ug/L		108	70 - 130
Ethylbenzene	10.0	13.5	*	ug/L		135	70 - 130
m,p-Xylene	10.0	12.8		ug/L		128	70 - 130
Methylene Chloride	10.0	8.37		ug/L		84	52 - 130
o-Xylene	10.0	12.5		ug/L		125	70 - 130
Toluene	10.0	12.9		ug/L		129	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		80 - 120
Dibromofluoromethane (Surr)	89		76 - 132
Toluene-d8 (Surr)	108		80 - 128

Lab Sample ID: 440-244865-A-2 MS **Matrix: Water** Analysis Batch: 556388

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloropropane	ND		250	233		ug/L		93	69 - 130	
Benzene	1200		250	1280	4	ug/L		27	66 - 130	
Chloroform	ND		250	245		ug/L		98	70 - 130	
Ethylbenzene	71	*	250	361		ug/L		116	70 - 130	
m,p-Xylene	66		250	342		ug/L		110	70 - 133	
Methylene Chloride	ND		250	208		ug/L		83	52 - 130	
o-Xylene	43	J	250	325		ug/L		113	70 - 133	
Toluene	37	J	250	321		ug/L		114	70 - 130	

Eurofins TestAmerica, Irvine

Client Sample ID: Matrix Spike

Prep Type: Total/NA

QC Sample Results

Prep Type: Total/NA

5 8

Lab Sample ID: 440-244865-A-2 MS Matrix: Water Analysis Batch: 556388

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		80 - 120
Dibromofluoromethane (Surr)	88		76 - 132
Toluene-d8 (Surr)	107		80 - 128

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-244865-A-2 MSD **Matrix: Water**

Analysis Batch: 556388 RPD MSD MSD Sample Sample Spike %Rec. **Result Qualifier** Added **Result Qualifier** %Rec Limits RPD Limit Analyte Unit D ND 1,2-Dichloropropane 250 244 ug/L 97 69 - 130 5 20 Benzene 1200 250 1390 4 ug/L 68 66 - 130 8 20 Chloroform ND 250 257 70 - 130 20 ug/L 103 5 Ethylbenzene 71 250 379 ug/L 123 70 - 130 5 20 66 250 361 25 m,p-Xylene ug/L 118 70 - 133 5 ND 250 228 20 Methylene Chloride ug/L 91 52 - 130 9 o-Xylene 43 250 342 ug/L 119 70 - 133 5 20 Ĵ Toluene 37 J 250 336 ug/L 120 70 - 130 5 20 MSD MSD

	10/30	14130	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		80 - 120
Dibromofluoromethane (Surr)	90		76 - 132
Toluene-d8 (Surr)	108		80 - 128

Lab Sample ID: MB 440-556394/4 Matrix: Water Analysis Batch: 556394

Toluene-d8 (Surr)

MB MB Result Qualifier RL MDL Unit Prepared Dil Fac Analyte D Analyzed 1,2-Dichloropropane ND 2.0 0.25 ug/L 07/08/19 08:27 1 Benzene ND 2.0 0.25 ug/L 07/08/19 08:27 1 Chloroform ND 2.0 0.25 ug/L 07/08/19 08:27 1 2.0 Ethylbenzene ND 0.25 ug/L 07/08/19 08:27 1 m,p-Xylene ND 2.0 0.50 ug/L 07/08/19 08:27 1 Methylene Chloride ND 5.0 1.1 ug/L 07/08/19 08:27 1 ND 2.0 o-Xylene 0.25 ug/L 07/08/19 08:27 1 Toluene ND 2.0 0.25 ug/L 07/08/19 08:27 1 Xylenes, Total 0.25 ug/L 07/08/19 08:27 ND 2.0 1 MB MB Surrogate Qualifier Limits Prepared Dil Fac %Recovery Analyzed 104 80 - 120 07/08/19 08:27 4-Bromofluorobenzene (Surr) 1 Dibromofluoromethane (Surr) 106 76 - 132 07/08/19 08:27 1 103 80 - 128 07/08/19 08:27

Client Sample ID: Matrix Spike Duplicate

Prep	Туре:	Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Eurofins	TestAmerica,	Irvine

1

Client Sample ID: Lab Control Sample

90

94

92

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-556394/5 **Matrix: Water**

Analyte

Benzene

o-Xylene

Toluene

Methylene Chloride

Prep Type: Total/NA Analysis Batch: 556394 Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits 1,2-Dichloropropane 10.0 104 67 - 130 10.4 ug/L 10.0 9.54 ug/L 95 68 - 130 Chloroform 10.0 10.4 ug/L 104 70 - 130 Ethylbenzene 10.0 9.46 ug/L 95 70 - 130 m,p-Xylene 10.0 9.64 ug/L 96 70 - 130

8.95

9.44

9.22

ug/L

ug/L

ug/L

10.0

10.0

10.0

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		80 - 120
Dibromofluoromethane (Surr)	114		76 - 132
Toluene-d8 (Surr)	98		80 - 128

Lab Sample ID: 440-244985-B-1 MS **Matrix: Water** Analysis Batch: 556394

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichloropropane	ND	F2	10.0	12.4		ug/L		124	69 - 130
Benzene	ND	F2	10.0	11.5		ug/L		115	66 - 130
Chloroform	ND	F2	10.0	12.4		ug/L		124	70 - 130
Ethylbenzene	ND	F2	10.0	12.0		ug/L		120	70 - 130
m,p-Xylene	ND	F2	10.0	11.7		ug/L		117	70 - 133
Methylene Chloride	ND	F2	10.0	11.0		ug/L		110	52 - 130
o-Xylene	ND	F2	10.0	11.7		ug/L		117	70 - 133
Toluene	ND	F2	10.0	11.6		ug/L		116	70 - 130
	MS	MS							

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	111		76 - 132
Toluene-d8 (Surr)	96		80 - 128

Lab Sample ID: 440-244985-B-1 MSD **Matrix: Water** Analysis Batch: 556394

Analysis Datch. 550554	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloropropane	ND	F2	10.0	10.0	F2	ug/L		100	69 - 130	21	20
Benzene	ND	F2	10.0	8.27	F2	ug/L		83	66 - 130	32	20
Chloroform	ND	F2	10.0	9.63	F2	ug/L		96	70 - 130	25	20
Ethylbenzene	ND	F2	10.0	9.22	F2	ug/L		92	70 - 130	26	20
m,p-Xylene	ND	F2	10.0	9.08	F2	ug/L		91	70 - 133	26	25
Methylene Chloride	ND	F2	10.0	8.37	F2	ug/L		84	52 - 130	27	20
o-Xylene	ND	F2	10.0	9.10	F2	ug/L		91	70 - 133	25	20
Toluene	ND	F2	10.0	8.84	F2	ug/L		88	70 - 130	27	20

Eurofins TestAmerica, Irvine

Prep Type: Total/NA

Client Sample ID: Matrix Spike Prep Type: Total/NA

52 - 130

70 - 130

70 - 130

Client Sample ID: Matrix Spike Duplicate

QC Sample Results

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: 440-244985-B-1 MSD Client Sample

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		80 - 120
Dibromofluoromethane (Surr)	110		76 - 132
Toluene-d8 (Surr)	102		80 - 128

Lab Sample ID: MB 440-556543/5 Matrix: Water

Analysis Batch: 556543

Analysis Batch: 556394

Matrix: Water

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		2.0	0.25	ug/L			07/08/19 20:58	1
Benzene	ND		2.0	0.25	ug/L			07/08/19 20:58	1
Chloroform	ND		2.0	0.25	ug/L			07/08/19 20:58	1
Ethylbenzene	ND		2.0	0.25	ug/L			07/08/19 20:58	1
m,p-Xylene	ND		2.0	0.50	ug/L			07/08/19 20:58	1
Methylene Chloride	ND		5.0	1.1	ug/L			07/08/19 20:58	1
o-Xylene	ND		2.0	0.25	ug/L			07/08/19 20:58	1
Toluene	ND		2.0	0.25	ug/L			07/08/19 20:58	1
Xylenes, Total	ND		2.0	0.25	ug/L			07/08/19 20:58	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			80 - 120			-		07/08/19 20:58	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed
4-Bromofluorobenzene (Surr)	110		80 - 120	_		07/08/19 20:58
Dibromofluoromethane (Surr)	111		76 - 132			07/08/19 20:58
Toluene-d8 (Surr)	99		80 - 128			07/08/19 20:58

Lab Sample ID: LCS 440-556543/6 Matrix: Water Analysis Batch: 556543

· ·····, · ··· · · · · · · · · · · · ·	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichloropropane	10.0	10.2		ug/L		102	67 - 130
Benzene	10.0	8.93		ug/L		89	68 - 130
Chloroform	10.0	10.2		ug/L		102	70 - 130
Ethylbenzene	10.0	9.03		ug/L		90	70 - 130
m,p-Xylene	10.0	9.95		ug/L		99	70 - 130
Methylene Chloride	10.0	8.27		ug/L		83	52 - 130
o-Xylene	10.0	9.78		ug/L		98	70 - 130
Toluene	10.0	9.10		ug/L		91	70 - 130
				-			

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		80 - 120
Dibromofluoromethane (Surr)	112		76 - 132
Toluene-d8 (Surr)	98		80 - 128

Eurofins TestAmerica, Irvine

1

1

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

96

Lab Sample ID: 440-245245-C-1 MS **Matrix: Water** Analysis Batch: 556543

-									
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichloropropane	ND		1000	1010		ug/L		101	69 - 130
Benzene	930		1000	1800		ug/L		87	66 - 130
Chloroform	ND		1000	1010		ug/L		101	70 - 130
Ethylbenzene	230		1000	1140		ug/L		91	70 - 130
m,p-Xylene	790		1000	1660		ug/L		86	70 - 133
Methylene Chloride	ND		1000	856		ug/L		86	52 - 130
o-Xylene	410		1000	1300		ug/L		89	70 - 133
Toluene	1400	F1	1000	2120		ug/L		75	70 - 130
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
4-Bromofluorobenzene (Surr)	103		80 - 120						
Dibromofluoromethane (Surr)	115		76 - 132						

80 - 128

Lab Sample ID: 440-245245-C-1 MSD **Matrix: Water** Analysis Batch: 556543

Toluene-d8 (Surr)

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloropropane	ND		1000	1050		ug/L		105	69 - 130	4	20
Benzene	930		1000	1770		ug/L		84	66 - 130	1	20
Chloroform	ND		1000	1040		ug/L		104	70 - 130	3	20
Ethylbenzene	230		1000	1120		ug/L		89	70 - 130	2	20
m,p-Xylene	790		1000	1640		ug/L		85	70 - 133	1	25
Methylene Chloride	ND		1000	877		ug/L		88	52 - 130	2	20
o-Xylene	410		1000	1350		ug/L		94	70 - 133	4	20
Toluene	1400	F1	1000	2050	F1	ug/L		68	70 - 130	3	20
	MSD	MSD									

	W3D	WISD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		80 - 120
Dibromofluoromethane (Surr)	114		76 - 132
Toluene-d8 (Surr)	99		80 - 128

Lab Sample ID: MB 440-556591/4 **Matrix: Water** Analysis Batch: 556591

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		2.0	0.25	ug/L			07/09/19 08:29	1
Benzene	ND		2.0	0.25	ug/L			07/09/19 08:29	1
Chloroform	ND		2.0	0.25	ug/L			07/09/19 08:29	1
Ethylbenzene	ND		2.0	0.25	ug/L			07/09/19 08:29	1
m,p-Xylene	ND		2.0	0.50	ug/L			07/09/19 08:29	1
Methylene Chloride	ND		5.0	1.1	ug/L			07/09/19 08:29	1
o-Xylene	ND		2.0	0.25	ug/L			07/09/19 08:29	1
Toluene	ND		2.0	0.25	ug/L			07/09/19 08:29	1
Xylenes, Total	ND		2.0	0.25	ug/L			07/09/19 08:29	1

Eurofins TestAmerica, Irvine

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

QC Sample Results

Prep Type: Total/NA

5

8

Lab Sample ID: MB 440-556591/4 **Matrix: Water**

Analysis Batch: 556591

		MB	MB	
S	urrogate	%Recovery	Qualifier	Limits
4-	Bromofluorobenzene (Surr)	98		80 - 120
D	ibromofluoromethane (Surr)	109		76 - 132
To	oluene-d8 (Surr)	98		80 - 128

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-556591/5 **Matrix: Water**

Analysis Batch: 556591

· ····· , ··· · ·······	Spike	LCS	LCS			%Rec.
Analyte	Added	Result (Qualifier	Unit	D %Rec	Limits
1,2-Dichloropropane	10.0	10.3		ug/L	103	67 - 130
Benzene	10.0	9.20		ug/L	92	68 - 130
Chloroform	10.0	10.2		ug/L	102	70 - 130
Ethylbenzene	10.0	9.20		ug/L	92	70 - 130
m,p-Xylene	10.0	9.47		ug/L	95	70 - 130
Methylene Chloride	10.0	9.19		ug/L	92	52 - 130
o-Xylene	10.0	9.50		ug/L	95	70 - 130
Toluene	10.0	9.06		ug/L	91	70 - 130

	LCS LCS								
Surrogate	%Recovery Qualif	ïer Limits							
4-Bromofluorobenzene (Surr)	100	80 - 120							
Dibromofluoromethane (Surr)	114	76 - 132							
Toluene-d8 (Surr)	94	80 - 128							

Lab Sample ID: 440-245066-F-1 MSD Matrix: Water Analysis Batch: 556591

	Sample	Sampla	Spike	Men	MSD				%Rec.		RPD
	Sample	Sample	Spike	NISD	WISD				%Rec.		RFD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloropropane	ND		10.0	10.4		ug/L		104	69 - 130	9	20
Benzene	ND		10.0	9.22		ug/L		92	66 - 130	12	20
Chloroform	ND		10.0	10.3		ug/L		103	70 - 130	7	20
Ethylbenzene	ND		10.0	9.00		ug/L		90	70 - 130	5	20
m,p-Xylene	ND		10.0	9.15		ug/L		91	70 - 133	10	25
Methylene Chloride	ND		10.0	8.61		ug/L		86	52 - 130	11	20
o-Xylene	ND		10.0	9.33		ug/L		93	70 - 133	8	20
Toluene	ND		10.0	8.89		ug/L		89	70 - 130	7	20
	MSD	MSD									

	mee	mob	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	111		76 - 132
Toluene-d8 (Surr)	98		80 - 128

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Prep Type: Total/NA

Prepared	Analyzed	Dil Fac
	07/09/19 08:29	1

Client Sample ID: Method Blank

07/09/19 08:29	1
07/09/19 08:29	1
07/09/19 08:29	1

Client Sample ID: Lab Control Sample

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Analysis Batch: 556467										Prep Batch:	556176
-	M	B MB									
Analyte	Resu	t Qualifier	RL	r	MDL (Unit			Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	N)	20		4.0 L	ug/L		07/0	05/19 08:23	07/08/19 14:58	1
	М	3 MB									
Surrogate	%Recover	/ Qualifier	Limits					F	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	8	1	50 - 120					07/	05/19 08:23	07/08/19 14:58	1
2-Fluorophenol	7	3	30 - 120					07/	05/19 08:23	07/08/19 14:58	1
2,4,6-Tribromophenol	9)	40 - 120					07/	05/19 08:23	07/08/19 14:58	1
	7	5	45 - 120					07/	05/10 08.23	07/08/19 14:58	1
Nitrobenzene-d5								• • • •	00.25		
Nitrobenzene-d5 Terphenyl-d14	8)	10 - 150							07/08/19 14:58	1
Terphenyl-d14 Phenol-d6 Lab Sample ID: LCS 440 Matrix: Water	7		35 - 120				Clie	07/0 07/0	05/19 08:23 05/19 08:23 mple ID:	07/08/19 14:58 07/08/19 14:58 Lab Control S Prep Type: To Prep Batch:	Sample otal/NA
	7			LCS	LCS		Clie	07/0 07/0	05/19 08:23 05/19 08:23 mple ID:	07/08/19 14:58 07/08/19 14:58 Lab Control S Prep Type: To	f Sample otal/NA
Terphenyl-d14 Phenol-d6 Lab Sample ID: LCS 440 Matrix: Water	7		35 - 120	LCS Result		fier	Clie	07/0 07/0	05/19 08:23 05/19 08:23 mple ID:	07/08/19 14:58 07/08/19 14:58 Lab Control S Prep Type: To Prep Batch:	f Sample otal/NA
Terphenyl-d14 Phenol-d6 Lab Sample ID: LCS 440 Matrix: Water Analysis Batch: 556467	7		35 <u>-</u> 120 Spike	-		fier		07/0 07/0	05/19 08:23 05/19 08:23 mple ID: %Rec	07/08/19 14:58 07/08/19 14:58 Lab Control S Prep Type: To Prep Batch: %Rec.	f Sample otal/NA
Terphenyl-d14 Phenol-d6 Lab Sample ID: LCS 440 Matrix: Water Analysis Batch: 556467 Analyte	7	5	35 - 120 Spike Added	Result		fier	Unit	07/0 07/0	05/19 08:23 05/19 08:23 mple ID: %Rec	07/08/19 14:58 07/08/19 14:58 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	f Sample otal/NA
Terphenyl-d14 Phenol-d6 Lab Sample ID: LCS 440 Matrix: Water Analysis Batch: 556467 Analyte	- 556176/2-A	5 	35 - 120 Spike Added	Result		fier	Unit	07/0 07/0	05/19 08:23 05/19 08:23 mple ID: %Rec	07/08/19 14:58 07/08/19 14:58 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	1 Sample otal/NA
Terphenyl-d14 Phenol-d6 Lab Sample ID: LCS 440 Matrix: Water Analysis Batch: 556467 Analyte Bis(2-ethylhexyl) phthalate	- 556176/2-A	5 	35 - 120 Spike Added 100	Result		fier	Unit	07/0 07/0	05/19 08:23 05/19 08:23 mple ID: %Rec	07/08/19 14:58 07/08/19 14:58 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	otal/NA
Terphenyl-d14 Phenol-d6 Lab Sample ID: LCS 440 Matrix: Water Analysis Batch: 556467 Analyte Bis(2-ethylhexyl) phthalate Surrogate	- 556176/2-A	5 	35 - 120 Spike Added 100 Limits	Result		fier	Unit	07/0 07/0	05/19 08:23 05/19 08:23 mple ID: %Rec	07/08/19 14:58 07/08/19 14:58 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	1 Sample otal/NA
Terphenyl-d14 Phenol-d6 Lab Sample ID: LCS 440 Matrix: Water Analysis Batch: 556467 Analyte Bis(2-ethylhexyl) phthalate Surrogate 2-Fluorobiphenyl	-556176/2-A LCS LC %Recovery Qu 91	5 	35 - 120 Spike Added 100 Limits 50 - 120	Result		fier	Unit	07/0 07/0	05/19 08:23 05/19 08:23 mple ID: %Rec	07/08/19 14:58 07/08/19 14:58 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	f Sample otal/NA
Terphenyl-d14 Phenol-d6 Lab Sample ID: LCS 440 Matrix: Water Analysis Batch: 556467 Analyte Bis(2-ethylhexyl) phthalate Surrogate 2-Fluorobiphenyl 2-Fluorophenol	-556176/2-A LCS LC %Recovery Qu 91 86	5 	35 - 120 Spike Added 100 Limits 50 - 120 30 - 120	Result		ifier	Unit	07/0 07/0	05/19 08:23 05/19 08:23 mple ID: %Rec	07/08/19 14:58 07/08/19 14:58 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	f Sample otal/NA
Terphenyl-d14 Phenol-d6 Lab Sample ID: LCS 440 Matrix: Water Analysis Batch: 556467 Analyte Bis(2-ethylhexyl) phthalate Surrogate 2-Fluorobiphenyl 2-Fluorophenol 2,4,6-Tribromophenol	7 -556176/2-A LCS LC <u>%Recovery Qu</u> 86 104	5 	35 - 120 Spike Added 100 Limits 50 - 120 30 - 120 40 - 120	Result		ifier	Unit	07/0 07/0	05/19 08:23 05/19 08:23 mple ID: %Rec	07/08/19 14:58 07/08/19 14:58 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	f Sample otal/NA

Analysis Batch: 556467							Ргер ва	itcn: 5	06176
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bis(2-ethylhexyl) phthalate	100	90.8		ug/L		91	10 - 150	18	35

Surrogate	LCSD %Recovery	 Limits
2-Fluorobiphenyl		 50 - 120
2-Fluorophenol	74	30 - 120
2,4,6-Tribromophenol	93	40 - 120
Nitrobenzene-d5	80	45 - 120
Terphenyl-d14	75	10 - 150
Phenol-d6	79	35 - 120

Method: 8315A - Carbonyl Compounds (HPLC)

Lab Sample ID: MB 440-555931/1-A Matrix: Water Analysis Batch: 556054		МВ						le ID: Methoo Prep Type: To Prep Batch:	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Formaldehyde	ND		0.010	0.0050	mg/L		07/03/19 04:52	07/03/19 15:08	1

Eurofins TestAmerica, Irvine

Page 33 of 99

Boron

Cadmium

Chromium

Magnesium

Copper

Job ID: 440-245042-1

Method: 8315A - Carbonyl Compounds (HPLC)

Lab Sample ID: LCS 440-5	55931/2-A						Cli	ent	San	nple ID:			
Matrix: Water											Prep Ty		
Analysis Batch: 556054											Prep B	atch:	55593 [.]
			Spike	LCS	LCS						%Rec.		
Analyte			Added	Result	Qualit	fier	Unit		D	%Rec	Limits		
Formaldehyde			0.0500	0.0573			mg/L			115	70 - 129		
Lab Sample ID: 440-245033 Matrix: Water	3-A-1-A MS								Cli	ient San	nple ID: Prep Ty		
Analysis Batch: 556054											Prep B		
Analysis Bateri. 000004	Sample	Sample	Spike	MS	MS						%Rec.	uton. (
Analyte		Qualifier	Added	Result		fier	Unit		D	%Rec	Limits		
Formaldehyde	0.024		0.0500	0.0845			mg/L			122	50 - 150	· <u> </u>	
Lab Sample ID: 440-245033 Matrix: Water Analysis Batch: 556054	3-A-1-B MS Sample		Spike	MSD	MSD		Clien	t Sa	amp	le ID: Ma	atrix Spi Prep Ty Prep B %Rec.	vpe: To	otal/N
Analyte	•	Qualifier	Added	Result	-	fier	Unit		D	%Rec	Limits	RPD	
Formaldehyde	0.024		0.0500	0.0851			mg/L			123	50 - 150	1	
Matrix: Water	5968/1-A									nt Samp rep Typ	e: Total	Recov	verabl
Matrix: Water	5968/1-A	MB MB										Recov	verabl
Matrix: Water Analysis Batch: 556263		MB MB sult Qualifie	r RL		MDL L			D	Ρ		e: Total	Recov atch: {	verabl 55596
Matrix: Water Analysis Batch: 556263 Analyte			r RL 0.10		MDL U			D	P Pr	rep Typ	e: Total Prep B Analy	Recov atch: {	verabl 55596 Dil Fa
Matrix: Water Analysis Batch: 556263 Analyte Aluminum		sult Qualifie		0		ng/L		<u>D</u>	P Pr 07/03	rep Type	e: Total Prep B Analy 07/05/19	Recover atch:	verabl 55596
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic		sult Qualifie	0.10	0 0.0	.050 n	ng/L ng/L		<u>D</u>	Pr 07/03 07/03	rep Type repared 3/19 08:03	e: Total Prep B Analy 07/05/19 07/05/19	Recov atch: 4 7zed 0 11:51 0 11:51	verabl 55596 Dil Fa
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium		sult Qualifie	0.10	0 0.0 0.0	.050 n 0089 n	ng/L ng/L ng/L		<u>D</u>	P Pr 07/03 07/03	rep Type repared 3/19 08:03 3/19 08:03	e: Total Prep B 07/05/19 07/05/19 07/05/19	Recov atch: 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	verabl 55596 Dil Fa
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium Boron		ND Qualifie	0.10 0.010 0.010	0 0.0 0.0	0.050 n 0089 n 0050 n	mg/L mg/L mg/L mg/L		<u>D</u>	P 07/03 07/03 07/03	rep Type epared 3/19 08:03 3/19 08:03 3/19 08:03	e: Total Prep B Analy 07/05/19 07/05/19 07/05/19 07/05/19	Recover atch: 4 9 11:51 9 11:51 9 11:51 9 11:51	verabl 55596 Dil Fa
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium Boron Cadmium		ND Qualifie	0.10 0.010 0.010 0.050	0 0.0 0.0 0 0.0	0.050 n 0089 n 0050 n 0.025 n	ng/L ng/L ng/L ng/L ng/L		<u>D</u>	P 07/03 07/03 07/03 07/03 07/03	rep Type epared 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03	e: Total Prep B 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19	Recover atch: 4 9 11:51 9 11:51 9 11:51 9 11:51 9 11:51	verabl 55596 Dil Fa
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium Boron Cadmium Chromium		Sult Qualifie	0.10 0.010 0.010 0.050 0.050	0 0.0 0.0 0.0 0.0	0.050 n 0089 n 0050 n 0.025 n 0025 n	mg/L mg/L mg/L mg/L mg/L mg/L		<u>D</u>	Pr 07/0: 07/0: 07/0: 07/0: 07/0: 07/0:	rep Type epared 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03	e: Total Prep B 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19	Recov atch:) 11:51) 11:51) 11:51) 11:51) 11:51) 11:51) 11:51	verabl 55596 Dil Fa
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium Boron Cadmium Chromium Copper		Sult Qualifie	0.10 0.010 0.010 0.050 0.0050 0.0050	0 0.0 0.0 0.0 0.0 0.0	0.050 n 0089 n 0050 n 0.025 n 0025 n 0025 n	mg/L mg/L mg/L mg/L mg/L mg/L		<u>D</u>	Pr 07/0: 07/0: 07/0: 07/0: 07/0: 07/0:	rep Type 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03	e: Total Prep B 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19	Recov atch: () 11:51) 11:51) 11:51) 11:51) 11:51) 11:51) 11:51	verabl 55596 Dil Fa
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium Boron Cadmium Chromium Copper Magnesium		Sult Qualifie ND ND ND ND ND ND ND ND	0.10 0.010 0.050 0.050 0.0050 0.0050 0.010	0 0.0 0.0 0.0 0.0 0.0 0.0	0.050 n 0089 n 0050 n 0.025 n 0025 n 0025 n	ng/L ng/L ng/L ng/L ng/L ng/L ng/L		<u>D</u>	Pr 07/03 07/03 07/03 07/03 07/03 07/03 07/03	rep Type 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03	e: Total Prep B 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19	Recov atch: () 11:51) 11:51) 11:51) 11:51) 11:51) 11:51) 11:51) 11:51) 11:51	verabl 55596 Dil Fa
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese		Sult Qualifie	0.10 0.010 0.050 0.0050 0.0050 0.0050 0.010 0.020	0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0	0.050 n 0089 n 0050 n 0.025 n 0025 n 0025 n 0025 n 0.020 n	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		D	Pr 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03	rep Type repared 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03 3/19 08:03	e: Total Prep B Analy 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19	Recov atch: 7zed 11:51 11:51 11:51 11:51 11:51 11:51 11:51 11:51 11:51 11:51 11:51	verabl 55596 Dil Fa
Lab Sample ID: MB 440-55 Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel Selenium		Sult Qualifie	0.10 0.010 0.050 0.0050 0.0050 0.0050 0.010 0.020 0.020	0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0	0.050 n 0.089 n 0.050 n 0.025 n 0.025 n 0.025 n 0.025 n 0.050 n 0.010 n	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		<u>D</u>	Pr 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03	rep Type a)/19 08:03 a)/19 08:03	e: Total Prep B Analy 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19	Recov atch: 4 9 11:51 9 11:51 9 11:51 9 11:51 9 11:51 9 11:51 9 11:51 9 11:51 9 11:51 9 11:51	verabl 55596 Dil Fa
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel		Sult Qualifie	0.10 0.010 0.050 0.0050 0.0050 0.0050 0.010 0.020 0.020 0.010	0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0	.050 n .089 n .025 n .010 n .015 n .0250 n .0250 n .0250 n .0250 n .0250 n .0250 n	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		<u>D</u>	Pr 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03	rep Type repared 3/19 08:03 3/19 08:03	e: Total Prep B Analy 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19	Recov atch: () 11:51) 11:51	verabl 55596 Dil Fa
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel Selenium Titanium		Sult Qualifie	0.10 0.010 0.050 0.0050 0.0050 0.010 0.020 0.020 0.010 0.010	0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0	0.050 n 0.089 n 0.025 n 0.025 n 0.025 n 0.025 n 0.025 n 0.050 n 0.010 n 0.015 n 0.050 n 0.050 n	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		<u>D</u>	Pr 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03	rep Type 3/19 08:03 3/19 08:03	e: Total Prep B 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19	Recov atch: (zed) 11:51) 11:51	verabl 55596 Dil Fa
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Nickel Selenium Fitanium Zinc Lab Sample ID: LCS 440-55 Matrix: Water	Re	Sult Qualifie	0.10 0.010 0.010 0.050 0.0050 0.010 0.020 0.020 0.010 0.010 0.010 0.0050	0 0.0 0 0.0 0.0 0.0 0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0	.050 n .089 n .025 n .010 n .015 n .0250 n .0250 n .0250 n .0250 n .0250 n .0250 n	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Cli	<u>D</u>	Pr 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03	rep Type 3/19 08:03 3/19 08:03	e: Total Prep B Analy 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19	Recov atch: 4 7zed 9 11:51 9 11:51	Sampleverabl
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium Boron Cadmium Chromium C	Re	Sult Qualifie	0.10 0.010 0.050 0.0050 0.0050 0.010 0.020 0.010 0.010 0.010 0.010 0.010 0.010	0 0.0 0 0.0 0.0 0.0 0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0	LCS	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Cli	<u>D</u>	Pr 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03 07/03	rep Type repared 3/19 08:03 3/19 08:05 10 00 10 00 10 00 10 00 10 00 10 00 10 00	e: Total Prep B Analy 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 07/05/19 D	Recov atch: 4 7zed 9 11:51 9 11:51	Samply verabl
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium Boron Cadmium Chromium C	Re	Sult Qualifie	0.10 0.010 0.050 0.0050 0.0050 0.010 0.020 0.020 0.010 0.010 0.010 0.020 0.020	0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	LCS	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		<u>D</u>	Pr 07/03 00 0000000000	rep Type Pepared 3/19 08:03 3/19 08:04 3/19 08:05 3/19 08:05 3/10 08:05	e: Total Prep B Analy 07/05/19 0	Recov atch: 4 7zed 9 11:51 9 11:51	Sampl verabl
Matrix: Water Analysis Batch: 556263 Analyte Aluminum Arsenic Barium Boron Cadmium Chromium Copper Magnesium Manganese Vickel Selenium	Re	Sult Qualifie	0.10 0.010 0.050 0.0050 0.0050 0.010 0.020 0.020 0.010 0.010 0.010 0.020 0.020 0.020 0.020	0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	LCS	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Unit	<u>D</u>	Pr 07/03 00 0000000000	rep Type repared 3/19 08:03 3/19 08:04 3/19 08:05 3/10 08:05 3/10 08:05 3/10 08:05	e: Total Prep B Analy 07/05/19 0	Recov atch: 4 7zed 9 11:51 9 11:51	Sampl verabl

Spike

Added

1.00

1.00

Lab Sample ID: LCS 440-555968/2-A

Matrix: Water

Analyte

Nickel

Selenium

Titanium

Zinc

Manganese

Analysis Batch: 556263

Method: 6010B - Metals (ICP) (Continued)

Prep Batch: 555968

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

%Rec.

