Test Material:	Bifenthrin, Cypermethrin, Cyfluthrin, Deltamethrin, Esfenvalerate, Fenpropathrin, <i>Lambda</i> -Cyhalothrin and Permethrin
MRID:	47053001, 47053002, 48935001
Title:	Independent Laboratory Validation of "Residue Analytical Method for the Determination of Residues of Bifenthrin, Cypermethrin, Cyfluthrin, Deltamethrin, Esfenvalerate, Fenpropathrin, <i>Lambda</i> -Cyhalothrin and Permethrin in Sediment".
EPA PC Code:	097805, 109303, 109702, 109701, 127901, 128825, 128831, 128897

OCSPP Guideline: 850.6100

For CDM Smith

Primary Reviewer: Lisa Muto

Secondary Reviewer: Lynne Binari

Signature: Les Muto Date: 9/2/14 Signature: Rymme Dinai Date: 9/2/14 Signature: Madd

QC/QA Manager: Joan Gaidos

Date: 9/2/14

Independent laboratory validation of previously submitted analytical method for bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, *lambda*-cyhalothrin and permethrin in sediment

Reports:	 ECM: Previously submitted and reviewed EPA MRID No. 47053001/ 47053002. Reed II, R. 2006. Laboratory Validation: Validation of the Residue Analytical Method: "Residue Analytical Method for the Determination of Residues of Bifenthrin, Cypermethrin, Cyfluthrin, Deltamethrin, Esfenvalerate, Fenpropathrin, <i>Lambda</i>-Cyhalothrin and Permethrin in Sediment", Final Report. Unpublished study performed by Morse Laboratories, Inc., Sacramento, California; sponsored and submitted by Pyrethroid Working Group (Consortium No. 64977), c/o Syngenta Crop Protection, Inc., Greensboro, North Carolina; 418 pages (pp. 1-4). Morse Protocol No.: MLI-06-02 and Project No.: ML06-1286-PWG. Experimental start date April 21, 2006, and completion date May 18, 2006 (p. 7). Final report issued November 29, 2006. ILV: EPA MRID No. 48935001. Grant, J. 2012. Independent Laboratory Validation of "Residue Analytical Method for the Determination of Residues of Bifenthrin, Cypermethrin, Cyfluthrin, Deltamethrin, Esfenvalerate, Fenpropathrin, <i>Lambda</i>-Cyhalothrin and Permethrin in Sediment". ABC Study No.: 68768. Report prepared by ABC Laboratories, Inc., Columbia, Missouri; sponsored and submitted by Pyrethroid Working Group c/o Landis International, Inc., Valdosta, Georgia; 571 pages. Final report issued August 30, 2012.
Document No.:	MRID 47053001/47053002 (ECM) and 48935001 (ILV)
Guideline:	850.6100
Statements:	 ECM: Previously reviewed/data not included in this DER, except as needed. The ECM DER is in Attachment 3. ILV: The study was conducted in accordance with U.S. EPA GLP (CFR Title 40, Part 160; p. 3). Signed and dated No Data Confidentiality (for U.S.A.), Data Confidentiality (countries other than U.S.A.), GLP, Quality Assurance and Certification of the Authenticity statements were provided (pp. 2-5).
Classification: PC Code:	This analytical method is considered supplemental. Portions of the study can be used to fulfil the data requirement, while <i>some issues need to be</i> <i>addressed</i> . Recovery data did not meet guideline requirements for analysis of bifenthrin at the LOQ, permethrin at the 10×LOQ, and <i>lambda</i> - cyhalothrin at either fortification level. The determination of the LOQ and LOD were not based on scientifically acceptable procedures. The LOD of the ECM was not the same than the ILV. The residue calculations specified for the correction of sample recoveries; in the ILV, only recoveries of bifenthrin were actually corrected. The identity of fenpropathrin was not confirmed in the method. 097805, 109303, 109702, 109701; 127901, 128825, 128831, 128897
I C Coue:	097003, 109303, 109702, 109701, 127901, 120023, 120031, 120097

Reviewer:

José Meléndez, USEPA

Date: January 23, 2017

Signature:

José fais Meléndez

Executive Summary

This independent laboratory validation (ILV) analytical method (ABC Study No.: 68768), of previously submitted and reviewed EPA MRID No. 47053002, Morse Project No.: ML06-1286-PWG, is designed for the quantitative determination of eight pyrethroids (bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, lambda-cyhalothrin and permethrin) in sediment by GC/MS using negative ion chemical ionization (see Attachment 3). The stated LOQs for the method are 0.10 µg/kg-dw for all of the analytes, except permethrin (1.0 µg/kg-dw; **Table 1**). Assuming a typical range of organic carbon content for majority of sediments, ranging from 2-10%, the organic carbon normalized LOQ would range from 1.0-5.0 μ g/kgoc for all the analytes except permethrin, and 10-50 μ g/kgoc for permethrin. The LOQs are less than the lowest toxicological level of concern in sediment for all eight tested compounds. The ILV validated the method with the second trial for cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin and permethrin at the stated LOQs; however, the recovery results of bifenthrin and lambda-cyhalothrin did not meet guideline requirements at the LOQ. The ILV required some minor modifications of the GC/MS method to achieve desired sensitivity. The identification of all of the analytes, except fenpropathrin, was confirmed in the analytical method. No matrix characterization of the sediment was provided.

	MR	D						Limit of
Analyte(s) by Pesticide	Environmental Chemistry Method	Independent Laboratory Validation	EPA Review	Matrix	Method Date	Registrant	Analysis	Quantitation (LOQ)
Bifenthrin, Cypermethrin, Cyfluthrin, Deltamethrin, Esfenvalerate, Fenpropathrin, and <i>Lambda</i> - cyhalothrin Permethrin	47053001,	48935001		Sediment	11/29/2006	Pyrethroid Working Group c/o Landis International, Inc.	GC/MS	0.10 μg/kg ² (0.10 ppb) 1.0 μg/kg ²

¹ Previously submitted and reviewed study. Refer to **Attachment 3**.

² Assuming a typical range of organic carbon content for majority of sediments of 2-10%, the organic carbon normalized LOQ would range from ~10-50 μg/kg_{OC} for permethrin, and ~1.0-5.0 μg/kg_{OC} for all other pyrethroids.

All page numbers refer to those in the bottom right-hand corner of "Volume 1 of 2" of MRID 48935001 (ILV) unless otherwise noted. "Volume 2 of 2" of MRID is attached after the last page of "Volume 1 of 2". "Volume 2 of 2" is independently paginated.

I. Principle of the Method

Soil samples (50 g) were mixed with 75 mL of methanol:water (1:1, v:v) and 50 mL of hexane for 60 minutes on a platform shaker (pp. 13, 20; Appendix 1, p. 128; Appendix 1, Appendix 1, pp. 308-309; Appendix 1, Appendix 1, Appendices 1-2, pp. 317-318). After centrifugation (*ca*. 4000 rpm for 5 minutes), an aliquot (10 mL) of the hexane extract was reduced to dryness using a heating block set at *ca*. 40°C. The residue was reconstituted in 2 mL of hexane using brief sonication. The hexane extract was purified via solid phase extraction (SPE) using a Silica (Si) SPE column eluted with 6 mL of hexane:diethyl ether (9:1, v:v). The eluate was reduced to dryness using a heating block set at *ca*. 40°C then the residue was reconstituted in 1 mL of 0.1% peanut oil in acetone prior to analysis via GC/MS.

Samples were analyzed for all analytes with a HP Agilent 6890N GC system equipped with a Agilent CP-Sil 8CB-MS column (0.25 mm x 30 m, 0.25 μ m film thickness) and a HP 5973 MS (pp. 20-22; Appendix 1, pp. 128-130; Appendix 1, Appendix 1, pp. 309-311). The GC/MS system utilized a quadrupole GC/MS with negative ion chemical ionization (NCI; methane @ 40%) with a splitless injector (50 mL/min., purge on at 2 min.); injection volume was 4 μ L. Two qualifier ions (Q1 and 2) were monitored along with the target ion (T) for five of the eight analytes: bifenthrin, 386 m/z (T), 387 m/z (Q1), 241 m/z (Q2); cypermethrin and cyfluthrin, 207 m/z (T), 209 m/z (Q1), 171 m/z (Q2); deltamethrin, 297 m/z (T), 81 m/z (Q1), 296 m/z (Q2); and *lambda*-cyhalothrin, 205 m/z (T), 241 m/z (Q1), 243 m/z (Q2). Two of the analytes were monitored with one qualifier ions along with the target ion: permethrin, 207 m/z (T), 209 m/z (Q1); and esfenvalerate, 211 m/z (T), 213 m/z (Q1). Fenpropathrin was only monitored with a target ion, 141 m/z (T).

In the ILV, the LOQs for the method are 0.10 μ g/kg (0.10 ppb) for bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, *lambda*-cyhalothrin and 1.0 μ g/kg (1.0 ppb) for permethrin (p. 20). The corresponding LODs were estimated to be 0.03 μ g/kg for all analytes, except permethrin (0.3 μ g/kg); the LODs were estimated at *ca*. 1/3 of the LOQ.

II. Recovery Findings

ECM (MRID 47053001/2): Previously submitted and reviewed separately (**Attachment 3**). The ECM study report was included in the ILV MRID 48935001 as Appendix 1 (pp. 105-320 of Volume 1 of 2; pp. 1-206 of Volume 2 of 2).

ILV (MRID 48935001): Mean recoveries and RSDs were within guideline requirements for analysis of cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, and fenpropathrin at the LOQ and 10×LOQ (p. 10-12). Mean recoveries and RSDs were within guideline requirements for analysis of bifenthrin at the 10×LOQ only and permethrin at the LOQ only. Mean recoveries of *lambda*-cyhalothrin did not meet guideline requirements for either fortification level. The method was validated with the second trial. The sediment was described as fresh water sediment from Tift County, Georgia; no matrix characterization was provided (p. 18). The sediment was checked for pyrethroid contamination prior to use (p. 25-26). The analytes were identified by

GC/MS with negative ion chemical ionization. Seven of the eight pyrethroids were identified with one or two ion transitions; fenpropathrin was only identified with a target ion.

Analyte	Fortification Level (ppb)		v	Mean Recovery (%)	Standard Deviation (%)	Relative Standard Deviation (%)
Bifenthrin, Cypermethrin, Cyfluthrin, Deltamethrin, Esfenvalerate, Fenpropathrin, <i>Lambda</i> -cyhalothrin and Permethrin	ECM data pre	viously re	viewed (refer t	to previous DER	t in Attachment	3).

 Table 2. Initial Validation Method Recoveries for Pyrethroids in Sediment

Table 3. Independent Validation	Method Recoveries for P	vrethroids in Sediment
		J

Analyte	Fortification Level (ppb)		v	Mean Recovery (%)	Standard Deviation (%)	Relative Standard Deviation (%)
Bifenthrin	0.10 (LOQ)	5	87-144	105	22.51	21
Difeituitii	1.0	5	86-109	96	8.58	9
Eannachthrin	0.10 (LOQ)	5	96-103	100	2.45	2
Fenpropathrin	1.0	5	98-123	109	9.18	8
Lawhda avhalathrin	0.10 (LOQ)	5	112-137	126	10.62	8
Lambda-cyhalothrin	1.0	5	108-136	122	12.25	10
Permethrin ¹	1.00 (LOQ)	5	98-118	110	10.49	8
Permeunni	10.0	5	115-147	127	5.42	4
Coeffectivie	0.10 (LOQ)	5	100-142	120	18.64	16
Cyfluthrin	1.0	5	95-125	108	10.72	10
Cypermethrin ¹	0.10 (LOQ)	5	83-131	110	20.08	18
	1.0	5	93-129	108	13.39	12
Esfenvalerate	0.10 (LOQ)	5	98-131	118	13.17	11
	1.0	5	104-134	119	11.62	10
Daltamathrin	0.10 (LOQ)	5	90-110	101	9.09	9
Deltamethrin	1.0	5	113-137	120	9.86	8

Data were obtained from p. 12; Table 2, p. 32; Table 4, p. 34; Table 6, p. 36; Table 8; p. 38; Table 10, p. 40; Table 12; p. 42; Table 14, p. 44; Table 16, p. 46 of the study report. Only Trial 2 results shown. Values which did not meet guideline requirements are reported in **bold and red**.

¹ Supplied as separate *cis*- and *trans*-test substances.

III. Method Characteristics

In the ILV, the LOQs for the method are 0.10 μ g/kg (0.10 ppb) for bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, *lambda*-cyhalothrin and 1.0 μ g/kg (1.0 ppb) for permethrin (p. 20). The corresponding LODs were estimated to be 0.03 μ g/kg for all

analytes, except permethrin (0.3 μ g/kg); the LODs were estimated at *ca.* 1/3 of the LOQ. The ECM MRID 47053002 was previously submitted and reviewed. "The ECM utilized limits of quantitation (LOQ) and detection (LOD) of 0.1 μ g/kg and 0.02 μ g/kg, respectively, for bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin and *lambda*-cyhalothrin, and 1.0 μ g/kg and 0.2 μ g/kg, respectively, for permethrin (p. 30 of MRID 47053002)" (data from Environmental Chemistry Method Review Report of MRID 47053002, **Attachment 3**). In the ECM validation, the LOQ was defined as the lowest level of fortification to have demonstrated an acceptable recovery and precision; no calculations were provided (Appendix 1, p. 135). The ECM validation study author noted that the LOQ and LOD "were not statistically determined for this method" (Appendix 1, p. 135). The ILV did not provide any other support for the LOQ or LOD. Additionally, the estimated LODs of the ILV and ECM were not equivalent.

