

Development of NAMs to predict acute toxicological responses

David Allen, PhD ILS, Contractor supporting NICEATM

December 17, 2019

*ILS staff provide technical support for NICEATM, but do not represent NIEHS, NTP, or the official positions of any federal agency

Endpoint	OECD Method	Estimated Animal Use
	420 (Fixed Dose Procedure)	6-12
Acute oral toxicity	423 (Acute Toxic Class)	5-12
	425 (Up-and-Down Procedure)	6-12
Acute dermal toxicity	402	8
	402	Limit: 6
Acute inhalation toxicity	403	Full: 30
	436 (ATC)	6-12
Skin irritation	404	1-3
Eye irritation	405	1-3
	406 (Guinea pig Maximization Test)	15-30
Skin sensitization	406 (Buehler Test)	30
	429 (Local Lymph Node Assay)	16-20
TOTAL		36-86

Acute study*	2012*	2013*	2014*	2015*	2016*	2017*
Oral lethality	324	248	328	268	322	254
Dermal lethality	292	257	313	255	267	234
Inhalation lethality	264	217	248	254	270	246
Eye irritation	291	261	273	251	263	239
Skin irritation	270	254	268	258	259	238
Skin sensitization	247	237	262	267	255	240

- Much fewer studies are submitted each year for new active ingredients (n~10)
- Most animal use is for formulations and thus provides the largest opportunity for animal savings

*from EPA OPP Update - ICCVAM Public Forum 2018 https://ntp.niehs.nih.gov/iccvam/meetings/iccvam-forum-2018/08-epa-opp.pdf