Limits

80 - 120

80 - 120

D %Rec

100

100

1 2 3 4 5 6 7 8

13

1.00 0.960 mg/L 96 80 - 120 1.00 1.00 100 80 - 120 mg/L 1.00 0.990 mg/L 99 80 - 120 **Client Sample ID: Matrix Spike** Prep Type: Total Recoverable

Unit

mg/L

mg/L

LCS LCS

0.999

0.997

Result Qualifier

Lab Sample ID: 440-244854-A-3-B MS Matrix: Water

Analysis Batch: 556263	Sample	Sample	Spike	MS	MS				Prep Batch: 555968 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	0.20		1.00	1.26		mg/L		106	75 - 125
Arsenic	ND		1.00	1.04		mg/L		104	75 - 125
Barium	ND		1.00	1.03		mg/L		103	75 - 125
Boron	ND		1.00	1.06		mg/L		106	75 - 125
Cadmium	ND		1.00	1.02		mg/L		102	75 - 125
Chromium	ND		1.00	1.03		mg/L		103	75 - 125
Copper	0.041		1.00	1.10		mg/L		106	75 - 125
Magnesium	0.050		5.00	5.16		mg/L		102	75 - 125
Manganese	ND		1.00	1.05		mg/L		105	75 - 125
Nickel	ND		1.00	1.03		mg/L		103	75 - 125
Selenium	ND		1.00	0.992		mg/L		99	75 - 125
Titanium	0.0055		1.00	1.06		mg/L		105	75 - 125
Zinc	0.073		1.00	1.07		mg/L		99	75 - 125

Lab Sample ID: 440-244854-A-3-C MSD Matrix: Water Analysis Batch: 556263

Client Sample ID: Matrix Spike Duplicate Prep Type: Total Recoverable Prep Batch: 555968

								Ргер Ва	itch: 5	00900
Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.20		1.00	1.22		mg/L		102	75 - 125	3	20
ND		1.00	1.00		mg/L		100	75 - 125	3	20
ND		1.00	0.992		mg/L		99	75 - 125	4	20
ND		1.00	1.03		mg/L		103	75 - 125	3	20
ND		1.00	0.993		mg/L		99	75 - 125	3	20
ND		1.00	1.01		mg/L		101	75 - 125	2	20
0.041		1.00	1.07		mg/L		103	75 - 125	3	20
0.050		5.00	4.94		mg/L		98	75 - 125	4	20
ND		1.00	1.02		mg/L		102	75 - 125	3	20
ND		1.00	1.01		mg/L		101	75 - 125	3	20
ND		1.00	0.965		mg/L		96	75 - 125	3	20
0.0055		1.00	1.03		mg/L		103	75 - 125	2	20
0.073		1.00	1.04		mg/L		96	75 - 125	3	20
	Result 0.20 ND ND ND ND 0.041 0.050 ND ND ND 0.0055	ND ND ND ND 0.041 0.050 ND ND ND 0.0055	Result Qualifier Added 0.20 1.00 1.00 ND 1.00 0.041 0.050 5.00 1.00 ND 1.00 1.00	Result Qualifier Added Result 0.20 1.00 1.22 ND 1.00 1.00 ND 1.00 0.992 ND 1.00 0.993 ND 1.00 0.993 ND 1.00 1.01 0.041 1.00 1.07 0.050 5.00 4.94 ND 1.00 1.02 ND 1.00 1.01 ND 1.00 1.01 0.055 5.00 4.94 ND 1.00 1.01 ND 1.00 1.01	Result Qualifier Added Result Qualifier 0.20 1.00 1.22 1.00 1.22 ND 1.00 1.00 1.00 ND 1.00 0.992 1.00 ND 1.00 0.993 1.01 ND 1.00 0.993 1.01 ND 1.00 1.01 1.01 0.041 1.00 1.02 1.02 ND 1.00 1.02 1.02 ND 1.00 1.01 1.02 ND 1.00 1.02 1.01 ND 1.00 1.02 1.01 ND 1.00 1.03 1.03	Result Qualifier Added Result Qualifier Unit 0.20 1.00 1.22 mg/L mg/L ND 1.00 1.00 mg/L ND 1.00 0.992 mg/L ND 1.00 0.992 mg/L ND 1.00 0.993 mg/L ND 1.00 1.01 mg/L ND 1.00 1.01 mg/L ND 1.00 1.01 mg/L ND 1.00 1.07 mg/L 0.041 1.00 1.07 mg/L 0.050 5.00 4.94 mg/L ND 1.00 1.02 mg/L ND 1.00 1.01 mg/L ND 1.00 1.01 mg/L ND 1.00 1.01 mg/L ND 1.00 0.965 mg/L 0.0055 1.00 1.03 mg/L	Result Qualifier Added Result Qualifier Unit D 0.20 1.00 1.22 mg/L mg/L	Result Qualifier Added Result Qualifier Unit D %Rec 0.20 1.00 1.22 mg/L 102 102 ND 1.00 1.00 mg/L 100 102 ND 1.00 0.992 mg/L 99 ND 1.00 0.992 mg/L 99 ND 1.00 0.993 mg/L 99 ND 1.00 0.993 mg/L 99 ND 1.00 1.01 mg/L 101 0.041 1.00 1.07 mg/L 103 0.050 5.00 4.94 mg/L 98 ND 1.00 1.02 mg/L 102 ND 1.00 1.01 mg/L 102 ND 1.00 1.01 mg/L 102 ND 1.00 0.965 mg/L 96 0.0055 1.00 1.03 mg/L 103	Sample Sample Spike MSD MSD Unit D %Rec. Result Qualifier Added Result Qualifier Unit D %Rec. Limits 0.20 1.00 1.22 mg/L 102 75.125 ND 1.00 1.00 mg/L 100 75.125 ND 1.00 0.992 mg/L 99 75.125 ND 1.00 0.992 mg/L 99 75.125 ND 1.00 0.993 mg/L 99 75.125 ND 1.00 0.993 mg/L 99 75.125 ND 1.00 1.01 mg/L 101 75.125 ND 1.00 1.01 mg/L 99 75.125 ND 1.00 1.07 mg/L 101 75.125 0.050 5.00 4.94 mg/L 98 75.125 ND 1.00 1.01 mg/L 101 75	ResultQualifierAddedResultQualifierUnitD%RecLimitsRPD0.201.001.22mg/L10275 · 1253ND1.001.00mg/L10075 · 1253ND1.000.992mg/L9975 · 1254ND1.000.992mg/L10375 · 1253ND1.001.03mg/L9975 · 1253ND1.001.03mg/L9975 · 1253ND1.000.993mg/L9975 · 1253ND1.001.01mg/L10175 · 1253ND1.001.07mg/L10375 · 12530.0505.004.94mg/L9875 · 1253ND1.001.02mg/L10275 · 1253ND1.001.01mg/L10175 · 1253ND1.001.02mg/L9875 · 1253ND1.001.02mg/L10175 · 1253ND1.000.965mg/L9675 · 1253ND1.001.03mg/L10375 · 1253ND1.001.03mg/L10375 · 1253ND1.001.03mg/L10375 · 1253ND1.001.03mg/L10375 · 1253ND1.0

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 440-556431/1-A Matrix: Water Analysis Batch: 556566

· ·····, · ··· · · · · · · · · · · · ·	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.10	0.050	mg/L		07/08/19 09:56	07/08/19 17:32	1
Arsenic	ND		0.010	0.0089	mg/L		07/08/19 09:56	07/08/19 17:32	1
Barium	ND		0.010	0.0050	mg/L		07/08/19 09:56	07/08/19 17:32	1
Boron	ND		0.050	0.025	mg/L		07/08/19 09:56	07/08/19 17:32	1
Cadmium	ND		0.0050	0.0025	mg/L		07/08/19 09:56	07/08/19 17:32	1
Chromium	0.00260	J	0.0050	0.0025	mg/L		07/08/19 09:56	07/08/19 17:32	1
Copper	ND		0.010	0.0050	mg/L		07/08/19 09:56	07/08/19 17:32	1
Magnesium	ND		0.020	0.010	mg/L		07/08/19 09:56	07/08/19 17:32	1
Manganese	ND		0.020	0.015	mg/L		07/08/19 09:56	07/08/19 17:32	1
Nickel	ND		0.010	0.0050	mg/L		07/08/19 09:56	07/08/19 17:32	1
Selenium	ND		0.010	0.0087	mg/L		07/08/19 09:56	07/08/19 17:32	1
Titanium	ND		0.0050	0.0025	mg/L		07/08/19 09:56	07/08/19 17:32	1
Zinc	ND		0.020	0.012	mg/L		07/08/19 09:56	07/08/19 17:32	1

Lab Sample ID: LCS 440-556431/2-A Matrix: Water Analysis Batch: 556566

Analysis Batch: 556566	Spike	LCS	LCS				Prep Batch: 556431 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	1.00	0.917		mg/L		92	80 - 120
Arsenic	1.00	0.913		mg/L		91	80 - 120
Barium	1.00	0.948		mg/L		95	80 - 120
Boron	1.00	0.922		mg/L		92	80 - 120
Cadmium	1.00	0.928		mg/L		93	80 - 120
Chromium	1.00	0.934		mg/L		93	80 - 120
Copper	1.00	0.951		mg/L		95	80 - 120
Magnesium	5.00	4.69		mg/L		94	80 - 120
Manganese	1.00	0.938		mg/L		94	80 - 120
Nickel	1.00	0.940		mg/L		94	80 - 120
Selenium	1.00	0.885		mg/L		88	80 - 120
Titanium	1.00	0.950		mg/L		95	80 - 120
Zinc	1.00	0.919		mg/L		92	80 - 120

Lab Sample ID: 440-245154-J-1-B MS Matrix: Water Analysis Batch: 556566

Analysis Batch: 556566	Sample	Sample	Spike	MS	MS				Prep Batch: 556431 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	16		1.00	22.9	4	mg/L		689	75 - 125
Arsenic	0.0092	J	1.00	0.967		mg/L		96	75 - 125
Barium	0.075		1.00	0.996		mg/L		92	75 - 125
Boron	0.65		1.00	1.61		mg/L		96	75 - 125
Cadmium	0.0056		1.00	0.854		mg/L		85	75 - 125
Chromium	0.022	В	1.00	0.926		mg/L		90	75 - 125
Copper	0.13		1.00	1.12		mg/L		100	75 - 125
Magnesium	210		5.00	214	4	mg/L		-24	75 - 125
Manganese	6.0		1.00	6.69	4	mg/L		68	75 - 125
Nickel	0.085		1.00	0.939		mg/L		85	75 - 125
Selenium	0.075		1.00	0.986		mg/L		91	75 - 125

Eurofins TestAmerica, Irvine

5

8

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 556431

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Client Sample ID: Matrix Spike

Prep Type: Total Recoverable

Lab Sample ID: 440-245154-J-1-B MS

Matrix: Water

HEM

Method: 6010B - Metals (ICP) (Continued)

Client Sample ID: Matrix Spike Prep Type: Total Recoverable Prep Batch: 556431

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total Recoverable

Analysis Batch: 556566 Sample Sample Spike MS MS %Rec. Analyte **Result Qualifier** Added Result Qualifier Limits Unit D %Rec Titanium 0.15 1.00 1.25 75 - 125 mg/L 111 Zinc 0.11 1.00 0.936 mg/L 82 75 - 125

Lab Sample ID: 440-245154-J-1-C MSD Matrix: Water

Analysis Batch: 556566									Prep Ba	atch: 5	56431
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	16		1.00	22.6	4	mg/L		664	75 - 125	1	20
Arsenic	0.0092	J	1.00	0.968		mg/L		96	75 - 125	0	20
Barium	0.075		1.00	0.997		mg/L		92	75 - 125	0	20
Boron	0.65		1.00	1.62		mg/L		97	75 - 125	0	20
Cadmium	0.0056		1.00	0.851		mg/L		85	75 - 125	0	20
Chromium	0.022	В	1.00	0.923		mg/L		90	75 - 125	0	20
Copper	0.13		1.00	1.12		mg/L		99	75 - 125	0	20
Magnesium	210		5.00	217	4	mg/L		34	75 - 125	1	20
Manganese	6.0		1.00	6.73	4	mg/L		72	75 - 125	1	20
Nickel	0.085		1.00	0.939		mg/L		85	75 - 125	0	20
Selenium	0.075		1.00	0.983		mg/L		91	75 - 125	0	20
Titanium	0.15		1.00	1.29		mg/L		114	75 - 125	3	20
Zinc	0.11		1.00	0.933		mg/L		82	75 - 125	0	20

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 440-55639 Matrix: Water Analysis Batch: 556472		МВ							Clie		ole ID: Metho Prep Type: T Prep Batch:	otal/NA
Analyte	Result	Qualifier		RL	1	MDL	Unit	C) Р	repared	Analyzed	Dil Fac
HEM	ND			5.0		1.4	mg/L		07/0	8/19 06:52	07/08/19 13:23	1
Lab Sample ID: LCS 440-5563 Matrix: Water Analysis Batch: 556472	96/2-A							Clier	nt Sai		Lab Control Prep Type: T Prep Batch:	otal/NA
			Spike		LCS	LCS					%Rec.	
Analyte			Added		Result	Quali	ifier	Unit	D	%Rec	Limits	
HEM			20.0		19.30			mg/L		97	78 - 114	
Lab Sample ID: LCSD 440-556 Matrix: Water Analysis Batch: 556472	6396/3-A						С	lient Sa	mple		Control Sam Prep Type: T Prep Batch:	otal/NA
			Spike		LCSD	LCSE)				%Rec.	RPD
Analyte			Added		Result	Quali	ifier	Unit	D	%Rec	Limits RP	D Limit

20.0

19.10

mg/L

95

78 - 114

1

11

15

QC Sample Results

Job ID: 440-245042-1

Method: 2540E - Solids, Volatile and Fixed (VS)

_ Lab Sample ID: MB 440-555 Matrix: Water	904/1									Clie	ent Sam	ole ID: M Prep Ty			
Analysis Batch: 555904															
		MB MB													
Analyte	Re	sult Qualifie	er	RL		RL	Unit		D	P	repared	Analyz	zed	Di	il Fac
Total Volatile Solids		ND		10		10	mg/L		_			07/02/19	19:36		1
_ Lab Sample ID: 440-245042	-1 DU									Clie	ent Sam	ole ID: 06	5 25 E	BU.	тсн
Matrix: Water												Prep Ty	pe: To	ota	I/NA
Analysis Batch: 555904															
	Sample	Sample			DU	DU									RPD
Analyte	Result	Qualifier			Result	Qua	alifier	Unit		D			RPD)	Limit
Total Volatile Solids	7100				6840			mg/L		_			3	3	20
Method: 351.2 - Nitroge	n, Total K	Kjeldahl													
Lab Sample ID: MB 440-556	300/3-A									Clie	ent Sam	ole ID: M	ethod	B	lank
Matrix: Water												Prep Ty			
Analysis Batch: 556894												Prep Ba	atch:	556	6300
		MB MB													
Analyte	Re	sult Qualifie	er	RL		MDL	Unit		D		repared	Analyz		Di	il Fac
Total Kjeldahl Nitrogen		ND		0.20		0.10	mg/L		_	07/0	5/19 14:00	07/09/19	20:50		1
Lab Sample ID: LCS 440-55	6300/4-A							Cli	ent	Sar	nple ID:	Lab Cor	ntrol S	San	nple
Matrix: Water												Prep Ty	pe: To	ota	I/NA
Analysis Batch: 556894												Prep Ba	atch:	556	6300
-			Spike		LCS	LCS	3					%Rec.			
Analyte			Added		Result	Qua	alifier	Unit		D	%Rec	Limits			
Total Kjeldahl Nitrogen			5.00		4.76			mg/L			95	90 - 110			
Lab Sample ID: LCSD 440-5	56300/5-A						C	lient S	Sam	ple	ID: Lab	Control	Samp	le	Dup
Matrix: Water												Prep Ty	pe: To	ota	I/NA
Analysis Batch: 556894												Prep Ba	atch:	556	6300
			Spike		LCSD	LCS	SD .					%Rec.			RPD
Analyte			Added		Result	Qua	alifier	Unit		D	%Rec	Limits	RPD)	Limit
Total Kjeldahl Nitrogen			5.00		4.99			mg/L		_	100	90 - 110	5	5	20
_ Lab Sample ID: 440-245031	-B-3-B MS									CI	ient San	nple ID: I	Matrix	(S	pike
Matrix: Water												Prep Ty	pe: To	ota	I/NA
Analysis Batch: 556894												Prep Ba			
-	Sample	Sample	Spike		MS	MS						%Rec.			
Analyte	Result	Qualifier	Added		Result	Qua	alifier	Unit		D	%Rec	Limits			
Total Kjeldahl Nitrogen	0.29		5.00		4.93			mg/L		_	93	90 - 110			
Lab Sample ID: 440-245031	-B-3-C MS	D						Clien	t Sa	mp	le ID: Ma	atrix Spil		-	
Matrix: Water												Prep Ty			
Analysis Batch: 556894	_						_					Prep Ba	atch:	556	
	Sample	-	Spike		MSD					_		%Rec.			RPD
Analyte		Qualifier	Added		Result		alifier	Unit		D	%Rec	Limits	RPD		Limit
Total Kjeldahl Nitrogen	0.29		5.00		4.98	_	_	mg/L	_		94	90 - 110	1	1	20

QC Sample Results

Job ID: 440-245042-1

Method: 351.2 - Nitrogen, Total Kjeldahl (Continued)

 Lab Sample ID: 440-245181	-A-1-D MS						c	lient Sa	mple ID: Matr	ix Spike
Matrix: Water									Prep Type: 1	Fotal/NA
Analysis Batch: 556894									Prep Batch	
·····, ·····	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
Total Kjeldahl Nitrogen	0.56		5.00	5.32		mg/L		95	90 - 110	
Lab Sample ID: 440-245181	-Δ.1.F MS	П				Client	Sam		latrix Spike D	unlicato
Matrix: Water		0				onent	oam		Prep Type: 1	
Analysis Batch: 556894	Sampla	Sample	Spike	Men	MSD				Prep Batch: %Rec.	RPD
Awalista			•	-	-	11	_	0/ D = =		
Analyte		Qualifier	Added		Qualifier	Unit	D		Limits RF	
Total Kjeldahl Nitrogen	0.56		5.00	5.44		mg/L		98	90 - 110	2 20
Method: 353.2 - Nitroger	n, Nitrate	e-Nitrite								
Lab Sample ID: MB 320-306	826/15						Cli	ent Sam	ple ID: Metho	d Blank
Matrix: Water									Prep Type:	
Analysis Batch: 306826										
		МВ МВ								
Analyte	Re	sult Qualifier	RL		MDL Unit		D	Prepared	Analyzed	Dil Fac
Nitrate Nitrite as N		ND Quanner	0.050		0031 mg/L			Tepareu		
		ND	0.050	0.0	JUST IIIg/L				07/10/19 10.30	, 1
Lab Sample ID: LCS 320-30	6826/16					Clie	nt Sa	mple ID	: Lab Control	Sample
Matrix: Water						-			Prep Type: 1	
Analysis Batch: 306826										
Analysis Datch. 300020			Spike	LCS	LCS				%Rec.	
Analyte			Added	-	Qualifier	Unit	D	%Rec	Limits	
Nitrate Nitrite as N			1.00	1.02	Quaimer			102	90 - 110	
-			1.00	1.02		mg/L		102	90-110	
Lab Sample ID: 440-244710	-A_1 MS						6	liont Sa	mple ID: Matr	iv Sniko
	-A-1 WIS							ment Sa		
Matrix: Water									Prep Type:	l otal/INA
Analysis Batch: 306826	0	0	0						0/ D	
		Sample	Spike	-	MS		_		%Rec.	
Analyte		Qualifier	Added		Qualifier	Unit	D		Limits	
Nitrate Nitrite as N	0.19		1.00	1.23		mg/L		104	90 - 110	
Lab Sample ID: 440-244710	-A-1 MSD					Client	Sam	nle ID [.] M	latrix Spike D	unlicate
Matrix: Water						• none	oun		Prep Type: 1	
									гтер туре.	
Analysis Batch: 306826	Sampla	Somelo	Spiko	Men	MED				% Baa	RPD
	-	Sample	Spike		MSD		_	~-	%Rec.	
Analyte		Qualifier	Added		Qualifier	Unit	D		Limits RF	
Nitrate Nitrite as N	0.19		1.00	1.19		mg/L		100	90 - 110	4 20
Method: 365.3 - Phosph	orus, To	tal								
Lab Sample ID: MB 440-556 Matrix: Water	226/1-A						Cli	ent Sam	ple ID: Metho	
									Prep Type: 1	
Analysis Batch: 556268									Prep Batch	556226
		MB MB								
Analyte Phosphorus, Total	Re	ND Qualifier	RL 0.050		MDL Unit			Prepared	Analyzed	Dil Fac

Job ID: 440-245042-1

Method: 365.3 - Phosphorus, Total (Continued)

Lab Sample ID: LCS 440-5	56226/2-A					Clie	nt Sar	nple ID	: Lab Cor	ntrol Sa	mple
Matrix: Water								-	Prep Ty		
Analysis Batch: 556268									Prep Ba	atch: 55	56226
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Phosphorus, Total			0.501	0.508		mg/L		102	80 - 120		
Lab Sample ID: 440-24500	5-B-1-B MS						CI	ient Sa	mple ID: I	Matrix \$	Spike
Matrix: Water									Prep Ty	pe: Tot	al/N/
Analysis Batch: 556268									Prep Ba	atch: 55	5622
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Phosphorus, Total	0.13	F1	0.501	0.170	F1	mg/L		8	75 - 125		
Lab Sample ID: 440-24500	5-B-1-C MS	D				Client	Samp	le ID: N	latrix Spil	ke Dup	licate
Matrix: Water									Prep Ty	pe: Tot	al/N/
Analysis Batch: 556268									Prep Ba	atch: 55	56226
	Sample	•	Spike	MSD	MSD				%Rec.		RPI
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Phosphorus, Total	0.13	F1	0.501	0.193	F1	mg/L		12	75 - 125	12	20
Lab Sample ID: MB 440-55	6299/1-A						Clie	nt Sam	ple ID: M	ethod E	Blan
Matrix: Water									Prep Ty	pe: Tot	al/N/
Analysis Batch: 556353									Prep Ba	atch: 55	5629
		MB MB									
Analyte	Re	sult Qualifier	R		MDL Unit			repared	Analyz		Dil Fa
Phosphorus, Total		ND	0.05	0 0).025 mg/L		07/0	5/19 18:0	5 07/06/19	13:31	
Lab Sample ID: LCS 440-5	56299/2-A					Clie	ent Sar	nple ID	: Lab Cor		
Matrix: Water									Prep Ty		
Analysis Batch: 556353									Prep Ba	atch: 55	5629
			Spike	-	LCS		_		%Rec.		
Analyte			Added		Qualifier	Unit	D		Limits		
Phosphorus, Total			0.501	0.502		mg/L		100	80 - 120		
							CI	ient Sa	mple ID: I		
	0-D-1-D 1VI3								Prep Ty	no: Tot	
Matrix: Water	0-D-1-D 1413										
Lab Sample ID: 440-24500 Matrix: Water Analysis Batch: 556353									Prep Ba		
Matrix: Water Analysis Batch: 556353	Sample	Sample	Spike		MS				Prep Ba %Rec.		
Matrix: Water Analysis Batch: 556353 Analyte	Sample Result		Added	Result	MS Qualifier	Unit	D	%Rec	Prep Ba %Rec. Limits		
Matrix: Water Analysis Batch: 556353 Analyte	Sample	Sample				Unit mg/L	<u>D</u>	% Rec	Prep Ba %Rec.		
Matrix: Water Analysis Batch: 556353 Analyte Phosphorus, Total Lab Sample ID: 440-24500	Sample Result 0.065	Sample Qualifier	Added	Result		mg/L		103	Prep Ba %Rec. Limits 75 - 125	tch: 55	licate
Matrix: Water Analysis Batch: 556353 Analyte Phosphorus, Total Lab Sample ID: 440-245003 Matrix: Water	Sample Result 0.065	Sample Qualifier	Added	Result		mg/L		103	Prep Ba %Rec. Limits 75 - 125 Atrix Spil Prep Ty	tch: 55	licate
Matrix: Water Analysis Batch: 556353 Analyte Phosphorus, Total	Sample Result 0.065 8-B-1-C MS	Sample Qualifier D	Added	Result 0.580	Qualifier	mg/L		103	Prep Ba %Rec. Limits 75 - 125 Atrix Spil Prep Ty Prep Ba	tch: 55	56299
Matrix: Water Analysis Batch: 556353 Analyte Phosphorus, Total Lab Sample ID: 440-245003 Matrix: Water	Sample Result 0.065 8-B-1-C MS Sample	Sample Qualifier D	Added	Result 0.580 MSD		mg/L	Samp	103	Prep Ba %Rec. Limits 75 - 125 Atrix Spil Prep Ty	tch: 55	licate

Job ID: 440-245042-1

Lab Sample ID: MB 680-5772	56/1-A									Clie	ent Samp	ole ID: Metl	nod	Blan
Matrix: Water												Prep Type		
Analysis Batch: 577344												Prep Batc		
-		MB	MB											
Analyte	Re	sult	Qualifier		RL	r	/IDL Un	it	D	Ρ	repared	Analyzed		Dil Fa
Phenolics, Total Recoverable		ND		0	.050	0	.025 mg	/L		07/0	9/19 12:53	07/09/19 17	:30	
Lab Sample ID: LCS 680-577	256/2-4							С	lien	t Sar	mple ID [.]	Lab Contr	ol Sa	ample
Matrix: Water								•				Prep Type		
Analysis Batch: 577344												Prep Batc		
				Spike		LCS	LCS					%Rec.		
Analyte				Added		Result	Qualifie	r Unit		D	%Rec	Limits		
Phenolics, Total Recoverable				0.100		0.114		mg/L			114	75 - 125		
Lab Sample ID: 440-245195-J	-1-B MS									CI	ient Sam	nple ID: Ma	trix	Spik
Matrix: Water												Prep Type		
Analysis Batch: 577344												Prep Batc		
	Sample	Sam	nple	Spike		MS	MS					%Rec.		
Analyte	Result	Qua	lifier	Added		Result	Qualifie	r Unit		D	%Rec	Limits		
Phenolics, Total Recoverable	0.025	J		0.100		0.103		mg/L			78	75 - 125		
Lab Sample ID: 440-245195-J	-1-C MS	D						Clie	nt S	amp	le ID: Ma	atrix Spike	Dup	licat
Matrix: Water								•		amp		Prep Type		
Analysis Batch: 577344												Prep Batc		
·····	Sample	Sam	nple	Spike		MSD	MSD					%Rec.		RP
Analyte	Result	Qua	lifier	Added		Result	Qualifie	r Unit		D	%Rec	Limits	RPD	Lim
Phenolics, Total Recoverable	0.025	J		0.100		0.114		mg/L			89	75 - 125	10	3
lethod: ASTM D5057-90	- Speci	fic	Gravity	and B	ulk	Dens	ity (S	creeni	ng))				
Lab Sample ID: 180-92006-A-	1 DU										Client S	Sample ID:	Dup	licat
Matrix: Water												Prep Type		
Analysis Batch: 284432														
-	Sample		•			DU	DU							RP
Analyte	Result	Qua	lifier			Result	Qualifie	r Unit		D			RPD	Lim
Specific Gravity	1.0					0.986		No Ur	nit				2	2
	la Tota	al												
iethod: SNI 2540B - Solid	15, 1018													
										Clie	ent Samp	ole ID: Metl	10d	Bian
lethod: SM 2540B - Solic Lab Sample ID: MB 440-5559 Matrix: Water										Clie		ole ID: Meti Prep Type		
Lab Sample ID: MB 440-5559 Matrix: Water										Clie		ole ID: Metl Prep Type		
Lab Sample ID: MB 440-5559 Matrix: Water		мв	МВ							Clie				
Lab Sample ID: MB 440-5559 Matrix: Water Analysis Batch: 555974 ^{Analyte}	74/1	MB esult	MB Qualifier		RL		RL Un		D			Prep Type Analyzed	: Tot	al/N
Lab Sample ID: MB 440-5559 Matrix: Water Analysis Batch: 555974 ^{Analyte}	74/1	МВ			RL 10		RL Un 10 mg		D			Prep Type	: Tot	
Lab Sample ID: MB 440-5559 Matrix: Water Analysis Batch: 555974 Analyte Fotal Solids Lab Sample ID: LCS 440-555	74/1 Re	MB esult						/L		P	repared mple ID:	Analyzed 07/02/19 19	: Tot 	ampl
Lab Sample ID: MB 440-5559 Matrix: Water Analysis Batch: 555974 Analyte Total Solids Lab Sample ID: LCS 440-5555 Matrix: Water	74/1 Re	MB esult						/L		P	repared mple ID:	Analyzed	: Tot 	al/N
Lab Sample ID: MB 440-5559	74/1 Re	MB esult		Spike		LCS	10 mg	/L		P	repared mple ID:	Analyzed 07/02/19 19	: Tot 	al/N

Job ID: 440-245042-1

Method: SM 2540B - Solids, Total (Continued)

_ Lab Sample ID: 440-245042 Matrix: Water	-1 DU					Client Sam	ple ID: 06 25 B Prep Type: To	
Analysis Batch: 555974								
	Sample	Sample		DU DU				RPD
Analyte		Qualifier		Result Qualifier	Unit	D	RPD	Limit
Total Solids	10000			9800	mg/L		2	10
Method: SM 4500 CN E	- Cyanide	e, Total						
Lab Sample ID: MB 440-556	6015/1-A					Client Sam	ple ID: Method	Blank
Matrix: Water							Prep Type: To	
Analysis Batch: 556040							Prep Batch: 5	
		MB MB						
Analyte	Re	sult Qualifier	RI	. MDL Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total		ND	0.02	5 0.013 mg/L		07/03/19 10:24	4 07/03/19 12:39	1
Lab Samala ID: LCS 440 FF	CO4 E 12 A				Client	t Comple ID	Lab Control S	omela
Lab Sample ID: LCS 440-55	0015/2-A				Clien	t Sample ID	Lab Control S	
Matrix: Water							Prep Type: To	
Analysis Batch: 556040			Omilia				Prep Batch: 5	56015
Analysis			Spike	LCS LCS	11		%Rec.	
Analyte			Added	Result Qualifier	Unit	_ D %Rec	Limits	
Cyanide, Total			0.200	0.190	mg/L	95	80 - 120	
Lab Sample ID: 440-245069	-B-1-B MS					Client Sa	mple ID: Matrix	Spike
Matrix: Water							Prep Type: To	tal/NA
Analysis Batch: 556040							Prep Batch: 5	556015
-	Sample	Sample	Spike	MS MS			%Rec.	
Analyte	Result	Qualifier	Added	Result Qualifier	Unit	D %Rec	Limits	
Cyanide, Total	ND		0.200	0.202	mg/L	101	75 - 125	
Lab Sample ID: 440-245069	-B-1-C MS	D			Client S	ample ID: M	atrix Spike Du	olicate
Matrix: Water		-					Prep Type: To	
Analysis Batch: 556040							Prep Batch: 5	
,	Sample	Sample	Spike	MSD MSD			%Rec.	RPD
Analyte	Result	Qualifier	Added	Result Qualifier	Unit	D %Rec	Limits RPD	Limi
Cyanide, Total	ND		0.200	0.183	mg/L	91	75_125 10	20
Lab Sample ID: MB 440-556	101/1 1					Client Sam	ple ID: Method	Plan
	121/1-A					Chem Sam	•	
Matrix: Water							Prep Type: To	
Analysis Batch: 556276		MB MB					Prep Batch: 5	5012
Analyte	Po	sult Qualifier	RI	_ MDL Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total			0.02			07/03/19 19:20	•	
		ND	0.02	0.010 mg/E		07/03/13 13.20	0 01/03/10 10:00	
Lab Sample ID: LCS 440-55	6121/2-A				Clien	t Sample ID:	Lab Control S	ample
Matrix: Water						•	Prep Type: To	
Analysis Batch: 556276							Prep Batch: 5	
•			Spike	LCS LCS			%Rec.	
Analyte			Added	Result Qualifier	Unit	D %Rec	Limits	

Job ID: 440-245042-1

Method: SM 4500 CN E - Cyanide, Total (Continued)

Lab Sample ID: 440-244677-	A-6-B MS	i.								CI	ient Sam	-		
Matrix: Water												Prep Ty		
Analysis Batch: 556276										Prep Ba	atch: 5	56121
• • •	-	Sample	Spike			MS				_	~-	%Rec.		
Analyte		Qualifier	Added		Result	Qualit	ier	Unit		D	%Rec	Limits		
Cyanide, Total	ND		0.200		0.208			mg/L			104	75 - 125		
Lab Sample ID: 440-244677- Matrix: Water	A-6-C MS	D						Client	Sar	np	le ID: Ma	itrix Spil Prep Ty		
Analysis Batch: 556276												Prep Ba		
	Sample	Sample	Spike		MSD	MSD						%Rec.		RPD
Analyte		Qualifier	Added		Result	Qualif	ier	Unit		D	%Rec	Limits	RPD	Limi
Cyanide, Total	ND		0.200		0.205			mg/L		—	102	75 - 125	2	20
lethod: SM 4500 NH3 D	- Ammo	onia												
Lab Sample ID: MB 440-556	152/2-A								c	Clie	nt Samp	ole ID: M	ethod	Blank
Matrix: Water											-	Prep Ty	pe: To	tal/NA
Analysis Batch: 556165												Prep Ba		
		MB MB												
Analyte	Re	esult Qualifier		RL		MDL U			D		repared	Analyz		Dil Fac
Ammonia (as N)		ND		0.50		0.10 m	ng/L		_ 0	07/0	5/19 04:00	07/05/19	06:00	1
Ammonia as NH3		ND		0.60		0.12 m	ng/L		0)7/0	5/19 04:00	07/05/19	06:00	1
Lab Sample ID: LCS 440-55	6152/1-A							Clie	ent S	Sar	nple ID:	Lab Cor	ntrol S	ample
Matrix: Water											-	Prep Ty		
Analysis Batch: 556165												Prep Ba		
· ·····, · · · · · · · · · · · · · · ·			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qualif	ier	Unit		D	%Rec	Limits		
Ammonia (as N)			2.50		2.30			mg/L		_	92	85 - 115		
Ammonia as NH3			3.04		2.80			mg/L			92	85 - 115		
Lab Sample ID: MRL 440-55	6152/3-A							Clie	ent S	Sar	nple ID:	Lab Cor	ntrol S	ample
Matrix: Water											-	Prep Ty		
Analysis Batch: 556165												Prep Ba		
· · · · , · · · · · · · · · · · · · · · · · · ·			Spike		MRL	MRL						%Rec.		
Analyte			Added		Result	Qualif	ier	Unit		D	%Rec	Limits		
Ammonia (as N)			0.500		0.494	J		mg/L		_	99	10 - 200		
Ammonia as NH3			0.607		0.599	J		mg/L			99	10 - 200		
										CI	ient Sarr	-		
	A-1-B MS													
Matrix: Water	-A-1-B MS											Prep Ty		
Lab Sample ID: 440-245045- Matrix: Water Analysis Batch: 556165			Sniko		Ме	MS						Prep Ba		
Matrix: Water Analysis Batch: 556165	Sample	Sample	Spike		MS	-	ior	Unit		п		Prep Ba %Rec.		
Matrix: Water Analysis Batch: 556165 Analyte	Sample Result	Sample Qualifier	Added		Result	-	ier	Unit		D	%Rec	Prep Ba %Rec. Limits		
Matrix: Water Analysis Batch: 556165 Analyte Ammonia (as N)	Sample	Sample Qualifier J	•		-	-	ier	Unit mg/L mg/L		D		Prep Ba %Rec.		
Matrix: Water Analysis Batch: 556165 Analyte Ammonia (as N) Ammonia as NH3	Sample Result 0.25 0.30	Sample Qualifier J J	Added 2.50		Result 2.68	-	ier	mg/L mg/L		_	%Rec 97 97	Prep Ba %Rec. Limits 75 - 125 75 - 125	atch: 5	556152
Matrix: Water Analysis Batch: 556165 Analyte Ammonia (as N) Ammonia as NH3 Lab Sample ID: 440-245045-	Sample Result 0.25 0.30	Sample Qualifier J J	Added 2.50		Result 2.68	-	ier	mg/L mg/L	Sar	_	<mark>%Rec</mark> 97 97	Prep Ba %Rec. Limits 75 - 125 75 - 125 rtrix Spil	e Duj	556152
Matrix: Water Analysis Batch: 556165 Analyte Ammonia (as N) Ammonia as NH3 Lab Sample ID: 440-245045- Matrix: Water	Sample Result 0.25 0.30	Sample Qualifier J J	Added 2.50		Result 2.68	-	ier	mg/L mg/L	Sar	_	<mark>%Rec</mark> 97 97	Prep Ba %Rec. Limits 75 - 125 75 - 125 htrix Spil Prep Ty	ke Duppe: To	olicate
Matrix: Water Analysis Batch: 556165 Analyte Ammonia (as N) Ammonia as NH3 Lab Sample ID: 440-245045-	Sample Result 0.25 0.30 •A-1-C MS	Sample Qualifier J J	Added 2.50 3.04		Result 2.68 3.25	Qualif	ier_	mg/L mg/L	Sar	_	<mark>%Rec</mark> 97 97	Prep Ba %Rec. Limits 75 - 125 75 - 125 htrix Spil Prep Ty Prep Ba	ke Duppe: To	olicate otal/NA
Matrix: Water Analysis Batch: 556165 Analyte Ammonia (as N) Ammonia as NH3 Lab Sample ID: 440-245045- Matrix: Water Analysis Batch: 556165	Sample Result 0.25 0.30 •A-1-C MS Sample	Sample Qualifier J J D Sample	Added 2.50 3.04 Spike		Result 2.68 3.25 MSD	Qualif		mg/L mg/L Client	Sar	- np	<mark>%Rec</mark> 97 97 97 Ie ID: Ma	Prep Ba %Rec. Limits 75 - 125 75 - 125 htrix Spil Prep Typ Prep Ba %Rec.	etch: 5	olicate tal/NA 556152 RPD
Matrix: Water Analysis Batch: 556165 Analyte Ammonia (as N) Ammonia as NH3 Lab Sample ID: 440-245045- Matrix: Water	Sample Result 0.25 0.30 •A-1-C MS Sample	Sample Qualifier J J D Sample Qualifier	Added 2.50 3.04		Result 2.68 3.25	Qualif		mg/L mg/L	Sar	_	<u>%Rec</u> 97 97 Ie ID: Ma %Rec	Prep Ba %Rec. Limits 75 - 125 75 - 125 htrix Spil Prep Ty Prep Ba	ke Duppe: To	olicate tal/NA 556152 RPC Limit