		Sedi	ment	
Characteristic\Chemical	Bifenthrin	Fenpropathrin	<i>Lambda-</i> cyhalothrin	Permethrin ¹
Limit of Quantitation (LOQ)		0.10 µg/kg		1.0 µg/kg
Limit of Detection (LOD)		0.02 μg/kg (ECM) ² 0.03 μg/kg (ILV)		0.2 μg/kg (ECM) 0.3 μg/kg (ILV)
Linearity (calibration curve r^2 and concentration range) ³	$r^2 = 0.9953$ (0.5-20 ng/mL)	$r^2 = 0.9963$ (0.5-20 ng/mL)	$r^2 = 0.9872$ (0.5-20 ng/mL)	$r^2 = 0.9956$ (5-200 ng/mL)
Repeatable ²		Y	es	
Reproducible	No^4	Yes	No ⁵	No ⁶
Specific	Yes	No ⁷	No ⁸	Yes
Characteristic\Chemical	Cyfluthrin	Cypermethrin ¹	Esfenvalerate	Deltamethrin
Limit of Quantitation (LOQ)		0.10	µg/kg	
Limit of Detection (LOD)	0.02 μg/kg (ECM) 0.03 μg/kg (ILV)			
Linearity (calibration curve r^2 and concentration range) ³	$r^2 = 0.9959$ (0.5-20 ng/mL)	$r^2 = 0.9944$ (0.5-20 ng/mL)	$r^2 = 0.9958$ (0.5-20 ng/mL)	$r^2 = 0.9965$ (0.5-20 ng/mL)
Repeatable ²	Yes			
Reproducible			es	
Specific	No ⁹	No ⁹	Yes	No ⁸

Table 4. Method Characteristics*

* Data were obtained from p. 20; Figure 2, p. 48; Figure 4, p. 50; Figure 6, p. 52; Figure 8, p. 54; Figure 10, p. 56; Figure 12, p. 58; Figure 14, p. 60; Figure 16, p. 62 of the study report unless noted otherwise.

1 Supplied as separate cis- and trans-test substances.

2 The ECM (MRID 47053002) was previously submitted and reviewed. Data was taken from Environmental Chemistry Method Review Report of MRID 47053002 (**Attachment 3**). A copy of the ECM was included in the ILV MRID as Appendix 1.

3 Reviewer-calculated calibration curves yielded the same linearity, r^2 values of 0.9872-9963 for the eight analytes (see DER Attachment 2). Linearity is satisfactory when $r^2 \ge 0.995$.

4 RSD at LOQ fortification was 21%.

5 Mean recoveries at LOQ and 10×LOQ were >120%.

6 Mean recovery at $10 \times LOQ$ was > 120%.

7 The method did not include a confirmation of analyte identity.

8 Matrix interferences were significant around the retention time of the analyte peak at the LOQ (Figure 19, p. 82; Figure 22, p. 103).

9 Cyfluthrin and cypermethrin, as well as permethrin, were detected together in the chromatogram of 207 m/z (Figure 20, pp. 89-90). The retention time ranges of cyfluthrin and cypermethrin were extremely close and not easily distinguishable in the example chromatograms at the LOQ and 10×LOQ.

IV. Method Deficiencies and/or Reviewer's Comments

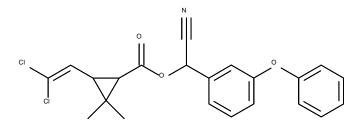
- The ILV report was submitted in support of the ECM MRID 4703001/47053002 which was previously submitted and reviewed in 2011 (Attachment 3). The reviewer used the data obtained from the Environmental Chemistry Method Review Report of MRID 47053001/47053002, as well as that from the original MRID contained in Appendix 1 of this MRID, in order to assess the data from the ILV, as necessary (pp. 105-320 of Volume 1 of 2; pp. 1-206 of Volume 2 of 2). The majority of the results of MRID 47053001/47053002 were not re-reported in this DER, since they are reported elsewhere.
- 2. Recovery data did not meet guideline requirements for analysis of bifenthrin at the LOQ (RSD 21%) and permethrin at the 10×LOQ (mean 127%; pp. 10-12). Mean recoveries of *lambda*-cyhalothrin did not meet guideline requirements at the LOQ (mean 126%) and 10×LOQ (mean 122%). OCSPP Guideline 850.6100 criteria for precision and accuracy requires mean recoveries for replicates at each spiking level to be between 70% and 120% and relative standard deviations (RSD) ≤20%.
- 3. The determination of the LOQ and LOD were not based on scientifically acceptable procedures. In the ECM, the LOQ was defined as the lowest level of fortification to have demonstrated an acceptable recovery and precision; no calculations were provided (Appendix 1, p. 135). The ECM validation study author noted that the LOQ and LOD "were not statistically determined for this method" (Appendix 1, p. 135). The ILV did not provide any other support for the LOQ or LOD. Additionally, the estimated LODs of the ILV and ECM were not equivalent. Detection limits should not be based on the arbitrarily selected lowest concentration in the spiked samples.
- 4. The lowest toxicological level of concern in sediment was not reported in the study. An LOQ above toxicological levels of concern results in an unacceptable method classification. According to the latest ecological effects information available (refer to the Preliminary Risk Assessment for Synthetic Pyrethroids and Pyrethrins, dated September 30, 2016, DP Barcode 425791+).
- 5. The ECM and ILV residue calculations specified for the correction of sample recoveries for any residues found in the matrix control samples (pp. 24-25; Appendix 1, p. 131). In the ILV, only recoveries of bifenthrin were corrected since only those samples contained measurable residues in the control samples (p. 26). ECM report (MRID 47053002) was previously submitted and reviewed (**Attachment 3**).
- 6. There was no confirmation of the identity of fenpropathrin in the method, only the target ion was monitored (p. 22; Appendix 1, p. 129; Appendix 1, Appendix 1, p. 310).

- 7. The study author reported that matrix interference was \leq 30% for the test matrix and each analyte (p. 13); however, the reviewer noted significant interferences around the retention times of *lambda*-cyhalothrin and deltamethrin at the LOQ (Figure 19, p. 82; Figure 22, p. 103). Cyfluthrin and cypermethrin, as well as permethrin, were detected together in the chromatogram of 207 m/z (Figure 20, pp. 89-90). The retention time ranges of cyfluthrin and cypermethrin were very close and not easily distinguishable in the example chromatograms at the LOQ and 10×LOQ.
- 8. Linearity (r^2) of the calibration standards was not always ≥ 0.995 (see Table 4 above).
- 9. The ILV report indicated that GC/MS optimization was necessary to increase sensitivity, especially for the analysis of deltamethrin (p. 20). The injection volume was increased from 2 μ L to 4 μ L. A splitless injection mode (50 mL/min., purge on at 2 min.) was used in the place of a pulsed splitless injection (30 psi for 1 min., purge flow to split vent 50 psi @ 2 min.). Also, the methane percentage to the detector was increased from 30% to 40%. These changes were not substantial and did not appear to require an internal validation of the ECM.
- 10. Recovery data and calibration curves from Trial 1 of the ILV were included in the MRID, but not reviewed in this DER. No GC chromatograms from Trial 1 were included.
- 11. Communication between the ECM personnel and ILV study author was recorded (p. 29; Volume 2 of 2, Appendix 4, pp. 233-250). The communication was limited to chromatography issues (optimization of the GC/MS analysis for deltamethrin) and recovery updates (Trial 2 recovery results of *lambda*-cyhalothrin and bifenthrin).
- 12. In the ILV, the time requirement for the sets consisting of 13 samples was 1 workday (8 hours) with the GC/MS analysis performed overnight (p. 30).

V. References

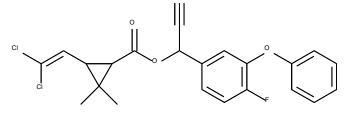
- U.S. Environmental Protection Agency. 2012. Ecological Effects Test Guidelines, OCSPP 850.6100, Environmental Chemistry Methods and Associated Independent Laboratory Validation. Office of Chemical Safety and Pollution Prevention, Washington, DC. EPA 712-C-001.
- 40 CFR Part 136. Appendix B. Definition and Procedure for the Determination of the Method Detection Limit-Revision 1.11, pp. 317-319.
- Binari, L. Environmental Chemistry Method Review Report. MRIDs 47053001 and 47053002. [Secondary review by J. Meléndez; date reviewed April 20, 2012.]

Attachment 1: <u>Chemical Names and Structures</u>

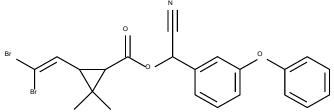

Bifenthrin

IUPAC name	2-Methylbiphenyl-3-ylmethyl (1RS,3RS)-3-[(Z)-2-chloro-3,3,3- trifluoroprop-1-enyl]-2,2-dimethylcyclopropanecarboxylate
CAS Name	(2-Methyl[1,1'-biphenyl]-3-yl)methyl (1R,3R)-rel-3-[(1Z)-2-chloro-3,3,3-trifluoro-1-propen-1-yl]-2,2-dimethylcyclopropanecarboxylate
CAS #	82657-04-3
SMILES	c1ccccc1c2c(C)c(COC(=O)C3C(C)(C)C3C=C(Cl)C(F)(F)F)ccc2

Cypermethrin

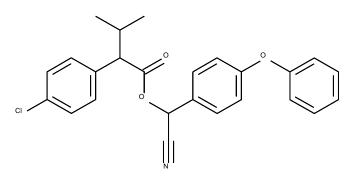

IUPAC name	(RS)-α-Cyano-3-phenoxybenzyl (1RS,3RS;1RS,3SR)-3-(2,2- dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate
CAS Name	Cyano(3-phenoxyphenyl)methyl 3-(2,2-dichloroethenyl)-2,2- dimethylcyclopropanecarboxylate
CAS #	52315-07-8

SMILES Not found

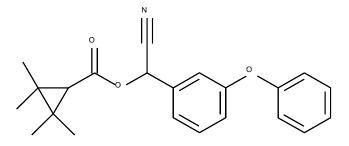

Cyfluthrin

IUPAC name	(RS)-α-Cyano-4-fluoro-3-phenoxybenzyl (1RS,3RS;1RS,3SR)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylate
CAS Name	Cyano(4-fluoro-3-phenoxyphenyl)methyl 3-(2,2-dichloroethenyl)-2,2- dimethylcyclopropancecarboxylate
CAS #	68359-37-5
SMILES	Not found
	Ν

Deltamethrin


IUPAC name	(S)-α-cyano-3-phenoxybenzyl (1R,3R)-3-(2,2-dibromovinyl)-2,2- dimethylcyclopropanecarboxylate
CAS Name	(S)-cyano(3-phenoxyphenyl)methyl (1R,3R)-3-(2,2-dibromoethenyl)-2,2- dimethylcyclopropanecarboxylate
CAS #	52918-63-5
SMILES	CC1(C)C(C=C(Br)Br)C1C(=O)OC(C#N)c3cccc(Oc2cccc2)c3

Esfenvalerate

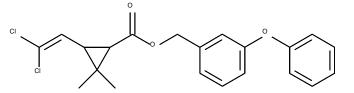

- **IUPAC name** (S)-α-Cyano-3-phenoxybenzyl (S)-2-(4-chlorophenyl)-3-methylbutyrate
- CAS Name [S-(R*,R*)]-Cyano(3-phenoxyphenyl)methyl 4-chloro-2-(1methylethyl)benzeneacetate
- **CAS** # 66230-04-4

SMILES [C@H](C(C)C)(C(=O)O[C@@H](C#N)C1=CC(=CC=C1)OC2=CC=CC=C2)C3=CC=C(C=C3)C1

Fenpropathrin; Danitol

- **IUPAC name** (RS)-α-Cyano-3-phenoxybenzyl 2,2,3,3,tetramethylcyclopropancecarboxylate
- CAS Name Cyano(3-phenoxyphenyl)methyl 2,2,3,3tetramethylcyclopropanecarboxylate
- **CAS** # 64257-84-7
- SMILES Not found

Lambda-cyhalothrin

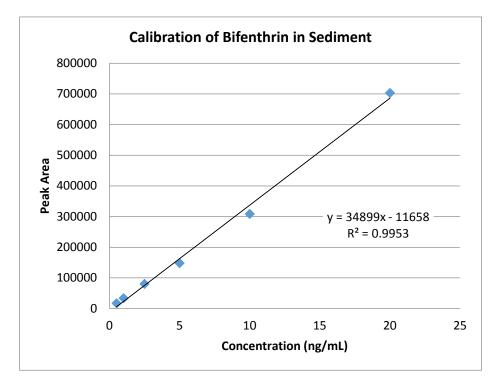

IUPAC name	Reaction product comprising equal quantities of (R)-α-cyano-3- phenoxybenzyl (1S,3S)-3-[(Z)-2-chloro-3,3,3-trifluoropropenyl]-2,2- dimethylcyclopropanecarboxylate and (S)-α-cyano-3-phenoxybenzyl (1R,3R)-3-[(Z)-2-chloro-3,3,3-trifluoropropenyl]-2,2- dimethylcyclopropanecarboxylate
CAS Name	(R)-cyano(3-phenoxyphenyl)methyl (1S,3S)-rel-3-[(1Z)-2-chloro-3,3,3- trifluoro-1-propen-1-yl]-2,2-dimethylcyclopropanecarboxylate
CAS #	91465-08-6
SMILES	FC(F)(F)C(Cl)=CC1C(C)(C)C1C(=O)OC(C#N)c2cc(Oc3ccccc3)ccc2
	F F H O CN O H_3C CH_3 O