Roadmap 101: Starting with the End User in Mind

	Regulatory Toxicology and Pharmacology 94 (2018) 183-196				
ELSEVIER	Contents lists available at ScienceDirect Regulatory Toxicology and Pharmacology journal homepage: www.elsevier.com/locate/yrtph	CUTANEOUS AND OCULAR TOXICOLOGY 2019, VOL. 38, NO. 2, 141-155 https://doi.org/10.1080/15569527.2018.154 REVIEW ARTICLE United States regula	tory requirements for skin and eye irritation te	Taylor & Francis Tyder & Francis Croup () Check for updates	
Status of acute syste regulatory agencies Judy Strickland [®] , [*] , Amy J Joanna Matheson ⁴ , Anna David Mattie ⁸ , Suzanne O [*] IIS, P.O. Box 13501, Research Trimgle F [*] PETA International Science Constrtutu [*] Center for Dng Evaluation and Research, 20093, USA	emic toxicity testing requirements and data uses by U.S.	Neepa Y. Choksi ^a , James Tru Tao ¹ , Krystle Yozzo ¹ , Andrew Casey ¹ and David Allen ^a ⁴ Integrated Laboratory Systems, Inc. Safety Commission, Rockville, MD, US Effectiveness Directorate, Air Force I Aberdeen Proving Ground, MD, USA Drug Evaluation and Research, U.S. Food and Drug Administration, Silve	ax ^a , Adrienne Layton ^b , Joanna Matheson ^c , David Mattie ^d , Timoth J. McDougal ⁹ , Jill Merrill ^b , Donnie Lowther ¹ , Joao Barroso ¹ , Brenc Morrisville, NC, USA: ^b Division of Pharmacology and Physiology Assessment, U.S. JSA; ⁹ U.S. Consumer Product Safety Commission, Rockville, MD, USA; ⁴ Bioeffects I Research Laboratory, Wright-Patterson AFB, OH, USA; ⁴ Research Institute of Chen ⁴ , ¹ Office of Pesticide Programs, U.S. Environmental Protection Agency, Washingtr Food and Drug Administration, Silver Spring, MD, USA; ^b Dermatologic and Dent er Spring, MD, USA; ⁰ Office of Cosmetics and Colors, U.S. Pod and Drug Adminis tory for Alternatives to Animal Testing, Institute for Health and Consumer Pr tory for Alternative to Animal Testing. Institute Foreignet MC Consumer Pr tory for Alternative to Animal Testing Institute for Health and Consumer Pr tory for Alternative to Animal Testing Institute for Health and Consumer Pr tory for Alternative to Animal Testing Institute for Health and Consumer Pr tory for Alternative to Animal Testing Institute for Health and Consumer Pr tory for Alternative to Animal Testing Institute for Mealth and Consumer Pr theorem Physical Physics Anagement Regulatory Agency, Otta	ny Varney [®] , Jenny Ja Linke ^K , Warren S. Consumer Product Division, Human nical Defense, U.S. Army, on, DC, U.S.4, ⁹ Center for al Drug Products, U.S. tration, University otection, Ispra, Italy; nwa, Canada; ¹ National	A Strategic Roadmap for Establishing New Approaches to Evaluate the Safety of Chemicals and Medical Products in the United States
 ⁴ U.S. Consumer Product Safety Commission ⁶ Office of Particle Program, U.S. Briven ⁶ Office of Particle Program, U.S. Briven ⁶ U.S. Anr Force, Air Force Research Labora ⁶ Oracle for Food Safety and Health Alm ¹ National Toxic loogy Program Interagency 12233, Research Triangle Park, NC 27709, 12233, Research Triangle Park, NC 27709, A R T I C L E I N F O ⁸ Krywerds: Acute systemic toxicity ⁸ Atta Safety and Health Alm ⁹ National Toxic loogy Program Interagency. ⁹ A R T I C L E I N F O ⁸ Krywerds: ⁹ Acute systemic toxicity ⁹ Atta Safety and Health Alm ⁹ Atta Safety and Park Almontonic Park Acute Systemic toxicity ⁹ Atta Safety Almontonic Park Acute Systemic toxicity ⁹ Atta Safety Almontonic Park Acute Systemic toxicity ⁹ Atta Safety Almontonic Production Safety Almontonic Park Acute Systemic toxicity ⁹ Atta Safety Almontonic Park Acute Safety Acute	https://doi.org/10.1007/s00204-018-2341-6 REGULATORY TOXICOLOGY Skin sensitization testing needs and data uses by US reguland research agencies Judy Strickland ¹ • Amber B. Daniel ¹ · David Allen ¹ · Cecilia Aguila ² · Surender Ahir ³ • Evisabel Craig ⁵ · Dori Germolec ⁶ · Chandramallika Ghosh ⁴ · Naomi L. Hudson ⁷ · Abigail David M. Lehmann ⁹ • Joanna Matheson ¹⁰ · Emily N. Reinke ¹¹ · Nakissa Sadrieh ¹² · Stat Nicole Kleinstreuer ¹³ • Received: 1 August 2018 / Accepted: 23 October 2018 / Published online: 30 October 2018 • Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract United States regulatory and research agencies may rely upon skin sensitization test data to associated with dermal exposure to chemicals and products. These data are evaluated to ensu cause unreasonable adverse effects to human health when used appropriately. The US Cons sion, the US Environmental Protection Agency, the US Food and Drug Administration, the C Administration, the National Institute for Occupational Safety and Health, and the US Depa agencies of the Interagency Coordinating Committee on the Validation of Alternative Metho to identify opportunities for the use of non-animal replacements to satisfy these testing need identifies the standards, test guidelines, or guidance documents that are applicable to satisfy the current use of animal testing and flexibility for using alternative methodologies; inforr tests to fulfill the needs for skin sensitization data; and whether data from non-animal alter by these US federal agencies.	(دی که	of Environmental Health Sciences, Morrisville, NC, USA est data are required or considered by chemical regulation authorities product hazard labelling and/or to assess risks for exposure to skin- combination of animal welfare concerns and interest in implementing levance has led to the development of non-animal skin- and eye- fy opportunities for regulatory uses of non-animal replacements for needs and uses for these types of test data at U.S. regulatory and arified. y and non-regulatory testing needs of U.S. Interagency Coordinating Uternative Methods (ICCVAM) agencies for skin and eye irritation test- includes the type of skin and eye irritation data required by each on context: hazard classification, potency classification, or risk assess- nether alternative on on-animal tests are acceptable. Information on om non-animal test methods also was collected. 5 U.S. agencies is the willingness to consider non-animal or alternative uraged to consult with the relevant agency in designing their testing d acceptance of alternative testing methods, a dialog on the confi- pter public health and the environment must be undertaken at	ARTICLE HISTORY Received 23 August 2018 Revised 16 October 2018 Accepted 18 October 2018 Irritation testing: skin Irritation testing: alternative approaches; non-animal methods; regulatory requirements; corrosive	Image: Contract of the subscription
	Keywords Skin sensitization testing · Alternative approaches · Non-animal methods · Regula	atory requirements			