Job ID: 440-245042-1

Method: SM 4500 NH3 D - Ammonia (Continued)

Lab Sample ID: 440-245045	5-A-1-A DU						Client	Sample ID: Dup	olicate
Matrix: Water								Prep Type: To	tal/NA
Analysis Batch: 556165								Prep Batch: 5	56152
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifie	Unit	I	D	RPD	Limit
Ammonia (as N)	0.25	J	0.251	J	mg/L			0	15
Ammonia as NH3	0.30	J	0.305	J	mg/L			0	15
Lab Sample ID: MB 440-556						C	lient Sam	ple ID: Method Prep Type: To	
Lab Sample ID: MB 440-556 Matrix: Water		MB MB				C	lient Sam	•	
Lab Sample ID: MB 440-556 Matrix: Water Analysis Batch: 556931	6931/3	MB MB sult Qualifier	RL	MDL Un	t		lient Sam Prepared	Prep Type: To	
Lab Sample ID: MB 440-556 Matrix: Water Analysis Batch: 556931 ^{Analyte}	6931/3		RL 20	MDL Un 10 mg	-			Prep Type: To	tal/NA
Lab Sample ID: MB 440-556 Matrix: Water Analysis Batch: 556931 Analyte Chemical Oxygen Demand	6931/3 Re	sult Qualifier			L	D	Prepared	Prep Type: To Analyzed 07/10/19 16:45	tal/NA Dil Fac
Iethod: SM 5220D - CO Lab Sample ID: MB 440-556 Matrix: Water Analysis Batch: 556931 Analyte Chemical Oxygen Demand Lab Sample ID: LCS 440-55 Matrix: Water	6931/3 Re	sult Qualifier			L	D	Prepared	Prep Type: To Analyzed	Dil Fac 1 ample

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chemical Oxygen Demand	200	190		mg/L		95	90 - 110	

Lab Sample ID: 440-245408-A-1 MS Matrix: Water

Analysis Batch: 556931										-
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chemical Oxygen Demand	79		200	265		mg/L		93	70 - 120	

Lab Sample ID: 440-245408-A-1 MSD Matrix: Water Analysis Batch: 556931

Analysis Daten. 550551	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chemical Oxygen Demand	79		200	268		mg/L		95	70 - 120	1	15

Lab Sample ID: 440-245408-A-1 DU Matrix: Water Analysis Batch: 556931 Sample Sample

r Unit D RPD Limits RPD Limit 15 mg/L D MRec Limits RPD Limit 15 Client Sample ID: Duplicate Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 556931									
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Chemical Oxygen Demand	79		 83.2		mg/L		 	6	15

Prep Type

Total/NA

Total/NA

Matrix

Water

Water

Client Sample ID

06 25 OD STREAMS

06 25 BUTCH DUP

Lab Control Sample

Matrix Spike Duplicate

Client Sample ID

OD STREAMS

OD STREAMS

Method Blank

Matrix Spike

Lab Control Sample

Matrix Spike Duplicate

Method Blank

Matrix Spike

GC/MS VOA

Lab Sample ID

440-245042-2

440-245042-3

MB 440-556388/4

LCS 440-556388/5

440-244865-A-2 MS

Lab Sample ID

440-245042-5

440-245042-7

MB 440-556394/4

LCS 440-556394/5

440-244985-B-1 MS

440-244985-B-1 MSD

440-244865-A-2 MSD

Analysis Batch: 556394

Analysis Batch: 556388

Prep Batch

Total/NA	Water	8260B	
Total/NA	Water	8260B	
Total/NA	Water	8260B	
Total/NA	Water	8260B	
Ргер Туре	Matrix	Method	Prep Batch
Total/NA	Water	8260B	
Ргер Туре	Matrix	Method	Prep Batch
Total/NA	Water	8260B	
Total/NA	Water	8260B	
Total/NIA	Water	0260P	

Method

8260B

8260B

Analysis Batch: 556543

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
440-245042-1	06 25 BUTCH	Total/NA	Water	8260B		
440-245042-3 - RA	06 25 BUTCH DUP	Total/NA	Water	8260B		
MB 440-556543/5	Method Blank	Total/NA	Water	8260B		
LCS 440-556543/6	Lab Control Sample	Total/NA	Water	8260B		
440-245245-C-1 MS	Matrix Spike	Total/NA	Water	8260B		
440-245245-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B		

Analysis Batch: 556591

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-4	BUTCHER	Total/NA	Water	8260B	
440-245042-6	BUTCHER	Total/NA	Water	8260B	
MB 440-556591/4	Method Blank	Total/NA	Water	8260B	
LCS 440-556591/5	Lab Control Sample	Total/NA	Water	8260B	
440-245066-F-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

GC/MS Semi VOA

Prep Batch: 556176

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	625	
440-245042-2	06 25 OD STREAMS	Total/NA	Water	625	
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	625	
440-245042-4	BUTCHER	Total/NA	Water	625	
440-245042-5	OD STREAMS	Total/NA	Water	625	
440-245042-6	BUTCHER	Total/NA	Water	625	
440-245042-7	OD STREAMS	Total/NA	Water	625	
MB 440-556176/1-A	Method Blank	Total/NA	Water	625	
LCS 440-556176/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 440-556176/3-A	Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 556467

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	625	556176

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

GC/MS Semi VOA (Continued)

Analysis Batch: 556467 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-2	06 25 OD STREAMS	Total/NA	Water	625	556176
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	625	556176
440-245042-4	BUTCHER	Total/NA	Water	625	556176
440-245042-5	OD STREAMS	Total/NA	Water	625	556176
440-245042-6	BUTCHER	Total/NA	Water	625	556176
440-245042-7	OD STREAMS	Total/NA	Water	625	556176
MB 440-556176/1-A	Method Blank	Total/NA	Water	625	556176
LCS 440-556176/2-A	Lab Control Sample	Total/NA	Water	625	556176
LCSD 440-556176/3-A	Lab Control Sample Dup	Total/NA	Water	625	556176

HPLC/IC

Prep Batch: 555931

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	8315_W_Prep	
440-245042-2	06 25 OD STREAMS	Total/NA	Water	8315_W_Prep	
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	8315_W_Prep	
440-245042-4	BUTCHER	Total/NA	Water	8315_W_Prep	
440-245042-5	OD STREAMS	Total/NA	Water	8315_W_Prep	
440-245042-6	BUTCHER	Total/NA	Water	8315_W_Prep	
440-245042-7	OD STREAMS	Total/NA	Water	8315_W_Prep	
MB 440-555931/1-A	Method Blank	Total/NA	Water	8315_W_Prep	
LCS 440-555931/2-A	Lab Control Sample	Total/NA	Water	8315_W_Prep	
440-245033-A-1-A MS	Matrix Spike	Total/NA	Water	8315_W_Prep	
440-245033-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	8315_W_Prep	

Analysis Batch: 556054

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	8315A	555931
440-245042-2	06 25 OD STREAMS	Total/NA	Water	8315A	555931
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	8315A	555931
440-245042-4	BUTCHER	Total/NA	Water	8315A	555931
440-245042-5	OD STREAMS	Total/NA	Water	8315A	555931
440-245042-6	BUTCHER	Total/NA	Water	8315A	555931
440-245042-7	OD STREAMS	Total/NA	Water	8315A	555931
MB 440-555931/1-A	Method Blank	Total/NA	Water	8315A	555931
LCS 440-555931/2-A	Lab Control Sample	Total/NA	Water	8315A	555931
440-245033-A-1-A MS	Matrix Spike	Total/NA	Water	8315A	555931
440-245033-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	8315A	555931

Analysis Batch: 556718

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	NO3NO2 Calc	
440-245042-2	06 25 OD STREAMS	Total/NA	Water	NO3NO2 Calc	
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	NO3NO2 Calc	
440-245042-4	BUTCHER	Total/NA	Water	NO3NO2 Calc	
440-245042-5	OD STREAMS	Total/NA	Water	NO3NO2 Calc	
440-245042-6	BUTCHER	Total/NA	Water	NO3NO2 Calc	
440-245042-7	OD STREAMS	Total/NA	Water	NO3NO2 Calc	

Prep Type

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Water

Water

Water

Water

Water

Water

Water

Matrix

Water

Water

Water

Water

Water

Water

Water

Client Sample ID

06 25 BUTCH

BUTCHER

BUTCHER

Method Blank

Matrix Spike

Lab Control Sample

Client Sample ID

06 25 OD STREAMS

06 25 BUTCH DUP

06 25 BUTCH

BUTCHER

BUTCHER

OD STREAMS

OD STREAMS

Matrix Spike Duplicate

Metals

Prep Batch: 555968

Lab Sample ID

440-245042-1

440-245042-4

440-245042-6

MB 440-555968/1-A

LCS 440-555968/2-A

440-244854-A-3-B MS

440-244854-A-3-C MSD

Prep Batch: 556247

Lab Sample ID

440-245042-1

440-245042-2

440-245042-3

440-245042-4

440-245042-5

440-245042-6

440-245042-7

Prep Batch

Prep Batch

Method

3005A

3005A

3005A

3005A

3005A

3005A

3005A

Method 7470A

7470A

7470A

7470A

7470A

7470A

7470A

9 10 11 12

Lab Sample ID Prep Type **Client Sample ID** Matrix Method Prep Batch 06 25 BUTCH 440-245042-1 Total Recoverable Water 6010B 555968 440-245042-4 BUTCHER **Total Recoverable** Water 6010B 555968 440-245042-6 BUTCHER **Total Recoverable** Water 6010B 555968 MB 440-555968/1-A 555968 Method Blank **Total Recoverable** Water 6010B LCS 440-555968/2-A Lab Control Sample **Total Recoverable** Water 6010B 555968 Total Recoverable 440-244854-A-3-B MS Matrix Spike Water 6010B 555968 6010B 440-244854-A-3-C MSD Matrix Spike Duplicate **Total Recoverable** Water 555968

Analysis Batch: 556352

Analysis Batch: 556263

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	7470A	556247
440-245042-2	06 25 OD STREAMS	Total/NA	Water	7470A	556247
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	7470A	556247
440-245042-4	BUTCHER	Total/NA	Water	7470A	556247
440-245042-5	OD STREAMS	Total/NA	Water	7470A	556247
440-245042-6	BUTCHER	Total/NA	Water	7470A	556247
440-245042-7	OD STREAMS	Total/NA	Water	7470A	556247

Prep Batch: 556431

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
440-245042-2	06 25 OD STREAMS	Total Recoverable	Water	3005A	
440-245042-3	06 25 BUTCH DUP	Total Recoverable	Water	3005A	
440-245042-5	OD STREAMS	Total Recoverable	Water	3005A	
440-245042-7	OD STREAMS	Total Recoverable	Water	3005A	
MB 440-556431/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 440-556431/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
440-245154-J-1-B MS	Matrix Spike	Total Recoverable	Water	3005A	
440-245154-J-1-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

q

	3
p Batch	
	13

Metals		
Analysis	Batch:	556566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-2	06 25 OD STREAMS	Total Recoverable	Water	6010B	556431
440-245042-3	06 25 BUTCH DUP	Total Recoverable	Water	6010B	556431
440-245042-5	OD STREAMS	Total Recoverable	Water	6010B	556431
440-245042-7	OD STREAMS	Total Recoverable	Water	6010B	556431
MB 440-556431/1-A	Method Blank	Total Recoverable	Water	6010B	556431
LCS 440-556431/2-A	Lab Control Sample	Total Recoverable	Water	6010B	556431
440-245154-J-1-B MS	Matrix Spike	Total Recoverable	Water	6010B	556431
440-245154-J-1-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	6010B	556431
General Chemistr	у				
Analysis Batch: 2844	32				
- Lab Sample ID	Client Sample ID	Pren Type	Matrix	Method	Prep Batch

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
440-245042-1	06 25 BUTCH	Total/NA	Water	ASTM D5057-90		
440-245042-2	06 25 OD STREAMS	Total/NA	Water	ASTM D5057-90		
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	ASTM D5057-90		
440-245042-4	BUTCHER	Total/NA	Water	ASTM D5057-90		
440-245042-5	OD STREAMS	Total/NA	Water	ASTM D5057-90		
440-245042-6	BUTCHER	Total/NA	Water	ASTM D5057-90		
440-245042-7	OD STREAMS	Total/NA	Water	ASTM D5057-90		
180-92006-A-1 DU	Duplicate	Total/NA	Water	ASTM D5057-90		

Analysis Batch: 306826

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	353.2	
440-245042-2	06 25 OD STREAMS	Total/NA	Water	353.2	
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	353.2	
440-245042-4	BUTCHER	Total/NA	Water	353.2	
440-245042-5	OD STREAMS	Total/NA	Water	353.2	
440-245042-6	BUTCHER	Total/NA	Water	353.2	
440-245042-7	OD STREAMS	Total/NA	Water	353.2	
MB 320-306826/15	Method Blank	Total/NA	Water	353.2	
LCS 320-306826/16	Lab Control Sample	Total/NA	Water	353.2	
440-244710-A-1 MS	Matrix Spike	Total/NA	Water	353.2	
440-244710-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	353.2	

Analysis Batch: 555904

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	2540E	
440-245042-2	06 25 OD STREAMS	Total/NA	Water	2540E	
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	2540E	
440-245042-4	BUTCHER	Total/NA	Water	2540E	
440-245042-5	OD STREAMS	Total/NA	Water	2540E	
440-245042-6	BUTCHER	Total/NA	Water	2540E	
440-245042-7	OD STREAMS	Total/NA	Water	2540E	
MB 440-555904/1	Method Blank	Total/NA	Water	2540E	
440-245042-1 DU	06 25 BUTCH	Total/NA	Water	2540E	

Analysis Batch: 555974

Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	SM 2540B	

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

General Chemistry (Continued)

Analysis Batch: 555974 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-2	06 25 OD STREAMS	Total/NA	Water	SM 2540B	
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	SM 2540B	
440-245042-4	BUTCHER	Total/NA	Water	SM 2540B	
440-245042-5	OD STREAMS	Total/NA	Water	SM 2540B	
440-245042-6	BUTCHER	Total/NA	Water	SM 2540B	
440-245042-7	OD STREAMS	Total/NA	Water	SM 2540B	
MB 440-555974/1	Method Blank	Total/NA	Water	SM 2540B	
LCS 440-555974/2	Lab Control Sample	Total/NA	Water	SM 2540B	
440-245042-1 DU	06 25 BUTCH	Total/NA	Water	SM 2540B	

Prep Batch: 556015

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	Distill/CN	
440-245042-2	06 25 OD STREAMS	Total/NA	Water	Distill/CN	
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	Distill/CN	
440-245042-4	BUTCHER	Total/NA	Water	Distill/CN	
MB 440-556015/1-A	Method Blank	Total/NA	Water	Distill/CN	
LCS 440-556015/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
440-245069-B-1-B MS	Matrix Spike	Total/NA	Water	Distill/CN	
440-245069-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	Distill/CN	

Analysis Batch: 556040

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	SM 4500 CN E	556015
440-245042-2	06 25 OD STREAMS	Total/NA	Water	SM 4500 CN E	556015
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	SM 4500 CN E	556015
440-245042-4	BUTCHER	Total/NA	Water	SM 4500 CN E	556015
MB 440-556015/1-A	Method Blank	Total/NA	Water	SM 4500 CN E	556015
LCS 440-556015/2-A	Lab Control Sample	Total/NA	Water	SM 4500 CN E	556015
440-245069-B-1-B MS	Matrix Spike	Total/NA	Water	SM 4500 CN E	556015
440-245069-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 CN E	556015

Prep Batch: 556121

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-5	OD STREAMS	Total/NA	Water	Distill/CN	
440-245042-6	BUTCHER	Total/NA	Water	Distill/CN	
440-245042-7	OD STREAMS	Total/NA	Water	Distill/CN	
MB 440-556121/1-A	Method Blank	Total/NA	Water	Distill/CN	
LCS 440-556121/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
440-244677-A-6-B MS	Matrix Spike	Total/NA	Water	Distill/CN	
440-244677-A-6-C MSD	Matrix Spike Duplicate	Total/NA	Water	Distill/CN	

Prep Batch: 556152

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batcl
440-245042-1	06 25 BUTCH	Total/NA	Water	SM 4500 NH3 B
440-245042-2	06 25 OD STREAMS	Total/NA	Water	SM 4500 NH3 B
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	SM 4500 NH3 B
440-245042-4	BUTCHER	Total/NA	Water	SM 4500 NH3 B
440-245042-5	OD STREAMS	Total/NA	Water	SM 4500 NH3 B
440-245042-6	BUTCHER	Total/NA	Water	SM 4500 NH3 B
440-245042-7	OD STREAMS	Total/NA	Water	SM 4500 NH3 B

Eurofins TestAmerica, Irvine

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

General Chemistry (Continued)

Prep Batch: 556152 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 440-556152/2-A	Method Blank	Total/NA	Water	SM 4500 NH3 B	
LCS 440-556152/1-A	Lab Control Sample	Total/NA	Water	SM 4500 NH3 B	
MRL 440-556152/3-A	Lab Control Sample	Total/NA	Water	SM 4500 NH3 B	
440-245045-A-1-B MS	Matrix Spike	Total/NA	Water	SM 4500 NH3 B	
440-245045-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 NH3 B	
440-245045-A-1-A DU	Duplicate	Total/NA	Water	SM 4500 NH3 B	

Analysis Batch: 556165

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	SM 4500 NH3 D	556152
440-245042-2	06 25 OD STREAMS	Total/NA	Water	SM 4500 NH3 D	556152
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	SM 4500 NH3 D	556152
440-245042-4	BUTCHER	Total/NA	Water	SM 4500 NH3 D	556152
440-245042-5	OD STREAMS	Total/NA	Water	SM 4500 NH3 D	556152
440-245042-6	BUTCHER	Total/NA	Water	SM 4500 NH3 D	556152
440-245042-7	OD STREAMS	Total/NA	Water	SM 4500 NH3 D	556152
MB 440-556152/2-A	Method Blank	Total/NA	Water	SM 4500 NH3 D	556152
LCS 440-556152/1-A	Lab Control Sample	Total/NA	Water	SM 4500 NH3 D	556152
MRL 440-556152/3-A	Lab Control Sample	Total/NA	Water	SM 4500 NH3 D	556152
440-245045-A-1-B MS	Matrix Spike	Total/NA	Water	SM 4500 NH3 D	556152
440-245045-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 NH3 D	556152
440-245045-A-1-A DU	Duplicate	Total/NA	Water	SM 4500 NH3 D	556152

Prep Batch: 556226

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-2	06 25 OD STREAMS	Total/NA	Water	365.2/365.3/365	
440-245042-5	OD STREAMS	Total/NA	Water	365.2/365.3/365	
440-245042-7	OD STREAMS	Total/NA	Water	365.2/365.3/365	
MB 440-556226/1-A	Method Blank	Total/NA	Water	365.2/365.3/365	
LCS 440-556226/2-A	Lab Control Sample	Total/NA	Water	365.2/365.3/365	
440-245005-B-1-B MS	Matrix Spike	Total/NA	Water	365.2/365.3/365	
440-245005-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	365.2/365.3/365	

Analysis Batch: 556268

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-2	06 25 OD STREAMS	Total/NA	Water	365.3	556226
440-245042-5	OD STREAMS	Total/NA	Water	365.3	556226
440-245042-7	OD STREAMS	Total/NA	Water	365.3	556226
MB 440-556226/1-A	Method Blank	Total/NA	Water	365.3	556226
LCS 440-556226/2-A	Lab Control Sample	Total/NA	Water	365.3	556226
440-245005-B-1-B MS	Matrix Spike	Total/NA	Water	365.3	556226
440-245005-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	365.3	556226

Analysis Batch: 556276

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-5	OD STREAMS	Total/NA	Water	SM 4500 CN E	556121
440-245042-6	BUTCHER	Total/NA	Water	SM 4500 CN E	556121
440-245042-7	OD STREAMS	Total/NA	Water	SM 4500 CN E	556121
MB 440-556121/1-A	Method Blank	Total/NA	Water	SM 4500 CN E	556121
LCS 440-556121/2-A	Lab Control Sample	Total/NA	Water	SM 4500 CN E	556121
440-244677-A-6-B MS	Matrix Spike	Total/NA	Water	SM 4500 CN E	556121

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

General Chemistry (Continued)

Analysis Batch: 556276 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-244677-A-6-C MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 CN E	556121
Prep Batch: 556299					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	365.2/365.3/365	
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	365.2/365.3/365	
440-245042-4	BUTCHER	Total/NA	Water	365.2/365.3/365	
440-245042-6	BUTCHER	Total/NA	Water	365.2/365.3/365	
MB 440-556299/1-A	Method Blank	Total/NA	Water	365.2/365.3/365	
LCS 440-556299/2-A	Lab Control Sample	Total/NA	Water	365.2/365.3/365	
440-245008-B-1-B MS	Matrix Spike	Total/NA	Water	365.2/365.3/365	
440-245008-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	365.2/365.3/365	

Prep Batch: 556300

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	351.2	
440-245042-2	06 25 OD STREAMS	Total/NA	Water	351.2	
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	351.2	
440-245042-4	BUTCHER	Total/NA	Water	351.2	
440-245042-5	OD STREAMS	Total/NA	Water	351.2	
440-245042-6	BUTCHER	Total/NA	Water	351.2	
440-245042-7	OD STREAMS	Total/NA	Water	351.2	
MB 440-556300/3-A	Method Blank	Total/NA	Water	351.2	
LCS 440-556300/4-A	Lab Control Sample	Total/NA	Water	351.2	
LCSD 440-556300/5-A	Lab Control Sample Dup	Total/NA	Water	351.2	
440-245031-B-3-B MS	Matrix Spike	Total/NA	Water	351.2	
440-245031-B-3-C MSD	Matrix Spike Duplicate	Total/NA	Water	351.2	
440-245181-A-1-D MS	Matrix Spike	Total/NA	Water	351.2	
440-245181-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Water	351.2	

Analysis Batch: 556353

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	365.3	556299
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	365.3	556299
440-245042-4	BUTCHER	Total/NA	Water	365.3	556299
440-245042-6	BUTCHER	Total/NA	Water	365.3	556299
MB 440-556299/1-A	Method Blank	Total/NA	Water	365.3	556299
LCS 440-556299/2-A	Lab Control Sample	Total/NA	Water	365.3	556299
440-245008-B-1-B MS	Matrix Spike	Total/NA	Water	365.3	556299
440-245008-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	365.3	556299

Prep Batch: 556396

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	1664A	
440-245042-2	06 25 OD STREAMS	Total/NA	Water	1664A	
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	1664A	
440-245042-4	BUTCHER	Total/NA	Water	1664A	
440-245042-5	OD STREAMS	Total/NA	Water	1664A	
440-245042-6	BUTCHER	Total/NA	Water	1664A	
440-245042-7	OD STREAMS	Total/NA	Water	1664A	
MB 440-556396/1-A	Method Blank	Total/NA	Water	1664A	

Eurofins TestAmerica, Irvine

Job ID: 440-245042-1

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

General Chemistry (Continued)

Prep Batch: 556396 (Continued)

Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
LCS 440-556396/2-A	Lab Control Sample	Total/NA	Water	1664A	
LCSD 440-556396/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	

Analysis Batch: 556472

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	1664A	556396
440-245042-2	06 25 OD STREAMS	Total/NA	Water	1664A	556396
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	1664A	556396
440-245042-4	BUTCHER	Total/NA	Water	1664A	556396
440-245042-5	OD STREAMS	Total/NA	Water	1664A	556396
440-245042-6	BUTCHER	Total/NA	Water	1664A	556396
440-245042-7	OD STREAMS	Total/NA	Water	1664A	556396
MB 440-556396/1-A	Method Blank	Total/NA	Water	1664A	556396
LCS 440-556396/2-A	Lab Control Sample	Total/NA	Water	1664A	556396
LCSD 440-556396/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	556396

Analysis Batch: 556894

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	351.2	556300
440-245042-2	06 25 OD STREAMS	Total/NA	Water	351.2	556300
440-245042-4	BUTCHER	Total/NA	Water	351.2	556300
440-245042-6	BUTCHER	Total/NA	Water	351.2	556300
MB 440-556300/3-A	Method Blank	Total/NA	Water	351.2	556300
LCS 440-556300/4-A	Lab Control Sample	Total/NA	Water	351.2	556300
LCSD 440-556300/5-A	Lab Control Sample Dup	Total/NA	Water	351.2	556300
440-245031-B-3-B MS	Matrix Spike	Total/NA	Water	351.2	556300
440-245031-B-3-C MSD	Matrix Spike Duplicate	Total/NA	Water	351.2	556300
440-245181-A-1-D MS	Matrix Spike	Total/NA	Water	351.2	556300
440-245181-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Water	351.2	556300

Analysis Batch: 556931

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	SM 5220D	
440-245042-2	06 25 OD STREAMS	Total/NA	Water	SM 5220D	
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	SM 5220D	
440-245042-4	BUTCHER	Total/NA	Water	SM 5220D	
440-245042-5	OD STREAMS	Total/NA	Water	SM 5220D	
440-245042-6	BUTCHER	Total/NA	Water	SM 5220D	
440-245042-7	OD STREAMS	Total/NA	Water	SM 5220D	
MB 440-556931/3	Method Blank	Total/NA	Water	SM 5220D	
LCS 440-556931/4	Lab Control Sample	Total/NA	Water	SM 5220D	
440-245408-A-1 MS	Matrix Spike	Total/NA	Water	SM 5220D	
440-245408-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 5220D	
440-245408-A-1 DU	Duplicate	Total/NA	Water	SM 5220D	

Analysis Batch: 556947

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	351.2	556300
440-245042-5	OD STREAMS	Total/NA	Water	351.2	556300
440-245042-7	OD STREAMS	Total/NA	Water	351.2	556300

Job ID: 440-245042-1

9

General Chemistry

Analysis Batch: 557104

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	Total Nitrogen	
440-245042-2	06 25 OD STREAMS	Total/NA	Water	Total Nitrogen	
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	Total Nitrogen	
440-245042-4	BUTCHER	Total/NA	Water	Total Nitrogen	
440-245042-5	OD STREAMS	Total/NA	Water	Total Nitrogen	
440-245042-6	BUTCHER	Total/NA	Water	Total Nitrogen	
440-245042-7	OD STREAMS	Total/NA	Water	Total Nitrogen	

Prep Batch: 577256

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	Distill/Phenol	_
440-245042-2	06 25 OD STREAMS	Total/NA	Water	Distill/Phenol	
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	Distill/Phenol	
440-245042-4	BUTCHER	Total/NA	Water	Distill/Phenol	
440-245042-5	OD STREAMS	Total/NA	Water	Distill/Phenol	
140-245042-6	BUTCHER	Total/NA	Water	Distill/Phenol	
40-245042-7	OD STREAMS	Total/NA	Water	Distill/Phenol	
/IB 680-577256/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
CS 680-577256/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
40-245195-J-1-B MS	Matrix Spike	Total/NA	Water	Distill/Phenol	
40-245195-J-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	Distill/Phenol	

Analysis Batch: 577344

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-245042-1	06 25 BUTCH	Total/NA	Water	420.1	577256
440-245042-2	06 25 OD STREAMS	Total/NA	Water	420.1	577256
440-245042-3	06 25 BUTCH DUP	Total/NA	Water	420.1	577256
440-245042-4	BUTCHER	Total/NA	Water	420.1	577256
440-245042-5	OD STREAMS	Total/NA	Water	420.1	577256
440-245042-6	BUTCHER	Total/NA	Water	420.1	577256
440-245042-7	OD STREAMS	Total/NA	Water	420.1	577256
MB 680-577256/1-A	Method Blank	Total/NA	Water	420.1	577256
LCS 680-577256/2-A	Lab Control Sample	Total/NA	Water	420.1	577256
440-245195-J-1-B MS	Matrix Spike	Total/NA	Water	420.1	577256
440-245195-J-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	420.1	577256

Job ID: 440-245042-1

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Job ID: 440-245042-1

N

Qualifiers

Quannoio		
GC/MS VOA Qualifier	Qualifier Description	
*	LCS or LCSD is outside acceptance limits.	
*	ISTD response or retention time outside acceptable limits	
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
	applicable.	
F1	MS and/or MSD Recovery is outside acceptance limits.	
F2	MS/MSD RPD exceeds control limits	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
х	Surrogate is outside control limits	
GC/MS Semi	VOA	
Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time	
HPLC/IC		
Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time	
Metals		
Qualifier	Qualifier Description	
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
	applicable.	
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
General Che	mistry	
Qualifier	Qualifier Description	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
ĩ	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
OD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
NDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ИL	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
ΓEF	Toxicity Equivalent Factor (Dioxin)

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Job ID: 440-245042-1

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Job ID: 440-245042-1

Laboratory: Eurofins TestAmerica, Irvine

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Program		Program EPA Region		Identification Number	er Expiration Date			
California	ornia State Program		9	CA ELAP 2706	06-30-19 *			
The following analytes the agency does not o	•	, but the laboratory	is not certified by the	e governing authority. This	list may include analytes for whic			
Analysis Method	Prep Method	Matrix	Analyt	e				
6010B	3005A	Water	Alumir	num				
6010B	3005A	Water	Boron	Boron				
6010B	3005A	Water	Magne	Magnesium				
6010B	3005A	Water	Manga	anganese				
6010B	3005A	Water	Titaniu	um				
8260B		Water	m,p-X	ylene				
8260B		Water	Xylene	es, Total				
NO3NO2 Calc		Water	Nitrate	e as N				
NO3NO2 Calc		Water	Nitrite	as N				
SM 2540B		Water	Total S	Solids				
SM 4500 NH3 D	SM 4500 NH3 B	Water	Ammo	onia as NH3				
Total Nitrogen		Water	Nitrog	en, Total				

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State		19-033-0	06-27-20
Arkansas DEQ	State Program	6	88-0690	06-27-20
California	State		2891	04-30-20
California	State Program	9	2891	04-30-20
Connecticut	State		PH-0688	09-30-20
Connecticut	State Program	1	PH-0688	09-30-20
Florida	NELAP	4	E871008	06-30-20
Florida	NELAP		E871008	06-30-20
Illinois	NELAP	5	200005	06-30-20
Illinois	NELAP		004375	06-30-20
Kansas	NELAP	7	E-10350	01-31-20
Kansas	NELAP		E-10350	03-31-20
Kentucky (UST)	State Program	4	162013	04-30-20
Kentucky (WW)	State Program	4	KY98043	12-31-19
Louisiana	NELAP	6	04041	06-30-20
Minnesota	NELAP	5	042-999-482	12-31-19
Minnesota	NELAP		042-999-482	12-31-19
Nevada	State		PA00164	07-31-19
Nevada	State Program	9	PA00164	08-31-19 *
New Hampshire	NELAP	1	2030	04-04-20
New Jersey	NELAP	2	PA005	06-30-20
New Jersey	NELAP		PA005	06-30-20
New York	NELAP	2	11182	03-31-20
New York	NELAP		11182	04-01-20
North Carolina (WW/SW)	State Program	4	434	12-31-19
Dregon	NELAP	10	PA-2151	02-06-20
Oregon	NELAP		PA-2151	02-06-20
Pennsylvania	NELAP	3	02-00416	04-30-20
Pennsylvania	NELAP		02-00416	04-30-20

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Accreditation/Certification Summary