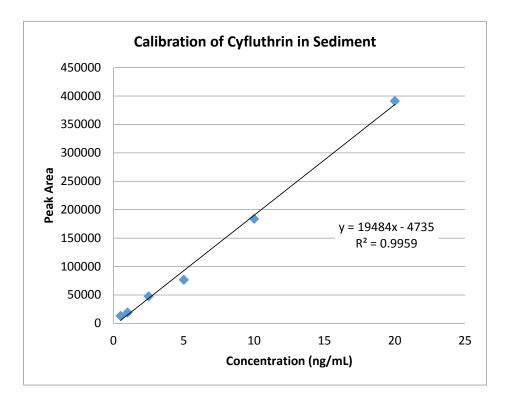
Permethrin

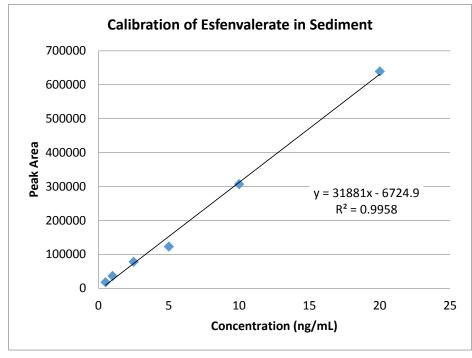
IUPAC name	3-Phenoxybenzyl(1RS)-cis-trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-
	cyclopropanecarboxylate

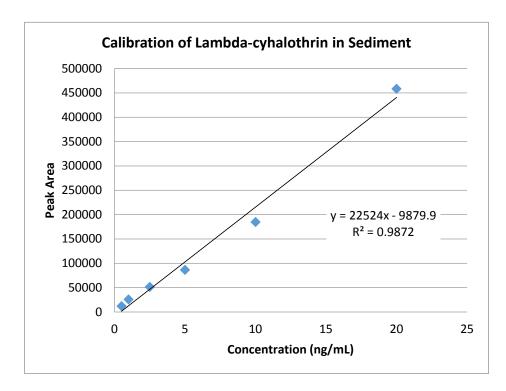
- CAS Name (3-Phenoxyphenyl)methyl 3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylate
- **CAS** # 52645-53-1

SMILES CC1(C)C(C=C(Cl)Cl)C1C(=O)OCc3cccc(Oc2cccc2)c3

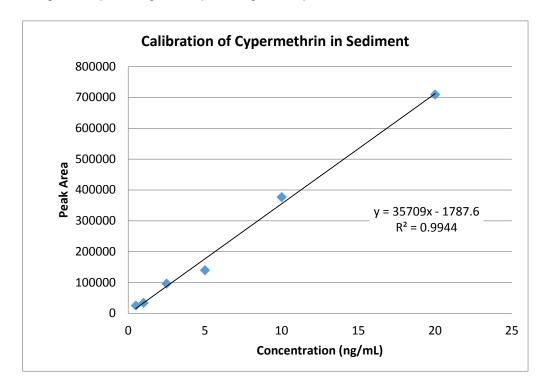

Attachment 2: <u>Calculations</u>

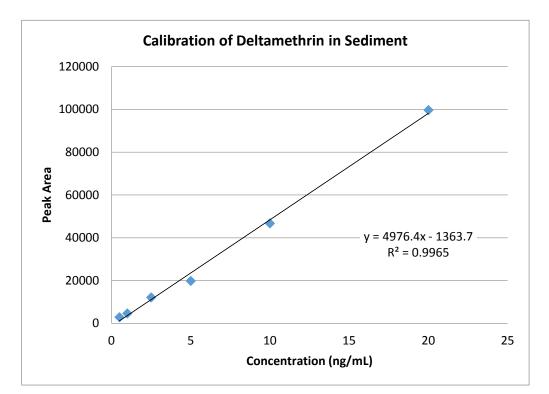

Chemical:Multiple PyrethroidsMRID:48935001PC:109701 -FileGuideline:850.6100

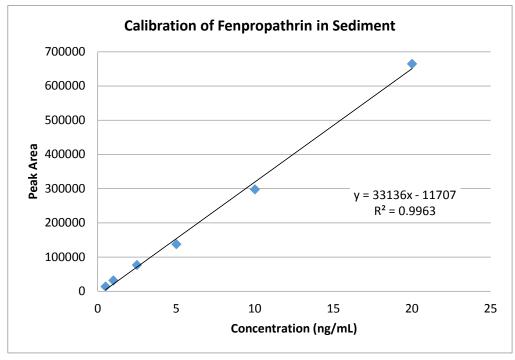

ILV	Calibration	Curve -	Trial 2
	ounoration	04110	

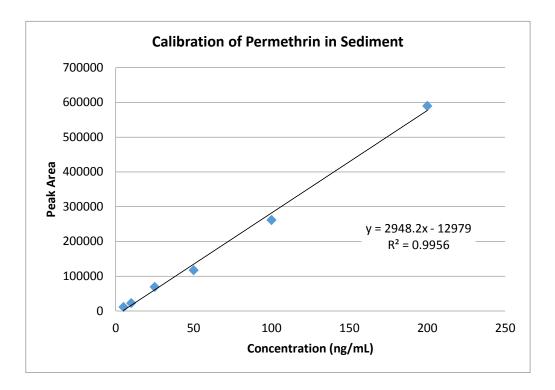

	Bifer	nthrin	Cyperr	nethrin	Cyflu	ıthrin	Deltan	nethrin
Calibration	Conc.	Peak	Conc.	Peak	Conc.	Peak	Conc.	Peak
Curve Data	(ng/mL)	response	(ng/mL)	response	(ng/mL)	response	(ng/mL)	response
	0.5	17392	0.5	25073	0.5	13283	0.5	2879
	1.0	33802	1.0	34141	1.0	19004	1.0	4650
	2.5	80409	2.5	96374	2.5	47578	2.5	12125
	5.0	148018	5.0	139957	5.0	76557	5.0	19814
	10.0	308443	10.0	376976	10.0	183762	10.0	46732
	20.0	703054	20.0	709417	20.0	391271	20.0	99699

Results (Peak Area) from Figure 2, p. 48; Figure 4, p. 50; Figure 6, p. 52; Figure 8, p. 54; Figure 10, p.








Esfenv	alerate	Fenpropathrin		Lambda-cyhalothrin		Permethrin	
Conc.	Peak	Conc.	Peak	Conc.	Peak	Conc.	Peak
(ng/mL)	response	(ng/mL)	response	(ng/mL)	response	(ng/mL)	response
0.5	18317	0.5	13669	0.5	12073	5	11501
1.0	36819	1.0	31713	1.0	25935	10	22856
2.5	78284	2.5	76819	2.5	51491	25	69237
5.0	123292	5.0	137337	5.0	86567	50	117266
10.0	306969	10.0	297938	10.0	184652	100	261628
20.0	639321	20.0	664580	20.0	458421	200	589427

56; Figure 12, p. 58; Figure 14, p. 60; Figure 16, p. 62 of MRID 48935001.

Chemical:Multiple PyrethroidsMRID:48935001PC:109701 - FileGuideline:850.6100

		termination		SD ¹	RSD ²	it at the LOC	J, Thai Z	
Fortified	Recovery	-	Mean				• •	
(ng a.i.)	(ng)	(%)	(%)	(%)	(%)	Max	Min	n =
				Bifenthrin				
0.1								
	0.1444							
	0.0873							
	0.0966		105	22.54			07	_
	0.0979	98	105	22.51	21	144	87	5
0.1	0.0050	0.0	F	enpropathr	In		Г	
0.1								
	0.1003							
	0.0999							
	0.1025							_
	0.1009	101	100		2	103	96	5
0.1	0.4040	124	Lam	bda-cyhalo	thrin			
0.1								
	0.1373							
	0.1331							
	0.1185		4.9.5	40.60	0	407	112	-
	0.1122	112	126	10.62 Permethrin	8	137	112	5
1.0	1 1 0 1 2	110		Permethrin				
1.0								
	0.9825							
	1.0335							
	1.1452		110	10.40	10	110	00	-
	1.1498	115	110	10.49 Cyfluthrin	10	118	98	5
0.1	0 1 4 1 0	142		Cynuthrin				
0.1								
	0.1357 0.1036							
	0.1002		120	19.64	16	142	100	5
	0.1183	118	120	18.64 Sypermethri		142	100	5
0.1	0 1 2 0 1	120		ypermeum			T	
0.1	0.1291 0.1306							
	0.1300							
	0.1062							
	0.1082		110	20.08	18	131	83	5
	0.1027	105		sfenvalera		131	05	5
0.1	0.1314	131		SIGINALEIA		I	ſ	
0.1	0.1314							
	0.1256	98						
	0.0981							
	0.1229		118	13.17	11	131	98	5
	0.1120	112		13.17 Deltamethri		121	96	5
0.1	0.1100	110	L	enametrif1		I	Г	
0.1	0.1100							
	0.0896							
	0.0939							
			101	0.06	0	110	90	F
	0.1053	105	101	9.06	9	110	90	5

ECM Validation for Determination of Multiple Pyrethroids in Sediment at the LOQ, Trial 2

Data taken from pp. 32, 34, 36, 38, 40, 42, 44, 46 of MRID 48935001.

1 SD = Standard Deviation; determined using the "unbiased" or "n-1" method.

2 RSD = Relative Standard Deviation; calculated as (SD/mean) x 100.

Chemical:Multiple PyrethroidsMRID:48935001PC:109701 - FileGuideline:850.6100

			-	Pyrethroids				
Fortified	-	Recovery	Mean	SD ¹	RSD ²			
(ng a.i.)	(ng)	(%)	(%)	(%)	(%)	Max	Min	n =
		[Bifenthrin				
1.0	0.9814	98						
	0.9108							
	0.8612	86						
	1.0894	109						
	0.9541	95	96	8.58	9	109	86	5
			F	enpropathr	in			
1.0	1.0981	110						
	1.0731	107						
	0.9772	98						
	1.2340							
	1.0891	109	109	9.18	8	123	98	5
			Lam	bda-cyhalo	thrin			
1.0	1.3567	136						
	1.1577	116						
	1.0833	108						
	1.3434	134						
	1.1603	116	122	12.25	10	136	108	5
				Permethrin				
10.0	11.8430							
	12.5378							
	11.4691	115						
	14.6549							
	12.9759	130	127	5.42	4	147	115	5
				Cyfluthrin				
1.0	1.0609							
	1.0540							
	0.9517	95						
	1.2487							
	1.0860	109	108	10.72	10	125	95	5
			С	ypermethri	n			
1.0	1.0390							
	0.9318							
	1.0310							
	1.2903	129						
	1.1190	112	108	13.39	12	129	93	5
L			E	sfenvalerat	e			
1.0	1.2396							
	1.0432							
	1.1070							
	1.3422	134						
	1.1962	120	119	11.62	10	134	104	5
			C	Deltamethri	n			
1.0	1.1367	114						
	1.1614	116						
	1.1269	113						
	1.3676	137						
	1.2014	120	120	9.86	8	137	113	5

ECM Validation for Determination of Multiple Pyrethroids in Sediment at 10 x LOQ, Trial 2

Data taken from pp. 32, 34, 36, 38, 40, 42, 44, 46 of MRID 48935001.

1 SD = Standard Deviation; determined using the "unbiased" or "n-1" method.

2 RSD = Relative Standard Deviation; calculated as (SD/mean) x 100.

Attachment 3: Review of Environmental Chemistry Method

Pyrethroids; EPA PC Code 109701 Pyrethroid Working Group; EPA Company Code Consortium 64977 ENVIRONMENTAL CHEMISTRY METHOD REVIEW REPORT

Test Material:	Multiple pyrethroids Determination of residues of bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, <i>lambda</i> -cyhalothrin and permethrin in sediment
EPA PC Code:	109701 (File)
Other PC Codes:	128825, 109702, 128831, 097805, 109303, 127901, 128897
OCSPP Guideline:	835.6200/Aquatic Field Dissipation; 850.7100/Data Reporting for Environmental Chemistry Methods

For Cambridge Environmental

Primary Reviewer: Lynne Binari

Signature:

Lymme Dinai

Date:

11/09/2011

Secondary Reviewer: Kathleen Ferguson

Signature:

Kanlun P. Jerguson

Date:

11/09/2011

QC/QA Manager: Joan Gaidos

Signature:

Date:

11/09/2011

USEPA/OPP Environmental Fate and Effects Division/Environmental Risk Branch 5

Final Reviewer: José L. Meléndez Chemist

Signature:

José Fris Meléndez

Date:

April 20, 2012

EPA MRID Numbers 47053001/47053002 (both same ECM)

ANALYTICAL METHOD: EPA MRID No. 47053001. Robinson, N. 2007. Residue analytical method for the determination of residues of bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, *lambda*-cyhalothrin and permethrin in sediment. Report prepared by Syngenta Crop Protection, Inc., Jealott's Hill Research Centre, Bracknell, Berkshire, United Kingdom; sponsored and submitted by Pyrethroid Working Group (Consortium No. 64977), c/o Syngenta Crop Protection, Inc., Greensboro, North Carolina; 185 pages (pp. 1-3). Final report issued February 5, 2007.

ANALYTICAL METHOD: EPA MRID No. 47053002. Reed II, R. 2006. Laboratory validation: validation of the residue analytical method: "Residue analytical method for the determination of residues of bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, *lambda*-cyhalothrin and permethrin in sediment". Unpublished study performed by Morsé Laboratories, Inc., Sacramento, California; sponsored and submitted by Pyrethroid Working Group (Consortium No. 64977), c/o Syngenta Crop Protection, Inc., Greensboro, North Carolina; 418 pages (pp. 1-4). Morse Protocol No.: MLI-06-02 and Project No.: ML06-1286-PWG. Experimental start date April 21, 2006, and completion date May 18, 2006 (p. 7). Final report issued November 29, 2006.