• Identifies requirements, needs, and decision contexts for each endpoint

Table 2. Results of comparison analysis for oral & dermal formulation acute studies						
Rat	Rat Oral Hazard Category (mg/kg)					
Hazard	EPA I	EPA II	EPA III	EPA IV		
Category (mg/kg)	≤50	>50 – ≤500	>500 – ≤5000	>5000		
EPA I ≤200	1	0	0	0		
EPA II >200 – ≤2000	0	2	2	0		
EPA III >2000 – ≤5000	0	23	133	28		
EPA IV >5000	0	28	173	203		
Total	1	53	308	231		

US Environmental Protection Agency Office of Pesticide Programs

Guidance for Waiving Acute Dermal Toxicity Tests for Pesticide Formulations & Supporting Retrospective Analysis

November 9, 2016

3.0 Waiver Guidance.

The agency believes this retrospective analysis fully supports the conclusion that waivers may be granted for acute dermal toxicity studies for formulated pesticide products. Applicants should submit formal waiver requests as part of their registration application through existing processes.⁷. Waiver requests should contain all relevant information to support the waiver (e.g., acute oral LD₅₀ and dermal irritation study data) and cite this guidance.

https://www.epa.gov/sites/production/files/2016-11/documents/acute-dermal-toxicity-pesticide-formulations_0.pdf

The acute toxicity estimate (ATE) of ingredients should be considered as follows:

- Include ingredients present at 1% or greater with a known acute toxicity, which fall into any of the GHS acute toxicity categories.
- Ignore ingredients that are presumed not acutely toxic (e.g., water, sugar).
- Ignore ingredients if the oral limit test does not show acute toxicity at 2,000 mg/kg/body weight.

The ATE of the mixture is determined by calculation from the ATE values for all relevant ingredients according to the following formula below for Oral, Dermal or Inhalation Toxicity:

$$\frac{100}{\text{ATE}_{\text{mix}}} = \sum_{\eta} \frac{\text{C}_{\text{i}}}{\text{ATE}_{\text{i}}}$$

where: C_i = concentration of ingredient i n ingredients and i is running from 1 to n ATE_i = Acute Toxicity Estimate of ingredient I

EPA Categories				
UNITED STATES	I (≤ 50 mg/kg)			
Environ Manager	II (>50 ≤ 500 mg/kg)			
PROTECTION	III (>500 ≤ 5000 mg/kg)			
Hazard	IV (>5000 mg/kg)			

	Van Cott et al. 2018 - Additivity					
ln vivo	I	II	III	IV	Total	
Т	0	1	0	0	1	
II	0	12	42	19	73	
Ш	0	7	69	45	121	
IV	0	0	5	10	15	
Total	0	20	116	74	210	

Correct classification:43% (91/210)Over classification:6% (12/210)Under classification:51% (107/210)

	Corvaro et al. 2016 - Additivity					
In vivo	I	II	ш	IV	Total	
Т	0	0	0	0	0	
II	0	6	9	0	15	
ш	0	1	51	30	82	
IV	0	1	9	92	102	
Total	0	8	69	122	199	

Correct classification: 75% (149/199)Over classification:6% (11/199)Under classification:19% (39/199)

- EPA pilot program: GHS Mixtures Equation Pilot
 - OPP has been accepting submissions of acute toxicity data paired with calculations to support evaluations of pesticide product formulations
 - Includes conventional pesticides and antimicrobial cleaning product
 - NICEATM data analyses ongoing and will compare to the trends seen above

ICCVAM Workshop on Acute Oral Toxicity Modeling

- April 11-12, 2018 at NIH
- Scientists were invited to submit in silico models that use chemical structure information to predict LD50 values and hazard categories
 - Largest set of curated LD50 data ever assembled: ~21,000 LD50 values for ~15,000 chemicals
 - 139 Models, 35 Groups (Academic, Industry, Govt), 8 Countries
 - Attendance: 90 in-person, 170 Webcast
 - Consensus model developed

Acute Oral Lethality Consensus Modeling

CATMoS: <u>Collaborative</u> <u>Acute</u> <u>Toxicity</u> <u>Mo</u>deling <u>S</u>uite

 Consensus models for individual chemicals leverage the strengths of each contributing in silico model and their overall predictions