EPA Region

4

6

8

3

3

5

Identification Number

LAO00362

LAO00362

T104704528

LE94312A-1

PA001462015-4

PA001462019-8

058448

460189

10043

142

142

998027800

998027800

P-Soil-01

T104704528-15-2

89014

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample

Authority

Texas

Texas

USDA

Utah

Utah

Virginia

Virginia

Wisconsin

Wisconsin

Rhode Island

Rhode Island

South Carolina

US Fish & Wildlife

US Fish & Wildlife

West Virginia DEP

West Virginia DEP

Program

State Program

State Program

US Federal Programs

State

NELAP

NELAP

Federal

Federal

NELAP

NELAP

NELAP

NELAP

State Program

State Program

State

State

Laboratory: Eurofins TestAmerica, Pittsburgh (Continued) All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report. Job ID: 440-245042-1

Expiration Date

12-30-19

12-30-19

04-30-20

03-31-20

03-31-20

07-31-19

07-31-20

06-26-22

05-31-20

05-31-20

09-14-19

09-14-19

01-31-20

01-31-20

08-31-19

08-31-19

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample Job ID: 440-245042-1

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-020	01-20-21
ANAB	DoD		L2468	01-20-21
ANAB	DOE		L2468.01	01-20-21
Arizona	State Program	9	AZ0708	08-11-19
Arkansas DEQ	State Program	6	88-0691	06-17-20
California	State Program	9	2897	01-31-20
Colorado	State Program	8	CA00044	08-31-19
Connecticut	State		PH-0691	06-30-21
Connecticut	State Program	1	PH-0691	06-30-21
Florida	NELAP	4	E87570	06-30-20
Florida	NELAP		E87570	06-30-20
Hawaii	State Program	9	N/A	01-29-20
Illinois	NELAP	5	200060	03-17-20 *
Kansas	NELAP	7	E-10375	10-31-19
Louisiana	NELAP	6	30612	06-30-20
Maine	State Program	1	CA0004	04-14-20
Michigan	State Program	5	9947	01-31-20
Nevada	State Program	9	CA00044	07-31-19
New Hampshire	NELAP	1	2997	04-20-20
New York	NELAP	2	11666	04-01-20
Oregon	NELAP	10	4040	01-29-20
Oregon	NELAP		4040	01-29-20
Pennsylvania	NELAP	3	68-01272	03-31-20
Pennsylvania	NELAP		68-01272	03-31-20
Texas	NELAP	6	T104704399	05-31-20
US Fish & Wildlife	Federal		LE148388-0	07-31-19
USDA	Federal		P330-18-00239	01-17-21
USEPA UCMR	Federal	1	CA00044	12-31-20
Utah	NELAP	8	CA00044	02-29-20
Vermont	State Program	1	VT-4040	04-16-20
Virginia	NELAP	3	460278	03-14-20
Washington	State Program	10	C581	05-05-20
West Virginia (DW)	State Program	3	9930C	12-31-19
Wyoming	State Program		8TMS-L	01-28-19 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ocean Disposal WW Sample Job ID: 440-245042-1

Laboratory: Eurofins TestAmerica, Savannah

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
	AFCEE		SAVLAB	
Alabama	State Program	4	41450	06-30-19 *
Alaska	State Program	10		06-30-20
laska (UST)	State Program	10	UST-104	09-22-19
NAB	DoD		L2463	09-22-19
NAB	ISO/IEC 17025		L2463.01	09-22-19
Arizona	State Program	9	AZ0808	12-14-19
Arkansas DEQ	State Program	6	88-0692	02-01-20
California	State Program	9	2939	06-30-19 *
Colorado	State Program	8	N/A	12-31-19
Connecticut	State Program	1	PH-0161	03-31-21
lorida	NELAP	4	E87052	06-30-20
eorgia	State Program	4	803	06-30-20
Guam	State Program	9	15-005r	04-17-20
lawaii	State Program	9	N/A	06-30-20
linois	NELAP	5	200022	11-30-19
ndiana	State Program	5	N/A	06-30-20
wa	State Program	7	353	06-30-20
entucky (DW)	State Program	4	90084	12-31-19
entucky (UST)	State Program	4	18	06-30-20
entucky (WW)	State Program	4	90084	12-31-19
uisiana	NELAP	6	30690	06-30-20
uisiana (DW)	NELAP	6	LA160019	12-31-19
line	State Program	1	GA00006	09-25-20
iryland	State Program	3	250	12-31-19
assachusetts	State Program	1	M-GA006	06-30-20
chigan	State Program	5	9925	06-30-20
ssissippi	State Program	4	N/A	06-30-19 *
braska	State Program	7	TestAmerica-Savannah	06-30-19 *
w Jersey	NELAP	2	GA769	06-30-20
w Mexico	State Program	6	N/A	06-30-20
w York	NELAP	2	10842	04-01-20
orth Carolina (DW)	State Program	4	13701	07-31-19 *
orth Carolina (WW/SW)	State Program	4	269	12-31-19
klahoma	State Program	6	9984	08-31-19
ennsylvania	NELAP	3	68-00474	06-30-20
uerto Rico	State Program	2	GA00006	01-01-20
outh Carolina	State Program	4	98001	06-30-19 *
ennessee	State Program	4	TN02961	06-30-20
exas	NELAP	6	T104704185-19-13	11-30-19
exas (DW)	State Program	1	T104704185	06-30-20
S Fish & Wildlife	Federal		LE058448-0	07-31-19
rginia	NELAP	3	460161	06-14-20
/ashington	State Program	10	C805	06-10-20
/est Virginia (DW)	State Program	3	9950C	12-31-19
/est Virginia DEP	State Program	3	094	06-30-19 *
/isconsin	State Program	5	999819810	08-31-19 *
/yoming	State Program	8	8TMS-L	06-30-16 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

July 30, 2019

Lena Davidkova TestAmerica 17461 Derian Avenue Suite 100 Irvine, CA 92614-

Project Name:Ocean Disposal WW Sample 44022550Physis Project ID:1803004-004

Dear Lena,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 7/3/2019. A total of 6 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Organics

Pyrethrins by EPA 625

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards Misty Mercier 714 602-5320 Extension 202 mistymercier@physislabs.com

PROJECT SAMPLE LIST

TestAmer Ocean Disp	ica Iosal WW Sample 44022550		PHYSIS Project ID: 1803004-004 Total Samples: 6					
PHYSIS I	D Sample ID	Description	Date	Time	Matrix			
64995	06 25 BUTCH (440-245042-1)		6/25/2019	8:15	Liquid			
64996	06 25 BUTCH DUP (440-245042-3)		6/25/2019	8:15	Liquid			
64997	BUTCHER (440-245042-4)		6/26/2019	6:06	Liquid			
64998	OD STREAMS (440-245042-5)		6/26/2019	6:19	Liquid			
64999	BUTCHER (440-245042-6)		6/27/2019	6:09	Liquid			
65000	OD STREAMS (440-245042-7)		6/27/2019	6:22	Liquid			

i - 2 of 6

(714) 602-5320 fax (714) 602-5321 Page 61 of 99

www.physislabs.com

CA ELAP #2769 7/31/2019 (Rev. 1)

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

i - 3 of 6

(714) 602-5320 fax (714) 602-5321 Page 62 of 99

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

i - 4 of 6

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

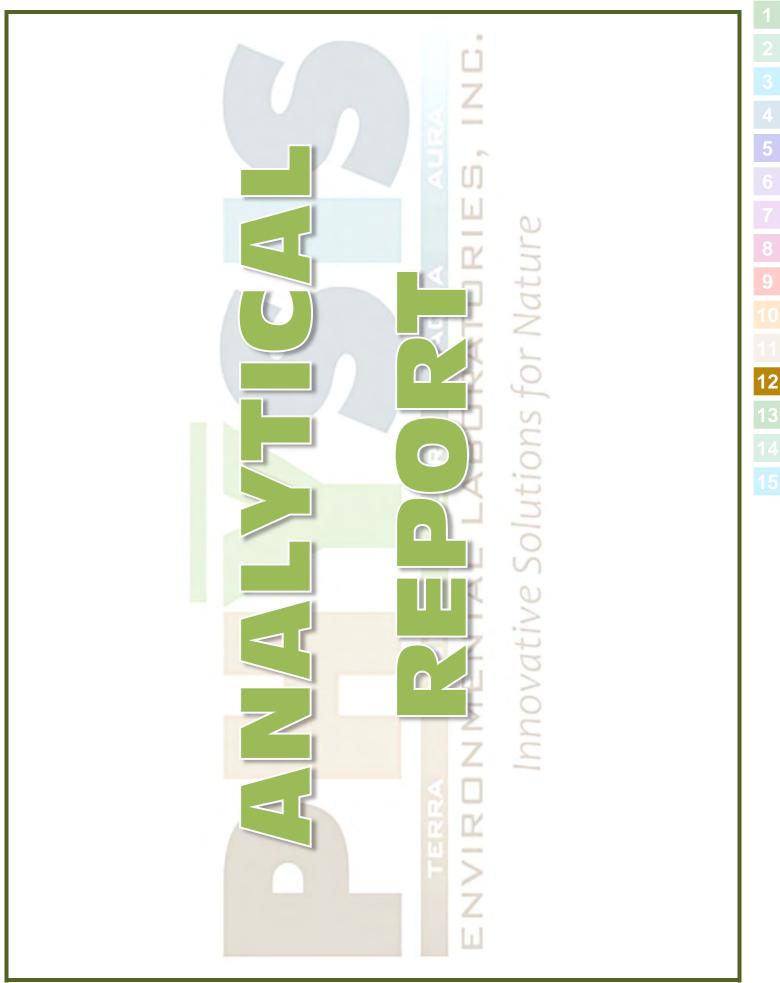
HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

i - 5 of 6

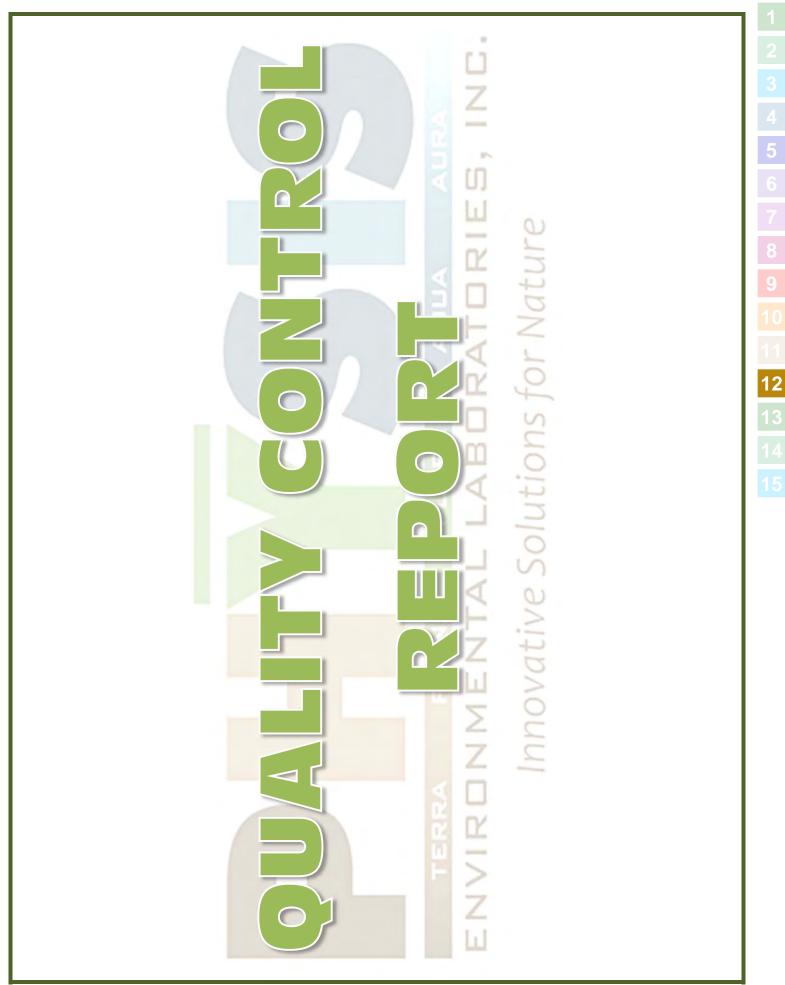
(714) 602-5320 fax (714) 602-5321 Page 64 of 99


PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
E	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
Ν	insufficient sample, analysis could not be performed
Μ	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

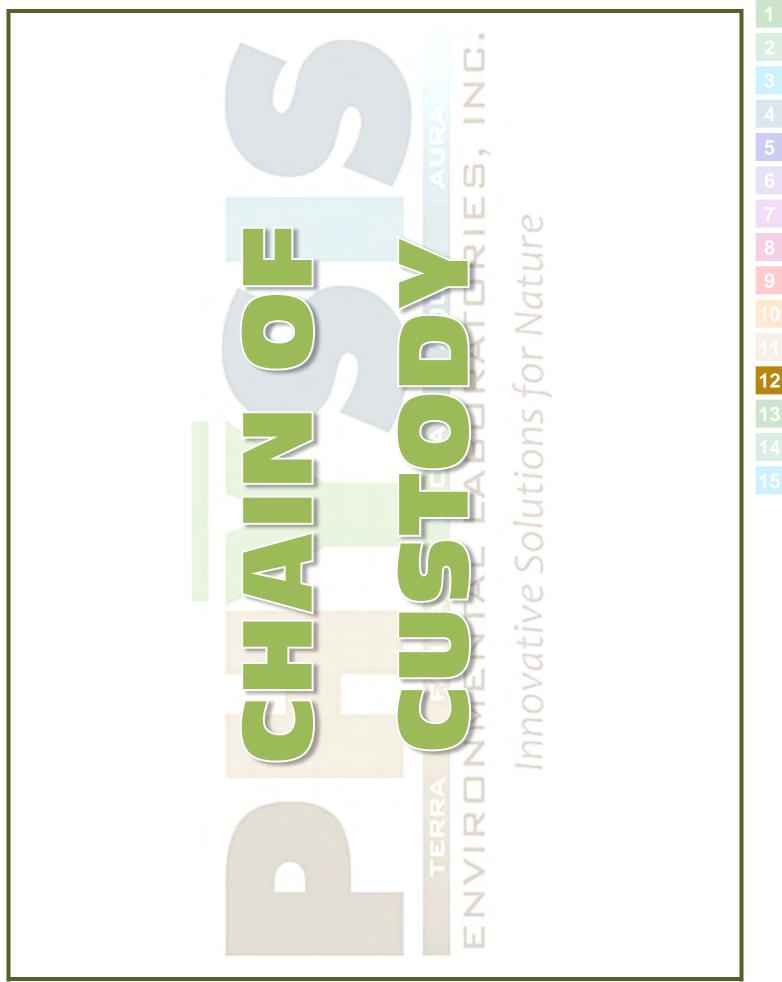
i - 6 of 6

(714) 602-5320 fax (714) 602-5321 Page 65 of 99


www.physislabs.com

PHYSIS Project ID: 1803004-004 Client: TestAmerica Project: Ocean Disposal WW Sample 44022550

Pyrethroids										
ANALYTE	Method	Units	RESULT	MDL	RL	Fraction QA C	ODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 64995-R1	06 25 BUTCH (440	0-245042-1)	Ma	atrix: Liquid		Sampled: 25-Ju	n-19	8:15	Received: 03	-Jul-19
Pyrethrins	EPA 625-NCI	ng/L	ND	100	200	Total	Н	0-23070	03-Jul-19	18-Jul-19
Sample ID: 64996-R1	o6 25 BUTCH DUP (440-245042-3) Matrix: Liquid			Sampled: 25-Ju	Sampled: 25-Jun-19 8:15		Received: 03	-Jul-19		
Pyrethrins	EPA 625-NCI	ng/L	ND	100	200	Total	Н	0-23070	03-Jul-19	18-Jul-19
Sample ID: 64997-R1	BUTCHER (440-24	15042-4)	Ma	atrix: Liquid		Sampled: 26-Ju	n-19	6:06	Received: 03	-Jul-19
Pyrethrins	EPA 625-NCI	ng/L	ND	100	200	Total		0-23070	03-Jul-19	18-Jul-19
Sample ID: 64998-R1	OD STREAMS (44	0-245042-5)	Ma	Matrix: Liquid Sampled: 26-Jun-19		n-19	6:19	9 Received: 03-Jul-19		
Pyrethrins	EPA 625-NCI	ng/L	ND	100	200	Total		0-23070	03-Jul-19	18-Jul-19
Sample ID: 64999-R1	BUTCHER (440-24	15042-6)	Ma	atrix: Liquid		Sampled: 27-Ju	n-19	6:09	Received: 03	-Jul-19
Pyrethrins	EPA 625-NCI	ng/L	ND	100	200	Total		0-23070	03-Jul-19	18-Jul-19
Sample ID: 65000-R1	OD STREAMS (44	0-245042-7)	Ma	atrix: Liquid		Sampled: 27-Ju	n-19	6:22	Received: 03	-Jul-19
Pyrethrins	EPA 625-NCI	ng/L	ND	100	200	Total		0-23070	03-Jul-19	18-Jul-19



Innovative Solutions for Nature

19	004 E. Wright Circle, Ana	aheim CA 92806	main: (714)	602-5320	fax: (714)	602-5321	www.p	hysislabs.com	info@physislab	bs.com CA ELAP #2769			
	Pyrethro	ids						QUAI	ITY CONT	ROL REPOR	Г		
ANALYTE	FRACT	TION RESULT	MDL	RL	UNITS	SPIKE	SOURCE	E ACO	CURACY	PRECISION	QA CODE		
l						LEVEL	RESULT	۲ %	LIMITS	% LIMITS			
Sample	e ID: 64994-B1	QAQC Procedur Method: EPA 625-N				: DI Water): 0-23070		Sampled: Prepared: 03	3-Jul-19	Received: Analyzed: 17-Jul-1	9		
Pyrethrins	Tota	I ND	100	200	ng/L								
Sample Pyrethrins	e ID: 64994-BS 1 Tota	QAQC Procedur Method: EPA 625-N 500		200		c: DI Water D: 0-23070 500	0	Sampled: Prepared: 03 100	3-Jul-19 50 - 150% PASS	Received: Analyzed: 18-Jul-	19		
	e ID: 64994-BS2	QAQC Procedur Method: EPA 625-N	ICI			:: DI Water D: 0-23070		Sampled: Prepared: 03		Received: Analyzed: 18-Jul-	19		
Pyrethrins	Tota	l 519	100	200	ng/L	500	0	104	50 - 150% PASS	4 30 PASS			

qcb - 1 of 1

06/25 BUTCH (440-245042-1) 61/25/19 Pacific DB/15 Water X I 06/25 BUTCH DUP (440-245042-3) 61/25/19 Pacific DB/15 Water X I	5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/26/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-7) 6/27/19 STREAMS (440-245042-7) 6/27/19 Stroe laboratory accreditations are subject to change. Test/america Laboratories, Inc., places the on thy maintain accreditations are current to date, return the sign analysis/sets/main/sit/sets/main/sets/main/sit/sets/main/sit/sets/main/sets/main/sit/sets/main/sets/main/sets/main/sets/main/sets/main/sets/main/sets/main/sets/main/sets/main/sets/main/sets/main/sets/main/sets/main/sets/main/sets/main/sets/main/sets/main/sets/main/s	5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 Stree laborationy accreditations are subject to change. Test/merica Laboratories, inc. places the other managements accreditations are current to date, return the sign other strength in requested accreditations are current to date, return the sign other strength in the strength in the sign other strength in the sign other strength in the strength in the sign other strength in the stren	5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 CHER (440-245042-7) 6/27/19 STREAMS (440-245042-7) 6/27/19	5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 <t< th=""><th>5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 Struct laboratory accreditations are subject to change. Test/merica Laboratories. Inc. places the only maintain accreditation in the State accreditations are current to date, return the sign drones. Inc. advisestematic being analyzed tories. Inc. advisestematic being analyzed tories. Inc. places the only maintain accreditation in the State accreditations are current to date, return the sign drones. Inc. advisestematic being analyzed tories. Inc. a</th><th>5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 <t< th=""><th>5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 STREAMS (440-2450</th><th>5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 Stroe laboratory accreditations are subject to change. Test/America Laboratories, Inc. places the or bit matrian accreditation in the State of Origin listed above for analysis/stests/matrix being analyzed update. Inc. analysis/stests/matrix being analyzed update. Inc. analysis/stests/matrix being analyzed update.</th><th>5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 STREAMS (440-245042-7) 6/27/19</th><th>(2-3)</th><th>(2-3)</th><th>42-3)</th><th>2-1) 45042-3) 2-5)</th><th>(2-3)</th><th>45042-3)</th><th></th><th></th><th></th><th>Sample Identification - Client ID (Lab ID) Sample Date</th><th>site</th><th>Project Name: Project #: 44022550</th><th>Email: WO#:</th><th>PO #</th><th>State, Zip: CA, 92806</th><th>City TAT Requested (days): Anaheim</th><th></th><th>Physis Environmental Laboratories</th><th>Shipping/Receiving Company</th><th>Client Information (Sub Contract Lab)</th><th></th></t<></th></t<>	5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 Struct laboratory accreditations are subject to change. Test/merica Laboratories. Inc. places the only maintain accreditation in the State accreditations are current to date, return the sign drones. Inc. advisestematic being analyzed tories. Inc. advisestematic being analyzed tories. Inc. places the only maintain accreditation in the State accreditations are current to date, return the sign drones. Inc. advisestematic being analyzed tories. Inc. a	5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 <t< th=""><th>5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 STREAMS (440-2450</th><th>5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 Stroe laboratory accreditations are subject to change. Test/America Laboratories, Inc. places the or bit matrian accreditation in the State of Origin listed above for analysis/stests/matrix being analyzed update. Inc. analysis/stests/matrix being analyzed update. Inc. analysis/stests/matrix being analyzed update.</th><th>5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 STREAMS (440-245042-7) 6/27/19</th><th>(2-3)</th><th>(2-3)</th><th>42-3)</th><th>2-1) 45042-3) 2-5)</th><th>(2-3)</th><th>45042-3)</th><th></th><th></th><th></th><th>Sample Identification - Client ID (Lab ID) Sample Date</th><th>site</th><th>Project Name: Project #: 44022550</th><th>Email: WO#:</th><th>PO #</th><th>State, Zip: CA, 92806</th><th>City TAT Requested (days): Anaheim</th><th></th><th>Physis Environmental Laboratories</th><th>Shipping/Receiving Company</th><th>Client Information (Sub Contract Lab)</th><th></th></t<>	5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 STREAMS (440-2450	5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 Stroe laboratory accreditations are subject to change. Test/America Laboratories, Inc. places the or bit matrian accreditation in the State of Origin listed above for analysis/stests/matrix being analyzed update. Inc. analysis/stests/matrix being analyzed update. Inc. analysis/stests/matrix being analyzed update.	5 BUTCH (440-245042-1) 6/25/19 5 BUTCH DUP (440-245042-3) 6/25/19 CHER (440-245042-4) 6/26/19 STREAMS (440-245042-5) 6/26/19 CHER (440-245042-6) 6/27/19 STREAMS (440-245042-7) 6/27/19 STREAMS (440-245042-7) 6/27/19	(2-3)	(2-3)	42-3)	2-1) 45042-3) 2-5)	(2-3)	45042-3)				Sample Identification - Client ID (Lab ID) Sample Date	site	Project Name: Project #: 44022550	Email: WO#:	PO #	State, Zip: CA, 92806	City TAT Requested (days): Anaheim		Physis Environmental Laboratories	Shipping/Receiving Company	Client Information (Sub Contract Lab)	
Pacific 08:15 Pacific 06:06 Pacific 06:09 Pacific 06:09 Pacific 06:27 Pacific 06:27 Pacific 06:27 Pacific 06:28 Pacific 06:21 Pacific 06:22 Pacific 07 Pac Pacific 07 Pacific 07 Pac Pac Pac Pac Pac Pac Pacific Pac P	Pacific 06:06 Pacific 06:06 06:09 Pacific 06:09 Pacific 06:09 Pacific 06:09 Pacific 06:09 Pacific 06:09 Pacific 06:09 Pacific 06:04 Pacific 06:05 Pacific 06	Pacific Pacific 06:06 Pacific 06:09 Pacific 06:09 Pacific 06:22 Pacific 06:22 Pacific 06:22 Pacific 06:22 Pacific 06:23 Pacific 06:23 Pacific 06:23 Pacific 06:05 06:05 Pacific 06:05 06:05 Pacific 06:05 00 00 00 00 00 00 00 00 00 00 00 00 0	Pacific 08:15 Pacific 06:09 06:09 Pacific 06:09 Pacific 06:22 Pacific 06:22 Pacific 06:23 Pacific 06:39 Pacific 10 Pac 10 Pacific Pacific 10 Pacific 10 Pacific 10 Pacific 10 Pacific 10 Pacific 10 Pacific 10 Pacific 10 Pacific 10 Pacific 10 Pacific 10 Pacific 10 Pacific Pacific 10 Pacific 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10	Pacific Pacific 06:06 06:09 Pacific 06:09 Pacific 06:21 Pacific 06:22 Pacific 06:22 Pacific 06:22 Pacific 06:21 Pacific 06:25 Pacific 2 Pac 2 Pacific 2 Pac 2 Pacific 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac 2 Pac	Pacific Pacific 06:06 06:19 Pacific 06:09 Pacific 06:21 Pacific 06:22 Pacific 06:22 Pacific 06:25 Pacific 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac 10 Pac	Pacific Pacific 06:06 06:19 Pacific 06:09 Pacific 06:22 Pacific 06:22 Pacific 06:22 Pacific 06:21 Pacific 06:22 Pa	Pacific Pacific 06:06 06:19 Pacific 06:09 Pacific 06:22 Pacific 06:22 Pacific 06:21 Pacific 06:22 Pa	Pacific Pacific 06:06 06:07 06:17 06:19 06:09 06:09 Pacific 06:27 Pacific 06:27 Pacific 06:27 Pacific 06:28 Pacific 06:39 Pacific 06:39 Pacific 06:39 Pacific 06:30 Pacifi	Pacific Pacific 06:06 Pacific 06:09 Pacific 06:09 Pacific 06:22 Pacific 06:22	Pacific Pacific 06:06 Pacific 06:19 Pacific 06:19 Pacific 06:09 Pacific 06:22 Pacific 06:22 Pacific	Pacific 08:15 Pacific 06:06 Pacific 06:19 Pacific 06:09 Pacific 06:22 Pacific	Pacific 08:15 Pacific 06:06 Pacific 06:19 Pacific 06:09 Pacific	Pacific 08:15 Pacific 06:06 Pacific 06:19 Pacific	Pacific 08:15 Pacific 06:06 Pacific	Pacific 08:15 Pacific	Pacific	08:15	1	Sample (C Time G						days):	sted:				Chain o
Company Company Company	Water Water Water Water Water Water the shipped back to the dy attesting to said company Company	A analyte & accreditation (), analyte & accreditation to eshipped back to the dy attesting to said company Company A 12	Vater Water Water Water Water to e shipped back to the dy attesting to said com	vater Water Water Water Water Water te shipped back to the dy attesting to said com	Vater Water Water Water Water Water te shipped back to the dy attesting to said com	Vater Water Water Water Water Water Vwater te shipped back to the dy attesting to said com	, analyte & accreditation to shipped back to the dy attesting to said com	Vater Water Water Water Water Vater to shipped back to the dy attesting to said com	Water Water Water Water Water Water	Water Water Water Water Water Water	Water Water Water Water Water	Water Water Water Water Water	Water Water Water Water	Water Water Water	Water Water	Water	A ALAN THE THE PARTY OF	1 10	Sample Matrix Type (www.ater, (C=comp, c=wassied, G=grab) BT=Tesue, A=A4									le:	05	1863 art -cord Chain of Custody Record
Image: second constraints Image: second constraints Image: second constraints Image: second constraints <td>Image: Provide and the second sec</td> <td>Intervencia la compliance upon out a Compliance upon out a Tesumenca la contact a Sample Disponenta Special Instructor Peccived by:</td> <td>Image: Second Second</td> <td>Compliance upon out a Compliance upon out a Compliance to TestAmenica Compliance to TestAmenica</td> <td>Compliance upon out s TestAmenica laboration Sample Dispo</td> <td>Sample Dispo</td> <td>X X X X X X X X X X X X X X X X X X X</td> <td>X X X X X X X X X X X X X X X X X X X</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>XP</td> <td>XP</td> <td>Xp</td> <td>P</td> <td>ield Filtered S erform MS/M UB (Pyrethrins</td> <td>SD (Ye</td> <td>s or N</td> <td></td> <td></td> <td></td> <td></td> <td>Control Indiana Control Ind</td> <td>Accreditations Required (See note): State Program - California</td> <td>E-Mail: ena.davidkova@test</td> <td>Lab PM; Davidkova, Lena</td> <td>4-004 Record</td>	Image: Provide and the second sec	Intervencia la compliance upon out a Compliance upon out a Tesumenca la contact a Sample Disponenta Special Instructor Peccived by:	Image: Second	Compliance upon out a Compliance upon out a Compliance to TestAmenica	Compliance upon out s TestAmenica laboration Sample Dispo	Sample Dispo	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X							XP	XP	Xp	P	ield Filtered S erform MS/M UB (Pyrethrins	SD (Ye	s or N					Control Indiana Control Ind	Accreditations Required (See note): State Program - California	E-Mail: ena.davidkova@test	Lab PM; Davidkova, Lena	4-004 Record
Received by: Received by: Received by:	Atval WA	al (A fee may be a cons/OC Requirement	boontract laboratories. 1 or other instructions will u Laboratories, Inc. al (A fee may be a ons/OC Requirement	al (A fee may be a nons/QC Requirement	boottract laboratories, 1 or other instructions will u Laboratories, Inc.	boottract laboratories, 1 or other instructions will t Laboratories, Inc.	al (A fee may be a	Laboratories, Inc.																	Analysis R	Comornia	red (See note); California	americainc.com		
	This sample shipment is be provided. Any change seesed if sample lisposal By Lab hts:	This sample shipment is be provided. Any change see of it sample shipment is see seesed if sample seeses of the sample sets of the sample	his sample shipment is be provided. Any changle ssessed if sample bisposal By Lab ths:	This sample shipment is be provided. Any change seessed if sample lisposal By Lab hts:	This sample shipment is be provided. Any chang ssessed if sample lisposal By Lab	his sample shipment is be provided. Any change ssessed if sample	Provided Any change	his sample shipment ta																	Requested			State of Origin: California	Carrier Tracking No(s):	
	s are retained long Archive For me:	int are retained long Archive For Archive For	s are retained long	s are retained long	s are retained long	s are retained long	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>	N N N N N N	N N N N N X	2 2 2 2 2	N N N N	N N N X	N 22 X	2 X	X		otal Number o	and the second	1111 Mar. 1	H-A	G-1		A-HCL	440	Job #	Page		-
fcustody. If the laboratory does s should be brought to TestAmeri ger than 1 month Company Company	ger than 1 month) Company	ger than 1 months	rf-custody. If the laboratory does no s should be brought to TestAmerica ger than 1 month)	Image: Shipment is forwarded under chain-of-custody. If the laboratory does not be provided. Any charges to accreditation status should be brought to TestAmerica assessed if samples are retained longer than 1 month) Disposal By Lab Image: Archive For Months	rfcustody. If the laboratory does no should be brought to TestAmerica ger than 1 month)	f-custody. If the laboratory does no should be brought to TestAmerica ger than 1 month)	foustody. If the laboratory does no should be brought to TestAmerica	-foustody. If the laboratory does no										opecial histractions/Note:			K - EDTA W - pH 4-5 L - EDA Z - other (specify)	Acid	F - MeOH R - Na2S203 G - Amchior S - H2S04	cu Cu	Cod	440-245042-1	· 并	Page: Page 1 of 1	COC No: 440-140707.1	

1803004-004

Sample Receipt Summary

Client: TestAmerica	Date Received:	7/3/2019 Received E	By: RGH Inspected By: RGH							
Courier:	Cool	er:	Temperature:							
🗌 Physis 🖌 FEDEX 🗌 UPS 🔲 Client	✔ Cooler 🗌 Box	Total #: 1	□ BLUE 🖌 WET □ DRY							
Start End Other:	Other:		☐ None 0.3°C							
Sample Integrity Upon Receipt:										
1. COC(s) included and completely filled out										

Notes:

Sample ID(s) 06 25 BUTCH (440-245042-1), 06 25 BUTCH DUP (440-245042-3) were received on the 8th day of HT.