INDEPENDENT LABORATORY VALIDATION: None provided.

EXECUTIVE SUMMARY

This method is designed for the quantitative determination of residues of bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, *lambda*-cyhalothrin and permethrin in sediment using an external standardization method (p. 7 of MRID 47053001). The method was developed by Syngenta Crop Protection, Inc., and validated by Morse Laboratories, Inc. (p. 12 of MRID 47053002). An independent laboratory validation (ILV) was not submitted with this method.

The Agency finds that this study is supplemental. It meets the criteria for a scientifically valid method and partially satisfies the requirement for the analysis of residues of bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, *lambda*-cyhalothrin and permethrin in two sediments. Deficiencies include that an independent laboratory validation of this method was not provided and the test sediments were incompletely characterized.

Method Summary: Analytes are extracted from sediment by shaking with methanol:water (1:1, v:v) and hexane, then the hexane phase, containing the recovered analytes, is cleaned up using silica solid phase extraction (Appendix 1, p. 203 of MRID 47053002). Bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, *lambda*-cyhalothrin and permethrin are quantified by GC/MS. The ECM utilized limits of quantitation (LOQ) and detection (LOD) of 0.1 μ g/kg and 0.02 μ g/kg, respectively, for bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin and *lambda*-cyhalothrin, and 1.0 μ g/kg and 0.2 μ g/kg, respectively, for permethrin (p. 30 of MRID 47053002).

METHOD ACCEPTABILITY/DEFICIENCIES/CLARIFICATIONS

Isomerization of analytes has been found to occur with some GC instrumentation (p. 21 of MRID 47053001). In those instances, addition of 0.1% (v:v) acetic acid to all samples and standards was found to prevent isomerization; however, the reported results did not utilize this technique.

COMPLIANCE

This method was conducted in compliance with USEPA GLP Standards 40 CFR, Part 160 (p. 3 of MRID 47053002). Signed and dated statements of No Data Confidentiality, GLP and Quality Assurance were provided (pp. 2-3, 5 of MRID 47053002).

A. BACKGROUND INFORMATION

The pyrethroids share similar modes of action and are considered axonic poisons. It is now well established that severe neurological symptoms of poisoning with pyrethroids in mammals and insects are the result of modification of Na⁺ channel activity (cellular pores through which sodium ions are permitted to enter the axon to cause excitation) (Matsamura, 1985).¹ Advanced electrophysiological experiments using voltage clamp and patch clamp, together with ligand binding and ionic flux experiments, have unveiled unique actions of pyrethroids of keeping the Na⁺ channel in the open state for an extremely long period, sometimes as long as several seconds. This modification of Na⁺ channel properties leads to hyperactivity of the nervous system. Pyrethroids have also been shown to suppress GABA (*gamma*-aminobutyric acid) and glutamate receptor-channel complexes and voltage-activated Ca²⁺ channels.

Relative to physiological responses, researchers have designated two types of pyrethroids, Type I (*e.g.*, bifenthrin and permethrin) and Type II (*e.g.*, cypermethrin,

EPA MRID Numbers 47053001/47053002 (both same ECM)

¹ Matsumura, F. 1985. Toxicology of insects. 2nd ed. Plenum New York.

deltamethrin and fenvalerate). Structurally, Type I pyrethroids lack the *alpha*-cyano group that characterizes Type II pyrethroids. Physiologically, Type I pyrethroids typically have shorter periods of sodium channel disruption (shorter inactivation time) than that of Type II pyrethroids.

Parameter	Value
Common name	Bifenthrin.
Company experimental name	Not reported.
IUPAC name	2-Methylbiphenyl-3-ylmethyl (Z)-(1RS,3RS)-3-(2-chloro-3,3,3- trifluoroprop-1-enyl)-2,2-dimethylcyclopropanecarboxylate.
CAS Name	(2-Methyl[1,1'-biphenyl]-3-(2-chloro-3,3,3-trifluoroprop-1-enyl)- 2,2-dimethylcyclopropanecarboxylate.
CAS #	82657-04-3.
Structure	
Common name	Cypermethrin.
Company experimental name	Not reported.
IUPAC name	(RS)-α-Cyano-3-phenoxybenzyl (1RS,3RS;1RS,3SR)-3-(2,2- dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate.
CAS Name	Cyano(3-phenoxyphenyl)methyl 3-(2,2-dichloroethenyl)-2,2- dimethylcyclopropanecarboxylate.
CAS #	52315-07-8.
Structure	
Common name	Cyfluthrin.
Common name Company experimental name	Cyfluthrin. Not reported.

EPA MRID Numbers 47053001/47053002 (both same ECM)

TABLE A.1. Test Compou	und Nomenclature
Parameter	Value
	(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylate.
CAS Name	Cyano(4-fluoro-3-phenoxyphenyl)methyl 3-(2,2-dichloroethenyl)- 2,2-dimethylcyclopropancecarboxylate.
CAS #	68359-37-5.
Structure	
Common name	Deltamethrin.
Company experimental name	Not reported.
IUPAC name	(S)-α-Cyano-3-phenyoxybenzyl (1R,3R)-3-(2,2-dibromovinyl)-2,2- dimethylcyclopropanecarboxylate.
CAS Name	$1-[R-[1-\alpha-(S^*),3\alpha]]$ -Cyano(3-phenoxyphenyl)methyl 3-(2,2-dibromoethenyl)-2,2-dimethylcyclopropanecarboxylate.
CAS #	52918-63-5.
Structure	
Common name	Esfenvalerate.
Company experimental name	Not reported.
IUPAC name	(S)-α-Cyano-3-phenoxybenzyl (S)-2-(4-chlorophenyl)-3- methylbutyrate.
CAS Name	[S-(R*,R*)]-Cyano(3-phenoxyphenyl)methyl 4-chloro-2-(1- methylethyl)benzeneacetate.
CAS #	66230-04-4.

TABLE A.1. Test Compou	nd Nomenclature
Parameter	Value
Structure	
Common name	Fenpropathrin.
Company experimental name	Not reported.
IUPAC name	(RS)-α-Cyano-3-phenoxybenzyl 2,2,3,3,- tetramethylcyclopropancecarboxylate.
CAS Name	Cyano(3-phenoxyphenyl)methyl 2,2,3,3- tetramethylcyclopropanecarboxylate.
CAS #	64257-84-7.
Structure	
Common name	Lambda-cyhalothrin.
Company experimental name	Not reported.
IUPAC name	Reaction product of equal quantities of (S)- and (R)- α-cyano-3- phenoxybenzyl (Z)-(1R,3R)-3-(2-chloro-3,3,3-trifluoroprop-1- enyl)-2,2-dimethylcyclopropanecarboxylate.
CAS Name	$[1\alpha(S^*),3\alpha(Z)]-(\pm)$ -Cyano(3-phenoxyphenyl)methyl 3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclopropanecarboxylate.
CAS #	91465-08-6.

Parameter	Value
Structure	
Common name	Permethrin.
Company experimental name	Not reported.
IUPAC name	3-Phenoxybenzyl (1RS,3RS;1RS,3SR)-3-(2,2-dichlorovinyl)-2,2- dimethylcyclopropanecarboxylate.
CAS Name	(3-Phenoxyphenyl)methyl 3-(2,2-dichloroethenyl)-2,2- dimethylcyclopropanecarboxylate.
CAS #	52645-53-1.
Structure	

Information obtained from pp. 15-18 of MRID 47053002.

TABLE A.2. Physicochemical Properties of the Technical Grade Test Compound			
Parameter	Value		
Melting point/range (°C)	Not reported.		
pH	Not reported.		
Density (g/cm ³)	Not reported.		
Water solubility at 20 °C (mg/L)	Not reported.		
Solvent solubility at 20 °C (mg/L)	Not reported.		
Vapor pressure at 25°C (torr)	Not reported.		
Dissociation constant (pK _a)	Not reported.		
Octanol/water partition coefficient	Not reported.		
UV/visible absorption spectrum (nm)	Not reported.		

B. MATERIALS AND METHODS

B.1. Principle of Method

Analytes are extracted from sediment by mechanical shaking with methanol:water (1:1, v:v) and hexane (pp. 23-24; Appendix 1, pp. 203-205 of MRID 47053002). The hexane phase, containing the recovered analytes, is cleaned up using silica solid phase extraction (SPE). Analytes are separated and quantified by GC/MS using a Varian CP-Sil 8CB-MS column, negative ion chemical ionization (NICI) and selected ion monitoring (SIM). A confirmatory method was not utilized.

TABLE B.1. Summary Parameters for the Analytical Method Used for theQuantitation of Chemical Residues in Matrices Studied				
Parameter Value				
Method ID	Residue analytical method for the determination of residues of bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, <i>lambda</i> -cyhalothrin and permethrin in sediment (p. 23; Appendix 1, p. 194 of MRID 47053002).			
Analyte(s)	Bifenthrin, Cypermethrin, Cyfluthrin, Deltamethrin, Esfenvalerate, Fenpropathrin, <i>Lambda</i> -cyhalothrin and Permethrin.			
Extraction solvent/technique	Sediment (50 g) is extracted with methanol: water (1:1, v:v, 75 mL and hexane (50 mL) via mechanical shaking for 60 minutes (pp. 22 23; Appendix 1, p. 203 of MRID 47053002). Sample is then centrifuged to disperse emulsions and separate extract phases from sediment.			
Cleanup strategies	An aliquot of the hexane phase, equivalent to 10 g sediment, is taken to dryness at 40°C under an air stream (Appendix 1, pp. 203-204 of MRID 47053002). Residues are reconstituted in hexane and applied to a Varian Silica Bond Elut SPE cartridge. Analytes are eluted with hexane: diethyl ether (9:1, v:v), the eluate is taken to dryness as described above and resulting residues reconstituted in acetone containing 0.1% (v:v) peanut oil.			
Instrument/Detector	Agilent 6890 GC system equipped with a Varian CP-Sil 8CB-MS column (0.25 mm x 30 m, 0.25 μm film thickness, 95% dimethylpolysiloxane:5% diphenyl) and Agilent 5973N MS system with NICI and SIM (p. 23; Appendix 1, p. 204 of MRID 47053002).			

Information obtained from pp. 22-23; Appendix 1, pp. 194, 203-204 of MRID 47053002.

C. RESULTS AND DISCUSSION

C.1. Recovery Results Summary

Analyte	Spiking Level (µg/kg)	Mean Recoveries Obtained (%)	Relative Standard Deviation
		ter Sediment (TOC 1.31%)	1,2
D'0 1 '	0.1	106	2.1
Bifenthrin	1.0	107	5.8
	0.1	106	2.9
Cypermethrin	1.0	118	8.4
Confl. the de	0.1	106	2.6
Cyfluthrin	1.0	117	6.5
Dalta an ethada	0.1	88	10
Deltamethrin	1.0	108	6.1
Esfonyalarata	0.1	78	5.7
Esfenvalerate	1.0	112	8.4
Equatorsthein	0.1	104	5.7
Fenpropathrin	1.0	113	3.3
I were day as halathain	0.1	93	11
Lambda-cyhalothrin	1.0	112	6.6
Demus etherin	1.0	100	5.2
Permethrin	10.0	108	12
	California Estuarine	e Sediment (TOC 0.86%) ^{1,3}	
Bifenthrin	0.1	91	2.8
Ditentii iii	1.0	99	5.2
Cypermethrin	0.1	103	7.8
Cypermetinin	1.0	108	4.5
Cyfluthrin	0.1	99	8.7
	1.0	106	5.5
Deltamethrin	0.1	85	5.0
	1.0	85	13
Esfenvalerate	0.1	109	7.0
	1.0	105	6.4
Fennronathrin	0.1	105	5.9
Fenpropathrin	1.0	105	6.0
Lambda-cyhalothrin	0.1	101	6.5
	1.0	104	5.4
Permethrin	1.0	106	5.4
	10.0	104	5.7
	Sedime	nts Combined ⁴	
	0.1	99	8.7
Bifenthrin	1.0	103	6.8
	All data	101	7.9

EPA MRID Numbers 47053001/47053002 (both same ECM)

Analyte	Spiking Level (µg/kg)	Mean Recoveries Obtained (%)	Relative Standard Deviation	
	0.1	104	5.8	
Cypermethrin	1.0	113	7.8	
	All data	109	8.0	
	0.1	102	6.8	
Cyfluthrin	1.0	111	7.9	
	All data	107	8.4	
<u></u>	0.1	86	7.8	
Deltamethrin	1.0	97	15	
	All data	91	14	
, i n <u></u>	0.1	94	19	
Esfenvalerate	1.0	108	7.9	
	All data	101	15	
	0.1	104	5.6	
Fenpropathrin	1.0	109	5.9	
	All data	107	6.1	
	0.1	97	9.7	
Lambda-cyhalothrin	1.0	108	7.2	
	All data	102	9.9	
	1.0	103	5.9	
Permethrin	10.0	106	9.1	
	All data	104	7.7	

1 Sediments not further characterized (p. 29; Appendix 5, pp. 417-418 of MRID 47053002). Freshwater sediment obtained from Butte Creek, Butte County, California; estuarine sediment obtained from Paradise Cove, Marin County California (Appendix 2, pp. 387, 392 of MRID 47053002).

2 Results from Table 1, pp. 33-34 of MRID 47053002.

3 Results from Table 2, pp. 35-36 of MRID 47053002.

4 Results determined by primary reviewer using data obtained from Tables 1-2, pp. 33-36 of MRID 47053002 (DER Attachment 2).

