2. EXPERIMENTAL

2.1 Test System

Water was characterized for physical and chemical properties by accredited Institute Alpha (Ulm, Germany) following common DIN or EN guidelines and methods resulting in the following (non-GLP):

2.1.1 Drinking (Tap) Water

Drinking (tap) water was collected on 13-Jan-14 from Ulm, Southern Germany.Total water hardness (EN 11885:2009):3.10 mmol/L (calculated from Mg and Ca)
(Deutsche Härtegrade:17.4°d)TOC (total organic carbon, EN 1484:1997):0.75 mg/LDOC (dissolved organic carbon, EN 1484: 1997):0.75 mg/LpH (DIN 38 404-C5):7.23Silt content (EN 872 Whatman GF 6):< 0.1 mg/L</td>Electric conductivity (at 25°C, EN 27888:1993)766 µS/cm

2.1.2 Surface (River) Water

Surface water was collected on 09-Sep-13 from the River Danube in Ulm, Southern Germany. Total water hardness (EN 11885:2009): 3 20 mmol/L (calculated from Mg and Ca)

Total water hardness (EIN 11005.2009).	5.20 mmon/L (calculated from Mg and Ca)
	(Deutsche Härtegrade:17.9°d)
TOC (total organic carbon, EN 1484:1997):	1.9 mg/L
DOC (dissolved organic carbon, EN 1484: 1997):	1.7 mg/L
pH (DIN 38 404-C5):	8.16
Silt content (EN 872 Whatman GF 6):	3.1 mg/L
Electric conductivity (at 25°C, EN 27888:1993)	584 µS/cm

Water was stored at room temperature in the dark when not in use.

2.2 Analytical Test and Reference Item

An analytical standard of chlorpropham purchased commercially from Sigma Aldrich (see APPENDIX 1 for Certificate of Analysis) was used as test / reference item:

Chlorpropham -NHCO₂CH(CH₃)₂

IUPAC name: Isopropyl 3-chlorocarbanilate

Molecular formula: $C_{10}H_{12}CINO_2$

Molecular mass: 213.7 g/mol

The analytical standard was stored at room temperature when not use.

2.3 Analytical Method

2.3.1 Apparatus

2.3.1.1 Laboratory Equipment

Mettler-Toledo XP205DR analytical balance for analytical standard.

Vortex mixer REAX top, Heidolph.

Ultrasonic bath USC 600T, VWR international bvba.

Typical glassware and laboratory equipment.

All the glassware was cleaned in a laboratory dishwasher and air-dried before use.

2.3.1.2 LC-MS/MS System

AB Sciex API 5500 triple quadrupole LC-MS/MS system, equipped with TurboIonspray ESI source, Agilent 1290 Infinity Series HPLC system (vacuum solvent degasser, binary HPLC pump, column oven), and CTC Analytics HTC-Pal Autosampler, Analyst 1.6.2 Instrument control and data acquisition software.

Column:

Supelco Ascentis Express C_{18} , 2.7 µm particle size, 50 mm length, 2.1 mm i.d. Pre-column: Phenomenex C_{18} , 4 mm length, 3.0 mm i.d.

2.3.2 Solvents and Chemicals

Methanol, Promochem, HPLC grade. Acetonitrile, Promochem, HPLC grade. Millipore water, supply at PTRL Europe. Formic acid, Sigma Aldrich, 98-100%.

2.3.3 Preparation of Standard Solutions

A stock solution of chlorpropham was prepared in acetonitrile as follows e.g.:

Substance name	Weight [mg]	Dissolve in [mL]	Obtain [mg/mL]
Chlorpropham (purity 99.7 %)	10.06	10	1.0

Fortification solutions of chlorpropham with concentrations of 10, 0.10 and 0.010 μ g/mL were prepared in acetonitrile by accurate dilution of the stock solution.

Calibration solutions for chlorpropham were prepared by volumetric dilution in acetonitrile to obtain a concentration of 10 μ g/mL and in water containing 0.1% formic acid to obtain a concentration of 0.10 μ g/mL (intermediate solutions).

PTRL Europe ID P 3187 G

The intermediate solutions were diluted in water containing 0.1% formic acid to obtain concentrations from 0.030 to 10 ng/mL of chlorpropham.