12

July 30, 2019

Lena Davidkova TestAmerica 17461 Derian Avenue Suite 100 Irvine, CA 92614-

Project Name:Ocean Disposal WW Sample 44022550Physis Project ID:1803004-005

Dear Lena,

Enclosed are the analytical results for the sample submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 7/5/2019. A total of 1 sample was received for analysis in accordance with the attached chain of custody (COC). Per the COC, the sample was analyzed for:

Organics

Pyrethrins by EPA 625

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards, Misty Mercier 714 602-5320 Extension 202 mistymercier@physislabs.com

PROJECT SAMPLE LIST

TestAmerica	PHYSIS Project ID: 1803004-005							
Ocean Disposal WW Sample 44022550		Total Samples: 1						
PHYSIS ID Sample ID	Description	Date	Time	Matrix				
65064 6 25 OD STREAMS (440-245042-2		6/25/2019	8:24	Liguid				

i - 2 of 6

(714) 602-5320 fax (714) 602-5321 Page 74 of 99

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

i - 3 of 6

(714) 602-5320 fax (714) 602-5321 Page 75 of 99

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

i - 4 of 6

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

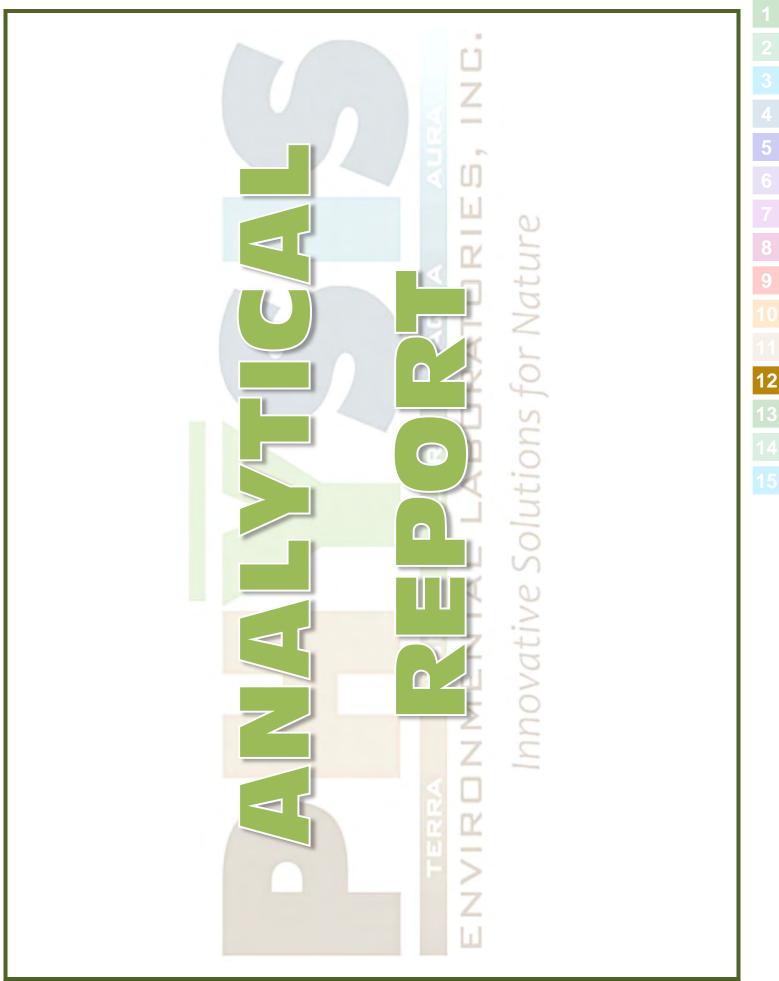
HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

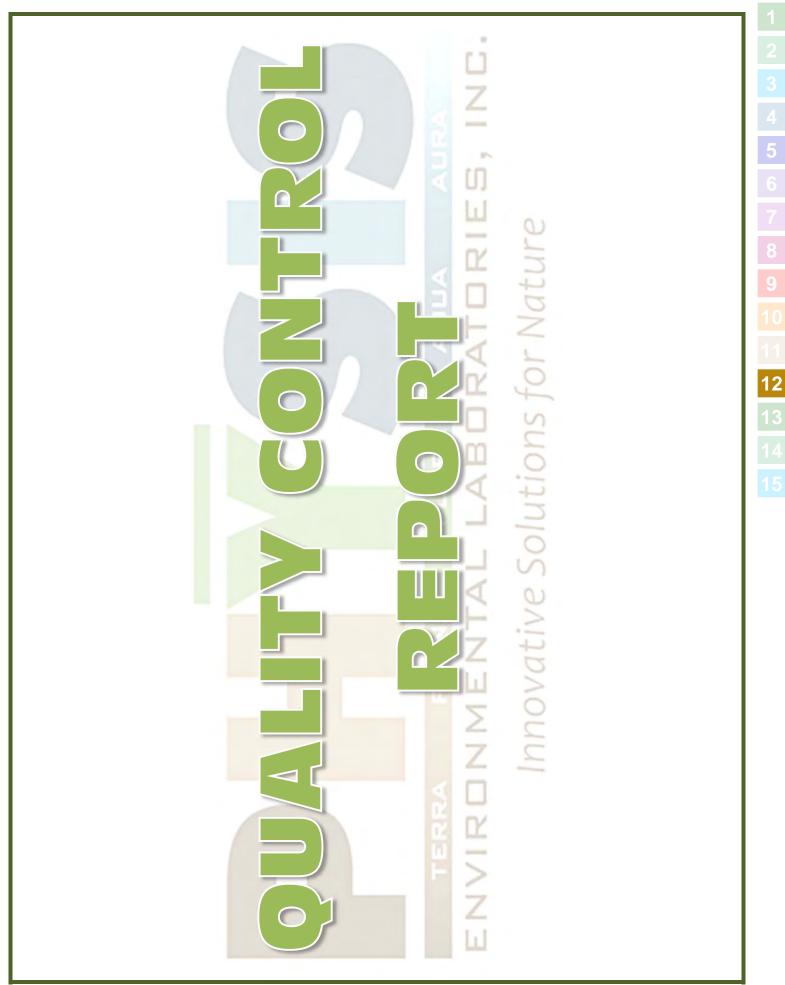
i - 5 of 6

(714) 602-5320 fax (714) 602-5321 Page 77 of 99


PHYSIS QUALIFIER CODES

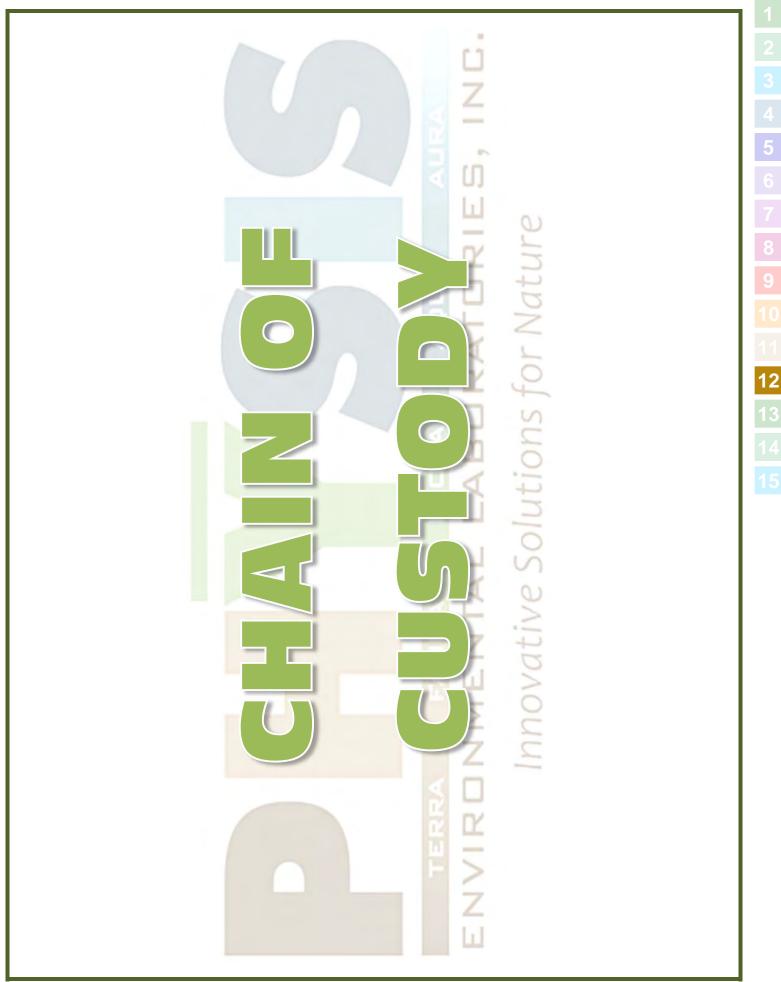
CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
E	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
Ν	insufficient sample, analysis could not be performed
Μ	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

i - 6 of 6


(714) 602-5320 fax (714) 602-5321 Page 78 of 99

www.physislabs.com

			P	yrethroid	S					
ANALYTE	Method	Units	RESUL	T MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 65064-R1	06 25 OD STREAM	NS (440-245	042-2)	Matrix: Liquid		Sampled:	25-Jun-19	8:24	Received: 05	-Jul-19



Innovative Solutions for Nature

1	1904 E. Wright Circle, Ana	heim CA 92806	main: (714) 6	02-5320	fax: (714)	602-5321	www.p	hysislabs.com	info@physislab:	s.com CA ELAP #276	9
	Pyrethro	ids						QUA	LITY CONT	ROL REPOR	Г
ANALYTE	FRACT	ION RESULT	MDL	RL	UNITS	SPIKE	SOURCE	E AC	CURACY	PRECISION	QA CODE
l						LEVEL	RESULT	- %	LIMITS	% LIMITS	
Samp	le ID: 65063-B1	QAQC Procedura Method: EPA 625-No				: DI Water		Sampled: Prepared: 0	03-Jul-19	Received: Analyzed: 17-Jul-19	9
Pyrethrins	Total	ND	100	200	ng/L						
	le ID: 65063-BS1	QAQC Procedura Method: EPA 625-N	CI			: DI Water D: O-23070		Sampled: Prepared: 0		Received: Analyzed: 18-Jul-1	9
Pyrethrins	Total	500	100	200	ng/L	500	0	100	50 - 150% PASS		
Samp	le ID: 65063-BS2	QAQC Procedura Method: EPA 625-N				: DI Water): 0-23070		Sampled: Prepared: 0	03-Jul-19	Received: Analyzed: 18-Jul-1	9
Pyrethrins	Total	519	100	200	ng/L	500	0	104	50 - 150% PASS	4 30 PASS	

qcb - 1 of 1

1803004-005

Sample Receipt Summary

Client: TestAmerica	Date Received:	7/5/2019 Received E	By: MM Inspected By: RGH
Courier:	Cou	oler:	Temperature:
🗌 Physis 🗌 FEDEX 🗌 UPS 🖌 Client	✓ Cooler 🗌 Box	Total #: 1	□ BLUE ✔ WET □ DRY
Start End Other:	Other:		None 2°C
	Sample Integrity Upc	on Receipt:	
 COC(s) included and completely filled of All sample containers arrived intact All samples listed on COC(s) are presered. Information on containers consistent of Correct containers and volume for all a All samples received within method how Correct preservation used for all analyse Name of sampler included on COC(s). 	nt with information on CO inalyses indicated olding time ses indicated	C(s)	Yes Yes Yes Yes No; see notes below Yes
	Notes:		

Sample ID(s) 06 25 OD STREAMS (440-245042-2) received on the 10th day (7 day HT).

1 2 3 4 5 6 12

- curolins	COC No: 440-163988-29891.1		******	3	A - HCL B - NeOH C - Zn Acetete		F - MeOH R - Na2S203 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecentychate	I - Ice J - DI Water	-	Off tro	Total Number Special Instructions/Note								ot Cu			0-5420	1 month)	Archive For Months		Company	9 1010 COMPANY RV		8/202 20:0/20.6	1 2 3 4 5 6
	Carrier Tracking No(s):	1126 ONE 7910	tis Reguested				9		latoT ,	abine, îly te, Tot	629-Bie(2-Edhyl- 650-CN_E - Cy 4600_CN_E - Cy 626-Pyrethine 8015-Pyrethine 362.2-Vitrates 362.2-Vitrates	V B X N N S	XXXXXXX	XXXXXXX	XXXXXXXX		XXXXXXX	XXXXXXX		XXXXXXXX	XXXXXXX		essed if samples are n	oosal By Lab	Method of Shipment:	Date/Time	Inelas Datertme.	Date/f me.	10ther Remarks 1 20,8	7 8 9 10
Record	ab PM* **********************************	E-Mait lena.davidkova@testamencainc.com	Analvsis			9 7 WS '(* 3W58 00-COL	- 7470/ 80114 801149 801149 801149 801149 801149 801149	at the formation of the	tale, M 3-Phoi 3-Phoi	SS608 - AOCe 83608 - AOCe 83008 - Lotel Mel 900-Nitratee' SM Purbouis D0022 - Britr De 900-Nitratee' SM 900-Nitratee' SM 900-Nitra	1	X L				XXXXX	XXXXX		XXXXX			Sample Disposal (A fee m	Special Instructions/QC Requirements	L Time:	Received by:	A Contraction	16di	21.7121 J 8.61153 18.4	12 13 14
Chain of Custody Record	FINL LAN YUEN			Drie Date Requested:	asted (deys):	S DAD	PO #. Purchase Order not required		Project #: 44022550	/#:	Sample Time	Preserve	08: IS	04/35/19 (08:34) C Water	1	Water	6 24 19 36: 06 C Water	26/19 66:19 C Water		-	627/19 66:22 C Water	Water		Unknown	Date:		Time. Company	Time. Company	20.9/206	
17461 D.:nan Ave Suite 100 Irvine, CA 92614-5817 Dhrine (449) 261-1022 Fax (949) 260-3297	Sam	Clent Contact: Phone.	Company:	Geologyijet Contautania, inc. Addres Addres Lanary Blad Strike 200		Watterioo State, Zp: CNN, ZIP: FE5			Project Name. Occean Disposal WW Sample 44022		samula Identification Sam		DLASS RUTCH CON	25 OD STRAMS	LOK RITCH NO		Butcher 6/2	OD Streams 626		Butaker	2 m B			<i>he</i> Skin Irritant Poison B V, Other (specify)	Emoty Kit Relinquished by:		Relinquished by	Reinquished by. Date/Time.	Custody Seals indic: Custody Seal No.: $D/U \in \Delta$ Yes ΔN_0	

sunome .*

Phone (949) 261-1022 Fax (949) 260-3297										1	
Client Information	TWILLAN YUEN		Lae.em. Davidkova, Lena			5	Carrier Iracking No(s)	No(s).	440-16	440-163988-29891.1	
Client Contact:		E-Mait: Iena d	E-Mail: Jena davirikova@testamericainc.com-	astamerics	tine.com-				Page. Page 1 of 1	1	
Nick Bulson					L. Down		ĺ,		Job #.		
Geosyntec Consultants, Inc.					Analysis	Requested	sted			3,	
Address: 295 Hacrev Blvd Suite 290	Due Date Requested:		3 D-						Preservation	000	
City Mistarbo	ested (d								B NGO	H N - Norte Catate O - AshaO2	
Veterioo State, Zp: On Not 682	T S DHYS		arms (
Phone: Phone: 519-253(Tel)	PO# Purchase Order not required			97 N S '			a		G - Amethor G - Amethor H - Ascorteic Aci	H R - Na25203 Nor S - H2SO4 thic Acid T - TSP Dodecehwdrate	hvdrate
Email: Inbutson@geosyntec.com	W0#.		400) (604	Solids			ida1644			,	
Project Name: Ocean Disposal WW Sample	Project #; 44022550		201 100 301990	iatoT-i		[BJO]	a Kec				<u> </u>
Ste) Aysu Al Ces	156408					of co		
	Sample Type Sample (C=comp, Tiono		21"3-11:(^) 382" 8021 - Bailt De 8021 - Bailt 1915 - Bailt	sinoma 8. astratos, 88 9105-7013	52-BJ#(5-E4µÅ) 580B - AOC#	9944 - HEM O	olloneriq - 1.02 Ieblarmo ⁻¹ -310	25-Pyrethrins 53.2-Vitrates	nedmoN liebo		
Sample Identification		Preservation Code:	X	¢ z	8 4	+	┥€	1.			
01. 35 R 1714		Water		K	Ř	XX	\mathbb{R}	X			
K	8	Water	X		Ø	X	B	X			Ţ
K RTCH	8	Water	X	XX		XX	X	X			
		Water									[
Butcher	6 24 19 06:06 C	Water	X X	(XX)	XX	XX	メズ	X X			
OD Streme	626/1966:19 C	Water	х́ Х	バイン	XX	X X	XX	XX			kpg
		Water									1500
Butcher	2 60:90 61/LC 9	Water	Ń	XX	N X	X X	X X	X X			
OD Streams	6/27/19 06:22 C	Water	Â	쉿	XXX	X X	× ×	X X			
		Water									+000
											7-01
Possible Hazard Identification	oison R 🗍 I hknown 🗍 Radiotonical		Sample D	lisposal (um To Cli	A fee may ant	r be asser	ssed if sa sal By La	mples an	Sample Disposal (A fee may be assessed if samples are retained longer Return To Client Disposal By Lab	than	
Other (specify)			Special In	Special Instructions/QC Requirements	QC Requi	ements:					Τ
Empty Kit Relinquished by:	Date:		Time:		0		Method of Shipment	Shipment			Γ
	02.01 21/02	COMPANY		d by.				Detertime.	19 095	5 CARRY	
Reinquished by.	Date/Thme	Company	Received by	d by				Date/Time		Company	
Relinquished by	Date/Time	Company	Received by	dby				Date Time		Company	
Custody Seals Intact: Custody Seal No.: ^Δ Yes Δ No FFC PX 7756	7746.0/18.7970		Cooler	Cooler Temperature(s) °C and Other Remarks 776 CLULANN	re(s) °C and Other Rem 775 CI LL JANA	ther Remark	6/4	24.9	9/26.0	1. 1293	Γ
		15	13 14	12	11	10	ð	7	5 6	2 3 4	1

°, curonns

Chain of Custody Record

ा"461 Derian Ave Suite 100 Irvin⊙, CA 92614-5817

.

7/31/2019 (Rev. 1)

fier printing this label:

Are printing under subset. 1. Use the Print button on this page to print your label to your laser or inkjet printer. 2. Fold the printed page along the horizontal line. 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Design we system constructs your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, down of yous actual loss and file a timely claim.Limitations found in the current FedEx profit, altorized declare a higher value, pay an additional charge, documents your solue of the package, loss of sales, income interest, profit, altorized declared and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide. Warming: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number. Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not

Eurofins TestAmerica, Irvine 17461 Derian Ave Suite 100

Client Information (Sub Contract Lab)	Sampler,			Med deut					Carrier Tracking No(s)	ng No(s):		COC No.	
				Dav	Davidkova, Lena	Lena						440-140690.1	
Client Contact: Shipping/Receiving	Phone.			E-Mail lena.o	davidk	ova@tes	E-Mait lena.davidkova@testamericainc.com	c.com	State of Origin California	×		Page 1 of 1	
Company: TestAmerica Laboratories, Inc.					Accred	Program	Accreditations Required (See note) State Program - California	ste);				Job #: 440-245042-1	
Address. 830 Riverside Parkway,	Due Date Requested: 7/10/2019	:p					Ar	alysis R	Analysis Requested			Preservation Codes:	ides:
Cey. West Sacramento	TAT Requested (days):	iys):			and the			-				B - NaOH C - Zn Acetate	M - Neme N - None O - AsNaO2
Sale, 2.p CA, 95605					Sker I	-	-	_	_	_		D - Nitric Acid E - NaHSO4	P - Na2045 Q - Na2503
Phone 916-373-5600(Tel) 916-372-1059(Fax)	PO#				(0	_	_					G - Amchlor H - Ascorbic Acid	K - N325203 S - H2504 T - TSP Dodecahydrate
Email	#OM				_	otintin			_	_	5	_	U - Acetone V - MCAA
Project Name Ocean Disposal WW Sample	Preject # 44022550				_	-sterlik		-			nonisti	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Ste.	SSOW					'uəbo	-		_	_	01 COL	Other:	
Samula Mantification - Ollant ID // ab ID)	Samolo Dato	Sample	Sample Type (C=comp,	Matrix (normator, Sensiti, Orwantolol,	erform MSM motes	naiw kees Vite				_	nedmuN leto1		Snorial Instructions/Note-
	X	X	-1. m	ion Code:	1						X		
05 25 BUTCH (440-245042-1)	6/25/19	08:15 Pacific		Water	-	×					-		
06 25 OD STREAMS (440-245042-2)	6/25/19	08:24 Pacific		Water		×					-		
06 25 BUTCH DUP (440-245042-3)	6/25/19	08:15 Pacific		Water		×					1		
BUTCHER (440-245042-4)	6/26/19	06:06 Pacific		Water		×				_	-		
OD STREAMS (440-245042-5)	6/26/19	06:19 Pacific		Water		×		_			1		
BUTCHER (440-245042-6)	6/27/19	06:09 Pacific		Water		×	-				-		
OD STREAMS (440-245042-7)	6/27/19	06:22 Pacific		Water		×					1		
											-		

Months

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Return To Client Disposal By Lab Archive For Mont

Possible Hazard Identification

verable Re npty Kit Reli

in body iished by

confirmed

Memod of Shipment Memod of Shipment Date Trane Date Trane	quested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2		Special Instructions/QC Requirements:			
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	quished by:	, Date:	T	v /	lethod of Shipment.		V
2 Conject of Conject C	1. Longell		TAN 17	MMM Mary	B 1/2/2	95	100/HAL
Date/Time Company Received by Date/Time Date/T	l'anna 1	Datertime / L	Company	Careford W .	DateTrine		Company
2000 Cooler Temperature(s) °C and Other Remarks 28°C 300 Total Total 2000 Tot		DateTtme.	Company	Received by	Date/Time.		Company
5 6 7 8 9 10 11 12 13 14	s Intact: Custody Seal No ::	Spal		in a	2.8%		
6 7 8 9 10 11 12 13 14							Ver: 01/16/2019
				10 11 12 13 14		5 6	3

vished by

Eurofins TestAmerica, Irvine

Chain of Custody Record

Phone Phone Inc. Z2-1059(Fax) Due Date Requested (days): Z2-1059(Fax) Do # Z2-1059(Fax) Z2-1059(Fax) PO # Z2-1059(Fax) Z2-10 PO # Z2-10 Z2-11 PO # Z3-11 Z2-11 D3-15 Protein Z2-11 C25/119 D3-15 Z2-11 D3-15 Protein Z2-11 D3-15 Pacific Z2-11 P3-15 Pacific Z2-11 D3-15 Pacific	Inc. Team Team <th< th=""><th>Client Information (Sub Contract Lab)</th><th>Sampler:</th><th></th><th></th><th>David</th><th>Lab PM Davidkova, Lena</th><th>eua</th><th></th><th>Carrier</th><th>Carrier Tracking No(s):</th><th>44</th><th>COC No: 440-140690.1</th><th></th></th<>	Client Information (Sub Contract Lab)	Sampler:			David	Lab PM Davidkova, Lena	eua		Carrier	Carrier Tracking No(s):	44	COC No: 440-140690.1	
Inc. Inc. Inc. Page 1611 Inc. 2000 BM Requested Analysis	Inc. Inc. <th< th=""><th>5</th><th>Phone:</th><th></th><th></th><th>E-M</th><th>ait.</th><th></th><th></th><th>State of</th><th>Origin:</th><th>Pa</th><th></th><th></th></th<>	5	Phone:			E-M	ait.			State of	Origin:	Pa		
Поставлите полнати поставлите п	Псилования Дато Развили Дато Развили </th <th>Shipping/Receiving</th> <th></th> <th></th> <th></th> <th>len</th> <th>a.davidko</th> <th>va@testame</th> <th>nicainc.com</th> <th>Califo</th> <th>nia</th> <th>Pa</th> <th>ige 1 of 1</th> <th></th>	Shipping/Receiving				len	a.davidko	va@testame	nicainc.com	Califo	nia	Pa	ige 1 of 1	
Image: line Analysis Requested Analysis requested Analysis requested Analysis Analysis requested Analysis requested Analysis requested Analysis reqreqred An	monotest Analysis Reconstruct 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011 1/10/2011	Company. TestAmerica Laboratories, Inc.					State P	tions Required ogram - Cal	(See note): Ifornia			100	0-245042-1	
Int Requested (days);	Int Revense (farpit) Int Revense (farpit) Interest (farpit) I	Address BBD Riverside Parkway,	Due Date Requeste 7/10/2019	:9					Analysis	s Requeste	p	Pre	eservation Code	:50
22-1058(Fax) D0# D1# D2 D2 <thd2< th=""> D2 D2</thd2<>	1 Constrained (Constrained) Constrained (Constrained) Constrained (Constrained) Constrained (Constrained) 2 1	Cey. West Sacramento	TAT Requested (da	ys):			1943					¢ m ù	- NaOH - Zn Acetate	N - None N - None O - AsNaO2
C2-1050(Fax) FO at NO at NO at NO at Au022550 Pont at NO at Au022550 Contract at NO at Au022550 Contract at No at Au022550 Contract at Au025550 Contract at Au0555	Policy Policy Commission 2:1056/Fax) nois nois 0 nois nois 0 nois sample 0 sample nois 1 nois sample 1 nois nois 1 <	State, Zp. CA, 95605												P - Na2045 Q - Na2503
MOR More I-to More 6 Properta I-to More 6 Sample Matrix 7 More Sample 7 More I-to More 7 More I-to More 7 More I-to More 7 More X 7 More X 7 More X 7 More X 8 Prosentation Code Mater 1 More X 2-1) Er25/19 06/15 96/15 Mater X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>00 00.8 00 Pignot 8 </td> <td>73-5600(Tel)</td> <td>PO #:</td> <td></td> <td></td> <td></td> <td>(4</td> <td></td> <td></td> <td>_</td> <td></td> <td>ioi</td> <td>2</td> <td>S - H2SOA T - TSP Dode</td>	00 00.8 00 Pignot 8	73-5600(Tel)	PO #:				(4			_		ioi	2	S - H2SOA T - TSP Dode
Interest Autor20560 Autor20550 Autor20570 Autor2057	Weiter Human Topola Product	Email	WO#					OSIJIN	-	_				U - Acetone V - MCAA
SSOVML SSOVML Sample Matrix Sample	Office SSOOM SSOOM <t< td=""><td>Project Name. Ocean Disposal WW Sample</td><td>Project # 44022550</td><td></td><td></td><td></td><td></td><td>esergin</td><td></td><td></td><td></td><td>_</td><td></td><td>W - pH 4-5 Z - other (sper</td></t<>	Project Name. Ocean Disposal WW Sample	Project # 44022550					esergin				_		W - pH 4-5 Z - other (sper
Iert ID (Lab ID) Sample (www. Type Matrix (www. construct. Matrix Type Matrix (www. construct. Matrix File Matrix (www. construct. Matrix File Matrix (construct. Matrix File Matrix File File	Rample Identification - Client ID (Lab ID) Sample Value Matrix Type weak Sample weak Rample Type weak Rample weak Rample Type weak Sample weak Rample Type weak Sample weak Rample Type weak Sample weak Rample weak	Sate	SSOME					'uəBo				_	ter:	
2-1 $2-1$ <t< td=""><td>6 25 BUTCH (440-245042-1) Control Preservation Code. Nater X Image: Control Nater X Image: Control Nater Y Image: Control Nater Nater Y Image: Control Nater Nater Y Image: Control Nater <</td><td>Sample Identification - Client ID (Lab ID)</td><td>Sample Date</td><td>Sample</td><td>Sample Type (C=comp, G=grab)</td><td>Matrix (www.mr. Second. Creased.</td><td>Field Filtered</td><td>123.2_Pros/ Nitr</td><td>_</td><td></td><td></td><td>Total Number</td><td>Special Ins</td><td>structions/N</td></t<>	6 25 BUTCH (440-245042-1) Control Preservation Code. Nater X Image: Control Nater X Image: Control Nater Y Image: Control Nater Nater Y Image: Control Nater Nater Y Image: Control Nater <	Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (www.mr. Second. Creased.	Field Filtered	123.2_Pros/ Nitr	_			Total Number	Special Ins	structions/N
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.25 BUTCH (440-245042-1) 6/25/19 08.15 Water X 1 1 1 6.25 OD STREAMS (440-245042-2) 6/25/19 08.15 Water X 1 1 1 6.25 UD STREAMS (440-245042-3) 6/25/19 08.15 Water X 1 1 1 10.TCHER (440-245042-5) 6/26/19 08.15 Water X 1 1 1 10.TCHER (440-245042-5) 6/26/19 08.15 Water X 1 1 1 1 10.TCHER (440-245042-5) 6/26/19 08.15 Water X 1 <td></td> <td>X</td> <td>X</td> <td>Preserva</td> <td>tion Code:</td> <td>X</td> <td></td> <td></td> <td>1</td> <td>1 1 1 1 1 1</td> <td>X</td> <td></td> <td>I</td>		X	X	Preserva	tion Code:	X			1	1 1 1 1 1 1	X		I
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.25 OD STREAMS (440-245042-2) 6/25/19 08/24 Water 1 1 1 16 25 BUTCH DUP (440-245042-3) 6/25/19 08/15 Water 1 1 1 16 25 BUTCH BUP (440-245042-3) 6/25/19 08/15 Water 1 1 1 10 CTCHER (440-245042-5) 6/26/19 06/26 Water 1 1 1 1 10 DTCHER (440-245042-5) 6/26/19 06/26 Water 1 1 1 1 1 10 DTCHER (440-245042-5) 6/27/19 06/22 Water 1 <	05 25 BUTCH (440-245042-1)	6/25/19	08:15 Pacific		Water		×				+		
45042-3) $(E/25/19)$ (08.15) Water X X I I I 0 $(E/25/19)$ 06.05 Water X	6 25 BUTCH DUP (440-245042-3) 6/26/19 08:15 Water X 1 1 1 UTCHER (440-245042-4) 6/26/19 06:19 06:19 06:19 Water X 1 1 1 DD STREAMS (440-245042-5) 6/26/19 06:19 06:19 Water X 1 1 1 DD STREAMS (440-245042-5) 6/26/19 06:19 Water X 1 1 1 DD STREAMS (440-245042-5) 6/27/19 06:09 Water X 1 1 1 1 DD STREAMS (440-245042-5) 6/27/19 06:07 Water X 1 1 1 1 DD STREAMS (440-245042-6) 6/27/19 06:07 Water X 1	06 25 OD STREAMS (440-245042-2)	6/25/19	08:24 Pacific		Water		×				-		
05:06 Water X 0 X 0 0 2-5) 6/26/19 05:19 05:19 05:19 05:19 0 2-5) 6/26/19 05:19 05:03 Water X 0 0 2-5) 6/27/19 05:03 Water X 0 0 0 2-7) 6/27/19 05:22 Water X 0 0 0 2-7) 6/27/19 05:22 Water X 0 0 0	UTCHER (440-245042-4) 6/26/19 06/36 Water X I I I DD STREAMS (440-245042-6) 6/26/19 06/19 Water X I I I UTCHER (440-245042-6) 6/26/19 06/39 Water X I I I UTCHER (440-245042-6) 6/27/19 06/32 Water X I I I DD STREAMS (440-245042-7) 6/27/19 06/32 Water X I I I I DS STREAMS (440-245042-7) 6/27/19 06/32 Water X I <td>06 25 BUTCH DUP (440-245042-3)</td> <td>6/25/19</td> <td>08:15 Pacific</td> <td></td> <td>Water</td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>	06 25 BUTCH DUP (440-245042-3)	6/25/19	08:15 Pacific		Water		×				1		
2-5) 6/26/19 06.19 Water X I I 0 920ffc Water X I I I 0 6/27/19 06/09 Water X I I I 2-7) 6/27/19 06/22 Water X I I I	DD STREAMS (440-245042-5) 6/26/19 06.19 Water X I 1 1 NUTCHER (440-245042-5) 6/26/19 06.19 Water X I 1 1 NUTCHER (440-245042-6) 6/27/19 06.22 Water X I 1 1 DD STREAMS (440-245042-7) 6/27/19 06.22 Water X I 1 1 DD STREAMS (440-245042-7) 6/27/19 06.22 Water X I 1 1 DD STREAMS (440-245042-7) 6/27/19 06.22 Water X I 1 1 1 DD STREAMS (440-245042-7) 6/27/19 06.22 Water X I 1 1 1 DD STREAMS (440-245042-7) 6/27/19 06.22 Water X I 1 1 1 DD STREAMS (440-245042-7) 6/27/19 06.22 Water X I 1 1 1 DD STREAMS (440-245042-7) 6/27/19 06.22 Water X I 1 1 1 1 1	BUTCHER (440-245042-4)	6/26/19	06:06 Pacific		Water		×				-		
6/27/19 06/09 Water X X X 2-7) 6/27/19 06/22 Water X 1	UTCHER (440-245042-6) 6/27/19 06/09 Water X X 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	OD STREAMS (440-245042-5)	6/26/19	06:19 Pacific		Water		×				+		
6/27/19 06:22 Water X T	DD STREAMS (440-245042-7) 6/27/19 06/22 Water X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BUTCHER (440-245042-6)	6/27/19	06:09 Pacific		Water		×				1		
	Inder Since laboratory accreditations are subject to change. TestAmerica Laboratories. Inc. places the constript of marthod, analyte & accreditation compliance upon out subcontract laboratories. This sample shorted under chain-of-custody. If the laboratory duration increases the of Chained Chained Custod analyte & accreditation compliance upon out subcontract laboratories. This sample shorted under chain-of-custody. If the laboratory duration increases the of Chained Custod analyte & accreditation compliance upon out subcontract laboratories. This sample shorted under chain-of-custody. If the laboratory duration increases the of the Intervention date return the nature have analyte of the TestAmerica Laboratories increases for accreditation status should be brought to TestA	OD STREAMS (440-245042-7)	6/27/19	06:22 Pacific		Water		×				-		
	Inder Since laboratory acceduations are subject to change. TestAmerica Laboratories, Inc. places the constript of marthod, analytic & accreditation compliance upon out subcontract laboratories. This sample shorted of under chain-of-custody. If the laboratory di auroratories the american immediated and the date mature analysis of marthod analytic & accreditation compliance upon out subcontract laboratories. This sample shorted of under chain-of-custody. If the laboratory di auroratories the american immediated of the date mature analysis of the result of the TestAmerica Laboratories will be provided. Any changes to accreditation status should be brought to TestA						-	-	-	-	-			
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mo		Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	ble Rank:	5		Spec	ial Instructio	ins/QC Requ	irements:				
Primary Deliverable Rank: 2	Primary Deliverable Rank: 2 Special Instructions/QC Requirements:	Empty Kit Relinquished by:		Date:			Time:	1	~	W	thod of Shipment.			V
Primary Deliverable Rank: 2 Sample Disposal (A fee may be assessed if samples are retained longer than 1 mo Primary Deliverable Rank: 2 Special Instructions/OC Requirements: pate: n	Primary Deliverable Rank: 2 Special Instructions/QC Requirements: Date: / A Method of Shipment	circuistrates by A. A. A. M. M. M. C. M.	Date free	170	0	Company L	NO	ANT.	Della	5	Children Contract	I B W	5	HH -
Primary Deliverable Rank: 2 Sample Disposal (A fee may be assessed if samples are retained longer than 1 mo Primary Deliverable Rank: 2 Special Instructions/OC Requirements: Date: Time: Date: Time: Date: Time: Date: Time:	Primary Deliverable Rank: 2 Special Instructions/QC Requirements: Date and the Date Trime: Anticol of Snoment Date of Snoment		Auto 1 1000			Listion	3	· AA						Lundung

had by

/er: 01/16/201

8

oler Temperature(s) "C and Other Remarks

erved by:

pany

Ê

U

Custody Seal No.