C.1.1. Method Characteristics

TABLE C.2. Method Characteristics		
Parameter	Value	
Analyte(s)	Bifenthrin, Cypermethrin, Cyfluthrin, Deltamethrin, Esfenvalerate, Fenpropathrin, <i>Lambda</i> -cyhalothrin, Permethrin (p. 12 of MRID 47053002).	
Limit of Quantitation (LOQ)	0.1 μ g/kg for bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin and <i>lambda</i> -cyhalothrin (p. 30 of MRID 47053002).	

TABLE C.2. Method Characteristics		
	1.0 μg/kg for permethrin.	
Limit of Detection (LOD) 0.02 µg/kg for bifenthrin, cypermethrin, cyfluthrin, deltam esfenvalerate, fenpropathrin and <i>lambda</i> -cyhalothrin (p. 30 47053002). 0.2 µg/kg for permethrin.		
Accuracy/Precision at LOQ	Acceptance criteria (EFED-ECM 2, Version 1, December 2010, p. 5) were met at the LOQ for all analytes with matrix spike recoveries ranging between 70% to 120% and relative standard deviations of \leq 20% (Tables 1-2, pp. 33-36 of MRID 47053002).	
Reliability of the Method/[ILV]	An ILV of the ECM was not provided.	
Linearity	Linear regression; range r = 0.9998-0.9999 (Figure 22, pp. 185-192 of MRID 47053002).	
	Mean residues were detected at >30% of the LOQ in the matrix blank control samples for deltamethrin, esfenvalerate and <i>lambda</i> - cyhalothrin in the fresh water sediment, and for bifenthrin and deltamethrin in the estuarine sediment (p. 30 of MRID 47053002).	
Specificity	For bifenthrin in the fresh water sediment, for esfenvalerate and <i>lambda</i> -cyhalothrin in the estuarine sediment, and for cypermethrin, cyfluthrin, fenpropathrin and permethrin in both sediments, any detections in the matrix blank controls were <30% of the LOQ (Tables 1-2, pp. 33-36 of MRID 47053002).	
· · · · · · · · · · · · · · · · · · ·	Reported recoveries for fortified samples were corrected for mean residues detected in the control samples.	

Information obtained from pp. 12, 30; Tables 1-2, pp. 33-36; Figure 22, pp. 185-192 of MRID 47053002.

C.2. Independent Laboratory Validation (ILV)

An ILV of the ECM was not provided.

TABLE C.3. Recovery Results of the Method Obtained by an IndependentLaboratory Validation for the Determination of Residues in [Matrix]				
AnalyteSpiking Level (units)Mean Recoveries Obtained (%)Relative Stands Deviation				
An Independent Laboratory Validation (ILV) was not conducted.				

D. CONCLUSION

This environmental chemistry method (ECM) is designed for the quantitative determination of residues of bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, *lambda*-cyhalothrin and permethrin. The Agency finds that this study is supplemental. The ECM meets the criteria for a scientifically valid method and partially satisfies the data requirement for residues of eight syntethic pyrethroids in two sediments, given the following information is provided and found acceptable.

- An independent laboratory validation (ILV) report for the ECM, performed by scientists differing from those who developed the original ECM,
- Test sediments characterization, and
- Further information regarding how the LOD and LOQ were determined.

MRIDs 47053001 and 47053002 were submitted concurrently. Upon initial review, MRID 47053001 appeared to be the ECM, with MRID 47053002 the supporting Independent Laboratory Validation (ILV). However, comparison of data found that the two MRIDs contained the same results. MRID 47053002 is the ECM as performed by Morse Laboratories, Inc. MRID 47053001 presents all the same data generated by Morse Labs, but with all references to Morse Labs, including Morse Protocol and Laboratory Project Numbers, removed. The method presented in MRID 47053001 does include a section addressing the potential problem of analyte isomerization that was not included as part of the method description in MRID 47053002.

ENVIRONMENTAL CHEMISTRY METHOD REVIEW CHECKLIST

ENVIRONMENTAL CHEMISTRY METHOD (ECM) STANDARD EVALUATION PROCEDURE (SEP) CHECKLIST: BACKGROUND AND INITIAL REVIEW INFORMATION

Referenced page numbers are from MRID 47053002, except where noted otherwise. Cited pages appear in the bottom most right corner of each page for both MRIDs.

I. Background Information

A .	Title of Method	Residue analytical method for the determination of residues of bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, <i>lambda</i> -cyhalothrin and permethrin in sediment (p. 12).		
В.	ECM No. [BEAD]			
C.	MRID No.	47053001 and 4705	53002:	
		47053001 and 47053002: These documents were submitted concurrently. Upon initial review, MRID 47053001 appeared to be the ECM, with MRID 47053002 the supporting ILV. However, comparison of data found that the two MRIDs contained the same results. MRID 47053002 is the ECM as performed by Morse Laboratories, Inc. MRID 47053001 presents all the same data generated by Morse Labs, but with all references to Morse Laboratories, including Morse Protocol and Laboratory Project Numbers, removed. MRID 47053001 lists the study "Performer" as Syngenta Crop Protection, Inc., Jealott's Hill Research Centre. MRID 47053002 lists Syngenta Crop Protection, Inc., Jealott's Hill Research Centre as the study monitor (p. 6; Appendix 2, p. 377). The method presented in MRID 47053001 includes a section addressing the potential problem of analyte isomerization (see section <i>IV</i> . <i>Detailed Information about the Method</i> C. 8. a below) that was not included as part of the method description in MRID 47053002.		
D.	Matrix	Sediment.		
E.	Analyte(s) detected	Compounds:	Bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, <i>lambda</i> -cyhalothrin, permethrin	

Information obtained from pp. 12, 15-18 of MRID 47053002. For structures, see the review report.

ENVIRONMENTAL CHEMISTRY METHOD REVIEW CHECKLIST

II. Information about the Laboratory

A.	Name	Morse Laboratories, Inc. (p. 1).
B.	Address	1525 Fulton Avenue, Sacramento, California, 95825.
C.	Telephone No.	Not reported.
D.	Name of the Study Director	Richard L. Reed II (p. 7).
E.	Name of the Lead Chemist	Kevin Clark, Chief GC Chemist (p. 7).
F.	Laboratory Validation:	Yes, at LOQ and 10 x LOQ (p. 12).

Information obtained from pp. 1, 7, 12 of MRID 47053002.

III. Method Summary Information for Analyte(s): Bifenthrin, Cypermethrin, Cyfluthrin, Deltamethrin, Esfenvalerate, Fenpropathrin, Lambda-cyhalothrin and Permethrin.

А.	Statement of Data Confidentiality	Yes (p. 2).
1.	Is the Method Classified or Confidential?	No.
2.	Submitted Prior to 2008 with a Non-Standard Claim of Confidentiality?	No.
В.	Sample Preparation	Rocks and plant debris removed manually (p. 21). Thoroughly mix sediment to homogenize prior to aliquot removal (p. 23; Appendix 1, p. 202). At each fortification level (LOQ, 10 x LOQ), samples were fortified with all eight analytes using a mixed standard solution (p. 22).
C.	Sample Extraction	Sediment aliquot (50 g) weighed into centrifuge bottle; add 75 mL methanol: water (1:1, v:v) and 50 mL hexane; shake on mechanical shaker for 60 minutes (p. 23; Appendix 1, p. 203). Centrifuge sample at speed to disperse emulsions and separate extract phases from sediment (<i>e.g.</i> 4,000 rpm, 5 minutes).

ENVIRONMENTAL CHEMISTRY METHOD REVIEW CHECKLIST

D.	Sample Cleanup	An aliquot (10 mL) of the hexane phase, equivalent to 10 g sediment, is taken to dryness at 40°C under an air stream (Appendix 1, p. 203). Residues are reconstituted in hexane (2 mL) and applied to a solid phase extraction cartridge (Varian Silica Bond Elut, 500 mg, 3 mL). Analytes are eluted with hexane: diethyl ether (9:1, v:v, 6 mL), the eluate is taken to dryness as described above and resulting residues reconstituted in acetone containing 0.1% (v:v) peanut oil (1 mL).			
E.	Sample Derivatization	Not applicable.			
F.	Sample Analysis	chemical ionizatio	GC with mass selective detection using negative ion chemical ionization (GC-MS/NICI, GC-MSD; pp. 23- 25; Appendix 1, pp. 204-206).		
1.	Instrumentation	Agilent 6890 GC system with split/splitless injector and Agilent 5973N MS system using negative chemical ionization mode (p. 23; Appendix 1, p. 204).			
2.	Primary Column	Varian CP-Sil 8CB-MS column (0.25 mm x 30 m, 0.25 µm film thickness, 95% dimethylpolysiloxane: 5% diphenyl; p. 23; Appendix 1, p. 204).			
3.	Confirmatory Column	None reported.			
4.	Detector	Selected Ion Monitoring (SIM; p. 24; Appendix 1, p. 205).			
5.	Other Confirmatory Techniques	In addition to the retention time and the target ion, one qualifier ion was listed for esfenvalerate and permethrin, and two qualifier ions for bifenthrin, cyfluthrin, cypermethrin, deltamethrin and <i>lambda</i> -cyhalothrin; however, no results for the qualifier ions were reported (p. 24). Only the target ion was listed for fenpropathrin.			
6.	Other Relevant Information	Compound	Ion monitored	Retention time(s)	
		Bifenthrin	(m/z) 386	$\frac{(\text{minutes})^1}{18.1}$	
				18.1	
		Lambda- 205 19.6 cyhalothrin 19.9			
		Permethrin 207 21.5 21.8 21.8 21.8			

		Cyfluthrin	207	22.5 22.7 22.8 22.9
		Cypermethrin	207	23.2 23.4 23.5 23.6
		Esfenvalerate	211	24.9 25.3
		Deltamethrin	297	25.9 26.3
G.	Detection and Quantitation Limits			
1.	Limit of Quantitation (LOQ)			
	Claimed in Method	 0.1 μg/kg for bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, and <i>lambda</i>-cyhalothrin (p. 30). 1.0 μg/kg for permethrin. 	Estimated	No. LOQ defined as lowest concentration of analyte yielding mean recovery of 70-110% with a relative standard deviation of $\leq 20\%$ (Appendix 1, p. 210).
2.	Limit of Detection (LOD)			
	Claimed in Method	0.02 μg/kg for bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, and <i>lambda</i> -cyhalothrin (p. 30). 0.2 μg/kg for permethrin.	Estimated	Yes. LOD defined as lowest concentration of analyte detectable above mean amplitude of background noise in an untreated sample at the corresponding retention time; estimated at three times background noise (Appendix 1, p. 210).

Recovery (Accuracy) /Precision Data; percent recovery (mean, SD, RSD, $n = 5$) ²							nean, SD,	RSD, n =	$= 5)^2$
Level ³	Cmpd⁴	Bifen-	Cyper-	Cyflu-	Delta-	Esfen-	Fenpro-	Lambda-	Per-
California Fresh Water Sediment (TOC 1.31%) ⁵									
	Range	103-109	102-110	101-108	78-102	73-84	94-108	83-108	94-108
1.00	Mean	106	106	106	88	78	104	93	100
LOQ	SD	2.2	3.0	2.8	8.9	4.5	5.9	10	5.2
	RSD	2.1	2.9	2.6	10	5.7	5.7	11	5.2
	Range	100-115	105-130	108-127	99-116	99-122	108-116	104-121	93-124
10 x	Mean	107	118	117	108	112	113	112	108
LOQ	SD	6.3	9.9	7.6	6.5	9.4	3.7	7.4	13
	RSD	5.8	8.4	6.5	6.1	8.4	3.3	6.6	12
			California	Estuarine	Sediment	(TOC 0.86	%) ⁵		
	Range	87-94	96-114	89-108	78-89	97-118	95-111	90-106	98-11
I OO	Mean	91	103	99	85	109	105	101	106
LOQ	SD	2.5	8.0	8.6	4.2	7.7	6.2	6.5	5.7
	RSD	2.8	7.8	8.7	5.0	7.0	5.9	6.5	5.4
	Range	93-106	102-114	98-113	74-97	95-112	98-114	97-111	96-111
10 x	Mean	99	108	106	85	105	105	104	104
LOQ	SD	5.1	4.8	5.8	11	6.7	6.3	5.6	5.9
	RSD	5.2	4.5	5.5	13	6.4	6.0	5.4	5.7

Information obtained from pp. 2, 21-25, 29-30; Tables 1-2, pp. 33-36; Appendix 1, pp. 202-206, 210; Appendix 5, pp. 417-418 of MRID 47053002.

1 Multiple retention times are for individual isomer peaks of the pyrethroid analyte; peak areas of each isomer were combined to determine total residue value (p. 25; Appendix 1, p. 206 of MRID 47053002).

2 Results from Tables 1-2, pp. 33-36 of MRID 47053002; verified by primary reviewer (DER Attachment 2).

3 LOQ and 10 x LOQ 0.1 and 1.0 μg/kg, respectively, for bifenthrin, cypermethrin, cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin and *lambda*-cyhalothrin, and 1.0 and 10.0 μg/kg, respectively, for permethrin.

4 Bifenthrin, Cypermethrin, Cyfluthrin, Deltamethrin, Esfenvalerate, Fenpropathrin, Lambda-cyhalothrin and Permethrin, respectively.

5 Sediments not further characterized (p. 29; Appendix 5, pp. 417-418 of MRID 47053002). Freshwater sediment obtained from Butte Creek, Butte County, California; estuarine sediment obtained from Paradise Cove, Marin County, California (Appendix 2, pp. 387, 392 of MRID 47053002).