	Very Toxic		Non-Toxic		EPA		GHS	
	Train	Eval	Train	Eval	Train	Eval	Train	Eval
Sensitivity	0.87	0.70	0.88	0.67	0.81	0.62	0.80	0.58
Specificity	0.99	0.97	0.97	0.90	0.92	0.86	0.95	0.90
Balanced Accuracy	0.93	0.84	0.92	0.78	0.87	0.74	0.88	0.74
<i>In vivo</i> Balanced Accuracy	0.	81	0.	89	0.	82	0.	79

	LD50	values	LD50 values
	Train	Eval	In Vivo
R2	0.85	0.65	0.80
RMSE	0.30	0.49	0.42

 The consensus predictions perform just as well as replicate *in vivo* data do at predicting oral acute toxicity outcome

Workshop

SHARE THIS:

https://ntp.niehs.nih.gov/go/atwksp-2019 🖓

Mind the Gaps: Prioritizing Activities to Meet Regulatory Needs for Acute Systemic Lethality

October 30-31, 2019 Porter Neuroscience Research Center National Institutes of Health Bethesda, Maryland, USA

- Co-organized by PCRM and NICEATM
- Participants included stakeholders from government, industry, NGOs
- Discussion topics included:
 - Estimating the LD50 of a chemical mixture/formulated product
 - Identifying gaps where model (or assay) development or optimization is needed
 - Pinpointing the types of mechanistic information that would be useful
 - Establishing the feasibility of using artificial intelligence in model development

- Analysis of in vivo test variability need it to establish confidence
 - Ideally focus the analysis on guideline-like studies (or in comparison to an overall analysis)
- Additivity EPA-OPP pilot + existing publications
 - Can we identify non-toxics without in vivo testing?
- Explore adding biological/mechanistic information to complement in silico predictions
 - Critical to include metabolism
- Consider AOPs to organize available information (and identify where information gaps exist)
 - NOTE: can be very simple and don't require lengthy process
- Critical to it all: transparency and training

Workshop on Acute Inhalation Lethality

Check for

Alternative approaches for acute inhalation toxicity testing to address global regulatory and non-regulatory data requirements: An international workshop report

Amy J. Clippinger^{a,*}, David Allen^b, Annie M. Jarabek^c, Marco Corvaro^d, Marianna Gaça^e, Sean Gehen^f, Jon A. Hotchkiss^g, Grace Patlewicz^h, Jodie Melbourne^a, Paul Hinderliterⁱ, Miyoung Yoon^j, Dongeun Huh^k, Anna Lowit^l, Barbara Buckley^c, Michael Bartels^m, Kelly BéruBéⁿ, Daniel M. Wilson^g, Ian Indans^o, Mathieu Vinken^p

Toxicology in Vitro 52 (2018) 131-145

	Contents lists available at ScienceDirect	元 Toxicology in Vitro	-
	Toxicology in Vitro	Tiv	An i Bandari Tana I An Ang A Ang Ang A Ang Ang Ang Ang Ang Ang Ang Ang Ang Ang Ang Ang Ang Ang Ang Ang Ang
LSEVIER	journal homepage: www.elsevier.com/locate/toxinvit		

Review

E

Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity

Amy J. Clippinger^{a,*}, David Allen^b, Holger Behrsing^c, Kelly A. BéruBé^d, Michael B. Bolger^e, Warren Casey^f, Michael DeLorme^g, Marianna Gaça^h, Sean C. Gehenⁱ, Kyle Glover^j, Patrick Hayden^k, Paul Hinderliter^l, Jon A. Hotchkiss^m, Anita Iskandarⁿ, Brian Keyser^o, Karsta Luettichⁿ, Lan Ma-Hock^P, Anna G. Maione^k, Patrudu Makena^o, Jodie Melbourne^a, Lawrence Milchak^g, Sheung P. Ng^q, Alicia Paini^r, Kathryn Page^s, Grace Patlewicz^t, Pilar Prieto^r, Hans Raabe^c, Emily N. Reinke^u, Clive Roper^v, Jane Rose^w, Monita Sharma^a, Wayne Spoo^o, Peter S. Thorne^x, Daniel M. Wilson^m, Annie M. Jarabek^y

- NIH, Porter Neuroscience Center
- Co-organized by the PETA
 International Science Consortium
 and NICEATM