Custody Seals Intact

13

Me/Time:

¢)
-5
-
÷.
ö
-ĕ
0
ĕ
4
to
do l
Ē
S
=
4
2
=
111
-

17461 Derian Ave Suite 100

Chain of Custody Record

Client Information (Sub Contract Lab)	Sampler.			David	Lab PM. Davidkova, Lena	eu	Camer Tracking No(s)		COC No: 440-140684.1	
Client Contact Shipping/Receiving	Phone.			E-Mail.	davidkova	E-Mait. lena. davidkova@testamericainc.com	State of Origin California		Page 1 of 1	
Company TestAmerica Laboratories, Inc.					Accreditatio State Pro	Accreditations Required (See note): State Program - California		40	Job #: 440-245042-1	
Address 5102 LaRoche Avenue,	Due Date Requested: 7/10/2019					Analysis	Analysis Requested	ă.	Preservation Codes:	
City. Savannah	TAT Requested (days):	ys):							A - HoL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Z.p. GA, 31404					Idenavo				- Narris Acid - Narris OA	P - Na2045 Q - Na2503
Phone. 912-354-7858(Tel) 912-352-0165(Fax)	# Od				1999			101	G - Amchior H - Ascorbic Acid	R - Nacocus 5 - H2SO4 T - TSP Dedecahvdrate
Emat	WO #				(0)				1 - Ice J - Di Water	U - Acetone V - MCAA
Project Name: Ocean Disposal WW Sample	Project # 44022550				es or l	NIAU		_	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#				r) as	4 10000	_	-	Other:	
Samole Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (www.sec. Second. Orwashing, Orwashing, Orwashing,	Pierdo Filtered S MISM mnohee 420.1/Distril_Phi			Total Number	Special In	Special Instructions/Note:
	X	X	1 70	ion Code:	X			X		
06 25 BUTCH (440-245042-1)	6/25/19	08:15 Pacific		Water	×			2		
06 25 OD STREAMS (440-245042-2)	6/25/19	08.24 Pacific		Water	×			2		
06 25 BUTCH DUP (440-245042-3)	6/25/19	08:15 Pacific		Water	×			2		
OD STREAMS (440-245042-5)	6/26/19	06:19 Pacific		Water	×			2		
OD STREAMS (440-245042-7)	6/27/19	06:22 Pacific		Water	×			2		
								-		
					-		_			
Note: Since laborationy accreditations are subject to change. TestAmerica Laboratories, inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. ¹ cumently maintain accreditation in the State of Ongin Isted above for analyta/hesta/matrix being analytaed, the samples must be shipped back to the TestAmerica laboratory or other instructions will Laboratories, inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, inc.	a Laboratories, inc. places the hystochests/matrix being analyzing one current to date, return the si	ownership of m od, the samples gred Chain of C	ethod, analyte must be shipp ustody atteste	& accreditation ed back to the ig to said com	compliance TestAmeric	upon out subcontract laborato a laboratory or other instruction estAmerica Laboratories, inc.	s will be provided. An	This sample phymeric is forwarded under chain-of custody. If the laboratory does not be provided. Any changes to accreditation status should be brought to Test/America.	hain of custody. If is should be build	the laboratory does not wought to TestAmerica
Possible Hazard Identification					Samp	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	be assessed if s	amples are retained	longer than 1	(month)
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable	able Rank: 2			Specia	Special Instructions/QC Requirements	Disposal By Lab ements:	ab Archive For	e For	Months
Empty Kit Relinquished by:		Date:			Time:		Method o	od of Shipment		
Reinguished by Leving 21	7/2/19	170	1 0	Vaneamo	SUS	N Remain	}	CI SIL	206	Compress .
Reinraushed by	Date/Time		5	ompany	Re	ceived by		Date/Time.		Company
Reinquished by	Date/Time.			Company	Fie	eceived by		Date/Time:		Company
Custody Seals Intact: Custody Seal No.: A Vac A No.					8	xoler Temperature(s) "C and Ot	d Other Remarks			

2

13 14 15

Ver: 01/16/2019

Eurofins TestAmerica, Irvine 17461 Denian Ave Suite 100 Irvine. CA 92614-5817

Chain of Custody Record

Client Information (Sub Contract Lab)	Sampler			David	Lab PM Davidkova, Lena	er	Carrier Tracking No(s)	(s)oN 6	COC No: 440-140794.1	
Clent Contact: Shipping/Receiving	Fhone:			E-Mail: lena.d	davidkova	E-Mait: lena.davidkova@testamericainc.com	State of Origin: California		Page 1 of 1	
Company: TestAmerica Laboratories, Inc.					Accreditation State Prog	Accretitations Required (See note): State Program - California			Job #: 440-245042-1	
Address: 5102 LaRoche Avenue,	Due Date Requested 7/10/2019	:pa				Analysis Requested	tequested		Preservation Codes	es: M - Morene
City: Savannah State, Zp:	TAT Requested (days):	:(ske			eldere				B - NaCH C - Zh Acetate D - Nitre Acid	
GA, 31404 Phone.	PO #				Recov				E - MeOH G - Amchlor	G - Na25203 R - Na25203 S - H2504
912-354-7858(Tel) 912-352-0165(Fax) Email:	WO#:				(0		_			T - TSP Dodecahydrate U - Acetone
Project Name. Ocean Discosal WW Sample	Project #: 44022550				N JO SH				tainers	W - pH 4-5 Z - other (specify)
Second support at a carrying	SSOW#:				N) ds				of Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (www.s.c.sodd Owensteid, Bit-Tanee, ArAP)	Bertorm MSM mootes MNSM mootes				Total Number Special In	Special Instructions/Note:
	X	X	Preserva	Preservation Code:	X				X	V
BUTCHER (440-245042-4)	6/26/19	06:06 Pacific		Water	×				2	
BUTCHER (440-245042-6)	6/27/19	60:90		Water	×				2	
	-									
								_		
	-				-		-	-		
Nole: Since laboratory accreditations are subject to change, TestAmeri	rica Laboratories, inc. places t	te comership c	of method, anal	yte & accredita	6on complian	nce upon out subcontract labora	tories. This sample	shipment is forwar	ded under chain-of-custod	y. If the laboratory does not
currently maintain accreditation in the State of Origin tabled above for analysis/test/matrix being analys Laboratories, inc. attention immediately. If all requested accreditations are ourient to date, return the s	inalysis/lests/matrix being ana s are current to date, return the	lyzed, the sam signed Chain	ples must be s of Custody att	hipped back to esting to said o	the TestAme complicance to	red, the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica igned Chain of Custody attesting to said complicance to TestAmerica Laboratories, Inc.	ons will be provided.	L Any changes to a	accreditation status should	be brought to TestAmerica
Possible Hazard Identification					Samp	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	be assessed if a	samples are re	tained longer than	month)
Unconfirmed						Return To Client Disp	Disposal By Lab		Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	rable Kank: Z	2		Specie	al instructions/QC Kequin				
Empty Kit Relinquished by: /		Date:			Time:		Method 6	Method of Shipment:		
Reinquered by	Date Trape /19	11 6	45	Company	RV RO	Received by ALA		Date/Time:	asb 61	COMPANY
Refinquished by:	Date/Time:			Company	Re	Received by.		Date/Time:		Company
Relinquished by:	Date/Time:			Company	Re	Received by:		Date/Time:		Company
Custody Seals Intact: Custody Seal No.: A Yes A No					8	Cocler Temperature(s) °C and Other Remarks	her Remarks:	3.1/ 3	3.1	
										Ver: 01/16/2019

9 10 11

Login Number: 245042 List Number: 1 Creator: Bonta, Lucia F

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	Not present
Sample custody seals, if present, are intact.	N/A	Not Present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Water present in cooler; indicates evidence of melted ice.
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	False	Headspace larger than 1/4".
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 440-245042-1

List Source: Eurofins TestAmerica, Irvine

Login Number: 245042 List Number: 2 Creator: Say, Thomas C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 440-245042-1

List Creation: 07/03/19 10:28 AM

List Source: Eurofins TestAmerica, Pittsburgh

Login Number: 245042 List Number: 4 Creator: Darlington, Jennifer M

Job Number: 440-245042-1

1	
5	
1	5
_	
	8
	9
	13
	14
	15

List Source: Eurofins TestAmerica, Sacramento
List Creation: 07/03/19 01:40 PM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	Seal present with no number.
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.8c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Login Number: 245042 List Number: 3 Creator: Weston, Pamela

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 440-245042-1

List Creation: 07/03/19 03:23 PM

List Source: Eurofins TestAmerica, Savannah

Login Number: 245042 List Number: 5 Creator: Sims, Robert D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins TestAmerica, Savannah

List Creation: 07/06/19 01:36 PM

7/31/2019 (Rev. 1)

Job.

440-245042 Field Sheet

8

9

10

11

12 13

15

Page 98 of 99

JZZC ZELE 82Sh :# Bulyoer	
Sample Receiving Notes	Environment Testing

GSO / OnTrac / Goldstreak / USPS / Other_

SO (bO) EO / 2-Day / Ground / UPS / CDO / Courier

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations. File in the job folder with the COC.

61	SIL	+	Initials: DU Date:	
	1412	101	J	
a	70	D	Sample out of temp?	
		女	Sample temp OK?	
		Ø,	Multiphasic samples are not present?	
Ø			Zero headspace?*	
		GL.	Sample bottles are completely filled?	
		B	Appropriate containers are used?	
		西	Sample date/times are provided.	
		04	Containers are not broken or leaking?	
D		R	Sample containers have legible labels?	
		5	Samples w/o discrepancies?	
Π	BY N	α	Samples compromised/tampered with?	and the second second
	đ		Cooler compromised/tampered with?	
枚			Sample preservatives verified?	
		菊	Samples received within holding time?	
		6	CoC is complete w/o discrepancies?	
1			Alkalinity has no headspace?	
d	۵		Perchlorate has headspace? (Methods 314, 331, 6850)	
AN	ōN	SaY		
			ACW Filed: Yes D No	
		D e	From: Temp Blank 🖄 Sampl	
_	3	2	Temp Observed: 2.5 Corrected:	
-			Cooler ID:	
	_	_	Sample Custody Seal:	
			Cooler Custody Seal: Sec.	
		Ofpe	Ice X Met X Gel	
-	-	_	Them. ID: ALLE Corr. Factor:	:5

1/12CORP/CORP/QA/QA/DA_FACILITIES/SACRAMENTO-QA/DOCUMENT-MANAGEMENT/FORMS/QA-812 SAMPLE RECEIVING NOTES.DOC QA-812

GIIM

7/31/2019 (Rev. 1)

sniforus 🌼

Job.

Page	99 of	99
------	-------	----

Tracking # :

Sample Receiving Notes

9726 ZELE 855h

GIIM

Environment Testing TestAmerica

440-245042 Field Sheet

GSO / OnTrac / Goldstreak / USPS / Other

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations.

51	5/2	- t	Initials: OU Date: -	
0	20	Tor		
		女	Sample out of temp?	
		A K	Sample temp OK?	
0			Multiphasic samples are not present?	
Ø			Zero headspace?*	
		GL.	Sample bottles are completely filled?	
		ø	Appropriate containers are used?	
		肉	Sample date/times are provided.	and and an and a second
		Ca(Containers are not broken or leaking?	
		R	Sample containers have legible labels?	
		5	Samples w/o discrepancies?	
	4		Samples compromised/tampered with?	and the second sec
	đ		Cooler compromised/tampered with?	
粒			Sample preservatives verified?	the second s
		如	Samples received within holding time?	
		6	CoC is complete w/o discrepancies?	
1			Alkalinity has no headspace?	
d			(Methods 314, 331, 6850)	
	_		Perchlorate has headspace?	
AN	ON	SeY		
		D	NCW Eiled: Yes D No	
			From: Temp Blank D Sample	
	0	-	Temp Observed: Corrected:	
	9	2	50	
-			Cooler ID:	
			Sample Custody Seal:	and the second
			Cooler Custody Seal:	
			Cooler Custody Seal: SEA	
		othe	Ice X Met X Gel	
			Them. ID: H & Con. Factor:	lotes:

TACORPICORPICAR FACILITIES/SACRAMENTO-CANDOCUMENT-MANAGEMENT/FORMS/QA-812 SAMPLE RECEIVING NOTES.DOC QA-812

Ocean Disposal Wastewater Sample Validation

July 23, 2019

Laboratory Report 440-245042-1

Introduction:

The samples were reported to the method detection limit (MDL) and validated at a Stage 2A level. The samples were received outside of the 0-6 degree Celsius (°C) temperature range at 18.1 °C, 18.3 °C, 20.5 °C, 20.6 °C, 20.6 °C, 21.4 °C and 26.0 °C. Qualifications were applied to the majority of the data based on the temperature exceedance indicating that the reported values are considered estimated (J) or the non-detect values are considered as estimated less than the MDL (UJ) or rejected (R) volatiles. The metals data were unaffected by the temperature exceedances. Additionally, a subset of the non-detect volatile organic compounds and non-detect nitrite, nitrate, and nitrate/nitrite results were R qualified as rejected due to holding time exceedances. The remaining data are considered usable within the limitation of the qualifications. The results for the associated laboratory quality control (QC) samples e.g. method blanks and laboratory control samples, were within the laboratory acceptance for all of the tests listed below with the exception of chromium in a method blank (see metals qualifications below). Batch matrix spike/matrix spike duplicate pairs were reported with the data. Since these were batch QC the results had no impact on the project samples and qualifications were not applied to the data based on these results.

Method 8260 B Volatile Qualifications

Reason Codes

1 = preservation (received outside of temperature >10 degrees Celsius, significant head space)

2 = holding times (pH was greater than 2 and analyzed greater than 7 days past collection

7 = Field Duplicate RPD exceeded

11 = Internal standard criteria not met

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason
	Test		Result		Result*	Code**
0625 BUTCH	8260B	1,2-				1
		Dichloropropane	0.25U	ug/L	0.25R	
		Benzene	2.0	ug/L	2.0J	1,7
		Chloroform	0.25U	ug/L	0.25R	
		Ethylbenzene	10	ug/L	10J	1,7
		m,p-Xylene	0.5U	ug/L	0.5R	
		Methylene				1
		Chloride	1.1U	ug/L	1.1R	
		o-Xylene	0.25U	ug/L	0.25R ₁	
		Toluene	0.81J	ug/L	0.81J	1
		Xylenes, Total	0.25U	ug/L	0.25R	
0625 OD	8260B	1,2-			1	1,2
STREAMS		Dichloropropane	1.3U	ug/L	1.3R	
		Benzene	1.3U	ug/L	1.3R 1	1,2
		Chloroform	1.3U	ug/L	1.3R	1,2
		Ethylbenzene	1.3U*	ug/L	1.3R ₁	1,2, 11
		m,p-Xylene	2.5U	ug/L	2.5R	1,2
		Methylene				1,2
		Chloride	5.5U	ug/L	5.5R	
		o-Xylene	1.3U	ug/L	1.3R	1,2

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason
	Test		Result		Result*	Code**
		Toluene	1.3U	ug/L	1.3R	1,2
		Xylenes, Total	1.3U	ug/L	1.3R	1,2
06 25 BUTCH	8260B	1,2-				1
DUP		Dichloropropane	0.25U	ug/L	0.25R	
		Benzene	1.5J	ug/L	1.5J	1,7
		Chloroform	0.25U	ug/L	0.25R	
		Ethylbenzene	5.6	ug/L	5.6J	1,7
		m,p-Xylene	0.5U	ug/L	0.5R	
		Methylene				1
		Chloride	5.0U	ug/L	5.0R	
		o-Xylene	0.25U	ug/L	0.25R 1	
		Toluene	0.67J	ug/L	0.67J	1
		Xylenes, Total	0.25U	ug/L	0.25R	
BUTCHER	8260B	1,2-			1	1
6/26/19)		Dichloropropane	0.25U	ug/L	0.25R	
		Benzene	0.93J	ug/L	0.93J ₁	1
		Chloroform	0.25U	ug/L	0.25R	
		Ethylbenzene	1.2J	ug/L	1.2J 1	1
		m,p-Xylene	0.5U	ug/L	0.5R	
		Methylene				1
		Chloride	1.1U	ug/L	1.1R	
		o-Xylene	0.25U	ug/L	0.25R ₁	
		Toluene	0.33J	ug/L	0.33J	1
		Xylenes, Total	0.25U	ug/L	0.25R	
OD STREAMS	8260B	1,2-			1	1,2
(6/26/19)		Dichloropropane	1.3U	ug/L	1.3R	
		Benzene	1.3U	ug/L	1.3R 1	1,2
		Chloroform	1.3U	ug/L	1.3R	1,2
		Ethylbenzene	1.3U	ug/L	1.3R 1	1,2

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason
	Test		Result		Result*	Code**
		m,p-Xylene	2.5U	ug/L	2.5R	1,2
		Methylene				1,2
		Chloride	5.5U	ug/L	5.5R	
		o-Xylene	1.3U	ug/L	1.3R	1,2
		Toluene	1.3U	ug/L	1.3R	1,2
		Xylenes, Total	1.3U	ug/L	1.3R	1,2
BUTCHER	8260B	1,2-				1
(6/27/29)		Dichloropropane	0.25U	ug/L	0.25R	
		Benzene	1.1J	ug/L	1.1J	1
		Chloroform	0.25U	ug/L	0.25R	
		Ethylbenzene	2.0	ug/L	2.0J	1
		m,p-Xylene	0.5U	ug/L	0.5R	
		Methylene				1
		Chloride	1.1U	ug/L	1.1R	
		o-Xylene	0.25U	ug/L	0.25R 1	
		Toluene	0.4J	ug/L	0.4J	1
		Xylenes, Total	0.25U	ug/L	0.25R	
ODSTREAMS	8260B	1,2-			1	1,2
(6/27/29)		Dichloropropane	1.3U	ug/L	1.3R	
		Benzene	1.3U	ug/L	1.3R 1	1,2
		Chloroform	1.3U	ug/L	1.3R	1,2
		Ethylbenzene	1.3U	ug/L	1.3R 1	1,2
		m,p-Xylene	2.5U	ug/L	2.5R	1,2
		Methylene		ug/L		1,2
		Chloride	5.5U		5.5R	
		o-Xylene	1.3U	ug/L	1.3R	1,2
		Toluene	1.3U	ug/L	1.3R	1,2
		Xylenes, Total	1.3U	ug/L	1.3R	1,2

*Validation qualifier definitions are included in Attachment 1 of this report

**Reason code definitions are included in Attachment 2 of this report

ug/L – microgram per liter

 $U-\ensuremath{\text{the analyte}}\xspace$ was not detected at or above the reported value

J -laboratory flag; result is less than the reporting limit but greater than the method detection limit and the concentration is an approximate value.

*-laboratory flag; ISTD response or retention time outside acceptance limits

Field Duplicate Assessment = Acceptance criteria relative percent difference (RPD) <30%

Sample	Analytical	Analytes	Results	RPD	Validated/Qualified	Reason
ID	Test	-	(ug/L)		Result	Code
0625	8260B	1,2-			NA	NA
BUTCH		Dichloropropane	0.25U			
		Benzene	2.0		2.0 J	7
		Chloroform	0.25U		NA	NA
		Ethylbenzene	10		10 J	7
		m,p-Xylene	0.5U		NA	NA
		Methylene			NA	NA
		Chloride	1.1U			
		o-Xylene	0.25U		NA	NA
		Toluene	0.81J		NA	NA
		Xylenes, Total	0.25U		NA	NA
06 25	8260B	1,2-		0%	NA	NA
BUTCH		Dichloropropane	0.25U			
DUP		Benzene	1.5J	NC	1.5 J	7
		Chloroform	0.25U	0%	NA	NA
		Ethylbenzene	5.6	56%	5.6 J	7
		m,p-Xylene	0.5U	0%	NA	NA
		Methylene		0%	NA	NA
		Chloride	5.0U			

o-Xylene	0.25U	0%	NA	NA
Toluene	0.67J	NC	NA	NA
Xylenes, Total	0.25U	0%	NA	NA

NA – not applicable

NC – not calculable

Method 625 Semi-Volatiles Qualifications

Reason Codes

1 = preservation (received outside of temperature >10 degrees Celsius)

2 = holding time exceedance

Sample ID	Analytical Test	Analyte	Laboratory Result	Units	Validated/Qualified Result	Reason Code
06 25 BUTCH	625	Bis(2-ethylhexyl) phthalate	80U H	ug/L	80UJ	1,2
06 25 OD STREAMS	625	Bis(2-ethylhexyl) phthalate	400U H	ug/L	400UJ	1,2
06 25 BUTCH DUP	625	Bis(2-ethylhexyl) phthalate	80U H	ug/L	80UJ	1,2
BUTCHER (6/26/19)	625	Bis(2-ethylhexyl) phthalate	80U H	ug/L	80UJ	1,2
OD STREAMS (6/26/19)	625	Bis(2-ethylhexyl) phthalate	400U H	ug/L	400UJ	1,2
BUTCHER (6/27/19)	625	Bis(2-ethylhexyl) phthalate	40U H	ug/L	40UJ	1,2
OD STREAMS (06/27/19)	625	Bis(2-ethylhexyl) phthalate	400U H	ug/L	400UJ	1,2

ug/L – microgram per liter

U – the analyte was not detected at or above the reported value

H – Lab flag; Sample was prepped or analyzed beyond the specified holding time

Field Duplicate Assessment – no qualifications RPD = 0%

Method 8315 Carbonyl Compounds Qualifications

Reason Codes

1 = preservation (received outside of temperature >10 degrees Celsius)

2= holding time exceedance

7 = Field Duplicate RPD exceeded

Sample ID	Analytical Test	Analyte	Laboratory Result	Units	Validated/Qualified Result	Reason Code
06 25 BUTCH	8315	Formaldehyde	0.091 H	ug/L	0.091 J	
						1,2,7
06 25 OD	8315	Formaldehyde	0.096 H	ug/L	0.096 J	1,2
STREAMS						
06 25 BUTCH	8315	Formaldehyde	0.057 H	ug/L	0.057 J	1,2,7
DUP						
BUTCHER	8315	Formaldehyde	0.052 H	ug/L	0.052 J	1,2
(6/26/19)						
OD STREAMS	8315	Formaldehyde	0.11 H	ug/L	0.11 J	1,2
(6/26/19)						
BUTCHER	8315	Formaldehyde	0.13 H	ug/L	0.13 J	1,2
(6/27/19)						
OD STREAMS	8315	Formaldehyde	0.15 H	ug/L	0.15 J	1,2
(06/27/19)						

ug/L – microgram per liter

H – Lab flag; Sample was prepped or analyzed beyond the specified holding time

Sample ID	Analytical Test	Analytes	Results (mg/L)	RPD	Validated/Qualified Result	Reason Code
06 25 BUTCH	8315	Formaldehyde	0.091 H	46%	0.091 J	7
06 25 BUTCH DUP	8315	Formaldehyde	0.057 H		0.057 J	7

Field Duplicate Assessment = Acceptance criteria relative percent difference (RPD) <30%

Method 6010B Metals Qualifications -

Chromium was detected at an estimated concentration greater than the MDL and less than the RL in the method blank in batch 556431 (0.00260 mg/L). Chromium was detected above the RL in the associated samples except for sample 06 25 Butch DUP which had an estimated concentration of chromium (0.060 JB). Therefore the estimated chromium result in sample 06 25 Butch DUP was elevated as non-detect at the RL.

Reason Code

3 = Blank contamination (i.e., method, trip, equipment, etc.)

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason Code
	Test		Result		Result	
06 25 BUTCH DUP	6010	Chromium	0.060 JB	mg/L	0.10 U	3

J -laboratory flag; result is less than the reporting limit but greater than the method detection limit and the concentration is an approximate value.

mg/L – milligram per liter

B – lab flag; Compound was found in the blank and sample

Method 7470A Mercury Qualifications - None

Wet Chemistry Parameters

Reason Codes

1 = preservation (received outside of temperature >10 degrees Celsius and pH >2 upon receipt, COD and HEM)

7 = Field Duplicate RPD exceeded

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason Code
	Test		Result		Result	
06 25 BUTCH	1664A	HEM	79.2	mg/L	79.2 J	1,7
	351.2	Total Kjeldahl	750	mg/L	750 J	1
	353.2	Nitrate Nitrite as N	0.31U	mg/L	0.31 UJ	1,7
	365.3	Phosphorous, Total	63	mg/L	63 J	1
	420.1	Phenolics, Total	0.14	mg/L	0.14 J	1
	4500 CN	Cyanide, Total	0.025	mg/L	0.025 J	1,7
	E					
		Ammonia (as N)	82	mg/L	82 J	1
	4500	Ammonia as NH3	100	mg/L	100 J	1
	NH3 D			-		
	5220D	Chemical Oxygen	8600	mg/L	8600 J	1
	2540E	Total Volatile	7100	mg/L	7100 J	1
	2540B	Total Solids	10000	mg/L	10000 J	1
		Total Nitrogen	750	mg/L	750 J	1
06 25 OD	1664A	HEM	11.2	mg/L	11.2 J	1
STREAMS	351.2	Total Kjeldahl	3700	mg/L	3700 J	1
		Nitrogen		-		
	353.2	Nitrate Nitrite as N	0.31U	mg/L	0.31 UJ	1
	365.3	Phosphorous, Total	570	mg/L	570 J	1
	420.1	Phenolics, Total	2.5	mg/L	2.5 J	1
		Recoverable		_		

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason Code
	Test		Result		Result	
	4500 CN E	Cyanide, Total	0.018J	mg/L	0.018 J	1
		Ammonia (as N)	1700	mg/L	1700 J	1
	4500 NH3 D	Ammonia as NH3	2100	mg/L	2100 J	1
	5220D	Chemical Oxygen Demand	51000	mg/L	51000 J	1
	2540E	Total Volatile Solids	15000	mg/L	15000 J	1
	2540B	Total Solids	33000	mg/L	33000 J	1
		Total Nitrogen	3700	mg/L	3700 J	1
06 25 BUTCH	1664A	HEM	203	mg/L	203 J	1,7
DUP	351.2	Total Kjeldahl Nitrogen	820	mg/L	820 J	1
	353.2	Nitrate Nitrite as N	10	mg/L	10 J	1,7
	365.3	Phosphorous, Total	66	mg/L	66 J	1
	420.1	Phenolics, Total Recoverable	0.18	mg/L	0.18 J	1
	4500 CN E	Cyanide, Total	0.013U	mg/L	0.013 UJ	1,7
		Ammonia (as N)	82	mg/L	82 J	1
	4500 NH3 D	Ammonia as NH3	100	mg/L	100 J	1
	5220D	Chemical Oxygen Demand	9100	mg/L	9100 J	1
	2540E	Total Volatile Solids	5600	mg/L	5600 J	1
	2540B	Total Solids	8500	mg/L	8500 J	1
		Total Nitrogen	820	mg/L	820 J	1
	1664A	HEM	120	mg/L	120 J	1

Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason Code
Test		Result		Result	
351.2	Total Kjeldahl	470	mg/L	470 J	1
353.2	Nitrate Nitrite as N	0.31	mg/L	0.31 J	1
365.3	Phosphorous, Total	58	mg/L	58 J	1
420.1	Phenolics, Total	0.088	mg/L	0.088 J	1
	Recoverable				
4500 CN	Cyanide, Total	0.013	mg/L	0.013 J	1
E					
	Ammonia (as N)	28	mg/L	28 J	1
4500	Ammonia as NH3	34	mg/L	34 J	1
NH3 D					
5220D	Chemical Oxygen	6000	mg/L	6000 J	1
	Demand				
2540E	Total Volatile	2300	mg/L	2300 J	1
	Solids				
2540B	Total Solids	5000	mg/L	5000 J	1
	Total Nitrogen	470	mg/L	470 J	1
1664A	HEM	8.8	mg/L	8.8 J	1
351.2	Total Kjeldahl	4200	mg/L	4200 J	1
	Nitrogen				
353.2	Nitrate Nitrite as N	0.31	mg/L	0.31 J	1
365.3	Phosphorous, Total	630	mg/L	630 J	1
420.1	Phenolics, Total	3.3	mg/L	3.3 J	1
	Recoverable		-		
4500 CN	Cyanide, Total	0.021J	mg/L	0.021 J	1
E					
			mg/L		1
4500 NH3 D	Ammonia as NH3	2900	mg/L	2900 J	1
	351.2 353.2 365.3 420.1 4500 CN E 4500 NH3 D 5220D 2540E 2540E 2540B 1664A 351.2 353.2 365.3 420.1 4500 CN E 	351.2Total Kjeldahl Nitrogen353.2Nitrate Nitrite as N365.3Phosphorous, Total420.1Phenolics, Total Recoverable4500 CNCyanide, Total EAmmonia (as N)4500Ammonia as NH3NH3 DD5220DChemical Oxygen Demand2540ETotal Volatile Solids2540BTotal SolidsTotal SolidsTotal Nitrogen1664AHEM351.2Total Kjeldahl Nitrogen353.2Nitrate Nitrite as N365.3Phosphorous, Total Recoverable420.1Phenolics, Total Recoverable4500 CNCyanide, Total Recoverable4500 CNCyanide, Total Recoverable4500 CNAmmonia (as N)4500Ammonia (as N)	351.2Total Kjeldahl Nitrogen470353.2Nitrate Nitrite as N0.31365.3Phosphorous, Total58420.1Phenolics, Total Recoverable0.0884500 CNCyanide, Total0.013EAmmonia (as N)284500Ammonia as NH34500Ammonia as NH334NH3 D60005220DChemical Oxygen Demand60002540ETotal Volatile Solids23002540BTotal Solids5000Total Nitrogen4701664AHEM Nitrogen8.8351.2Total Kjeldahl Nitrogen4200Nitrogen3.3630420.1Phenolics, Total Recoverable3.3420.1Phenolics, Total Recoverable3.34500 CN Cyanide, Total0.021JEAmmonia (as N)24004500Ammonia as NH32900	351.2Total Kjeldahl Nitrogen470mg/L353.2Nitrate Nitrite as N0.31mg/L365.3Phosphorous, Total58mg/L420.1Phenolics, Total Recoverable0.088mg/L4500 CNCyanide, Total0.013mg/LEAmmonia (as N)28mg/L4500Ammonia as NH334mg/L5220DChemical Oxygen Demand6000mg/L5240ETotal Volatile Solids2300mg/LTotal Volatile Solids5000mg/L2540BTotal Solids5000mg/LTotal Nitrogen470mg/L1664AHEM8.8mg/L353.2Nitrate Nitrite as N0.31mg/L353.2Nitrate Nitrite as N0.31mg/L365.3Phosphorous, Total630mg/L4500 CNCyanide, Total3.3mg/L4500 CNCyanide, Total3.2mg/L4500 CNCyanide, Total3.2mg/L4500 CNCyanide, Total3.2mg/L4500Ammonia (as N)2400mg/L4500Ammonia as NH32900mg/L	351.2 Total Kjeldahl Nitrogen 470 mg/L 470 J 353.2 Nitrate Nitrite as N 0.31 mg/L 0.31 J 365.3 Phosphorous, Total 58 mg/L 58 J 420.1 Phenolics, Total Recoverable 0.088 mg/L 0.088 J 4500 CN Cyanide, Total 0.013 mg/L 0.013 J E Ammonia (as N) 28 mg/L 28 J 4500 Ammonia as NH3 34 mg/L 34 J NH3 D 6000 mg/L 6000 J 5220D Chemical Oxygen Demand 6000 mg/L 2300 J 2540E Total Volatile Solids 2300 mg/L 5000 J Total Solids 5000 mg/L 470 J 1664A HEM 8.8 mg/L 8.8 J 351.2 Total Kjeldahl 4200 mg/L 4200 J Nitrogen 43.3 mg/L 0.31 J 33 J 353.2 Nitrate Nitrite as N 0.31 mg/L 630 J

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason Code
	Test		Result		Result	
	5220D	Chemical Oxygen Demand	42000	mg/L	42000 J	1
	2540E	Total Volatile Solids	17000	mg/L	17000 J	1
	2540B	Total Solids	33000	mg/L	33000 J	1
		Total Nitrogen	4200	mg/L	4200 J	1
BUTCHER	1664A	HEM	138	mg/L	138 J	1
(6/27/19)	351.2	Total Kjeldahl Nitrogen	450	mg/L	450 J	1
	353.2	Nitrate Nitrite as N	0.31	mg/L	0.31 J	1
	365.3	Phosphorous, Total	50	mg/L	50 J	1
	420.1	Phenolics, Total Recoverable	0.083	mg/L	0.083 J	1
	4500 CN E	Cyanide, Total	0.013	mg/L	0.013 J	1
		Ammonia (as N)	35	mg/L	35 J	1
	4500 NH3 D	Ammonia as NH3	43	mg/L	43 J	1
	5220D	Chemical Oxygen Demand	5500	mg/L	5500 J	1
	2540E	Total Volatile Solids	6900	mg/L	6900 J	1
	2540B	Total Solids	12000	mg/L	12000 J	1
		Total Nitrogen	450	mg/L	450 J	1
OD STREAMS	1664A	HEM	52	mg/L	52 J	1
(06/27/19)	351.2	Total Kjeldahl Nitrogen	4200	mg/L	4200 J	1
	353.2	Nitrate Nitrite as N	0.31	mg/L	0.31 J	1
	365.3	Phosphorous, Total	690	mg/L	690 J	1

Sample ID	Analytical Test	Analyte	Laboratory Result	Units	Validated/Qualified Result	Reason Code
	420.1	Phenolics, Total Recoverable	7.5	mg/L	7.5 J	1
	4500 CN E	Cyanide, Total	0.032	mg/L	0.032 J	1
		Ammonia (as N)	2400	mg/L	2400 J	1
	4500 NH3 D	Ammonia as NH3	3000	mg/L	3000 J	1
	5220D	Chemical Oxygen Demand	43000	mg/L	43000 J	1
	2540E	Total Volatile Solids	15000	mg/L	15000 J	1
	2540B	Total Solids	13000	mg/L	13000 J	1
		Total Nitrogen	4200	mg/L	4200 J	1

mg/L – milligram per liter

U - the analyte was not detected at or above the reported value

J -laboratory flag; result is less than the reporting limit but greater than the method detection limit and the concentration is an approximate value.