IV. Detailed Information about the Method

		YES	NO	REVIEW FURTHER
A.	Does the method require spiking with the analytes of interest?		Х	pp. 21-22.

		YES	NO	REVIEW FURTHER
В.	If the method requires explosive or carcinogenic reagents, are proper precautions explained?		1 1 	Not applicable.
С.	Is the following information supplied?			
1	Detailed stepwise description of:			
a.	The sample preparation procedure?	Х		p. 21; Appendix 1, p. 202.
b.	The sample spiking procedure?		X	p. 22 fortification of sediments
c.	The extraction procedure?	х		p. 23; Appendix 1, p. 203.
d.	The derivatization procedure?			Not applicable.
e.	The clean-up procedure?	Х		p. 23; Appendix 1, p. 203.
f.	The analysis procedure?	X		pp. 23-25.
2.	Procedures for:			
a.	Preparation of standards?	х		pp. 20-21.
b.	Calibration of instrument?	х		p. 22.
3.	List of glassware and chemicals	Х		Appendix 1, pp. 212-213.
a.	Are sources recommended?	X		
b.	Are they commercially available?	x	<u></u>	
4.	Name, model, <i>etc.</i> , of the instrument, column, detector, <i>etc.</i> , used?	Х		
<u>a.</u>	Are sources recommended?	X		
b.	Are they commercially available?	X		
5.	LOD			·
a.	Is there an explanation of how it was calculated?	X		Appendix 1, p. 210.
b.	Is it a scientifically accepted procedure?			Not determined statistically (p. 30).

	-	YES	NO	REVIEW FURTHER
с.	Is the matrix blank free of interference at the retention time, wavelength, <i>etc.</i> , of the analytes of interest?	<u>Freshwater</u> <u>sediment</u> : bifenthrin, cypermethrin, cyfluthrin, fenpropathrin, permethrin (Table 1, pp. 33-34). <u>Estuarine</u> <u>sediment</u> : fenpropathrin, permethrin (Table 2, pp. 35-36).	Freshwater sediment: deltamethrin, esfenvalerate and <i>lambda</i> - cyhalothrin. <u>Estuarine</u> sediment: bifenthrin, cyfluthrin, deltamethrin, esfenvalerate and <i>lambda</i> - cyhalothrin.	In five instances mean residues were detected at $>30\%$ of the LOQ; 0.0453, 0.0655 and $0.0414 \mu g/kg$ for deltamethrin, esfenvalerate and <i>lambda</i> - cyhalothrin, respectively, in FWS, and 0.0469 and $0.0720 \mu g/kg$ for bifenthrin and deltamethrin, respectively, in ES (p. 30). Reported recoveries for fortified samples were corrected for mean residues detected in control samples.
6.	LOQ		4	
a.	Is there an explanation of how it was calculated?	X		Appendix 1, p. 210.
b.	Is it a scientifically accepted procedure?			Not determined statistically (p. 30).
7.	Precision and accuracy data			
a.	Were there an adequate number of spiked samples analyzed?	x		Five replicates each at LOQ and 10 x LOQ (p. 22).
b.	Are the mean recoveries between 70- 120%?	X		Tables 1-2, pp. 33-36.
c.	Are the RSDs of the replicates 20% or less at or above the LOQ?	x		

		YES	NO	REVIEW FURTHER
8.	Description and/or explanation of:			
a.	Areas where problems may be encountered?	Х		Addition of 0.1% (v:v) acetic acid to all samples and standards may be required to prevent isomerization (p. 21 of MRID 47053001).
b.	Critical steps?	X		
c.	Interferences that may be encountered?	х		Disposable labward is used to prevent any cross contamination (Appendix 1, p. 209).
9.	Characterization of the Matrices?		Incomplete	Only total organic carbon reported (pp. 19, 29).

Information obtained from pp. 19-25, 29-30; Tables 1-2, pp. 33-36; Appendix 1, pp. 202-203, 209-210, 212-213 of MRID 47053002; and p. 21 of MRID 47053001.

V. Representative Chromatograms

		YES	NO	REVIEW FURTHER
A .	Are there representative chromatograms for:			
1.	Analytes in each matrix at the LOQ and 10 x LOQ?	х		Figure 4, pp. 59-65; Figure 7, pp. 80-86; Figure 12, pp. 115- 121; Figure 15, pp. 136-142.
2.	Method blanks?		X	Reagent blanks were analyzed with no residues detected at the retention times of the pyrethroid analytes (Tables 1-2, pp. 33-36).

		YES	NO	REVIEW FURTHER
3.	Matrix blanks?	Х		Figure 2, pp. 45- 51; Figure 10, pp. 101-107.
4.	Standard curves?	x		Figure 22 (pp. 185-192).
a.	Do the standard curves have acceptable linearity?	X		r = 0.9998-0.99999).
5.	Standards that can be used to recalculate some of the values for analytes in the sample chromatograms?	х		DER Attachment 2.
В.	Can the responses of the analytes(s) in the chromatograms of the lowest spiking level be accurately measured?	х		

Information obtained from Tables 1-2, pp. 33-36; Figure 2, pp. 45-51; Figure 4, pp. 59-65; Figure 8, pp. 80-86; Figure 10, pp. 101-107; Figure 12, pp. 115-121; Figure 15, pp. 136-142; Figure 22, pp. 185-192 of MRID 47053002.

VI. Good Laboratory Practice (GLP) Standards

		YES	NO	REVIEW FURTHER
A.	Is there a statement of adherence to the FIFRA GLP standards?	Х		p. 3.

Information obtained p. 3 of MRID 47053002.

VII. Independent Lab Validation (ILV)

		YES	NO	REVIEW FURTHER
A.	Was an ILV performed?		- X	None provided.
В.	Was the validation independent?			None provided.

		YES	NO	REVIEW FURTHER
C.	Did the ILV's precision/accuracy data meet the criteria established in OPPTS Guideline 850.7100?			None provided.
D.	Were recommendations of major or minor modifications to the method made by the independent lab performing the ILV? If major modifications were suggested, what were they?			None provided.

VIII. Completeness

		YES	NO	REVIEW FURTHER
А.	Has enough information been supplied to do a proper review?		x	ILV required.
В.	Has enough information been supplied to do a laboratory evaluation, if requested? [BEAD]			
C.	Are all steps in the method scientifically sound?	X		
D.	Is a confirmatory method or technique provided?		х	
E.	Check the category below which best describes this ECM. [Is the data supplied in the method package satisfactory or deficient in any way? If there are deficiencies, are the deficiencies major or minor? Note whether deficiencies are with the method procedure, whether they are with respect to guidelines, and whether they affect the review classification.]			
1.	Satisfactory		Х	
2.	Major Deficiencies	X		ILV required.

Pyrethroids; EPA PC Code 109701 (File) EPA MRID Numbers 47053001/47053002 (both same ECM)

ENVIRONMENTAL CHEMISTRY METHOD REVIEW CHECKLIST

		YES	NO	REVIEW FURTHER
3.	Minor Deficiencies	x		Confirmatory method not employed; LOD and LOQ were not
				determined statistically.

IX. Recommendations

- Section VIII. Completeness E. 2. Major Deficiencies. An independent laboratory validation (ILV) report for the ECM, performed by scientists differing from those who developed the original ECM, was not submitted with this data package and should be submitted.
- Section *VIII. Completeness* E. 3. Other Deficiencies. A confirmatory method was not provided to verify the identities of the pyrethroid analytes, the test sediments were incompletely characterized, and the LOD and LOQ were not statistically determined.

Final Reviewer: José L. Meléndez Chemist Signature:

José bais Meléndez

USEPA/OPP/EFED/ERB5

Date:

April 20, 2012

Chemical: Pyrethroids PC: 069007 MRID: 47053002 Guideline: 850.7100 ECM in sediment Method validation for determination of Bifenthrin in two California sediments.¹

.

Fortified		Fresh Wat	ter Sediment	(BUCGR, TO	C 1.31%))		[Estuarine Se	ediment (Par	adise Cove, 1	OC 0.86	%)	
(µq a.i./kq)	Control Mean (µg/kg)	Measured (µg/kg)	Corrected (µg/kg)	Recovery (%)	Mean (%)	SD ² (%)	RSD ³ (%)	Control Mean (µg/kg)	Measured (µg/kg)	Corrected (µg/kg)	Recovery (%)	Mean (%)	SD (%)	RSD (%)
0.1	0	0.103	0.103	103				0.0469	0.138	0.091	91			
		0.106	0.106	106					0.141	0.094	94			
		0.107	0.107	107					0.137	0.090	90			
		0.107	0.107	107					0.138	0.091	91			
		0.109	0.109	109	106	2.2	2.1		0.134	0.087	87	91	2.5	2.8
1.0		0.997	0.997	100					0.979	0.932	93			
		1.11	1.11	111					1.03	0.983	98			
		1.09	1.09	109					1.11	1.06	106			
		1.02	1.02	102					1.06	1.01	101			
		1.15	1.15	115	107	6.4	5.9		1.00	0.953	95	99	5.2	5.2
Overall mean				107							95			
SD				4.5							5.8			
RSD				4.2							6.1			
Max				115							106			
Min				100							87			
n =				10							10			
Soils combined	d:		0.1 µg a.i./kc	fortification	s combii	ned:		1.0 µg a.i./kg fo	ortifications of	combined:				
Overall mean	101		Overall mea	n		99		Overall mean			103			
SD	8.0		SD			8.6		SD			7.0			
RSD	7.9		RSD			<u>8</u> .7		RSD			6.8			
Max	115		Мах			109		Max			115			
Min	87		Min			87]	Min			93			
n =	20		<u>n =</u>			10		n =			10			

Results from Table 1, p. 33; Table 2, p. 35 of MRID 47053002.

Means and standard deviations calculated using Microsoft program functions =AVERAGE(A1:A2) and =STDEV(A1:A2).

1 Sediment source and TOC obtained from pp. 12, 19, 29 of MRID 47053002.

2 SD = Standard Deviation; determined using the "unbiased" or "n-1" method.

Chemical: Pyrethroids PC: 069007 MRID: 47053002 Guideline: 850.7100 ECM in sediment Method validation for determination of Cypermethrin in two California sediments.¹

Fresh Water Sediment (BUCGR, TOC 1.31%) Estuarine Sediment (Paradise Cove, TOC 0.86%) Fortified Corrected Recovery SD² RSD³ Recovery RSD Control Mean Measured Mean Control Mean Measured Corrected Mean SD (µg/kg) (µg a.i./kg) $(\mu q/kg)$ (µg/kg) (%) (%) (%) (%) $(\mu g/kg)$ (µg/kg) (µg/kg) (%) (%) (%) (%) 0.1 0 0.107 0.107 107 0 0.0979 0.098 98 0.102 0.102 102 0 1 1 4 0.114 114 0.105 0.105 105 0.108 0.108 108 0.104 0.104 104 0.0955 0.096 96 0.110 0.110 110 106 3.0 2.9 0.0970 0.097 97 102 8.1 7.9 1.0 1.11 1.11 111 1.02 1.02 102 1.30 1.30 130 1.10 1.10 110 1.20 1.20 120 1 14 1 14 114 105 1.05 1.05 1.11 1.11 111 123 1.23 1.23 118 9.9 84 1.05 1.05 105 108 4.8 4.5 105 Overall mean 112 9.4 70 SD RSD 84 6.7 Max 130 114 102 Min 96 n = 10 10 Soils combined: 0.1 µg a.i./kg fortifications combined: 1.0 µg a.i./kg fortifications combined: 104 Overall mean 109 Overall mean Overall mean 113 SD 8.7 SD 6.0 SD 8.8 RSD RSD 8.0 RSD 5.8 7.8 Max 130 114 Max 130 Max Min 96 96 102 Min Min 20 n = n = 10 n = 10

Results from Table 1, p. 33; Table 2, p. 35 of MRID 47053002.

Means and standard deviations calculated using Microsoft program functions =AVERAGE(A1:A2) and =STDEV(A1:A2).

1 Sediment source and TOC obtained from pp. 12, 19, 29 of MRID 47053002.

2 SD = Standard Deviation; determined using the "unbiased" or "n-1" method.

Chemical: Pyrethroids PC: 069007 MRID: 47053002 Guideline: 850.7100 ECM in sediment Method validation for determination of Cyfluthrin in two California sediments.¹

Fortified		Fresh Wa	ter Sediment	(BUCGR, TC	C 1.31%)			Estuarine Sediment (Paradise Cove, TOC 0.86%)						
ronneu	Control Mean	Measured	Corrected	Recovery	Mean	SD ²	RSD ³	Control Mean	Measured	Corrected	Recovery	Mean	SD	RSD
(µg a.i./kg)	(µg/kg)	(µg/kg)	(µg/kg)	(%)	(%)	(%)	(%)	(µg/kg)	(µg/kg)	(µg/kg)	(%)	(%)	(%)	(%)
0.1	0	0.107		107				0.0117	0.101	0.089	89			
		0.105							0.120	0.108	108			
		0.107		107					0.104	0.092	92			
		0.101		101					0.119		107			
		0.108			106	2.8	2.6		0.110		98	99	8.6	8.7
1.0		1.11	1.11	111					0.992	0.980	98			
		1.27		127					1.08		107			
		1.19							1.14	1.13	113			
		1.08			117	7.0			1.09		108	405	r 7	4
<u></u>		1.20	1.20			7.6	6.5		1.03	1.02	102	105	5.7	5.4
Overall mean				111							102			L]
SD RSD				8.1	i						7.6			
Max				7.3							7.5			
Min		<u> </u>		127			·							
n =				101			· · · · · · · · · · · · · · · · · · ·				10			
Soils combined			0.1 μg a.i./kg						rtifications	ambinodu				
					s combin			1.0 µg a.i./kg fo	runcations c					
Overall mean SD	107 8.9		Overall mea SD	n		102		Overall mean SD			111	l		
RSD	<u> </u>	1	RSD			6.9 6.8		RSD			<u> </u>			
Max	<u>0.4</u> 127		Max			108		Max			127			
Min	89		Min			89		Min			98			
n =	20		n =			10		n =			10			
					<u> </u>	<u> </u>		<u> </u>			10			

 n =
 20
 n =

 Results from Table 1, p. 33; Table 2, p. 35 of MRID 47053002.