Designing a Non-Animal Testing Approach

Adverse Outcome Pathways – Acute Exposures to Inhaled Materials

Target Site Exposure	Molecular Initiating Events	Cellular Key Events	Tissue / Organ Key Events	Organism / Population Responses
 Solubility Vapor pressure Particle size, density, distribution Chemical reactivity 	 Oxidation of cellular molecules Acetylcholinesterase inhibition Cytochrome C oxidase inhibition DNA/protein alkylation Modulation of ion channels Receptor binding e.g., Activation of EGFR (via phosphorylation) Activation of TRPA1 receptor Activation of glucocorticoid receptor Activation/inhibition of G protein coupled receptors Inhibition of muscarinic acetylcholine receptors Inhibition of NMDA receptors Binding to hormone receptor 	 ROS formation Antioxidant (e.g., glutathione) depletion Inhibition of energy (ATP) production Cytotoxicity Collagen deposition Increased mucous production Cytoskeleton disruption Cytokine/chemokine production Surfactant depletion Modulation of signal transduction pathways Inhibition of nucleotide synthesis Protein modification Modulation of protein synthesis Effects on the blood Vitamin interference 	 Cell proliferation Inflammatory response Cell transformation Squamous cell metaplasia Loss of epithelial barrier function Reduced ciliary beat frequency Goblet (mucous) cell hyperplasia, metaplasia, and proliferation Respiratory failure Tracheitis Bronchiolitis Alveolitis Pulmonary edema Bronchoconstriction Alveolar distention Smooth muscle remodeling Change in lung mechanics (resistance, compliance, 	 Systemic toxicity Acute lethality Target organ effects (e.g., hepatotoxicity) Airway hyperreactivity Chemical narcosis

Recent and Ongoing Efforts for Acute Exposures to Inhaled Materials

Toxicology in Vitro 58 (2019) 245-255

Validation of the CULTEX[®] Radial Flow System for the assessment of the acute inhalation toxicity of airborne particles

results, the methodology was optimi

established. Cell viability of A549 cell

independent laboratories. Cytotoxicity

used as an indicator of toxicity. Subst

decreased below 50% (prediction more

100 µg/cm²). Results were then comp

with a specificity of 83% and a sense

between-laboratory reproducibility rs

In summary, the CULTEX* RFS w method for the qualitative assessmen

Amelie Tsoutsoulopoulos^{a,}, Katrin Gohlsch^b, Niklas Möhle^c, Andreas Breit^b, Sebastian Hoffmann^e, Olaf Krischenowski^{c,d}, Harald Mückter^b, Thomas Gudermann^b, Horst Thiermann^a, Michaela Aufderheide^{c,d}, Dirk Steinritz^{a,b}

* Bundeswehr Institute of Pharmacology and Taxicology, Munich, Germany Walther-Structh Institute of Pharmacology and Taxicology, Ludwig-Maximilians-Universitä, Munich, Germany ⁶ Ualtex* Laboratories GmbH, Hannover, Germany ⁴ Cultex* Technology GmbH (Jomerly Cultex* Laboratories GmbH), Hannover, Germany ^{*}sch consulting = service, Padeithorn, Germany

ARTICLEINFO

Keywords: CULTEX* RFS Acute inhalation toxicity In vitro Air-liquid interface Validation A B S T R A C T The CULTEX* Radial Flow System (F airborne particles at the air-liquid int energal anolicability of the CULTEX*

> Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway *In Vitro* Human Airway Model

Check for updates

George R. Jackson, Jr., Anna G. Maione, Mitchell Klausner, and Patrick J. Hayden

Abstract

Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal (in vitro) test for determining acute inhalation toxicity using the Epi-Airway[™] in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1-2 and EPA Acute Inhalation Toxicity Category I-II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity.

Contents lists available at ScienceDirect Toxicology Letters journal homepage: www.elsevier.com/locate/toxlet

Toxicology Letters 316 (2019) 119-126

Exposure of 19 substances to lung A549 cells at the air liquid interface or under submerged conditions reveals high correlation between cytotoxicity *in vitro* and CLP classifications for acute lung toxicity

Katrin Gohlsch^a, Harald Mückter^a, Dirk Steinritz^{a,b}, Michaela Aufderheide^c, Sebastian Hoffmann^d, Thomas Gudermann^a, Andreas Breit^{a,*}

^a Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany ^bBundeswhr Institute of Pharmacology and Toxicology, Munich, Germany ^c Caltex+Technology GmbH, Hannover, Germany ^d SEH Consulting + Services, Paderborn, Germany