Sample	Analytic	Analytes	Results	RPD	Validated/Qualifi	Reason
ID	al Test		(mg/L)		ed Result	Code
06 25	1664A	HEM	79.2		79.2 J	7
BUTCH	351.2	Total Kjeldahl	750		NA	NA
		Nitrogen				
	353.2	Nitrate Nitrite	0.31U		0.31 UJ	7
		as N				
	365.3	Phosphorous,	63]	NA	NA
	420.1	Phenolics,	0.14		NA	NA

Field Duplicate Assessment = Acceptance criteria relative percent difference (RPD) <30%

Sample	Analytic	Analytes	Results	RPD	Validated/Qualifi	Reason
ID	al Test		(mg/L)		ed Result	Code
	4500 CN E	Cyanide, Total	0.025		0.025 J	7
		Ammonia (as	82		NA	NA
	4500 NH3 D	Ammonia as NH3	100		NA	NA
	5220D	Chemical	8600		NA	NA
	2540E	Total Volatile	7100		NA	NA
	2540B	Total Solids	10000		NA	NA
		Total Nitrogen	750		NA	NA
06 25	1664A	HEM	203	68%	203 J	7
BUTCH DUP	351.2	Total Kjeldahl Nitrogen	820	8.9%	NA	NA
	353.2	Nitrate Nitrite as N	10	NC	10 J	7
	365.3	Phosphorous, Total	66	4.6%	NA	NA
	420.1	Phenolics, Total Recoverable	0.18	25%	NA	NA
	4500 CN E	Cyanide, Total	0.013U	NC	0.013 UJ	7
		Ammonia (as N)	82	0%	NA	NA
	4500 NH3 D	Ammonia as NH3	100	0%	NA	NA
	5220D	Chemical Oxygen Demand	9100	5.6%	NA	NA

Sample ID	Analytic al Test	Analytes	Results (mg/L)	RPD	Validated/Qualifi ed Result	Reason Code
	2540E	Total Volatile Solids	5600	24%	NA	NA
	2540B	Total Solids	8500	16%	NA	NA
		Total Nitrogen	820	8.9%	NA	NA

NA – not applicable

NC-not calculable

Method NO3NO2 Calc – Nitrogen, Nitrate-Nitrite Qualifications

Reason Codes

1 = preservation (received outside of temperature >10 degrees Celsius)

2= holding time exceedance

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason Code
	Test		Result		Result	
06 25 BUTCH	NO3NO2	Nitrate as N	5.5U H	mg/L	5.5 R	1,2
	Calc	Nitrite as N	2.5 U H	mg/L	2.5 R	1,2
		Nitrate Nitrite as N	5.5 U H	mg/L	5.5 R	1,2
06 25 OD	NO3NO2	Nitrate as N	1.1 U H	mg/L	1.1 R	1,2
STREAMS	Calc	Nitrite as N	0.50 U H	mg/L	0.50 R	1,2
		Nitrate Nitrite as N	1.1 U H	mg/L	1.1 R	1,2
06 25 BUTCH	NO3NO2	Nitrate as N	0.55 U H	mg/L	0.55 R	1,2
DUP	Calc	Nitrite as N	0.25 U H	mg/L	0.25 R	1,2
		Nitrate Nitrite as N	0.55 U H	mg/L	0.55 R	1,2
BUTCHER	NO3NO2	Nitrate as N	5.5 U H	mg/L		1,2
(6/26/19)	Calc	Nitrite as N	2.5 U H	mg/L	2.5 R	1,2
		Nitrate Nitrite as N	1.1 UH	mg/L	1.1 R	1,2
OD STREAMS		Nitrate as N	5.5 U H	mg/L	5.5 R	1,2

Sample ID	Analytical	Analyte	Laboratory	Units	Validated/Qualified	Reason Code
	Test		Result		Result	
(6/26/19)	NO3NO2	Nitrite as N	2.5 U H	mg/L	2.5 R	1,2
	Calc	Nitrate Nitrite as N	5.5 U H	mg/L	5.5 R	1,2
BUTCHER	NO3NO2	Nitrate as N	1.1 U H	mg/L	1.1 R	1,2
(6/27/19)	Calc	Nitrite as N	0.50 U H	mg/L	0.50 R	1,2
		Nitrate Nitrite as N	1.1 U H	mg/L	1.1 R	1,2
OD STREAMS	NO3NO2	Nitrate as N	5.5 U H	mg/L	5.5 R	1,2
(06/27/19)	Calc	Nitrite as N	2.5 U H	mg/L	2.5 R	1,2
		Nitrate Nitrite as N	5.5 U H	mg/L	5.5 R	1,2

mg/L – milligram per liter

U - the analyte was not detected at or above the reported value

H – Lab flag; Sample was prepped or analyzed beyond the specified holding time

Field Duplicate Assessment – no qualifications RPD = 0%

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
	Matrix spike/matrix spike duplicate recovery or RPD outside
4	limits
5	LCS recovery outside limits
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other

RPD-relative percent difference

APPENDIX C Pollutant Minimization Report 2010

2019 08 22 Permit Application Attachment 2 - 2019 OD Results

Prepared for:

StarKist Samoa

NPDES Brmit AS0000019

Submitted to:

U.S. Evironmental Potection Agency

American Samoa Environmental Potection Agency

Prepared by:

glatzel da costa (**gdc**) P.O. Box 1238 Trinidad, CA 95570

14 December **Q**10

StarKist Samoa Pollutant Minimization Plan: Final Report

1. Introduction

The StarKist Samoa (SKS) cannery discharges treated process wastewater through the Joint Cannery Outfall (JCO) into Outer Pago Pago Harbor under a National Pollutant Discharge Elimination Permit (NPDES: permit number AS0000019). Special condition A.2 of Part V of the current SKS NPDES permit requires the development and implementation of a Pollutant Minimization Plan (PMP). This report describes the sampling done based on the workplan¹ submitted to U.S. Environmental Protection Agency (USEPA) and the American Samoa Environmental Protection Agency (ASEPA). The report also presents the action proposed based on the result of the sampling. The NPDES permit requires assessment of copper, mercury, and zinc².

1.1 Purpose

The purpose of the PMP is to assess and identify the sources of pollutants in different waste streams in the SKS cannery and develop a plan tominimize the entry of these pollutants into the facility's wastewater and subsequent discharge into the receiving water. As stated in the NPDES permit the goal of the PMP "shall be to achieve as soon as practicable for the discharge tomeet water quality standards [for] copper, zinc, and mercury with a minimally sized mixing zone."

1.2 Background

SKS has two waste streams consisting of high strength waste and low strength waste. High strength waste is not discharged through the JCO (and is not regulated under NPDES permit AS0000019). Therefore, only the low strength waste stream is addressed in this report.

Whole effluent toxicity (WET) testing has been conducted on the final effluent from the StarKist Samoa cannery since the initial issuance of the NPDES permit. Prior to the current permit cycle (through 2007) acute WET testing was conducted on a regular basis. The source of acute toxicity was determined to the ammonia, which was and still is regulated by an effluent limitation and an approved mixing zone. The current permit requires semi-annual chronic WET testing, which has been done since May 2008. Testing for Cu, Zn, and Hg is also done on the samples collected for WET testing.

¹ Workplan for the StarKist Samoa Pollutant Minimization Plan. Prepared for StarKist Samoa. Submitted to U.S. Environmental Protection Agency and American Samoa Environmental Protection Agency. Prepared by gdc. 14 July 2010.

² With the exception of ammonia, no other toxic parameters of concern have been identified in previous priority pollutant scans. Additional priority pollutant scans will be performed as required by the current NPDES permit in year four of the permit term. The presence of ammonia is recognized as an unavoidable consequence of fish processing and is controlled by discharge limitations and an approved mixing zone.

Priority pollutant scans and routine discharge monitoring reports (DMRs) monitoring of the effluent have indicated that, in addition to tammonia, levels of copper, zinc, and mercury exceed or have the potential to exceed the American Samoa Water Quality Standards (ASWQS) and/or the USEPA National Recommended Water Quality Criteria (NRWQC) for these parameters. All of the parameters in question are currently discharged under NPDES permit limitations into approved mixing zones. The mixing zones are small, well within the zone of initial dilution (ZID), and result in compliance with water quality criteria within few seconds after discharge.

1.3 Approach

The approach the PMP was described in the PMP workplan and involves the sampling and analysis of in-plant waste streams at locations that provide information required todentify the sources of the parameters addressed (Cu, Zn, and Hg). The sampling was done at nine locations within the plant over a normal processing period at three hour intervals. These data were examined to identify potential sources.

1.4 Scope and Limitations

As mentioned above only the waste streams that are treated and discharged through the JCO were included. High strength waste streams were not sampled. This report describes the sampling procedures (Section 2), the results of the sample analyses (Section 3), and the proposed actions deemed practicable to address the discharge of the parameters.

2. Sampling Procedures

The sampling locations, frequency, methods, management, and analytical methods are described in this section.

2.1 Sampling Locations

Two sites were sampled to characterize the incoming seawater and raw freshwater used in cannery operations. In-plant process wastewater streams were selected based on the principal sources of contributions to the effluent and operational characteristics of the cannery as summarized in Table 1. A flow diagram for the SKS facility is shown in Figure 1.

The primary effluent streams, which make up the total flow to utfall, include thaw, butchering, spray cooling, can washer, boiler blowdown, and washwater. These six primary effluent streams, the final effluent at the permit specified sampling point 001, and the external input sources create a total of nine sources that were sampled. The selected sampling points are shown schematically in Figure 1.Actual physical sampling points representing these flows were determined based on consultation with SKS operations staff. The sampling points were:

- Point 1: Incoming freshwater prior toperations to be used as a control sample; sample was taken from the ASPA line entering the StarKist plant.
- Point 2: Incoming seawater prior toperations to be used as a control sample; sample was taken from the 6" PVC pipe at the thawing area that delivers water from the sea water pump.
- Point 3: Flow from thaw water; sample was taken in front of thaw area #7, where flows from other thaw tanks meet before flowing to the sump pit.
- Point 4: Flow from butchering (including flow from freezer if a combined sampling site is available); sample was taken in between butchering table #1 & #2 where the flows meet before flowing table sump pit.
- Point 5: Flow from spray cooling; sample was taken next to cooling zone #15 where all the flows from other cooling zones meet.
- Point 6: Can washer output; sample was taken athe can washer area next to the stairs that leads to the old QC office.
- Point 7: Flow from boiler blowdown; sample was taken just outside the boilers on the left side where the blow down flow exits.
- Point 8: Flow from wash down; sample was taken from the flow exiting the packing room before entering the sump pit.
- Point 9: Total effluent flow following DAF treatment at sampling point 001; sample was taken from the flow entering the wet well.

	Table 1. Table of Flows, Sources, and Treatment Technologies for StarKist Samoa, Inc Outfall No. 001							
Op	perations Contributing to Flow	Percent	of Flow	Trea	atment			
ltem ³	Description	Total Process Flow	Flow Through Outfall ²	Description	Codes⁴			
а	Freezer Condensate	0.4	0.4	DAF Unit	1-H, 2-C, 4-B			
b	Thaw Water + Can Washer + Boiler Blowdown	63.7	66.6	DAF Unit	1-H, 2-C, 4-B			
С	Butchering	1.7	1.8	DAF Unit	1-H, 2-C, 4-B			
d	Precooker	3.5	0.0	Ocean Disposal ⁵				
е	Spray Cooling	4.3	4.5	DAF Unit	1-H, 2-C, 4-B			
f	Press Scrap Reduction	Scrap Reduction 0.8 0.0 Ocean Disposal ⁵			Disposal ⁵			
g	Can Washer + Boiler Blowdown	(included in b)		DAF Unit	1-H, 2-C, 4-B			
h	h Washdown 25.6 26.7 DAF Unit 1-H, 2-C, 4							
¹ From N	¹ From NPDES renewal application Form 2C, Item II.B.							

² Permit basis is a maximum daily flow is 2.9 mgd.

³ Items referenced to Figure 1.

⁴ Codes from Table 2C-1 (Form 2C) of NPDES permit application: 1-H = Flotation; 2-C = Chemical Precipitation;

4-B = Ocean Discharge Through Outfall.

⁵ Barged to permitted offshore ocean dumping site - permit OD-93-01 Special

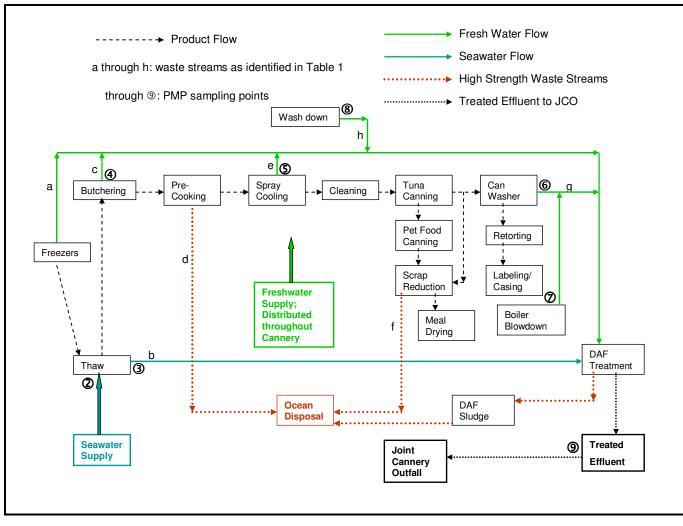


Figure 1 Flow Diagram and Proposed Sampling Points

2.2 Sampling Frequency

Four samples were collected at each sampling point. Samples were collected at three hour intervals during a normal production day. Nominal times of sampling were 09:00, 12:00, 15:00, and 18:00. Samples were taken within 20 minutes of the target times at all locations.

2.3 Sampling Methods

Sample bottles were prepared and supplied by the analytical laboratory conducting the analyses. Two sample bottles were filled for each sampling period at each of the designated sampling points, one for zinc and copper, and the other for low level mercury analysis. Depending on the effluent sampling point, sample bottles were filled directly from a spigot or lowered directly into the effluent stream and filled. Filled bottles were labeled with time, date, and sample location. Samples were stored on ice or refrigerated following collection.

2.4 Sample Management and Shipping

Samples were kept on ice until shipping. Samples were shipped the analytical laboratory (Columbia Analytical Services) by express package shipment (DHL) in ice chests with bagged ice. The chain-of-custody form is included with the laboratory report (Attachment 1).

2.5 Sample Analysis

All samples were analyzed for total metal concentration. Samples were analyzed as follows:

Copper:	Method 200.8 (Preconcentration and ICP-MS) with a target detection limit of ${\leq}0.01~\mu\text{g/l}$
Zinc:	Method 200.8 (Preconcentration and ICP-MS) with a target detection limit of ${\leq}0.1~\mu\text{g/l}$
Mercury:	Method 1631E (Oxidation, Purge and Trap, and CVAFS) with a target detection limit of $\leq 0.1 \text{ ng/l} (0.0001 \mu\text{g/l})$

3. Results of Analyses

Laboratory sampling results were assessed, summarized, and compared to the ASWQS criteria and NPDES permit limitations. The full laboratory report is included with all appropriate QA/QC documentation in Attachment 1 (provided on CD-ROM). Based on the results, potential sources of the three metals were identified. Applicable potential source control measures are described in Section 4.A discussion of the effluent values compared toroutine effluent monitoring is also presented.

3.1 Mercury

Results for total mercury are shown in Table 2.The ASWQS³ for total mercury is 0.050 μ g/l. The NPDES limitations for mercury are 1.80 μ g/l and 4.72 μ g/l for monthly average and daily maximum, respectively. None of the samples analyzed were reported with concentrations above the maximum daily NPDES limitations. Samples with concentrations above the ASWQS criterion are shaded in gold. The results are summarized as follows:

- Inflow water concentrations were below the ASWQS criterion. The fresh water supply to the cannery was 0.00060 µg/l (average of the four samples). The seawater inflow was typical of the receiving water as measured during the semi-annual receiving water in the vicinity of the discharge and at the reference station just outside the Harbor. For example the September 2010 receiving water values were between 0.00048 µg/l and 0.00937 µg/l. The average of the seawater supply concentrations for the four samples was 0.00276 µg/l, well below the criterion.
- In-plant waste stream concentrations were elevated for those streams where process water comes into direct contact with the tuna; thaw water, butchering, spray cooling, and washdown (in the packing room). The highest values reported were from the butchering operations.
- Effluent concentrations, following treatment, were above the ASWQS (but well below the effluent limitation) and nearly identical to the thaw water values. This is consistent with the relative volumes of the various in-plant flows with the thaw water and washdown being the primary contributors to the final effluent (see Table 1).

3.2 Copper

Results for total copper are shown in Table 2. The ASWQS for mercury is referenced to the NRWQC, which is $3.73 \ \mu g/l^4$. The NPDES limitations for copper are $58.42 \ \mu g/l$ and $117.42 \ \mu g/l$ for monthly average and daily maximum, respectively. None of the samples analyzed were reported with concentrations above the maximum daily NPDES limitations. Samples with concentrations above the ASWQS criterion are shaded in gold. The results are summarized as follows:

• Inflow fresh water concentrations were below the ASWQS criterion. The fresh water supply to the cannery was 0.869 µg/l (average of the four samples). The seawater inflow was <u>not</u> typical of the receiving water as measured during the semi-annual receiving water in the vicinity of the discharge and at the reference station just outside the Harbor. The values were elevated, and were the highest levels in any of the waste streams. During the September 2010 receiving water values were between 0.118 µg/l and 0.788 µg/l. Further investigation revealed that the seawater supply pump and the valves immediately upstream of the sampling point are treated with a copper based anti-seize compound, a normal and necessary practice for seawater supply lines. It is believed that the samples were inadvertently contaminated with the anti-seize compound and the samples are not representative of seawater influent copper concentrations.

³ American Samoa Water Quality Standards. 2005 Revision. Administrative Rule No. 006-2005. The criteria presented in this report are for Pago Pago Harbor:

⁴ The criteria continuous criterion (chronic effects criterion) and based on total recoverable copper using the default translator from dissolved to total in the NRWQC. The dissolved fraction criterion is 3.1 µg/l.

- In-plant waste stream concentrations were elevated for certain streams where process water comes into direct contact with the tuna; butchering, spray cooling, and washdown (in the packing room). Elevated concentrations were not apparent in the thaw water outflow (further indication the sea water inflow samples were contaminated). The highest values reported were from the butchering operations.
- Effluent concentrations, following treatment were below the ASWQS and well below the effluent limitation. Concentrations were somewhat elevated compared to the thaw water values, and reflect the contributions from the butchering, spray cooling, and washdown streams. The results are consistent with the relative volumes of the various in-plant flows with the washdown being the second most important contributor to the final effluent (see Table 1).

3.3 Zinc

Results for total zinc are shown in Table 3. The ASWQS for zinc is referenced to the NRWQC, which is $85.62 \ \mu g/l^5$. The NPDES limitations for zinc are 1138 $\mu g/l$ and 2284 $\mu g/l$ for monthly average and daily maximum, respectively. None of the samples analyzed were reported with concentrations above the maximum daily NPDES limitations. Samples with concentrations above the ASWQS criterion are shaded in gold. The results are summarized as follows:

- Inflow fresh water concentrations were below the ASWQS criterion. The fresh water supply to the cannery was 9.84 μ g/l (average of the four samples). The seawater inflow was <u>not</u> typical of the receiving water as measured during the semi-annual receiving water in the vicinity of the discharge and at the reference station just outside the Harbor. The values were elevated above what was expected, but were not the highest levels in any of the waste streams. During the September 2010 receiving water values were between 8.47 μ g/l and 0.51 μ g/l. It is believed that some or all of the seawater influent samples may have been inadvertently contaminated similar to the case for copper described above, but not as severely. These values are not necessarily representative of seawater influent zinc concentrations.
- In-plant waste stream concentrations were elevated for most of the streams where process water comes into direct contact with the tuna and/or with galvanized equipment such as fish boxes, piping, and similar equipment. Elevated concentrations were reported for thaw water, butchering, spray cooling, and washdown (in the packing room). Zinc concentrations were also elevated for the boiler blowdown, but not for the can washer outflow stream. The highest values reported were from the butchering operations.
- Effluent concentrations, following treatment were below the ASWQS for all but one sample and well below the effluent limitation. Concentrations were somewhat elevated compared to the thaw water values, and reflect the contributions from the other in-plant streams. The results appear consistent with the relative volumes of the various in-plant flows with the washdown being the second most important contributor to the final effluent (see Table 1).

⁵ The criteria continuous criterion (chronic effects criterion) and based on total recoverable zinc using the default translator from dissolved to total in the NRWQC. The dissolved fraction criterion is 81 μg/l.

	ercury (total, µg/l			
Waste Stream	Sample	Time	Resul	t
	SKS-1a	09:08	0.00058	J
	SKS-1b	12:08	0.00053	J
Butchering Outflow Spray Cooling Outflow Can Washer Outflow	SKS-1c	15:08	0.00063	J
	SKS-1d	18:08	0.00066	J
	Average		0.00060	
	SKS-2a	09:12	0.00492	=
Seawater Supply	SKS-2b	12:12	0.00352	=
Seawater Supply	SKS-2c	15:12	0.00139	=
	SKS-2d	18:12	0.00121	=
	Average		0.00276	
	SKS-3a	09:00	0.128	=
	SKS-3b	12:00	0.162	=
Thaw Water Outflow	SKS-3c	15:00	0.115	=
	SKS-3d	18:00	0.0652	=
	Average		0.1176	
	SKS-4a	09:02	2.260	=
	SKS-4b	12:02	2.160	=
Butchering Outflow	SKS-4c	15:02	0.132	=
	SKS-4d	18:02	0.390	=
	Average		1.2355	
	SKS-5a	09:04	0.042	=
	SKS-5b	12:04	0.263	=
Spray Cooling Outflow	SKS-5c	15:04	0.0255	=
Spray Cooling Outliow	SKS-5d	18:04	0.0611	=
	Average		0.0979	
	SKS-6a	09:15	0.00118	=
	SKS-6b	12:15	0.00143	=
Can Washer Outflow	SKS-6c	15:15	0.00117	=
	SKS-6d	18:15	0.00104	=
	Average		0.001205	
	SKS-7a	09:17	0.00375	=
	SKS-7b	12:17	0.00468	=
Boiler Blowdown	SKS-7c	15:17	0.00105	=
haw Water Outflow Butchering Outflow Bran Washer Outflow Boiler Blowdown	SKS-7d	18:17	0.00286	=
	Average		0.003085	
	SKS-8a	09:06	0.255	=
	SKS-8b	12:06	0.233	=
Washdown	SKS-8c	15:06	0.438	=
	SKS-8d	18:06	0.247	=
	Average	10.00	0.292	_
	SKS-9a	09:20		
	SKS-9a	12:20	<u>0.0973</u> 0.119	=
Outfall Effluent	SKS-90	12:20		=
			0.112	=
	SKS-9d	1820	0.125	=
	Average		0.1133	

Table 3. Copp	er (total, µg/l)		
Waste Stream	Sample	Time	Resul	t
	SKS-1a	09:08	1.01	=
	SKS-1b	12:08	0.866	=
Fresh Water Supply	SKS-1c	15:08	0.861	=
	SKS-1d	18:08	0.739	=
	Average		0.869	
	SKS-2a	09:12	16.0	=
	SKS-2b	12:12	50.3	=
Seawater Supply	SKS-2c	15:12	8.910	=
	SKS-2d	18:12	7.090	=
	Average		20.575	
	SKS-3a	09:00	0.894	=
	SKS-3b	12:00	1.460	=
Thaw Water Outflow	SKS-3c	15:00	0.761	=
	SKS-3d	18:00	0.910	=
	Average		1.006	
	SKS-4a	09:02	24.9	=
	SKS-4b	12:02	29.8	=
Butchering Outflow	SKS-4c	15:02	3.28	=
	SKS-4d	18:02	6.18	=
	Average		16.04	
	SKS-5a	09:04	4.06	=
	SKS-5b	12:04	6.09	=
Spray Cooling Outflow	SKS-5c	15:04	3.55	=
	SKS-5d	18:04	3.67	=
	Average		4.34	
	SKS-6a	09:15	1.59	=
	SKS-6b	12:15	1.31	=
Can Washer Outflow	SKS-6c	15:15	1.34	=
	SKS-6d	18:15	1.41	=
	Average		1.41	
	SKS-7a	09:17	1.700	=
	SKS-7b	12:17	1.090	=
Boiler Blowdown	SKS-7c	15:17	1.360	=
	SKS-7d	18:17	1.460	=
	Average		1.403	
	SKS-8a	09:06	6.100	=
	SKS-8b	12:06	5.150	=
Washdown	SKS-8c	15:06	8.870	=
	SKS-8d	18:06	2.650	=
	Average		5.693	
	SKS-9a	09:20	2.400	=
	SKS-9b	12:20	1.440	=
Outfall Effluent	SKS-9c	15:20	1.280	=
	SKS-9d	1820	1.910	=
	Average	1020	1.758	
Shaded cells indicate concentrations great than the	-	1	1.750	
"=" indicates parameter was detected at the concent				

Table 4. Zinc	(total, µg/l)			
Waste Stream	Sample	Time	Result	
	SKS-1a	09:08	13.8	=
	SKS-1b	12:08	10.3	=
Fresh Water Supply	SKS-1c	15:08	8.91	=
	SKS-1d	18:08	6.36	=
	Average		9.84	
	SKS-2a	09:12	19	=
	SKS-2b	12:12	39.2	=
Seawater Supply	SKS-2c	15:12	8.48	=
	SKS-2d	18:12	6.87	=
	Average		18.39	
	SKS-3a	09:00	96.6	=
	SKS-3b	12:00	159	=
Thaw Water Outflow	SKS-3c	15:00	107	=
	SKS-3d	18:00	352	=
	Average		178.7	
		09:02	885	=
			1080	=
Butchering Outflow			126	=
			416	=
	_		627	
		09:04	43.5	=
			74.6	=
Spray Cooling Outflow			63.2	=
			44.3	=
			56.4	
		09:15	5.65	=
			4.8	=
Can Washer Outflow			3.60	=
			5.35	=
			4.85	
		09:17	40.7	=
			20.2	=
Fresh Water Supply SKS-1c 15.08 8.91 SKS-1c 15.08 6.91 SKS-1d 18.08 6.33 Average 09.12 19 SKS-2a 09.12 39.2 SKS-2b 15:12 8.46 SKS-2c 15:12 8.46 SKS-2d 18:12 6.63 SKS-2d 18:12 6.63 SKS-3d 09.00 986 SKS-3d 12:00 195 SKS-3d 15:00 100 SKS-3d 15:00 100 SKS-3d 15:02 1080 SKS-4d 15:02 1080 SKS-4d 15:02 1080 SKS-4d 15:02 1080 SKS-5d 15:04 63.2 SKS-6d 15:15 34.0 <t< td=""><td></td><td></td><td>34.3</td><td>=</td></t<>			34.3	=
	28.8	=		
			31.0	
		09:06	644	=
			512	=
Washdown			477	=
			546	=
	_		545	
		09.20		=
				=
Outfall Effluent				=
				=
	010000	1020	11.4	-
	Average		81.9	

3.4 Effluent Monitoring Results

The semi-annual effluent toxicity monitoring results for the three metals considered in this report are shown in Table 5.Six monitoring events have been conducted under the current NPDES permit. The samples analyzed were a 24-hour, flow-weighted composites. Mercury and zinc are typically above the ASWQS criterion. Copper is typically below the ASWQS criterion, but the results do indicate a reasonable potential toxceed the criterion when statistically analyzed using the USEPA method for such an analysis. The results are all well below the NPDES permit limitations. It is noted that the limitations were based on effluent concentrations measured during the previous permit cycle. The low concentrations compared to the permit limitations are at least partly attributable topast improvements in plant operations, equipment, and housekeeping practices. A shift to canning loins with a concomitant reduction in whole fish processing may also be a factor.

	Table 5. Summary o May 2008 - Se	f Chemistry Resu ptember 2010 JCO E		moa
Sample			Constituent	
Date	Sampling Season	Copper (µg/l)	Zinc (µg/l)	Mercury (µg/l)
ASI	NQS Criterion	3.73	85.62	0.050
NPDES Dai	ly Maximum Limitation	117.22	2284	4.72
NPDES Mon	thly Average Limitation	58.42	1138	1.80
5/8/2008	2008 Non-tradewind	2.86	263	0.159
9/4/2008	2008 Tradewind	3.10	233	0.089
2/19/2009	2009 Non-tradewind	2.00	153	0.135
9/17/2009	2009 Tradewind	1.27	125	0.130
2/25/2010	2010 Non-tradewind	2.01	114	0.103
9/8/2010	2010 Tradewind	2.12	81.1	0.029

4. Conclusions and Proposed Action

Based on the results of the sampling and analysis described in this report the following conclusions and proposed actions are as follows for each constituent:

4.1 Mercury

The source of mercury is clearly from the tuna. There is no practicable way toreduce this source other than maintaining good housekeeping practices that involve clean-up of scrap that is removed during washdown activities. Plant operating staff will be instructed/reminded to sweep and remove obvious scrap material prior towashdown, as is the current practice. The unavoidable and uncontrollable mercury concentrations can be addressed by appropriate NPDES permit limitations and maintaining ampproved mixing zone. As described in previous mixing zone applications, the mixing zone for mercury is very small, extending only few meters from the diffuser and at depths below 150 feet. Water quality standards are achieved within a few seconds after discharge.

4.2 Copper

The primary source of copper is clearly from the tuna. Secondary sources from copper plumbing and fittings appear minor. There is no practicable way toreduce this source other than maintaining good housekeeping practices that involve clean-up of scrap that is removed during washdown activities. Plant operating staff will be instructed/reminded tosweep and remove obvious scrap material prior towashdown, as is the current practice. The unavoidable and uncontrollable copper concentrations can be addressed by appropriate NPDES permit limitations and maintaining an approved mixing zone. As described in previous mixing zone applications, the mixing zone for copper is very small, extending only a few meters from the diffuser and at depths below 150 feet. Water quality standards are achieved within a few seconds after discharge, and asindicated in Section 3.4 the water quality standards are generally met at the discharge point.

The source of the apparent sample contamination in the seawater influent flow will be further investigated and documented. A letter report will be provided tdJSEPA and ASEPA with the results of this investigation. The additional sampling and analysis is planned during the normal 2011 effluent toxicity monitoring event.

4.2 Zinc

The primary sources of zinc are clearly from the tuna and galvanized fish boxes and other equipment. Galvanized equipment is required in a marine environment to avoid excessive corrosion. There is no practicable way toreduce these sources other than maintaining good housekeeping practices that involve clean-up of scrap that is removed during washdown activities. Plant operating staff will be instructed/reminded toweep and remove obvious scrap material prior towashdown, as is the current practice. The unavoidable and uncontrollable zinc concentrations can be addressed by appropriate NPDES permit limitations and maintaining an approved mixing zone. As described in previous mixing zone applications, the mixing zone for copper is very small, extending only few meters from the diffuser and at depths below 150 feet. Water quality standards are achieved within a few seconds after discharge.

The source of the apparent sample contamination in the seawater influent flow will be further investigated and documented. A letter report will be provided tdJSEPA and ASEPA with the results of this investigation. The additional sampling and analysis planned during the normal 2011 effluent toxicity monitoring event.

ATTACHMENT 3

Ocean Dumping Monitoring Plan

engineers | scientists | innovators

OCEAN DUMPING RECEVING WATER QUALITY MONITORING PLAN

StarKist Samoa Co., American Samoa

Prepared for

United States Environmental Protection Agency 75 Hawthorne Street San Francisco, California, 94105

Prepared by

Geosyntec Consultants, Inc. 130 Stone Road West Guelph, Ontario N1G 3Z5

August 29, 2019

Project Number PH0094U

TABLE OF CONTENTS

1	Intr	oduction	.1
	1.1	Monitoring Plan Organization	.1
2	Per	mit Monitoring Requirements	.2
3	Sco	ppe of Work	.3
	3.1	Sample Collection Schedule	.3
	3.2	Sample Locations	.3
	3.3	Sampling Methodology	.4
4	Co	mmunication	.4
5	Rep	porting	.4
	5.1	Record Keeping During Sampling Events	.5
	5.2	Sampling Cruise Monthly Reports	.5
	5.3	Quarterly Reports	.6
	5.4	Annual Report	.7
	5.5	Final Summary Report	.7
	5.5	.1 Notice of Violation	.7
6	Hea	alth and Safety	.7
7	Qua	ality Assurance	.8
	7.1	Field Instrumentation	.8
	7.2	Field Duplicates	.9
	7.3	Decontamination Procedures	.9
8	Ref	erences	10

LIST OF TABLES

- Table 1: Median Permitted Not to Exceed Values by Parameter
- Table 2: Analytical Sampling Details
- Table 3: Ocean Dumping Log
- Table 4: Ocean Dumping Sampling Log

LIST OF FIGURES

Figure 1: Dump Site Location

Figure 2: Conceptual Sampling Stations

LIST OF APPENDICES

Appendix A: Report Forms

LIST OF ACRONYMS AND ABBREVIATIONS

ASEPA	American Samoa Environmental Protection Agency
m bws	meters below the water surface
MPRSA	Marine Protection, Research, and Sanctuaries Act
NMFS	National Marine Fisheries Service
OD	ocean dumping
THA	Task Hazard Analysis
TestAmerica	TestAmerica, Inc.
USCG	U.S. Coast Guard
USEPA	U.S. Environmental Protection Agency
USFWS	U.S. Fish and Wildlife Service
WPRFMC	Western Pacific Regional Fishery Management Council

1 INTRODUCTION

Starkist Samoa Co., a wholly owned subsidiary of the StarKist Co. (collectively referred to as (StarKist) is seeking to obtain an Ocean Dumping permit for the ocean disposal of high-strength fish processing wastes from its tuna processing facility in American Samoa (the Facility). StarKist previously obtained a series of ocean dumping permits¹ issued by the Regional Administrator of U.S. Environmental Protection Agency (USEPA) Region 9 for the disposal of fish processing wastes off American Samoa that met USEPA's ocean dumping criteria at 40 C.F.R. Parts 227 and 228.