Means and standard deviations calculated using Microsoft program functions =AVERAGE(A1:A2) and =STDEV(A1:A2).

1 Sediment source and TOC obtained from pp. 12, 19, 29 of MRID 47053002.

2 SD = Standard Deviation; determined using the "unbiased" or "n-1" method.

Method validation for	or determination	of Deltamethri	n in two	Calif	ornia :	sediments	.'

Fortified		Fresh Wat	ter Sediment	(BUCGR, TO	C 1.31%)				Estuarine Se	ediment (Para	adise Cove,	FOC 0.86%	6)	
Foruneu	Control Mean	Measured	Corrected	Recovery	Mean	SD ²	RSD ³	Control Mean	Measured	Corrected	Recovery	Mean	SD	RSD
(µg a.i./kg)	(µg/kg)	(µg/kg)	(µg/kg)	(%)	(%)	(%)	(%)	(µg/kg)	(µg/kg)	(µg/kg)	(%)	(%)	(%)	(%)
0.1	0.0454	0.134	0.089	89				0.0720	0.159	0.087	87			
		0.123	0.078	78					0.150	0.078	78			1
		0.129	0.084	84					0.161	0.089	89			
		0.131	0.086	86					0.156	0.084	84			
		0.147	0.102	102	87	8.9	10		0.158	0.086	86	85	4.2	5.0
1.0		1.09	1.04	104					0.812	0.740	74			
		1.21	1.16	116	:				0.879	0.807	81		I	
		1.16	1.11	111					1.03	0.958	96			
		1.04	0.99	99				1	1.04	0.968	97			
		1.14	1.09	109	108	6.5	6.0		0.844	0.772	77	85	11	13
Overall mean				98							85			
SD				13							7.7			
RSD				14							9.0			
Max				116							97			
Min		·		78				 			74			
n =				10							10			
Soils combined	:		0.1 µg a.i./kg	fortification	s combin	ed:		1.0 µg a.i./kg fo	rtifications c	ombined:				
Overall mean	91		Overall mea	n		86		Overall mean			97			
SD	12		SD			6.7		SD			15			
RSD	14		RSD			7.8	l	RSD			15			
Max	116		Max			102		Max			116			
Min	74		Min			78		Min			74			
n =	20		n =			10		<u>n =</u>			10			

n = ______20 ____ n = ____ Results from Table 1, p. 33; Table 2, p. 35 of MRID 47053002.

Means and standard deviations calculated using Microsoft program functions =AVERAGE(A1:A2) and =STDEV(A1:A2).

1 Sediment source and TOC obtained from pp. 12, 19, 29 of MRID 47053002.

2 SD = Standard Deviation; determined using the "unbiased" or "n-1" method.

.

.

Method validation for determination of Esfenvalerate in two California sediments.¹

Fortified	<u> </u>	Fresh Wa	ter Sediment	(BUCGR, TO	C 1.31%)				Estuarine S	ediment (Para	adise Cove, 1	OC 0.86%	6)	
Fortified	Control Mean	Measured	Corrected	Recovery	Mean	SD ²	RSD ³	Control Mean	Measured	Corrected	Recovery	Mean	SD	RSD
(µg a.i./kg)	(µg/kg)	(µg/kg)	(µg/kg)	(%)	(%)	(%)	(%)	(µg/kg)	(µg/kg)	(µg/kg)	(%)	(%)	(%)	(%)
0.1	0.0656	0.141	0.075	75				0.0148	0.112	0.097	97			
		0.142	0.076	76					0.126	0.111	111	1	1	
		0.147	0.081	81					0.127	0.112	112			
		0.138	0.072	72					0.124	0.109	109			
		0.149	0.083	83	78	4.5	5.8		0.133	0.118	118	110	7.7	7.0
1.0	i	1.12	1.05	105					0.967	0.952	95			
		1.29	1.22	122					1.10	1.09	109			
		1.24	1.17	117					1.13	1.12	112			
		1.06	0.994	99					1.08	1	107			
		1.22	1.15	115	112	9.4	8.4		1.03	1.02	102	105	6.4	6.1
Overall mean				95							107			
SD				19							7.2			
RSD				20							6.7			
Max				122							118			
Min				72							95			
n =				10							10			
Soils combined	:		0.1 µg a.i./kg	fortification	s combin	ed:		1.0 µg a.i./kg fo	ortifications of	ombined:				
Overall mean	101		Overall mea	n		94		Overall mean			108			
SD	15		SD			18		SD			8.5			
RSD	15		RSD			19		RSD			7.9			
Max	122		Max			118		Max			122			
Min	72		Min			72		Min			95			
n =	20		n =			10		n =			10			

Results from Table 1, p. 34; Table 2, p. 36 of MRID 47053002.

Means and standard deviations calculated using Microsoft program functions =AVERAGE(A1:A2) and =STDEV(A1:A2).

1 Sediment source and TOC obtained from pp. 12, 19, 29 of MRID 47053002.

2 SD = Standard Deviation; determined using the "unbiased" or "n-1" method.

Chemical: Pyrethroids PC: 069007 MRID: 47053002 Guideline: 850,7100 ECM in sediment Mathed validation for determination of Fennrenethrin in two California and imented

	Method validat	on for determination of Fenpropathrin in two California sediments.	
i	Fortified	Fresh Water Sediment (BUCGR, TOC 1.31%)	Estu
	Foruned	Control Mean Measured Corrected Recovery Mean SD ² RSD ³	Control Mean Mea

Fortified		Fresh Wat	ter Sediment	(BUCGR, TO	C 1.31%)				Estuarine So	ediment (Para	dise Cove, 1	OC 0.869	6)	
Fortined	Control Mean	Measured	Corrected	Recovery	Mean	SD ²	RSD ³	Control Mean	Measured	Corrected	Recovery	Mean	SD	RSD
(µg a.i./kg)	(µg/kg)	(µg/kg)	(µg/kg)	(%)	(%)	(%)	_(%)	(µg/kg)	(µg/kg)	(µg/kg)	(%)	(%)	(%)	(%)
0.1	0	0.102	0.102	102				0	0.0945	0.095	95			
		0.0938	0.094	94					0.109	0.109	109			
		0.107	0.107	107	i				0.106	0.106	106			
		0.108	0.108	108					0.111	0.111	111			
		0.107	0.107	107	104	5.9	5.7		0.105	0.105	105	105	6.4	6.1
1.0		1.10	1.10	110					0.984	0.984	98			
		1.15	1.15	115					1.05	1.05	105			
		1.16		116					1.14	1.14	114			
		1.08		108					1.07	1.07	107			
		1.16	1.16	116	113	3.7	3.3		0.999	0.999	100	105	6.2	5.9
Overall mean				108							105			_
SD				6.8							5.9			
RSD				6.3							5.7			
Max				116							114			
Min				94							95			
n =				10				L			10			
Soils combined	:		0.1 µg a.i./kg	fortification	s combin	ed:		1.0 µg a.i./kg fo	rtifications c	ombined:				
Overall mean	107		Overall mean	n		104		Overall mean			109			
SD	6.5		SD			5.9		SD			6.5			
RSD	6.1		RSD			5.6	l	RSD			5.9			
Max	116		Max			111		Max			116			
Min	94		Min			94		Min			98			
n =	20		n =			10		<u>n =</u>			10			

Results from Table 1, p. 34; Table 2, p. 36 of MRID 47053002.

Means and standard deviations calculated using Microsoft program functions =AVERAGE(A1:A2) and =STDEV(A1:A2).

1 Sediment source and TOC obtained from pp. 12, 19, 29 of MRID 47053002.

2 SD = Standard Deviation; determined using the "unbiased" or "n-1" method.

Method validati													~	=
Fortified				(BUCGR, TO		SD ²	0003			ediment (Para				
(µg a.i./kg)	Control Mean (µg/kg)	Measured (µg/kg)	Corrected (µg/kg)	Recovery (%)	Mean (%)	SD (%)	RSD ³ (%)	Control Mean (µg/kg)	Measured (µg/kg)	Corrected (µg/kg)	Recovery (%)	Mean (%)	SD (%)	
0.1				84				0.0111	0.101	0.090	90			-
0.1	0.0110	0.124	0.083	83				0.0111	0.117	0.106	106			
		0.137	0.096	96					0.113	0.102	102			
		0.134	0.093	93					0.115	0.102	104			
		0.149		108	92	10	11		0.116	0.105	105	101	6.5	
1.0		1.10	1.06	106					0.978	0.967	97			-
		1.25	1.21	121					1.06	1.05	105		1	
		1.17	1.13	113					1.12	1.11	111			
		1.08	1.04	104					1.07	1.06	106			
		1.22	1.18	118	112	7.4	6.6		1.00	0.989		103	5.7	
Overall mean				102							102			-
SD				13							5.9			
RSD				13							5.8			
Max				121							111			
Min				83							90			
n =				10							10			
Soils combined	1:		0.1 µg a.i./kg	fortification	s combin	ed:		1.0 µg a.i./kg fo	rtifications c	ombined:				
Overall mean	102		Overall mea	n		97		Overall mean			108			
SD	10		SD			9.4		SD			7.8			
RSD	9.9		RSD			9.7		RSD			7.2			
Max	121		Max			108		Max			121			
Min	83		Min			83		Min			97			
n =	20		n =			10		n =			10			

RSD

(%)

6.5

5.5

83 20 Results from Table 1, p. 34; Table 2, p. 36 of MRID 47053002.

Means and standard deviations calculated using Microsoft program functions =AVERAGE(A1:A2) and =STDEV(A1:A2).

1 Sediment source and TOC obtained from pp. 12, 19, 29 of MRID 47053002.

2 SD = Standard Deviation; determined using the "unbiased" or "n-1" method.

Fortified		Fresh Wat	ter Sediment	(BUCGR, TO	OC 1.31%)				Estuarine So	ediment (Par	adise Cove,	TOC 0.86	<u>()</u>	ľ
Fortineu	Control Mean	Measured	Corrected	Recovery	Mean	SD ²	RSD ³	Control Mean	Measured	Corrected	Recovery	Mean	SD	RSD
(µg a.i./kg)	(µg/kg)	(µg/kg)	(µg/kg)	(%)	(%)	(%)	(%)	(µg/kg)	(µg/kg)	(µg/kg)	(%)	(%)	_(%)	(%)
1.0	0	0.973	0.973	97				0	0.984	0.984	98			
		0.988	0.988	99					1.11	1.11	111			
		0.939	0.939	94					1.02	1.02	102			
		0.995	0.995	· 100					1.07	1.07	107			
		1.08		108	100	5.2	5.2		1.11	1.11	111	106	5.6	5.3
10.0		9.72	9.72	97					9.58	9.58	96			
		12.4	12.4						10.6	10.6	106			
		10.7	10.7	107					11.1	11.1	111			
		9.32	9.32	93					10.8	10.8	108			
L		11.7	11.7	117	108	13	12		10.1	10.1	101	104	6.0	5.8
Overall mean				104							105			
SD				10							5.5			
RSD				9.9							5.3			
Max				124							111			
Min				93							96			
n =				10							10			
Soils combined	l:		1.0 µg a.i./kg	fortification	s combir	ied:		10.0 µg a.i./kg	fortifications	combined:				
Overall mean	104		Overall mea	n		103		Overall mean			106			
SD	8.1		SD			6.1		SD			9.7			
RSD	7.7		RSD			5.9	1	RSD			9.1			
Max	124		Max			111		Max			124			
Min	93		Min			94		Min			93 10			
n =	20		n =			10		n =			10			

Method validation for determination of Permethrin in two California sediments.¹

Results from Table 1, p. 34; Table 2, p. 36 of MRID 47053002.

Means and standard deviations calculated using Microsoft program functions =AVERAGE(A1:A2) and =STDEV(A1:A2).

1 Sediment source and TOC obtained from pp. 12, 19, 29 of MRID 47053002.

2 SD = Standard Deviation; determined using the "unbiased" or "n-1" method.

Chemical: Pyrethroids PC: 069007 MRID: 47053002 Guideline: 850,7100 ECM in sediment Verification of reported results using GC peak area data.¹

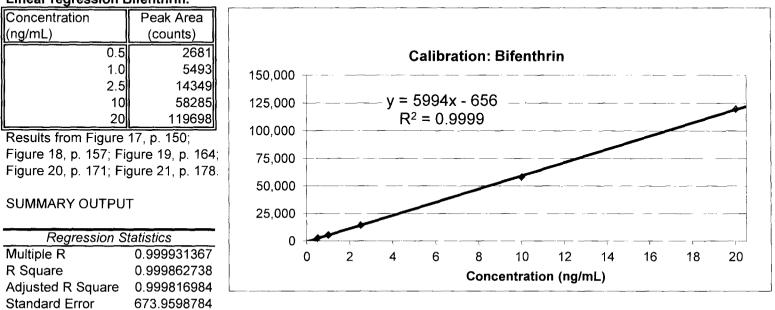
.