NFO

_ ____

ABSTRACT

In who experiments are still widely used for the testing of lung toxicity but there is an ethical and legal obligation to replace, reduce and refine animal testing. Lung A549 cells could serve as an *in vitro* indicator for acute lung toxicity but little data about the correlation of the cytotoxicity in A549 cells and data leading to CLP classifications are available. We exposed A549 cells to 19 CLP-classified substances with doses of 25, 50, and 100 gg/ m^2 either under submerged (SME) condition or with aerosols at the air-fiued interface (ALIF) and determined accuracy, precision, sensitivity and the F1 score with the CLP classifications H330, H332, or H335. When data from both exposure methods were combined, we found accuracies of 0.84 ± 0.05 , precisions of 0.74 ± 0.1 , sensitivities of 0.93 ± 0.08 and F1 scores of 0.82 ± 0.04 . Separated from each other, ALIF exposure was more sensitivite at any dose but, at higher doses, also less accurate and precise compared to SME. Considering the 19 substances tested, our data suggest that cytotoxicity in A549 cells could be a reliable *in vitro* indicator for *in vivo* toxicity. Thuy, we discuss how A549 could be integrated into validation test guidelines.

- Webinar Series (n=21)
- IATAs, In silico models, In vitro systems
- www.piscltd.org.uk/inhalation-webinars

- Preliminary inventory pulled from eChemPortal and EPA sources
 - Approximately 1500 CASRN; but not all have structure information (i.e., defined chemical)
 - Appears weighted towards less toxic classifications
 - Hoping for additional data from ECHA
- But...
 - Curation and clean up critical
 - Both electronic and manual
 - Can't eliminate expert judgement
 - Transparency

CASRN	LC50	LC50 unit	source
79-11-8	1268	mg/L	eChemPortal
79-11-8	0.18	mg/L	ChemIDplus

Acute Inhalation Toxicity Data – Units matter...

Results and d	iscussion			CASRN		LC50	LC50	unit	source		
				79-11-8		1268	mg/L		eChemF	Portal	
Effect levels				79-11-8		0.18	ma/L		ChemID	elus	
Sex:		male/femal	е				5				
Dose descriptor:		LC50			J.S. Nationa ₋ibrary of M	edicine TOX	NET TOXICOLOGY DATA NETWORK		Help FAQs TOXN	ET Fact Sheet Training Ma	anual & Scheduli
Effect level:		> 1 268 mg/	'L air lanalytical)	TOXNET > Ch	hemID <i>plus</i> >	Substance		Registry Number	er 👻 equals 🔍	79-11-8	Search
Based on:		test mat.		See.	A TO Lite	DXNET DATABASE Browse • Advanced	Download	Start New O	Query Modify G	Query Search His	tory
Exp. duration: 4 h				Substance Name: Chloroacetic acid [BSI:ISO]							
				RN: 79-11 UNII: 5GI InChlKey	1-8 084Y128 • FOCAL		UHEFEAOYSA-N			0	<u>المجمعة</u>
Acute Toxicity: inha	alation			Note Urinary me	etabolite of	vinyl chloride.		Molecular Fo		CI	Na+ `OH ⊕
Currently viewing:	001 Key E	xperimental result						Molecular W 94.4967	eight		3D
Administrative data	Data source	Materials and methods	Results and discussion	All Class	ifications	Links to Resources	Names & Synonyms Regist	try Numbers Struct	ure Descriptors Toxici	ty Physical Properties	
				Toxicity Organisn	n Test Type	Route Re	ported Dose Effe	ect Source			
Duration of exposure:		ca. 4 h		mouse	LD50	subcutaneous 250	0ma/kg (250ma/kg)	Archives Inter Vol. 116, Pg.	nationales de Phari 154, 1958.	macodynamie et de Th	herapie.
Concentrations:		512 (± 150) mg/	m3 and 1268 (± 77) mg	J/m3	LC50	nhalation 180 ntraperitoneal 166	0mg/m3 (180mg/m3)	Gigiena Truda and Occupati Russian Phar	a i Professional'nye onal Diseases. Vol. macology and Toxic	Zabolevaniya. Labor H 18(9), Pg. 32, 1974. cology Vol. 41, Pg. 113	-lygiene 3, 1978.
No. of animals per sex	c per dose:	5 animals per se	x per dose	rat	LD50	oral 55r subcutaneous 5m	ng/kg (55mg/kg)	Gigiena Truda and Occupati Toxicology an	a i Professional'nye onal Diseases. Vol. d Applied Pharmace	Zabolevaniya. Labor H 18(9), Pg. 32, 1974. ology. Vol. 22, Pg. 303	-lygiene 3, 1972.