For preparation of matrix-matched standards calibration solutions in solvent were diluted in drinking and surface water (both acidified at 0.1% formic acid) resulting in concentrations of 0.10 and 1.0 ng/mL.

All standard solutions were stored refrigerated when not in use.

2.3.4 Stability of Standard Solutions and Extracts

Stability of stock solutions is proven for at least 11 days under refrigerated conditions by comparing two solutions diluted from an old and a freshly prepared stock solution. Stability of calibration solutions is proven for at least 6 days under refrigerated conditions (see Table 4).

Selected fortified water samples were re-injected after at least 5 days of refrigerated storage (as shown in Table 5). The results obtained were lower by more than 20 %, thus indicating that stability of the analyte in water samples is limited.

2.3.5 Effects of Matrix on Analyte Response

No significant effects of matrix ($\leq 20\%$ enhancement or suppression) on LC-MS/MS response were observed (see Table 3).

2.3.6 Residue Analysis

- 1. 1.0 mL of drinking or surface water was dosed into an autosampler vial.
- 2. 10 µL of the corresponding fortification solution was added, if necessary.
- 3. 10 µL of 10% formic acid in water was added to each sample.
- 4. The sample was mixed using a vortexer.
- 5. LC-MS/MS analysis.

2.4 LC-MS/MS Analysis

The final extracts were analyzed by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS).

LC Conditions

LC System	Agilent 1290 Infinity HPLC system (vacuum solvent degasser, binary HPLC pump, column oven), and CTC Analytics HTC-Pal Autosampler.
LC Column	Supelco Ascentis Express C_{18} column: Length: 50 mm, i.d.: 2.1 mm, particle size: 2.7 μ m.
LC Injection Volume	40 μL.

Page 14

	PTR	L Europe ID P 3187 G			Page 15
LC Method	Solvent A: Solvent B:	Water containing 0.1% of formic acid Methanol containing 0.1% of formic acid			
	Mobile Phase Composition:				
	Time (min)	Flow rate (mL/min)	% A	% B	100
	0.00	0.400	80	20	
	2.00	0.400	80	20	7 1 1 2 1
	2.10	0.400	0	100	100
	5.00	0.400	0	100	Strate
	5.10	0.400	80	20	and the state
	8.00	0.400	80	20	1
Retention Time	Chlorpropham: a	approx. 3.3 min.			1
Column oven temperature	35 °C				

MS Conditions

The $[M+H]^+$ ion of chlorpropham at 214 m/z was used as parent ion for MS/MS detection. The MS/MS transition to the daughter ion at 172 m/z was used for quantification of the analyte. A 2nd MS/MS transition (214 m/z -> 126 m/z) was used for quantitative confirmation.

MS System	Applied Biosystems MDS Sciex API 5500 triple quadrupole LC/MS/MS system with Turbolonspray (ESI) source.		
Ion Source Conditions ESI Positive Polarity	Source temperature: Gas supply (GS 1): Gas supply (GS 2) Curtain gas: CAD gas: Entrance potential: IonSpray voltage: Resolution Q1: Resolution Q3:	400°C 40 (arbitrary units) 60 (arbitrary units) 12 (arbitrary units) Medium 10 V 4500 V unit unit	
MS/MS Conditions	MS/MS transition for quantification: Collision energy (CE): Cell exit potential (CXP): Dwell time:	214 m/z > 172 m/z 13 V 16 V 350 ms	
	Declustering potential (DP): MS/MS transition for confirmation: Collision energy (CE): Cell exit potential (CXP): Dwell time:	66 V 214 m/z > 126 m/z 33 V 12 V 350 ms	
	Declustering potential (DP):	66 V	

Figure 1 shows the product ion spectrum for chlorpropham. The quantitative determination was carried out by external standardization using calibration solutions in solvent. Calibration functions ranging from 0.030 to 10 ng/mL were used to evaluate the extracts.

2.5 Calculations

When water samples are analysed by direct injection (DI-)LC/MS/MS no recovery calculations are required (according to SANCO/825/00 rev. 8.1). Concentration C used for storage stability calculations are calculated by the LC/MS software based on external calibration.