.

Fortified			Fresh Wate	er Sediment (Bl	JCGR, TOC 1	.31%)			Estuarine Se	diment (Paradi	se Cove, TOC	0.86%)	
(µg a.i./kg)	Compound	Bracket Std 1 (peak area)	Bracket Std 2 (peak area)	Mean Std (peak area)	Measured (peak area)	Measured (µg/kg)	Reported ² (µg/kg)	Bracket Std 1 (peak area)	Bracket Std 2 (peak area)	Mean Std (peak area)	Measured (peak area)	Measured (µg/kg)	Reported ³ (µg/kg)
0.1	Bifenthrin	7454	6804	7129	7355	0.103	0.103	6312	5926	6119	8465	0.138	0.138
1	Cypermethrin	7257	6027	6642	7080	0.107	0.107	6869	6254	6562	6423	0.0979	0.0979
	Cyfluthrin	10870	8872	9871	10542	0.107	0.107	10000	9051	9526	9613	0.101	0.101
	Deltamethrin	6022	5406	5714	7633	0.134	0.134	4855	4457	4656	7418	0.159	0.159
l	Esfenvalerate	13421	10554	11988	16887	0.141	0.141	12026	10940	11483	12911	0.112	0.112
	Fenpropathrin	11706	9881	10794	11040	0.102	0.102	10783	10414	10599	10014	0.0945	0.0945
	Lambda-cyhalothrin	10784	9119	9952	12470	0.125	0.125	8164	7569	7867	7959	0.101	0.101
1.0	Permethrin	5857	4918	5388	5246	0.974	0.973	5435	5606	5521	5433	0.984	0.984
1.0	Bifenthrin	115423	116412	115918	57760	0.997	0.997	121315	124239	122777	60105	0.979	0.979
	Cypermethrin	90994	91267	91131	50676	1.11	1.11	111862	117395	114629	58299	1.02	1.02
	Cyfluthrin	146068	144415	145242	80574	1.11	1.11	168645	178012	1,73329	85979	0.992	0.992
	Deltamethrin	90699	88712	89706	48891	1.09	1.09	85238	90585	87912	35683	0.812	0.812
	Esfenvalerate	185356	181974	183665	102955	1.12	1.12	221658	234713	228186	110281	0.967	0.967
	Fenpropathrin	170037	169884	169961	93570	1.10	1.10	216355	224573	220464	108530	0.985	0.984
	Lambda-cyhalothrin	153812	154546	154179	85102	1.10	1.10	154964	162527	158746	77659	0.978	0.978
10.0	Permethrin	80094	80924	80509	39075	9.71	9.72	105832	110099	107966	51714	9.58	9.58

Results from Tables 1-2, pp. 33-36; Figures 3-8, pp. 52-93; Figures 11-16, pp. 108-149 of MRID 47053002.

Measured (µg/kg) determined using reported example calculations (pp. 25-27 of MRID 47053002).

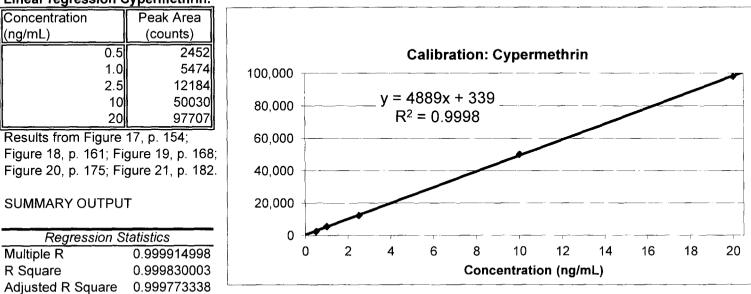

1 Sediment source and TOC obtained from pp. 12, 19, 29 of MRID 47053002.

2 Fortified Control 11 at LOQ and Fortified Control 16 at 10 x LOQ.

3 Fortified Control 21 at LOQ and Fortified Control 26 at 10 x LOQ.

Chemical: Pyrethroids PC: 069007 MRID: 47053002 Guideline: 850.7100 ECM in sediment Linear regression Bifenthrin.

5



ANOVA

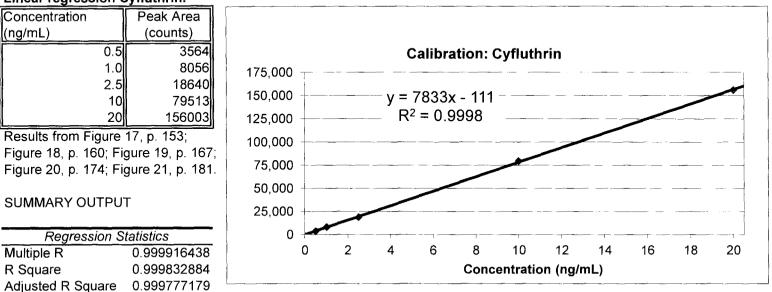
Observations

	df	SS	MS	F	Sig F			
Regression	1	9926113167	9.93E+09	21853.004	6.825E-07			
Residual	3	1362665.753	454221.9					
Total	4	9927475833						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-656.351068	408.4854783	-1.606792	0.2064569	-1956.3342	643.632033	-1956.33417	643.6320334
X Variable 1	5993.75751	40.54558779	147.8276	6.825E-07	5864.7234	6122.79167	5864.723354	6122.791666

Chemical: Pyrethroids PC: 069007 MRID: 47053002 Guideline: 850.7100 ECM in sediment Linear regression Cypermethrin.

ANOVA

Standard Error


Observations

	df		SS	MS	F	Sig F
Regression	1	1	6598440600	6.6E+09	17644.412	9.407E-07
Residual	3	3	1121903.156	373967.7		
Total	2	1	6599562503			

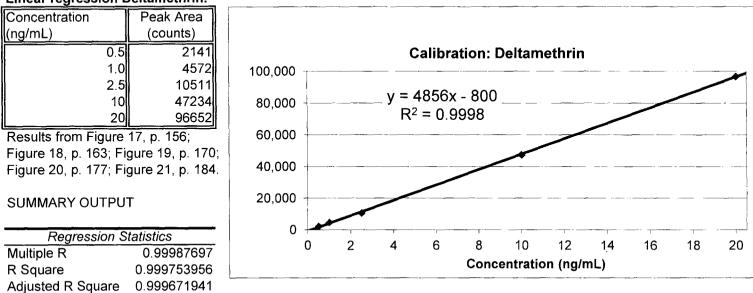
611.5290007

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	338.7278321	370.6462719	0.913884	0.4281645	-840.83403	1518.28969	-840.834026	1518.28969
X Variable 1	4886.863554	36.78973123	132.8323	9.407E-07	4769.7822	5003.9449	4769.78221	5003.944898

Chemical: Pyrethroids PC: 069007 MRID: 47053002 Guideline: 850.7100 ECM in sediment Linear regression Cyfluthrin.

ANOVA

Standard Error


Observations

	df	SS	MS	F	Sig F
Regression	1	16954093800	1.7E+10	17948.597	9.169E-07
Residual	3	2833774.795	944591.6		
Total	4	16956927575			

971.9010229

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-111.4962	589.0668969	-0.189276	0.8619582	-1986.17	1763.17757	-1986.16997	1763.177569
X Variable 1	7833.337676	58.46979844	133.9724	9.169E-07	7647.2607	8019.41467	7647.260682	8019.41467

Chemical: Pyrethroids PC: 069007 MRID: 47053002 Guideline: 850,7100 ECM in sediment Linear regression Deltamethrin.

ANOVA

Multiple R

R Square

Standard Error

Observations

(ng/mL)

	df	SS	MS	F	Sig F
Regression	1	6515738073	6.52E+09	12189.938	1.638E-06
Residual	3	1603553.239	534517.7		
Total	4	6517341626			

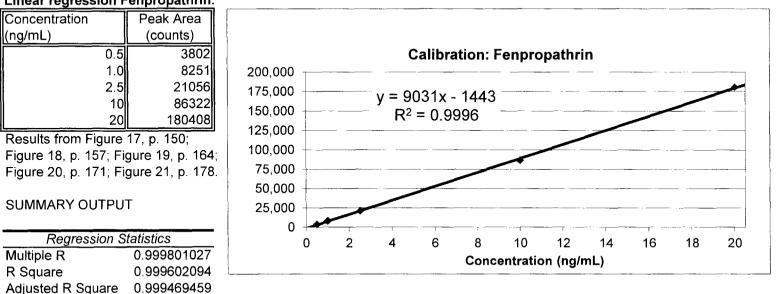
731.1072057

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-799.764748	443.1223373	-1.80484	0.1688599	-2209.9778	610.448297	-2209.97779	610.4482966
X Variable 1	4856.141875	43.9835847	110.4081	1.638E-06	4716.1665	4996.11727	4716.166478	4996.117271

		ι .											
Linear regression E													
Concentration	Peak Area												
(ng/mL)	(counts)												
0.5	4521				(Calibra	tion: E	Esfenv	alerate	•			
1.0	8960	200,000	<u>т</u>										-
2.5	22472	175,000				0000	000					/	
10	99991					9930x							
20	197023	150,000	-		$- \mathbf{R}$	$^{2} = 0.9$	998						
Results from Figure	17, p. 155;	125,000	+										
Figure 18, p. 162; Figure 18, p.		100,000	+	- 10000 ⁰⁰⁰⁰									
Figure 20 p. 176; Fig		75,000					\sim		····				
		50,000											
SUMMARY OUTPU	Т												Í
		25,000											
Regression S	tatistics	0							·····		·		
Multiple R	0.999902578		0	2	4	6	8	10	12	14	16	18	20
R Square	0.999805166						Conc	entratio	on (ng/r	nL)			
Adjusted R Square	0.999740221	L											

ANOVA

Standard Error


Observations

	df		SS	MS	F	Sig F
Regression		1 2	27243260859	2.72E+10	15394.693	1.154E-06
Residual		3	5308958.329	1769653		
Total		4 2	27248569817			

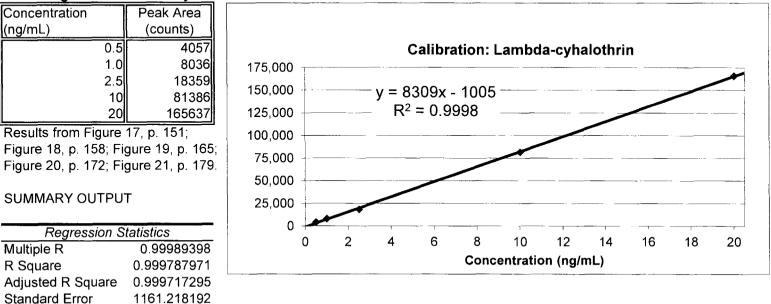
1330.282969

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-929.022439	806.2813412	-1.152231	0.3327126	-3494.9695	1636.92464	-3494.96951	1636.924636
X Variable 1	9929.768006	80.03014218	124.0754	1.154E-06	9675.0764	10184.4596	9675.076376	10184.45964

Chemical: Pyrethroids PC: 069007 MRID: 47053002 Guideline: 850.7100 ECM in sediment Linear regression Fenpropathrin.

ANOVA

Standard Error

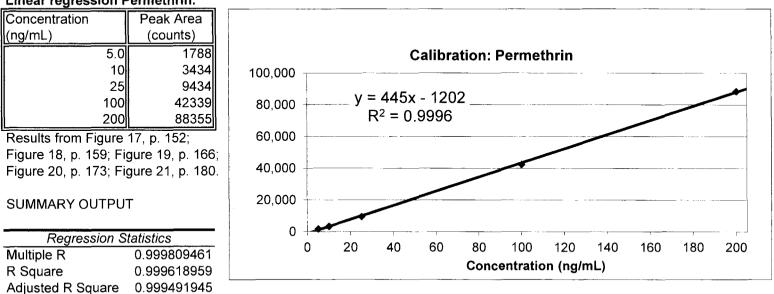

Observations

	df	SS	MS	F	Sig F
Regression	1	22534768017	2.25E+10	7536.4702	3.369E-06
Residual	3	8970287.492	2990096		
Total	4	22543738305			

1729.189356

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-1443.03692	1048.057554	-1.376868	0.2623099	-4778.4238	1892.34997	-4778.42381	1892.349972
X Variable 1	9031.005429	104.0284461	86.81285	3.369E-06	8699.9405	9362.07037	8699.940485	9362.070373

Chemical: Pyrethroids PC: 069007 MRID: 47053002 Guideline: 850.7100 ECM in sediment Linear regression Lambda-cyhalothrin.


ANOVA

Observations

	df	SS	MS	F	Sig F
Regression	1	19074865783	1.91E+10	14146.006	1.31E-06
Residual	3	4045283.068	1348428		
Total	4	19078911066			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-1005.09989	703.8115825	-1.428081	0.2485743	-3244.9425	1234.74268	-3244.94246	1234.742679
X Variable 1	8308.838219	69.85916471	118.937	1.31E-06	8086 5152	8531.16126	8086.515179	8531.16126

Chemical: Pyrethroids PC: 069007 MRID: 47053002 Guideline: 850.7100 ECM in sediment Linear regression Permethrin.

ANOVA

Standard Error

Observations

			140			
	df	SS	MS	F	Sig F	
Regression	1	5475774812	5.48E+09	7870.1683	3.157E-06	
Residual	3	2087290.096	695763.4			
Total	4	5477862102				

834.1243105

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-1202.01013	505.5607594	-2.377578	0.0978316	-2810.9301	406.909837	-2810.9301	406.9098368
X Variable 1	445.1766196	5.018111841	88.71397	3.157E-06	429.20675	461.146491	429.2067481	461.1464911