LC50 = 1.268 and 0.18 mg/L instead??

- Objective: analysis of available non-animal defined approaches (DAs)
- Collaboration with Cosmetics Europe
 - 128 substance dataset
 - LLNA (mouse) and human data
 - Curation/generation of
 - in vitro cell-based data that maps to AOP
 - *in silico* computer predictions, chemical structural features & properties

Spectrum of 128 substances

- Analyze non-animal DAs in an open source and transparent way
- Evaluated performance against the LLNA and human hazard/potency categories
- All DAs analyzed had equivalent or superior performance to the LLNA when compared to human data

ICCVAM Skin Sensitization Models

- Accepted by EPA based on comparison to LLNA data
- Used animal data reproducibility as threshold for performance

Expanding Coverage of Chemical Space

- NTP is supporting testing of a broad range of chemicals internationally adopted test methods: DPRA, KeratinoSens, hCLAT
 - Pesticide actives, agrochemical formulations, dermal excipients, personal care product ingredients, "challenge" chemicals
- Chemical nominations from multiple agencies
 - EPA OPP, OPPT, and ORD
 - Consumer Product Safety Commission
 - Food and Drug Administration
 - NTP
- Testing began in late 2017 and will be completed in 2020

Prospective Testing: Agchems and Eye Irritation

- N=16 formulations (donated by companies) tested to date; No single test method correctly identified all 16 relative to their in vivo classifications.
- Combining results of multiple tests in an integrated approach may be useful in correct classification
- Results based on binary classification also explored
- Co-organized by NICEATM and the PETA International Science Consortium, with stakeholders from ICCVAM, EURL ECVAM, PMRA, and industry

Ocular QSAR Performance – Binary Models

Sedykh et al. SOT 2019 $\int Ci \mathcal{O} m e$

- Optimization of 3D skin model for testing agrochemicals and antimicrobial cleaning products (AMCPs)
- Companies donated agrochemical formulations and AMCPs
- Protocol optimization studies conducted at IIVS
- Regular stakeholder teleconferences to discuss updates, data needs, etc.
 - PISC, PCRM
 - EPA and NTP
 - Industry

Skin Data

Company	# Formulations
Church & Dwight	1
Clorox	9
Colgate	1
Ecolab	36
P&G	8
SCJ	10
Total	65

\bigcirc

OECD Guidelines for Skin and Eye Irritation Testing

Skin and Eye Irritation Analyses – A Way Forward

- Expanded and refined variability analyses of the rabbit tests using available data from repeat tests.
 - Will provide a metric for comparison
 - Will largely rely on ECHA data
 - Conditional probabilities assessment
- Continue to compile available data that can be used to develop a reference chemical set for prospective testing of alternative methods
 - Data requests to industry
- Establish human relevance
- EPA OPP-led regular stakeholder calls to provide updates and request input

Prior type	1	2A	2B	NC	Total
1	73%	16.1%	0.4%	10.4%	46
2A	4.2%	32.9%	3.5%	59.4%	138
2B	0.2%	4%	15.5%	80.2%	86
NC	1.1%	3.5%	1.5%	93.9%	400

Dermal lethality	Waiver guidance available	
Oral lethality	 In silico approaches for single chemicals; additivity for formulations under consideration 	
Inhalation lethality	 3D models being evaluated; LC50 database for model development being built 	
Eye irritation	 NAMs for Cat I and/or Cat IV? (TG 437, 438, 460, 491, 492, 494) 	
Skin irritation	 NAMs for Cat I or Cat IV? (TG 430, 431, 435, 439) 	
Skin sensitization	 Science policy for using DAs 	

Acknowledgements

- NICEATM and ILS Support Staff
- EPA/NCCT
 - Grace Patlewicz
 - Jeremy Fitzpatrick
- PETA International Science Consortium
 - Amy Clippinger
- PCRM
 - Kristie Sullivan
- Sciome, LLC
 - Alex Sedykh
 - Jason Phillips
 - Ruchir Shah

*ILS staff provide technical support for NICEATM, but do not represent NIEHS, NTP, or the official positions of any federal agency