StarKist has developed this Monitoring Plan to document receiving water quality monitoring activities to be conducted during Ocean Dumping (OD) activities in American Samoa. The data collected under this program will be used to monitor conditions around the OD location (Figure 1). The scope of the monitoring plan was developed based on the previous permit, OD98-01 Special, and the plan was developed to comply with previous permit requirements pursuant to the Marine Protection, Research, and Sanctuaries Act (MPRSA). Although the 1998 Special Permit was never made effective,² StarKist understands from recent discussions with USEPA that it would be the basis and framework for a future ocean disposal permit for the StarKist waste streams. This monitoring plan specifically addresses terms and conditions outlined in Special Conditions 5 – Dump Site Monitoring in the 1998 Special Permit.

This receiving water Monitoring Plan does not address Special Condition 3 which includes the analysis of fish processing wastes from the StarKist onshore storage tank and toxicity testing and reporting requirements. The Sampling and Analysis Plans (SAPs) describing procedures for collecting and analyzing fish processing wastes and performing bioassay testing are discussed in separate plans. The Ocean Disposal Bioassay Testing SAP was developed June 24, 2019. The previously developed Wastewater Characterization for Ocean Disposal SAP dated June 14, 2019 does not reflect the use of an onshore storage tank; therefore, a new SAP will be developed and provided to USEPA for review prior to the start of ocean dumping.

1.1 Monitoring Plan Organization

This monitoring plan is organized as follows:

- Section 2 describes monitoring frequency requirements.
- Section 3 describes sample collection, including sampling locations, sampling methodology, and analyses.
- Section 4 summarizes required communication with agencies and other organizations.

¹ The previous permits included VCS Samoa Packing under separate permit numbers. However, the former VCS facility, now owned by Samoa Tuna Processors, is not seeking an ocean disposal permit.

² Letter from Carl L. Goldstein, USEPA, dated March 4, 2002.

- Section 5 presents the reporting schedule.
- Section 6 describes Health and Safety practices to be implemented during monitoring.
- Section 7 summarizes oversight requirements.
- Section 8 describes permit requirements.
- Section 9 describes quality assurance practices which will be observed during monitoring.
- Section 10 presents references used in the development of this monitoring plan.
- Appendix A provides reporting form templates which will be used during monitoring and reporting activities.

2 PERMIT MONITORING REQUIREMENTS

The receiving water quality monitoring program for dumping of fish processing wastes in the ocean is intended to document effects of disposed wastes on the receiving waters, biota, and beneficial uses of the receiving waters. The monitoring program is required for compliance with USEPA's Ocean Dumping Regulations and permit terms and conditions.

The permit requires the following:

- Sampling Frequency: OD events may occur multiple times per month, and record-keeping is required for each OD event. Sampling (referred to as a "monitoring cruise") will be completed once per month during active dumping.
- Required Notification: American Samoa Environmental Protection Agency (ASEPA) shall be notified 48 hours before commencing scheduled monitoring activities.
- Summary of Sampling Requirements: During each monitoring cruise, the disposal plume from the disposal vessel shall be sampled by taking discrete water samples for the measurement of parameters listed in Table 1. Control samples and monitoring samples are required from depths of 1, 3, and 10 meters below the water surface (m bws).
- Reporting Requirements: Reports will be routinely submitted to USEPA, ASEPA, National Marine Fisheries (NMFS), U.S. Fish and Wildlife (USFWS), and Western Pacific Regional Fishery Management Council (WPRFMC) documenting the findings of monitoring. Monthly, quarterly, and annual reports will be prepared.

3 SCOPE OF WORK

3.1 Sample Collection Schedule

Receiving water quality sampling will be completed once per month during active dumping. OD events may occur multiple times per month, and record-keeping is required for each OD event.

Sampling will be scheduled during the first two weeks of each month to allow time for lab analysis and reporting. Additionally, because of the time required to ship samples from American Samoa to the laboratory and because of the short hold time of some of the analyses, sampling will be coordinated with flight schedules.

3.2 <u>Sample Locations</u>

During each monitoring cruise, the disposal plume from the disposal vessel shall be sampled by taking discrete water samples. Conceptual Monitoring Stations are depicted in Figure 2; actual monitoring stations will be selected during the disposal event in accordance with the Special Conditions for Dump Site Monitoring where the determination of the disposal location within the dump site are described.

The following discrete samples will be collected:

- <u>Control Samples</u> (i.e., background samples) will be collected from Station 1 prior to beginning dumping. Water samples will be collected from depths of 1, 3, and 10 m bws.
- <u>Monitoring Samples</u> will be collected from five stations in the center of the discharge plume (Figure 2). Station 1 sampled for the control sample prior to dumping at the center of the dump site. The dumping vessel will move 1.1 nautical miles up current from the center of the disposal site. Station 1 will be sampled again from a point within the plume immediately after discharge operations cease. Stations 2, 3, 4, and 5 will be sampled in order, moving in the prevailing surface current direction³, after Station 1 is sampled. Station 5 will be the last sample collected. All stations will be sampled at depths of 1, 3, and 10 m bws.
- <u>Sampling Stations</u> are located at the starting position (Control Sample Station 1), 0.25 nautical miles (nmi) down current (Station 2), 0.5 nmi down current (Station 3), 1.0 nmi down current (Station 4), and at the leading edge of the plume, but within the plume (Station 5).

³ The vessel Captain will observe the ocean conditions upon arrival at the center of the dump site, noting the wind direction and observed current direction. These observations will allow the Captain to determine the location within the dump site to begin discharge operations.

3.3 <u>Sampling Methodology</u>

Samples will be collected using a self-closing 3-liter water sampling device (e.g., Van Dorn type sampler) deployed at each depth (1, 3, and 10 m bws). Samples will be decanted into bottleware from the sampling device. Samples and duplicates will be collected and preserved in accordance with Table 2.

Sample containers will be properly preserved, labeled, logged onto a chain-of-custody form, and placed into an iced cooler prior to shipment to the analytical laboratory. Field documentation will be maintained in accordance with details presented in Section 5.1.

The sampling device will be rinsed three times with water obtained at each sampling depth prior to filling. The sampling device and any other reusable equipment will be decontaminated between sampling stations in accordance with Section 9.6.

No investigation derived waste is expected to be generated during sampling. All disposable equipment, including gloves, will be disposed as municipal solid waste.

4 COMMUNICATION

U.S. Coast Guard Liaison Officer (CGLO) Pago Pago and ASEPA will be notified a minimum of 24 hours before scheduled monitoring activities as follows:

- The waste transporter shall provide telephone notification of sailing to CGLO Pago Pago at 684-633-2299 and the ASEPA at 684-633-2304 during working hours (7:00 a.m. to 3:30 p.m. Samoa Standard Time). The following information will be provided:
 - Planned time of departure;
 - Estimated time of arrival at dump site;
 - Estimated time of departure from dump site; and
 - Estimate time of return to port.
- The waste transporter shall immediately notify CGLO Pago Pago and ASEPA about changes in the estimated time of departure greater than two hours.

5 **REPORTING**

Records will be kept during all discharge events and during all monitoring events.

Geosyntec[▷]

5.1 <u>Record Keeping During Sampling Events</u>

In addition to the requirements listed in Section 5.1, the following shall be recorded during all sampling events. These details will be recorded on Table 4 and additionally reported in the navigational plot created after the disposal event.

- Sampling Details:
 - Time each sample is collected
 - Sampling locations at each station and method of determination
 - Observations of plume color (e.g., Forel-Ule color scale <u>http://forel-ule-scale.com</u>), odor, floating materials, oil & grease, scum, and foam
 - Temperature measurements and pH at each sample depth
- All sightings of fish, sea turtles, sea birds, cetaceans
 - Time, location, bearing
 - Species name
 - Approximate number of individuals.

5.2 Sampling Cruise Monthly Reports

Monthly receiving water quality monitoring reports shall be submitted to USEPA Region 9, ASEPA, NMFS, USFWS, and WPRFMC with the 3-month reports as specified in Section 5.4.

The reports shall include:

- Cover Page:
 - Monitoring vessel
 - Discharge vessel
 - Chief investigator
 - Number of trips
 - Gallons for the month
 - Running time on trips
 - Discharge time on trips

- Average gallons per minute (GPM) discharge rate
- Average trip time
- A compilation of all Table 3's created during ocean dumping activities
- Table 4 created during sampling
- The navigational plot created to record sampling activities
- Report Form 1 (Appendix A), which records total volume generated (gal/day), volume ocean disposed (gal/day), and monthly volumes of alum (aluminum sulfate) and coagulant polymer added to fish processing waste streams.

5.3 **Quarterly Reports**

Quarterly reports shall be submitted to USEPA Region 9, ASEPA, NMFS, USFWS, and WPRFMC within 45 days of the end of the preceding 3-month period for which they were prepared.⁴

Quarterly reports shall include:

- Cover page with list of attachments
- A compilation of disposal event records
- The monthly Sampling Cruise Monitoring Reports
- The navigational plots created during disposal and sampling activities
- Results of Monthly Monitoring Analyses.
- A comparison with the permit limits as required on Report Form 1 (Appendix A).
 - Report Form 1 (Appendix A) which records daily volume of fish processing waste (total combined waste streams of DAF Sludge, Pre-Cooker, and Fishmeal Sump) generated at the StarKist facility and pumped into the onshore storage tanks; and the daily volume of fish processing waste disposed at the ocean disposal site.
- Report Form 2 (Appendix A), which records the monthly amount of alum (aluminum sulfate) and coagulant polymer added to the fish processing waste streams.

⁴ The reports shall be submitted within this time unless extenuating circumstances are communicated to USEPA Region 9 and the ASEPA in writing.

- Letter to ASEPA reporting exceedances and irregularities during the 3-month period.
- List of cc'd individuals

5.4 <u>Annual Report</u>

Annual reports shall be submitted within 45 days of the end of the last quarterly report for that year to USEPA Region 9, the ASEPA, NMFS, USFWS, and WPRFMC.

- Annual compilation of data
- Statistical analysis of sample variability between stations and within samples for each parameter
- Detailed discussion of results
- Summary table of Monthly Report Form 1 (Appendix A) data.

5.5 Final Summary Report

A Final Summary Report shall be submitted to USEPA Region 9, ASEPA, NMFS, USFWS, and WPRFMC 60 days after permit expires. The purpose of the Final Summary Report is to summarize all data collected to characterize fish processing wastes and results of the dump site monitoring program, including a comparison with permit limits and a detailed discussion of the summary results.

5.5.1 Notice of Violation

Upon detection of a violation of any permit condition, the permittee shall send a written notification of this violation to USEPA Region 9 and the ASEPA within five working days and a detailed written report of the violation shall be sent to the agencies within 15 working days. This notification shall pertain to any permit limits (Table 1) that are exceeded, violation of volume limits (transport and dispose a combined waste stream total maximum of 200,000 gallons per day of fish processing wastes), and any disposal operation that occurs outside the disposal site.

6 HEALTH AND SAFETY

Prior to mobilization for the first monitoring cruise, a task hazard analysis (THA) will be created to prepare the sampling team for hazards they may encounter during sampling.

The THA will include emergency contact information, a summary of the work process and associated hazards and mitigators, and a list of required personal protective equipment. The THA will be updated, as necessary, and be available to the sampling team during sampling activities.

7 QUALITY ASSURANCE

Qualifications of the on-site Principal Investigator in charge of the field monitoring program at the dump site will be submitted to USEPA Region 9 and ASEPA for approval whenever a new Principal Investigator is retained. The Principal Investigator will have experience in coordinating and leading water quality studies, collection of deep-water samples, and operation and maintenance of field sampling equipment.

Notification of any change in this individual will be submitted to USEPA Region 9 and ASEPA at least 7 days before the planned dumping is scheduled.

7.1 <u>Field Instrumentation</u>

Field equipment needed for sampling will be properly maintained and calibrated prior to and during continued use to assure that measurements are as accurate as possible. Personnel will follow manufacturers' instructions to evaluate whether instruments are functioning within their established operational ranges. Calibration data will be recorded in the field logbook or on field data sheets.

Other requirements relating to calibration are as follows.

- To be acceptable, a field test must be bracketed between acceptable calibration results.
- The first check of the day may be an initial calibration, but the second check must be a continuing verification check.
- Each field instrument must be calibrated prior to use at no more than 24-hour intervals.
- The calibration must be verified at no more than 24-hour intervals during use and at the end of use if the instrument will not be used the next day or within a time period greater than 24 hours.
- Initial calibration and verification checks must meet the acceptance criteria are as follows:
 - Temperature: +/-0.2 °C against an NIST-traceable thermometer
 - pH: +/-0.2 pH units of stated buffer value
 - Dissolved Oxygen: +/-0.3 mg/L
 - Turbidity: Manufacturer specified
- If an initial calibration or verification check fails to meet the acceptance criteria, the instrument should be immediately recalibrated or removed from service.

Geosyntec consultants

- If a calibration check fails to meet the acceptance criteria and it is not possible to reanalyze the samples, the following actions should be taken:
 - Results collected between the last acceptable calibration check and the failed calibration check should be reported as estimated (qualified with a "J");
 - A narrative of the problem should be included; and
 - The time period between verification checks should be shortened, or the instrument should be repaired or replaced.
- If historically generated data demonstrate that a specific instrument remains stable for extended periods of time, the interval between initial calibration and calibration checks may be increased.
 - Acceptable field data should be bracketed by acceptable checks. Data that are not bracketed by acceptable checks must be qualified.
 - The time interval should be selected based on the shortest interval that the instrument maintains stability.
 - If an extended time interval is used and the instrument consistently fails to meet the final calibration check, then the instrument may require maintenance to repair the problem or the time period between calibrations must be shortened.
- For continuous monitoring equipment, field data should be bracketed by acceptable checks or the data must be qualified.

7.2 <u>Field Duplicates</u>

Field duplicates are two samples (an original and a duplicate) of the same matrix, to the extent practicable, collected at the same time and location and using the same sampling techniques. Field duplicate samples are used to evaluate the precision of the overall sample collection and analysis process. Field duplicates will be collected as indicated in Table 2 and analyzed for the same set of analytes as for the regular sample collected. Exact locations of duplicate samples and sample identifications will be recorded in the field logbook or on field forms.

7.3 <u>Decontamination Procedures</u>

Reusable equipment will be decontaminated between sample stations. Equipment will be washed with phosphorous-free detergent (e.g., Liquinox[®]) and rinsed with tap water.

8 **REFERENCES**

CH2M Hill. 1997. Revised Report for Joint Cannery Ocean Dumping Studies in American Samoa.

Table 1 - Median Permitted Not to Exceed Values by Parameter

Parameter	Meadian Not to Exceed the Given Value in Oceanic Waters
Turbidity	0.2 NTU
Total Phosphorus	11.0 µg-P/L
Total Ntirogen	115 µg-N/L
Chlorophyll a	0.18 µg/L
Light Penetration	
Depth	150 feet
	Not less than 80% of saturation or less than 5.5 mg/L.
	If the natural level of dissolved oxygen is less than 5.5
	mg/L, then the natural dissolved oxygen level shall
Dissolved Oxygen	become the standard.
	The pH range shall be 6.5 to 8.6 pH units and within
pН	0.2 pH units of the level which occurs naturally.

Notes

1. Values in this table are from §24.0206(p) Standards of Water Quality - Ocean Waters from 2013 Revision American Samoa Water Quality Standards, Administrative Rule No. 001-2013.

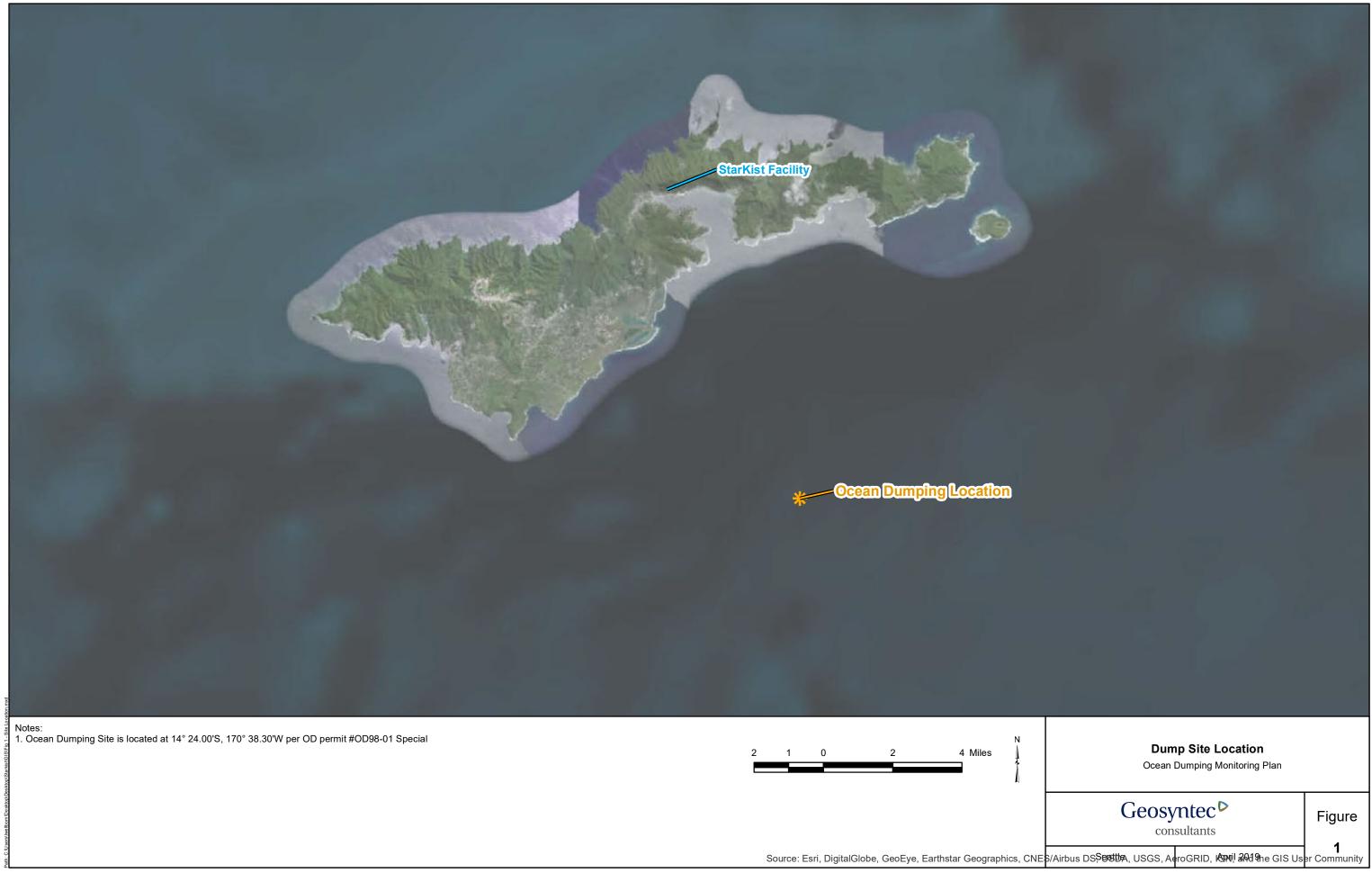
	Analyte(s)	EPA Method	Volume Required (mL)	Container	Preservation	Hold Time	Duplicate Collection Frequency	Required Method Detection Limit (mg/L)	Expected Method Detection Limit (mg/L)
	Total Suspended Solids	Standard Method 2540D/EPA Method 160.2	1000	Plastic 1 liter - unpreserved	Cool to ≤6°C	7 days	1/20	10	10
	Total Volatile Suspended Solids	EPA 160.4	1000	Plastic 1 liter - unpreserved	Cool to ≤6°C	7 days	1/20	10	10
	Oil and Grease	EPA 1664	1000	Glass 1 liter - unpreserved	Cool to <6°C Preserve with H2SO4 to pH < 2	28 days	1/20	10	5
	Total Phosphorus	EPA 365.4	250	Plastic 250ml - with Sulfuric Acid (same bottle as TKN)	Cool to <6°C Preserve with H2SO4 to pH < 2	28 days	1/10	1	0.05
Nitrogen	TKN No2+No3	EPA 351.2: TKN	250	Plastic 250ml - with Sulfuric Acid (same bottle as TP)	Cool to $\leq 6^{\circ}$ C Preserve with H ₂ SO ₄ to pH < 2	28 days	1/10	1	0.2
Total	No2+No3	EPA 353.2/SM4500-NO-3-F	250	Plastic 250ml - unpreserved	Cool to $\leq 6^{\circ}$ C Preserve with H ₂ SO ₄ to pH < 2	28 days	1/10	1	0.1
	Ammonia	EPA 350.1	250	Plastic 250ml - with Sulfuric Acid	Cool to $\leq 6^{\circ}$ C Preserve with H ₂ SO ₄ to pH < 2	28 days	1/10	1	0.1
	Chlorophyll a	SM 10200H (Field Filtered)	100	plastic or glass container	Frozen, Dark	28 days (dark)	1/10	Not stated	0.02
	field parameters (Temperature, tubidity, pH, light penetration depth, DO)	Field Water Quality Meter, secchi disk	N/A	N/A	N/A	Measured immediately	N/A	pH: 0.1 units	pH: 0.1 units turbidity: 0.01 NTU DO: 0.1 mg/L

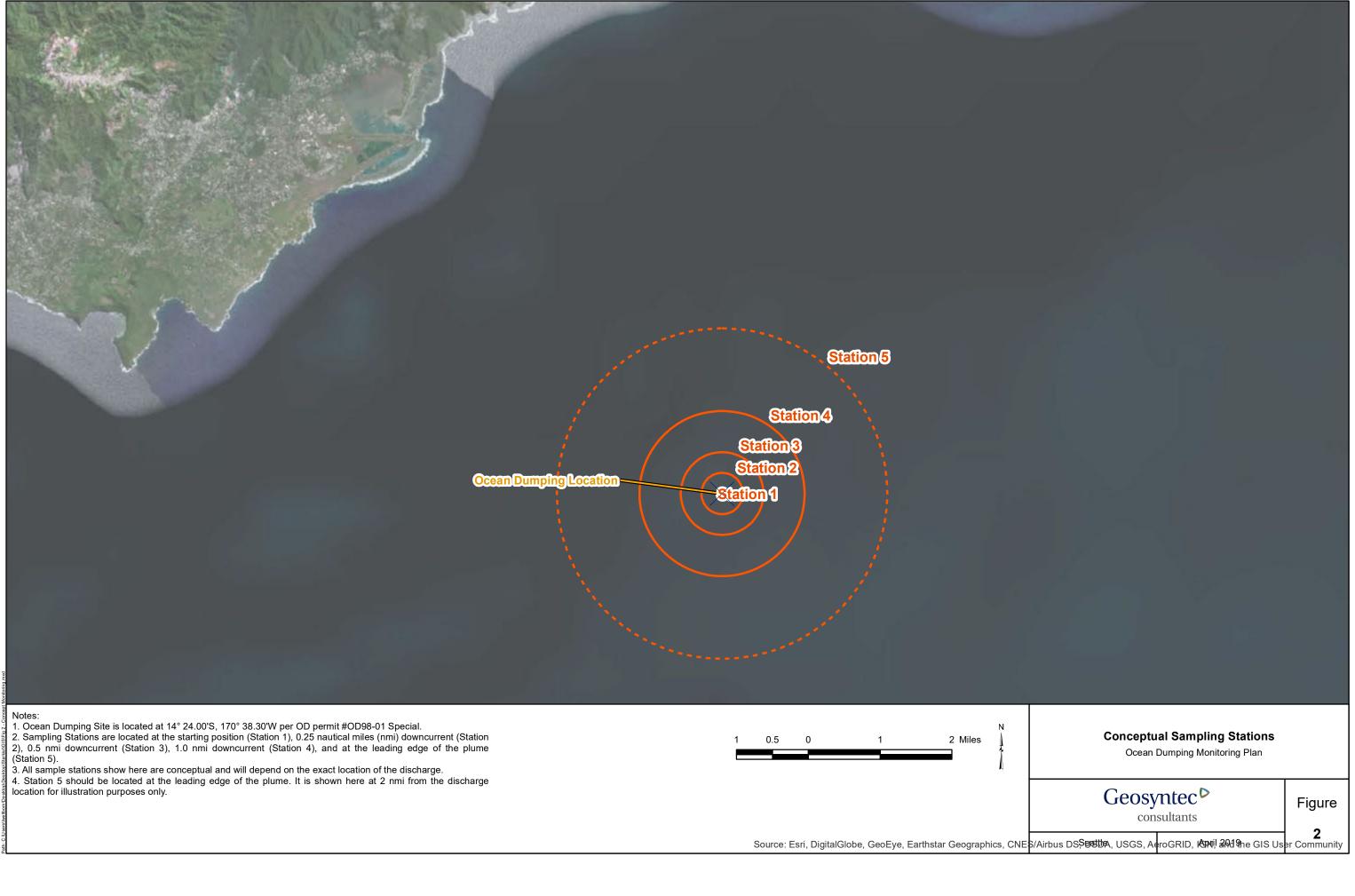
Notes:

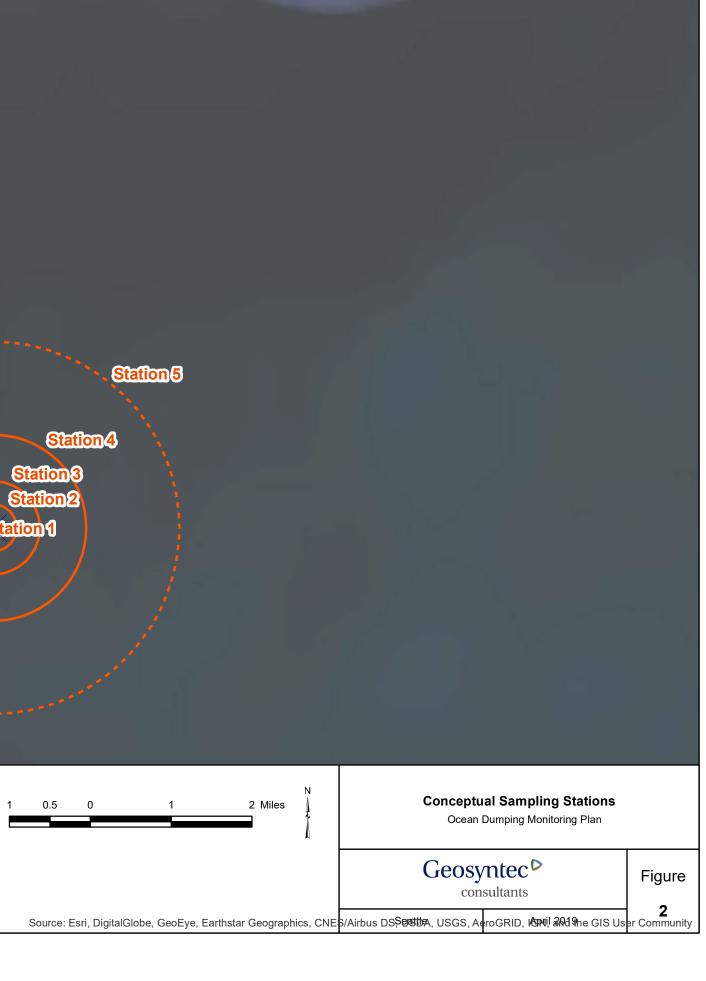
1. Hold times are listed from time of sample collection.

2. Field water quality meter shall be YSI 6-Series/EXO Sonde or equivalent. YSI Sonde User Manual found at <u>https://www.ysi.com/File%20Library/Documents/Manuals/069300-YSI-6-Series-Manual-RevJ.pdf</u>

3. QA/QC to comply with protocols and references in Special Condition 3.1.2 $\,$.


4. The required MDL is listed in Table 4 of Section 7.2.4 of GDC 16696 - Special Conditions of Monitoring Dump Site (1998).


Table 3 - Ocean Dumping Log


Permit #: ###

Date:			Voyage #:		Volume Loaded	:	
Vessel:		- v	Wave height		SK		Gallons
	Begin Loading SK		Visibility		Other		Gallons
	Finish Loading SK				Total		Gallons
Notifications mad	le: ASEPA	_GCLO _					
Time (every 15 min during dumping)	Task Performing		Position (Long)	Wind Speed	Wind Direction	Speed (kts)	Course (True)
	Departure						
	Arrival at dump site						
	Finish Discharge						
	Depart dump site						
	Return to port/Secure SK Dock						
	: At Beginning of discharge					Discharge Pattern	
-	Fime:mins	-		Discharge:	kts. Dis	scharge direction	:
Discharge Rate:		Gallons/m				Total Time Run	:
-	n of any floating material (incl gre						
Precense of previ	ous disposal plume and unusual of	ccurrences:					
Deviation from n	ormal disposal pattern:			son for deviation:			
MASTER OF V	ESSEL TO SIGN: Disposal Ope	rations occ	urred in the	manner require	d by the permit:		

<u>Date</u> Vessel			Direction/Speed): Current Direction:		_Sampling	Personnel: ave Height:	:					
Time	Station	Depth (meters)	Latitude	Longitude	Temp (°C)	pH	Secchi Disk Reading	Odor	Floating Material	Oil & Grease	Scum/Foam	Color
		1										
	Control	3										
		10										
	Station 1	3										
	Station 1	10										
		1										
	Station 2	3					1 1					
		10										
		1										
	Station 3	3										
		10										
	Ge et	1					4 -					
	Station 4	3 10						4				
		10					+ +					
	Station 5	3										
		10										
				I.								
	of fish, sea turtles, sea	birds, cetae							1			
Time	Species		Lo	cation	Веа	aring	# of indi	viduals				
									l			
				C								
				4								

APPENDIX A Report Forms

APPENDIX A - REPORT FORM 1

Monthly Volumes of Starkist Samoa Co. Fish Processing Wastes Generated Per Day and Volume of Fish Processing Wastes Disposed at the Ocean Site

		Month:		
OD 93-01	DAF Sludge Generated (gallons/day)	Cooker Water Generated (gallons/day)	Press Liquor Generated (gallons/day)	Total Generated (gallons/day)
Permit Limits	TBD	TBD	TBD	TBD

Date	DAF Sludge Generated (gallons/day)	Cooker Water Generated (gallons/day)	Press Liquor Generated (gallons/day)	Total Generated (gallons/day)	Volume Ocean Disposed (gallons/day)
		· ·			
	-				
Monthly Totals	0	0	0	0	0

Note:

TBD - Permit Limits will be populated upon issuance of the permit

An asterick (*) to the right of the fish processign waste volume signifies that a violation of the permit limit has occurred.

The number of violations are shown in monthly totals row.

Monthly quantities of alum (aluminum sulfate) and coagulant polymer added to the fish processing waste streams:

Aluminum sulfate:Pounds/MonthCoagulant polymer:Pounds/Month

APPENDIX A - REPORT FORM 2 Cumulative Yearly Data on Fish Processing Wastes Generated at Starkist Samoa Co and Disposed at the Ocean Site MPRSA 102 Special Permit **#OD**

Reporting Period:	From		То				
Month & Year	DAF Sludge Generated (gallons/month)	Cooker Water Generated (gallons/month)	Press Water Generated (gallons/month)	Total Generated (gallons/month)	Aluminum sulfate (pounds/month)	Coagulate Polymer (pounds/month)	Volume Ocean Disposed (gallons/month)
				Ť			
				*			
Cumulative Yearly Totals	0	0	0	0	0	0	0

Note:

A separate table shall be prepared for each calendar year.

StarKist Samoa CO Ocean Dump Site Monitoring Reports - Analytical Results

		TSS	TVSS	ТР	TN	0& G	Ammonia
Date	Depth (m)	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
	• • • •	SKS	sks	SKS	SKS	SKS	SKS
Station 1	control - 1						
	control - 3						
	control - 0						
Station 1	1						
	3						
	10						
Station 2	1						
	3						
	10						
Station 3	1						
	3						
	10						
Station 4	1						
	3						
	10						
Station 5	1						
	3						
	10						
		TSS	TVSS	ТР	TN	O&G	Ammonia
Date	Depth (m)	TSS mg/L	TVSS mg/l	TP mg/l	TN mg/l	O&G mg/l	Ammonia mg/l
Date	Depth (m)						
Date Station 1	control - 1	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
	control - 1 control - 3	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1	control - 1	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
	control - 1 control - 3 control - 0 1	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1	$\begin{array}{c} control - 1 \\ control - 3 \\ control - 0 \\ \hline 1 \\ 3 \end{array}$	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1 Station 1	control - 1 control - 3 control - 0 1 3 10	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1 Station 1	control - 1 control - 3 control - 0 1 3 10 1	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1 Station 1	$\begin{array}{r} control - 1\\ control - 3\\ control - 0\\ \hline 1\\ 3\\ \hline 10\\ \hline 1\\ 3\\ \end{array}$	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1 Station 1 Station 2	control - 1 control - 3 control - 0 1 3 10 1 3 10 1 3 10 1 3 10	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1	control - 1 control - 3 control - 0 1 3 10 1 3 10 1 3 10 1 1 3	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1 Station 1 Station 2	control - 1 control - 3 control - 0 1 3 10 1 3 10 1 3 10 3 10 3 10 3 3	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1 Station 1 Station 2 Station 3	control - 1 control - 3 control - 0 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1 Station 1 Station 2	control - 1 control - 3 control - 0 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1 Station 1 Station 2 Station 3	control - 1 control - 0 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 3 10 1 3 3 10 1 3 3	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1 Station 1 Station 2 Station 3 Station 4	control - 1 control - 3 control - 0 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1 Station 1 Station 2 Station 3	control - 1 control - 3 control - 0 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1 Station 1 Station 2 Station 3 Station 4	control - 1 control - 3 control - 0 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 3	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l
Station 1 Station 1 Station 2 Station 3 Station 4	control - 1 control - 3 control - 0 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l

TSS is reported as non-filterable residue

TVSS is reported as volatile non-filterable residue